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Abstract. Using the density matrix renormalization group method we study the
quantum coherence of one-dimensional interacting Fermi systems. We investigate
the the effects of several kinds of impurities on the ground-state of a Hubbard
chain in detail. Thereby we look at the transition from a metallic to an insulating
ground-state caused by a local potential, a locally modified interaction or hopping.
Unfortunately the preliminary results show that the successful treatment of a sys-
tem of interacting spinless fermions, using the phase sensitivity as the observable of
the phase transition, is unsuitable in the disordered Hubbard-chain. Nevertheless
the data lead to new insight in the level structure. The investigation of the opti-
cal conductivity is still in progress. In addition we determine the exponent of the
algebraic decay of Friedel oscillations at the boundary and around an impurity in
the middle of the chain. These results are very useful for the characterization of the
above mentioned impurities.

1 Introduction to the physical model

Disorder versus interaction induced metal-insulator-transition is a general
question in solid state physics. The influence of electron-electron interaction
on Anderson localization has attracted a lot of interest for several years.
Hereby attention is also directed to randomly distorted one-dimensional sys-
tems, because the investigation of low dimensional systems can provide im-
portant insights. In contrast to higher dimensions, a detailed theoretical
(analytical and numerical) description is possible in one dimension. In sev-
eral cases analytical solutions are available; either exact, with the help of
the Bethe-Ansatz, or approximative, using the bosonization technique. The
latter is also suitable for distorted — hence non-integrable — systems. The
density matrix renormalization group method [1] is a quasi-exact numerical
method used to determine ground-state properties of long one-dimensional
but non-integrable systems with excellent accuracy. Recent studies of a spin-
less fermion model have been a first step in a detailed understanding [2].
Whereas non-interacting fermions localize immediately in the presence of in-
finite small disorder in one dimension, a strong attractive interaction leads
to a metal-insulator transition at a finite value of the disorder in this par-
ticular model. Special realizations of disorder, i. e. quasiperiodic potentials,
likewise lead to a metal-insulator transition at finite value — even in the non-
interacting case [3].
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In this project we investigate the Hubbard model, the simplest model of
interacting electrons with spin ¢ =T, | on a chain. In the clean case, a Bethe-
ansatz solution is known [4]. We consider Ny = Ny + N| electrons on a chain
with length L = Na, where a is the lattice spacing,

N N N
Hyuwp = — Zti (c;i,—aci+1,a + h. C.) + Z Uinitni,| + Z €Ny, (1)
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where the operators cza, Ci,or Nio, and n; = [N + Nis)/2 denote Fermi
creation, annihilation and number operators. The magnetization is given
M = N; — N;. Disorder can be introduced by local potentials of random
strength, €; e[—W/2; W/2], randomly distributed U; e[-W/2i+U; W/2+ U],
or t; e[—t — W/2; —tW/2]. Initially we consider single impurities, given by
a local potential at site n, €; = ;,€,, a locally modified interaction, U; =
U(1 — inu), and tow symmetric modified bonds, t; = (1 — 8;,b — 83 41b).

The clean model (W = 0) shows three phases. Phase one appears for
U < 0, where the spin-excitation spectrum has a gap and the the low-lying
charge-excitations can be described by those of a Luttinger liquid [5]. Phase
two for U > 0 and away from half filling, is characterized by gapless spin- and
charge-excitations. The last phase occurs for U > 0 and half filling, where
the charge excitations have a gap and the spin-excitations are those of a

Luttinger liquid.

In the previous studies of an equivalent model for interacting spinless
fermions in periodic, quasiperiodic and random potentials [2,3,6], the metal-
insulator transition was determined with the help of the phase sensitivity,
NAE = [E(m) — E(0)], [7], i.e. the energy difference between periodic,
E(® = 0), and anti-periodic boundary conditions, E(® = m). The differ-
ent boundary condition are modeled via a magnetic flux enclosed in the ring,
ci+1, = exp(i®)c;. In a metal, exact solutions based on the Bethe-ansatz or
conformal field theory show that this energy difference decreases with 1/N.
Thus the phase sensitivity is constant in this case. In an insulator, on the
other hand, the system cannot react to the twist in the boundary condition,
i.e. the phase sensitivity is expected to decrease with system size.

The situation is more complicated in the Hubbard-model. The phase sensi-
tivities for up- and down-spins can be related to the spin- and charge-stiffness,
see [7]. By considering again periodic and anti-periodic boundary conditions
for the spin-up and spin-down electrons, we can write

B(@1,8,) = 2 [2n(J1 + 7 1)+ (@ + ) + 2 2n(J; — T 1) + (@~ )]
)
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where the J; | are the quantum numbers of the topological excitations. Eval-
uating the above formula, we find

Bl 0) - B(0,0) = & (. + D) ®
E(n,m) — E(0,0) = 27® min(D,, DF). (4)

The spin-stiffness Ds can also be obtained — in the clean system away from
half filling and U > 0, i. e. in the Luttinger liquid phase — from the energy
difference between the ground-state energy for different magnetizations,

E(N,N;,M) — E(N,N;, M —1) = 2xD?/N. (5)

In the case of attractive interaction, this energy difference gives, together with
a finite size scaling, the gap in the spin excitations. The identity DF = D4
was checked numerically with reasonable accuracy. In addition the numerical
values of D. and D are correctly produced for the clean system. As far as
these tests are concerned, the phase sensitivities seems again to be a suitable
observable.

For the study of the disordered Hubbard-chain, we need to compute the
ground-state energy very accurately for different boundary conditions, long
system sizes and, in addition, for different fillings. Since numerical methods
like exact diagonalization (ED) and quantum Monte Carlo (QMC) simula-
tions are restricted either to small systems or to finite temperatures, we use
the density matrix renormalization group technique (DMRG) [1].

To complete the investigations of the disordered Hubbard-chain we calcu-
late the Friedel oscillations at the boundary and around an impurity in the
middle of the chain. In the case of N} # N| they were already determined, [8].
We therefore consider the case Ny = N|. In this case, logarithmic corrections
are expected. Using conformal field theory, the local behavior of the density
at a boundary is given by the density-density-correlation-function [9]. The
Friedel oscillations are then given by [10]

cos (2kpx)
r(1+9:)/2 1n3/4 ;1;’

n(z) —ng x

(6)

where g.(U) = 1 — U/(2tr) is the Luttinger-parameter.

2 The density matrix renormalization group method

2.1 Numerical and Computational Aspects

The DMRG is an improvement of the blocking scheme of the numerical real
space renormalization treatment (NRG) [11]. The method is used to deter-
mine the ground-state properties of long systems (about a hundred lattice
sites, compared to about thirty using ED). The complete lattice is ithereby
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built up out of smaller subsystems A, B — by considering in each step only
the m states of the subsystems which contribute mostly to the ground-state,
W) =3 cij|1pg“)|¢f’ ), of the whole system C. This most important states
are gained in the DMRG with the help of the density matrix. The dimension
of the new Hamilton matrix in the NRG is in contrast reduced by considering
only the m states with the lowest energy. Thus each step of the algorithm
works as follows: Starting with a system of length M, one site is added — this
system is called A. C is built from A and B = A. Now the ground-state of
C and the coefficients c;; are calculated by diagonalizing the Hamilton ma-
trix using the Davidson algorithm for sparse matrix diagonalization [12]. The
density matrix, p= ) i CijCmj» @ fully occupied matrix, is diagonalized using
standard library (ESSL) routines. Finally all states and operators have to be
transformed to the new basis which consists of the m states corresponding
to the m lowest eigenvalues of the density matrix. For the implementation,
see [13]. The number of states which have to be kept for reasonable accuracy
(about 107%) depends mostly on the boundary conditions and the criticality
of the system. We typically kept m = 200...400 states in the calculations
of the disordered system where the system sizes varied from N = 30...60.
The demands on the memory lay in the region of about 500-1000 MB. In the
finite lattice algorithm all states and operators for all sizes of the interme-
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disk space.

2.2 Vectorization, Parallelization and Performance

According to several symmetries of the Hamiltonian and conserved quantities
—such as the fermion number or the magnetization — the block structure of the
Hamilton matrix is used to save space and time. For this reason the blocks are
relatively small (about 500 x 500) and the program was optimized for a serial
processor and run on the IBM/RS6000 SP. The code was written in C++.
The program spend most of the time in the subroutine where the Hamiltonian
is diagonalized. Hence, the Davidson algorithm has to be optimized. It was
possible to reach a performance of about 100-200 Mflops on a single processor.
Parallelization (using MPI) was mostly carried out to obtain the results for
various parameters in a reasonable time.

3 Results for the metal-insulator transition in a
Hubbard-chain

As mentioned above, we start our studies of disordered systems by considering
only one impurity. In this case the averaging over many disorder configura-
tions can be omitted. Furthermore, the renormalization group (RG) treat-
ment of [14] can be used to check the numerical data. The most important
result is that even a weak impurity destroys the structure of the energy-levels
with the external flux.
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3.1 A local potential

The RG treatment for a local potential shows that the local potential leads to
insulating behavior (decrease of the phase sensitivity or stiffness with system
size) for all fillings, impurity strengths and interactions.

In Fig. 1 we show the numerical results for a local potential at half and
third filling (p = N /N). We begin by discussing the left hand side of Fig 1. At
half filling the Hubbard-model is symmetric in spin and charge. N[E(m, ) —
E(0,0)] shows for weak impurity strength the expected symmetric behavior
for U > 0 and U < 0 (spin-gap versus charge-gap behavior) and a decrease of
the phase sensitivity with system length. But this decrease is clearly related
to the localization due to the interaction, U. The overall decrease of the
phase sensitivity is due to the impurity. A local potential couples spin and
charge. Thus this symmetry vanishes by adding the impurity. In our case we
find a small increase near U = 0.5t which was already found by [15]. This
maximum is shifted to U = 1t for stronger impurity strength. The same
behavior is found for N{E(m,0) — E(0,0)], where the unexpected (wrong?)
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Fig. 1. Phase sensitivity or extracted stiffness versus interaction for a Hubbard-
chain with a local potential. On the left side we show the results for half filling,
on the right for third filling, respectively. The circles denote the clean systems
at N = 10 or N = 9, respectively. The squares denote an impurity of strength
€1 = 0.1t, the diamonds an impurity of strength ¢; = 1¢, and the triangles an
impurity of strength €; = 10¢t. The dark shaded symbols correspond to N = 10 or
N =9, respectively, and the light shaded symbols to N = 30 or N = 27.
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metallic behavior is between —0.5¢t < U < 1t for small impurity strength and
between 0t < U < 1t for stronger. The assignment of the phase sensitivities
to the spin- and charge-stiffness for the whole interaction regime is possiblei
for third filling. The spin-stiffness, to be more precise DE , shows partly the
expected behavior: A clear decrease with system size for U < 0 in the spin-
gap-phase is seen. From the renormalization group treatmenti, however, we
also expect a decrease of the spin-stiffness with system length due to the
impurity for repulsive interaction. This is not found in the numerical data.
In addition the spin-stiffness deduced from the spin-gap (marked with a + in
the upper right corner of Fig. 1) is completely independent of the impurity
strength. Thus it is not possible to make a statement of a possible transition in
the spin-sector with help of the phase sensitivity. As far as the charge stiffness
is concerned, we find at least the decrease for small impurity strength and
repulsive interactions.

3.2 Locally modified interaction

The numerical studies of a system with a modified interaction U; = U’ =
U(1 — u) at the impurity site and U; = U otherwise lead to no significant
results as in the case of the local potential. This impurity type should show a
metal-insulator transition as a function of the impurity strength. Whereas the
system is supposed by the bosonization treatment to stay metallic for small
impurity strength, u < 1, it should become insulating either for U’ « U and
U’ > U, where the impurity can be considered as a local, spin-dependent
potential. The numerical data are shown in Fig. 2. It is not possible to ex-
tract the metal-insulator transition from this data. Obviously this impurity
enhances the spin-gap for U < 0, where we find a very sharp decrease. An-
other result worth mentioning is that in this case D2 depends strongly on
the impurity strength, whereas DF is only weakly dependent on it. In par-
ticular we see that the ground-state energy for M # 0 does not depend on
the impurity strength for all boundary conditions. For M = 0, on the other
hand, the ground-state energy is a monotonic decreasing function with U for
U’ < U asfor U' = U. In the contrary limit, U’ > U the ground-state energy
increases with U for attractive interactions, but decreases for repulsive.

3.3 Two symmetric modified bonds

In this case we find for the non-interacting system that the backscattering
contributions from this impurity cancel out for half filling in first order, and
are reduced for third filling.

The numerical data shown in Fig. 3, show clearly the slight reduction of
the phase sensitivity for weak impurities for half filling at fixed chain length.
Stronger impurities lead to a larger decrease which is, in addition, strength-
ened by increasing repulsive interaction. In the case of third filling, Dg is —
due to the incomplete cancellation of the backscattering — distinctly reduced



163

U U
-l 0 | 22 -1 0 | 2
- T | ‘ T T ] "—77 T ® . ’f\ :;
| i
1 ® 3 g e ; e 2 8eq 9
: = r 9 ® a
e * o A ® ¢ A A &
= 3 a 8 S A 3=
S 4 & Y o
0 A - ﬁ B U=091 o
i ™ A eOU-U & & U011l )
o B @ U=09l A A U'=5L —
E 2 ® © U=0.1U]| = =
£ A 2 Xus N &
oo ‘Q | A m
= 0} L | | 1 J A I | TN | 7
4—— T —
. | > < e ﬁ 3
o o. l | P 8
g .‘4’.-3 *.i‘;.’ S i _._'g ! g =1 r
= ]E"-»Q. / 2y s q
o Y AN P v : —wt‘
- 5 ; R g 0 *=0.1U
~ . A ®@uU-U ”‘ ?Zl |
= < ] B @ U=091 I --l =0.9U
B A | & @ U'=0.11 g A o U :11[
o] - {IA-Al:Sl Tl A _?l
Z ) 0 T 0
U

Fig. 2. Phase sensitivity or extracted stiffness versus interaction for a Hubbard-
chain with a modified interaction. On the left side we show the results for half
filling, on the right for third filling, respectively. The circles denote the clean systems
at N = 10 or N = 9, respectively. The squares denote an impurity of strength
U' = 0.9Uo, the diamonds an impurity of strength U’ = 0.1Up, and the triangles
one of strength U’ = 5Uy. The dark shaded symbol correspond to N =10 or N = 9,
respectively, and the light shaded symbols to N = 30 or N = 27. In the lower right
plot DF is marked with the open symbols and D2 with shaded symbols.

in the non-interacting system. Increasing the interaction the localizing effects
of the impurity are weakened. The behavior of D2 is complementary. The
identity DZ = D2 holds above a critical interaction, U, = 5b.

4 Friedel-oscillations

In Fig. 4 we show results for the decay of the Friedel oscillations at the
boundary. In this case, for half filling, an algebraic decay rather than the
pronounced algebraic decay with logarithmic corrections is found. Neverthe-
less, the exponents obtained from the numerical data are not in agreement
with the predictions from bosonization. The data for third filling show no
clear behavior.
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Fig. 3. Phase sensitivity or extracted stiffness versus interaction. On the left side
we show the results for half filling, on the right side for third filling, respectively.
The system length is N = 10 for half filling and N = 9 for third filling. In the lower
panel, the larger symbols correspond to D2, the smaller to DZ.
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Fig. 4. Local density-distribution versus distance for half and third filling and U =
—1,0, 1. An additional potential scatterer is located at the ends of the chain, €; = ¢,
en = —e. In the upper plot, the lines are connecting the data points.
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Fig. 5. Local density-distribution versus distance for half and third filling and U =
1. The interaction in the middle of the chain is modified, U’ = —U or U’ = 2U.

They can be described either with or without logarithmic corrections. For
example we find,

n(z) — p = —0.35cos(prz + 0.85)z "2 log "™ (z) U = -1
= —0.6cos(prz + 0.85)z " log "™ (2) U=0
= —0.25cos(prz + 0.85)27 " log " (z) U =1.

Considering the logarithmic corrections, the exponents agree well with the
predictions from bosonization. The prefactor depends only weakly on the
additional local potential, as was found in the case of Ny # N, using the
Bethe-ansatz, [8]. Fig. 5 shows the results for the decay around an impurity
which is given by a modified interaction in the middle of the chain. Again, we
find oscillations at the boundary, now without an additional potential. The
decay around the impurity in the middle of the chain shows the logarithmic
corrections more clearly.

5 Summary and outlook

Contrary to the model of spinless fermions on a ring, where it was possible
to characterize the metallic and insulating phases as well for different kinds
of impurities as well as for random, quasi-periodic and periodic potentials,
the phase sensitivity is not a suitable observable in the Hubbard model. The
second degree of freedom in the Hubbard model changes most features essen-
tially. Only the case of two modified bonds is comparable in both systems. To
overcome these problems concerning the level structure, we try to gain rea-
sonable results using the optical conductivity. As reported in [16], the Drude
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weight which corresponds to our phase sensitivity can be determined easily
by calculating the real part of the optical conductivity using open boundary
conditions. In this case a precursor of the Drude peak is seen for small energy
transfer for open boundaries. It is possible [17] to calculate the optical con-
ductivity with the DMRG technique by targeting not only the ground-state
but the lowest excitations and then using the Lanczos technique. Effects of the
open boundaries are smoothed by a filter function. Nevertheless, preliminary
studies of the system containing a single impurity using exact diagonalization
show that this additional, indeed very sharp peak, does not disappear even
for strong impurities. Further investigations have to show whether the optical
conductivity is a better choice to determine the transition from the metal to
the insulator. A second project concerned the local density and magnetiza-
tion. In the last years, many new materials have been synthesized, but in
some cases the theoretical description is yet not found. Studying the local
behavior, possibly the relevant theoretical model can be identified. We found
that the logarithmic corrections occur in the case of a bulk impurity but are
maybe absent in the case of the decay near a boundary at the open end of
the chain. Thus, further investigations are necessary.
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