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Abstract. Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high mag-
netic fields in Y- and Bi-based high-Tc superconductors are presented. We describe the experimental
technique and test measurements on a simple metal (niobium). In the high-Tc superconductors kxx and
kxy increase below Tc and show a maximum in their temperature dependence. kxx has contributions from
phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy
below Tc gives direct evidence for a strong enhancement of the QP contribution to the heat current and
thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of
kxx we separate the electronic thermal conductivity (kel

xx) of the CuO2-planes from the phononic thermal
conductivity (kph

xx). In YBa2Cu3O7−δ k
el
xx shows a pronounced maximum in the superconducting state.

This maximum is much weaker in Bi2Sr2CaCu2O8+δ, due to stronger impurity scattering. The maximum
of kel

xx is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices.
An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O7−δ,
reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single
crystals. Our data analysis reveals that below Tc as in the normal state a transport (τ ) and a Hall (τH)
relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is
strongly enhanced in the superconducting state, whereas τH displays the same temperature dependence
as above Tc. We determine also the electronic thermal conductivity in the normal state from kxy and the
electrical Hall angle. It shows an unusual linear increase with temperature.

PACS. 74.72.-h High Tc compounds – 74.25.Fy Transport properties (electric and thermal conductivity,
thermoelectric effects, etc.)

1 Introduction

Heat transport in the superconducting state is well known
to provide valuable information on the quasiparticle (QP)
excitations and their dynamics. For example, the order
parameter symmetry as well as the QP relaxation time
can be obtained by analyzing the thermal conductivity,
kxx. Compared to other probes of the QP-dynamics, such
as the microwave conductivity, thermal transport has the
advantage of probing only the QP-response, since the su-
perfluid does not carry heat.
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state [1,6,8]. Such a behavior of kph
xx is known from con-

ventional superconductors [1].
A separation of the QP- and phonon heat currents

is difficult. Usually it is attempted on the basis of the
Wiedemann-Franz law, which relates kel

xx to the electri-
cal conductivity σxx, i.e. kel

xx = LTσxx, where L is the
Lorenz-number. However, in the superconducting state
this requires a (model dependent) determination of the
QP-contribution to σxx from the combined superfluid and
QP-response to electric fields [15]. Moreover, in contrast to
the normal state, in a superconductor L may be tempera-
ture dependent even for purely elastic scattering, as a con-
sequence of different coherence factors for electrical and
thermal transport effects [20]. Another approach towards
a separation of kel

xx and kph
xx is to exploit the magnetic field

dependence of kxx [10]. However, since both the electronic
and the phononic heat current may in principle depend on
the magnetic field [10,21,22], additional information on
one of the contributions must be inferred from other exper-
imental data. Finally, it has been attempted to determine
kph
xx from measurements of the thermal conductivity of the

insulating parent compounds of the cuprates [12]. This is,
however, also ambiguous, since the thermal conductivity
of these insulators is doping dependent and shows anoma-
lous behavior itself, possibly due to magnetic contribu-
tions to the heat current [12] or due to stripe phases [23]
and tilt distortions [24] and their coupling to the phonons.

It is therefore useful to measure the transverse ther-
mal conductivity kxy, also called the Righi-Leduc or
thermal Hall effect, in addition to the field dependent ther-
mal conductivity [25–30]. The Righi-Leduc effect is the
thermal analogon of the Hall effect. It has been pointed
out in references [25,26] that phonons do not contribute
to kxy, i.e. kxy is purely electronic and contains direct
information on the QP relaxation time. However, regard-
ing transport in a magnetic field one additional complica-
tion arises: Detailed studies of the normal state electrical
transport phenomena show that a consistent description
of the experimental data requires the distinction of two
relaxation times in the cuprates [33,34]. A longitudinal
(transport) relaxation time τ enters the dc conductivity
σxx ∝ τ , whereas a transverse Hall relaxation time τH en-
ters the Hall conductivity σxy ∝ ττH and thus determines
the Hall angle tanαH = σxy/σxx ∝ τH. Experimentally,
from σxx and σxy, τ and τH have distinctly different tem-
perature dependencies. Given this behavior of electrical
transport properties one expects a similar scenario also
for the (electronic) thermal transport, i.e. kxx ∝ τ and
kxy ∝ ττH.

There are further complications in the interpretation
of experimental results. In YBa2Cu3O7−δ CuO-chains are
present along the b-direction of the orthorhombic crys-
tal structure in addition to the CuO2-planes common to
all HTSCs. These chains lead to a rather strong in-plane
(a-b) anisotropy of the electronic properties [31–33] and
in particular of the electronic thermal conductivity [7,11].
Moreover, in the superconducting state vortices carry heat
and they are known to move in an applied temperature
gradient [35,36]. They contribute therefore to the longitu-

dinal and transverse heat currents, if their motion is not
prevented by pinning [37]. In the cuprates this contribu-
tion may be present in a wide range of temperatures and
magnetic fields above the irreversibility line.

In this paper we present measurements of the thermal
conductivity and the thermal Hall effect of YBa2Cu3O7−δ
(YBCO) and Bi2Sr2CaCu2O8−δ (BSCCO) in high mag-
netic fields. kxx and kxy are found to increase below Tc

and to show a maximum in their temperature dependence
in both, Bi- and Y-based materials. Since kxy is purely
electronic this tells that the quasiparticle heat current is
strongly enhanced below Tc, which gives direct evidence
for a strong increase of the QP mean freepath. We sep-
arate the QP from the phononic contribution using kxy
and the magnetic field dependence of kxx. The main re-
sults from this data analysis are: (1) kel

xx(B) shows a pro-
nounced maximum below Tc which is strongly suppressed
by a magnetic field. (2) An additional magnetic field inde-
pendent maximum of the thermal conductivity is found in
YBCO, reminiscent of the contribution to kxx due to the
CuO-chains. (3) For kph

xx we find no indication of a maxi-
mum or of a significant magnetic field dependence. (4) The
vortex contribution to kxy is negligibly small compared to
the QP- and phononic contributions. (5) Our data anal-
ysis reveals distinct Hall and transport relaxation times,
consistent with what is known for the normal state of the
cuprates [33,34]. The transport relaxation time is strongly
enhanced below Tc and becomes magnetic field dependent,
whereas the Hall relaxation time shows the same field and
temperature dependence in the superconducting and in
the normal state. (6) We determine the electronic thermal
conductivity in the normal state from kxy and the elec-
trical Hall angle. kel

xy(T > Tc) exhibits an unusual linear
temperature dependence.

2 Theoretical background

2.1 Thermal transport

2.1.1 Definitions

Thermal transport is usually described [38] in analogy to
electrical transport, i.e. one defines a thermal conductivity
tensor k
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coefficients each, i.e.

k
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Fig. 1. Schematic setup used for the measurements (see text).

2.2 Hall and transport relaxation times

In simple metals it is usually sufficient to describe the
longitudinal and transverse transport properties using a
single relaxation time τ . In contrast, it is well known that
in the cuprates a consistent description of the data on such
a basis is not possible [33,34]. The reason is that tanαH

as measured from the Hall effect and the resistivity has
a temperature dependence different from that of σxx (see
also Fig. 5). In optimally doped samples it is found that

σxx ∝ τ ∝ T−1, (12)

whereas

tanαH = ωcτH ∝ T−2. (13)

Since the effective (cyclotron) mass entering ωc = eB/m
is usually temperature independent [39] it is common to
define a Hall relaxation time τH to account for the tem-
perature dependence of tanαH (see e.g. [33,34]).

Several scenarios have been proposed in order to justify
the use of two relaxation times for the normal state trans-
port properties of the cuprates, reaching from a break-
down of Fermi-liquid theory in favor of a novel metallic
groundstate to more conventional scenarios, which exploit
a strongly anisotropic scattering rate over the Fermi sur-
face [40–49]. We shall discuss these issues in more detail
below. At this point we regard the distinction between τ
and τH as a definition, introduced to obtain a consistent
description of the experimental data. Nevertheless, given
the distinction of τ and τH from electrical transport one
expects on the basis of the Wiedemann-Franz-law a similar
distinction for the electronic thermal transport properties,
i.e. kel

xx ∝ τ and kxy ∝ ττH.

3 Experimental

3.1 Measurements

All measurements were performed with the magnetic field
parallel to the c-direction and all temperature gradients,
currents, and voltages perpendicular to the c-direction.

For the measurements of k
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Fig. 3. Experimental setup used for the calibration of the
thermocouple for the temperature range between 4.2 and 30 K
(see text).
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Fig. 4. Thermopower of the thermocouple versus tempera-
ture at various fixed magnetic fields given in the figure. The
inset shows the zero field thermopower in a larger temperature
range. Above about 40 K S is only weakly field dependent
(∆S/S ≤ 4%).

line [35]. For measurements below the irreversibility line
we have heated the sample to temperatures above Tc be-
fore the field was reversed in order to avoid errors due
to pinning effects. The Cernox sensors used here have a
weak magnetic field dependence (∆T/T is less than 0.7%
for 14 T). However, this field dependence does not lead to
errors in our measurements because it is symmetric with
respect to field reversal.

We have also measured the in-plane resistivity ρ and
the Hall coefficient RH using a standard ac-lock-in tech-
nique.

3.2 Calibration

For our experiments we have used Au/0.07 at.% Fe
Chromel P type thermocouples (Leico Industries Inc.).
These thermocouples have a rather small diameter of
0.076 mm to avoid a thermal short circuit when mounted

to the sample, and furthermore they have a good sensitiv-
ity in the temperature range from 4.2 K to room temper-
ature. However, because of their magnetic field dependent
thermopower S(B) a calibration for measurements in high
magnetic fields is necessary. We have calibrated the mag-
netic field dependence accurately by using two different
methods: For the temperature range above 30 K the cali-
bration was done using a piece of α-quartz crystal. With
the same setup as for the measurements of the thermal
conductivity, the thermocouple and a small heater were
mounted on the quartz crystal. As the thermal conduc-
tivity of quartz does not depend on the magnetic field,
S(B)/S(B = 0) can be determined directly for different
temperatures by sweeping the magnetic field (for a con-
stant heater power). We have found that above about 40 K
the magnetic field dependence of the thermopower is weak
(∆S/S ≤ 4%).

Below 30 K the calibration according to the method
described above turned out to be problematic: The small
field dependence of the Cernox sensors causes tempera-
ture variation of the sample holder as the magnetic field
is sweeped. This leads to errors, because the temperature
dependence of the thermal conductivity of quartz is large
in this temperature range. We have therefore used a dif-
ferent method for the calibration between 4.2 K and 30 K.
Figure 3 shows the experimental setup. We used two cop-
per bars (l = 130 mm), one of them with an attached
heater wire which was wound regularly around it. The
two bars were in thermal contact via two copper discs and
4He gas. A well defined temperature difference could be
maintained between the copper bars. Three thermocouples
were mounted to this setup as shown in Figure 3. The ther-
mocouple mounted along one of the bars was used to check
that no temperature gradient builds up along the bars dur-
ing the measurements. The setup was placed in the mag-
net with one end in its center (B = Bc) and the other end
being in a much smaller magnetic field (B∗ = 0.331Bc).
The magnetic field was swept continuously from zero to
14 T measuring S(Bc)/S(B∗) at various fixed tempera-
tures. Using these data (S(B)/S(B = 0))T=const. was de-
termined. Figure 4 shows the thermopower S(T ) of the
thermocouple as determined for different magnetic fields
from (S(B)/S(B = 0))T=const. and the zero field S(T )
calibration. Note that the accuracy of our measurements
of the field dependent thermal conductivity is determined
mainly by the magnetic field dependence of the thermo-
couple.

3.3 Specimen

The YBa2Cu3O7−δ sample used in our measurements is
a high quality twined single crystal (≈ 2 × 2 × 0.4 mm)
grown from the flux. It has a superconducting transition
temperature of Tc ' 90.5 K with a transition width of
about ∆Tc ' 0.6 K. This value of Tc indicates that the
sample is nearly optimally doped. The resistivity and the
(inverse) Hall coefficient of this sample as a function of
temperature are shown in the upper panel of Figure 5.
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Table 1. Selected data on the YBCO and BSCCO sam-
ples used in the present study. The values in brackets for
BSCCO give results obtained for another crystal of the same
batch. ρxx is the resistivity and RH is the Hall coefficient.
kel,L
xx is calculated from ρxx using the Wiedemann-Franz law,

i.e. kel,L
xx = L0T/ρxx. Lxy/L0 is the relative Lorenz num-

ber calculated from the transverse transport coefficients ac-
cording to Lxy/L0 = kxy/(L0Tσxy). kel,T

xx is calculated from
kel,T
xy = kxyσxx/σxy (see Eq. (20) and Fig. 21). It should be

corrected for the chain contribution. (See text.)
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where we have used that σxy ' BRHσ
2
xx and σxx ' ρ−1

xx
in the weak field limit ωcτ � 1. Here we have defined
the longitudinal and transverse Lorenz numbers, Lxx and
Lxy, respectively. The Wiedemann Franz law (Eq. (9))
tells that Lxx = Lxy. Then equation (15) leads to

ρxx =
BRH
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in the figure.

below Tc the magnetic field dependence of kxy changes
from kxy ∝ B near Tc to non-linear behavior at low tem-
peratures. At the lowest measured temperatures kxy has
a tendency to become independent of B at high magnetic
fields above 3 T. We note that the data of Figure 11 are
similar to the results of a previous study [26]. On the
other hand, we do not find a decrease of kxy with B at
high magnetic fields, in contrast to what is reported in
reference [51].

5.2 Bi2Sr2CaCu2O8+δ

The longitudinal thermal conductivity kxx of BSCCO is
shown as a function of temperature in the upper panel of
Figure 12. kxx is magnetic field independent in the normal
state. In contrast to YBCO it increases slightly with tem-
perature. kxx is of order 3 W/Km near Tc, significantly
smaller than the value found in YBCO. Using the data
of Table 1 we find that kel

xx = L0T/ρxx is of the order
of 0.3 W/Km. Comparing this to the total thermal con-
ductivity reveals that also in BSCCO most of the heat
is carried by phonons in the normal state. Below Tc in
zero field a weak upturn of kxx occurs with a maximum
around 70 K. This maximum is almost completely sup-
pressed when applying a magnetic field of 14 T.

kxy(T ) measured on this sample is shown in the lower
panel of Figure 12. The behavior of kxy is qualitatively
similar to that found in YBCO. In particular, although
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Fig. 12. Upper panel: Thermal conductivity kxx of BSCCO
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B = 14 T (open symbols). Lower panel: kxy of BSCCO as a
function of temperature measured at B = 14 T.

the maximum of kxx below Tc is hardly visible in BSCCO,
kxy clearly shows a pronounced maximum at about 50 K.
Note that in comparison to YBCO in BSCCO the absolute
magnitude of kxy(14T) is smaller by a factor of about 4 in
the normal state close to Tc and by a factor of about 10
at the maximum.

A further clear difference to YBCO is apparent
when inspecting the magnetic field dependence of kxy in
BSCCO, which is shown in Figure 13. In the normal state
kxy ∝ B, as in YBCO. However, below Tc kxy still varies
approximately linearly with B. Weak non-linearity occurs
only at low temperatures and high magnetic fields.

6 Data analysis

6.1 Contributions to the heat current

We assume that kxx is the sum of 3 contributions:

kxx = kel
xx + kch

xx + kph
xx = kel

xx + krest
xx . (17)

Here kel
xx is the electronic thermal conductivity of the

CuO2-planes (in fact, bilayers in YBCO and BSCCO) and
kph
xx is the phononic thermal conductivity. kch

xx is an op-
tional contribution. It must be included in the data anal-
ysis only if an additional electronic channel of heat con-
duction is present with a magnetic field or temperature
dependence different from that of kel

xx. Such a situation
is most probably realized in YBCO, where in addition to
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Fig. 13. Transverse thermal conductivity kxy of BSCCO as a
function of magnetic field at various fixed temperatures given
in the figure. For clarity the curves have been shifted by a value
given by the intersection of the dotted lines (i.e. kxy = 0 for all
curves). The dotted lines ∝ B are a guide to the eye in order to
indicate the deviations from linearity at high magnetic fields
and low temperatures.

the CuO2-planes (pl) common to all HTSCs CuO-chains
(ch) are present along the b-direction of the orthorhombic
crystal structure. In good untwined crystals these chains
lead to a rather strong a-b anisotropy of the electronic
properties. For example, the anisotropy of the electrical
conductivity is of order 2, suggesting that along the b-
direction σch

xx ≈ σpl
xx [31–33]. (Note that in order to avoid

confusion we keep the notation as appropriate for twined
crystals with σxx = σyy and kxx = kyy and denote the
chain contribution by (ch).) Similarly, as expected from
the Wiedemann-Franz law, a large contribution of the
CuO-chains to the heat conductivity has also been estab-
lished experimentally [7,11]. Note that a contribution of
the chains to σxx and kxx occurs even for twined samples
as an in-plane average of σch

xx and kch
xx. Since the CuO-

chains are a one-dimensional channel of conduction the
magnetic field and temperature dependence of kch

xx may
be different from that of kel

xx. In particular, we expect no
magnetic field dependence of kch

xx. Moreover, due to their
one-dimensionality the CuO-chains should also not con-
tribute to the transverse effects, i.e. to kxy and σxy.

In the normal state only the above contributions to the
heat current are relevant in optimally doped cuprates. In
contrast, below Tc in finite magnetic fields an additional
heat current arises from the motion of vortices [35,36]. The
contribution kv

xy of this heat current to the thermal Hall
effect has been calculated in reference [37]. It is given by

kv
xy = − sv
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Here, sv is the transport entropy of a vortex (per unit
length). It is usually obtained from measurements of
the Nernst effect (or the Ettingshausen effect) and the
flux-flow resistivity [3,25,35,52–55]. Φ0 is the flux quan-
tum and S is the thermopower (or Seebeck-coefficient)
[25,35,53–55]. For an estimate we use the data on YBCO
of references [54,55]: sv ≈ 5 × 10−15 J/Km close to
Tc ≈ 90 K and S(Tc) ≈ 2.5 µV/K. This yields kv

xy(Tc) ≈
−5 × 10−4 W/Km. A calculation using the temperature
dependencies of sv and of S shows that |kv

xy| increases with
decreasing temperature below Tc and reaches a maximum
at about 80 K [37]. At the maximum |kv

xy| is of the order
2× 10−3 W/Km, which is about two orders of magnitude
smaller than the measured values of kxy in YBCO (com-
pare Fig. 10). Thus, the vortex contribution to kxy is by
far too small to be relevant for our results and can safely
be neglected in the following. We note that there is also
no anomaly of kxy around the irreversibility line, confirm-
ing that kv

xy does not give a sizeable contribution to kxy.
The contribution of the vortices to the longitudinal heat
current and thus to kxx is of the same magnitude as kv

xy

and therefore negligible [37].
For completeness we mention the so called circulatory

contribution kc
xx to the heat current (see e.g. Ref. [1])

which occurs in superconductors. It is given by kc
xx =

S2T/ρxx. Using ρxx(Tc) ≈ 2µΩ m we find kc
xx ≈ 5 ×

10−3 W/Km, much smaller than the experimental values
for single crystals.

6.2 Separation of the electronic and phononic heat
currents

6.2.1 Wiedemann-Franz law

The electronic and phononic thermal conductivity are of-
ten separated using the Wiedemann-Franz law. On this
basis, if transverse transport phenomena are involved,
there are two ways to determine kel

xx: kel
xx may be calcu-

lated directly from the electrical conductivity σxx accord-
ing to

kel
xx = L0Tσxx. (19)

Here one assumes that the Lorenz-number is a constant,
which is often not the case, in particular when inelastic
scattering processes are important. Alternatively we may
extract kel

xx from the normal state electrical Hall angle and
from kxy, according to

kel
xx =

kxy
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channels of heat conduction this requires that τR, kph
xx,

and kch
xx are separately field independent so that indeed

∂kxx
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crucially exploits the magnetic field dependence of kxx.
It is therefore applicable only below Tc (and above about
20–30 K), where kxx is magnetic field dependent, and it
is reliable only for YBCO, since in BSCCO the field de-
pendence of kxx is weak. Therefore we concentrate in this
section on YBCO.

7.2.1 Hall angle

The thermal Hall relaxation time τR as obtained from
our data below Tc using equation (25) is shown in Fig-
ure 15. The values obtained for different magnetic fields
coincide within the experimental accuracy, consistent with
τR being magnetic field independent. The field indepen-
dence of τR is compatible with the normal state behavior
of the Hall relaxation time τH, which is also found to be
B-independent. Note that the error in τR increases be-
low 30 K, since kxx hardly depends on the magnetic field
in this regime and therefore the data analysis becomes
difficult.

As a check of our result for τR we have also deter-
mined τH = ω−1

c σxy/σxx for the same sample from mea-
surements of σxy and σxx in the normal state. We have
extrapolated the normal state data to temperatures below
Tc by using linear fits to ρxx and R−1

H separately, which
vary linearly with temperature with high accuracy (see
Fig. 5). Subsequently the electrical Hall angle below Tc

has been calculated from these fit functions. The result of
this extrapolation is also shown in Figure 15. Remarkably,
τR and τH have the same temperature dependence, given
by τ−1

R ∝ τ−1
H ∝ T 2.

Regarding the absolute values, τR appears to be larger
than τH by roughly a factor of order 2 (see Fig. 15). How-
ever, this discrepancy can be explained by taking into ac-
count the presence of CuO-chains: τR as extracted from
the thermal transport data is clearly unaffected by the
presence of the CuO-chains since only kxy and the mag-
netic field dependence of kxx enter. σxy is obviously also
unaffected by the CuO-chains. In contrast, σxx does have
a contribution from the CuO-chains, i.e.

σxx = σpl
xx + 〈σch

xx〉, (29)

where σpl
xx is the electrical conductivity of the CuO2-planes

and 〈σch
xx〉 is an average of the chain contribution appro-

priate for a twined crystal. With σpl
xx ≈ 〈σch

xx〉 [33] we
conclude that

eτH
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Fig. 16. kel
xx as a function of temperature for various fixed

magnetic fields given in the figure. Upper panel: BSCCO.
Lower panel: YBCO. Full symbols: Extrapolation from B/kxy
to B = 0 (see text).

in good agreement with theoretical calculations [59]. The
overall magnitude of kel

xx near Tc is of order 1–1.5 W/Km
in YBCO and of order 0.6 W/Km in BSCCO. Compar-
ing this with the total thermal conductivity tells that kxx
is dominated by the phononic contribution in the normal
state.

The implications of the increase of kel
xx below Tc are

straightforward. According to standard transport theory
kel
xx ∝ TnQPτ . Regardless of the precise form of the su-

perconducting order parameter, the number density nQP

of QPs decreases with decreasing temperature below Tc so
that τ must increase strongly with decreasing temperature
in order to overcompensate the decrease of nQP.

Based on measurements of the thermal Hall effect
Krishana et al. have previously determined the (zero field)
electronic thermal conductivity of the CuO2-planes in
YBCO [26]. Their analysis exploits the (asymmetric) scat-
tering of QPs on vortices as calculated by Cleary [61] as
well as a variational treatment of the Boltzmann-equation
for the QPs. Their results for the zero field thermal con-
ductivity of the CuO2-planes are similar to ours.

7.2.3 Two relaxation times below Tc

It is certainly very remarkable that τH remains field inde-
pendent below Tc and has the same temperature depen-
dence as above Tc, whereas τ is strongly enhanced below
Tc and magnetic field dependent (see below). This should
provide important information for the theoretical under-
standing of the transport phenomena in the cuprates. We
therefore discuss this issue in some more detail here.

Proposals for the different temperature dependen-
cies of τ ∝ T−1 and τH ∝ T−2 have invoked quite
different scenarios for the characteristics of the charge
carriers. These approaches range from conventional Fermi
liquid like quasiparticles to more exotic spin-charge sepa-
rated entities [40], and fermionic currents with well defined
charge conjugation symmetry [41,42]. A common feature
of Fermi liquid like theories is the necessity of an electronic
scattering mechanism which leads to a highly anisotropic
scattering rate for different momenta on the Fermi sur-
face [43–48]. In these theories the terminology of hot spots
and cold spots has been introduced for those regions on the
Fermi surface where the scattering rate is largest or small-
est, respectively. Hot spots arise due to scattering pro-
cesses from antiferromagnetic spin fluctuations with large
momentum transfer q ∼ Q = (π, π). Electrons on regions
of the Fermi surface which are connected by Q thereby
suffer the strongest magnetic scattering and thus acquire
the shortest lifetime. For the Fermi surfaces of cuprate su-
perconductors these hot regions are located near (0, π) and
the equivalent points in the Brillouin zone. The cold spots,
i.e. the regions of the Fermi surface with the longest elec-
tronic lifetimes, are located instead near the Fermi surface
crossing along the Brillouin zone diagonal. In particular in
the cold spots models it has been argued that it is the long
lived quasiparticles alone which determine the transport
properties [47,49]. Ioffe and Millis [47] pointed out that a
conventional Fermi liquid like T 2 dependence of the the
electronic relaxation rate combined with phase restrictions
to the cold Fermi surface regions explains simultaneously
the T 2 temperature dependence of the Hall angle as well
as the linear T dependence for the relaxation rate in the
longitudinal conductivity (see below).

None of the above mentioned theories has so far been
extended to the superconducting state. It appears, how-
ever, that the cold spots model is a natural candidate the-
ory for explaining the continuing T 2 dependence of the
Hall relaxation time when passing through Tc as concluded
from the analysis of our thermal conductivity data. This is
because the dx2−y2 gap symmetry allows for gapless exci-
tations along the nodal directions, i.e. along the Brillouin
zone diagonals passing through the cold spots. Inspecting
the model of Ioffe and Millis [47] in more detail we note
that their QP-scattering rate Γ is given by

Γ (Θ, T ) =
1
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Brillouin zone diagonal. Γ0 is an anomalous temperature
independent scattering rate, active at all other parts of
the Fermi surface. The dc-resistivity and Hall effect in
this model are given by

σxx ∝
√
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measurements and an analysis similar as presented here
on a detwined crystal.

7.4 Magnetic field dependence of k



                                                                                        205

expects that in this case the QP-density in a d-wave su-
perconductor is already large in zero magnetic field due
to thermal excitation so that the change of nQP due to an
applied magnetic field is not so important.

A magnetic field dependence of the scattering time
of the QPs below Tc may arise from QP scattering on
vortices [10,22,26,61,69–71]. We introduce the QP vortex
scattering rate as

τ−1
v = ΣvnvvQP = Σv

B
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a scaling behavior. However, defect scattering is expected
to change the possible scaling behavior strongly [69].

7.5 Normal state behavior of k
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electronic thermal conductivity from the resistivity on the
basis of the Wiedemann Franz law with Lxx = L0 is not
possible.

8 Summary

We have presented a study of the thermal conductivity
kxx and of the thermal Hall effect kxy in Y- and Bi-based
high temperature superconductors. In both materials kxx
and kxy are found to increase below Tc and to show a
maximum in their temperature dependence. In addition
unusual magnetic field dependence occurs in the supercon-
ducting state: The maximum of kxx is strongly suppressed
by a magnetic field and kxy varies non-linearly with B.

In the high-Tc superconductors kxx has an electronic
and a phononic contribution. The latter dominates in the
normal state. In contrast, the transverse thermal conduc-
tivity kxy is purely electronic. The strong increase of kxy
below Tc therefore gives direct evidence for a strong en-
hancement of the quasiparticle contribution to the heat
current and thus for a strong increase of the quasiparti-
cle mean freepath. From this two important conclusions
emerge: Firstly, the main source of quasiparticle scattering
in the cuprates is electronic in origin. Secondly, our results
confirm that below Tc well defined quasiparticles exist in
Bi2Sr2CaCu2O8+δ and YBa2Cu3O7−δ, in agreement with
results from photoemission and microwave conductivity.

Using kxy and the magnetic field dependence of kxx we
have separated the electronic thermal conductivity (kel

xx)
of the CuO2-planes from the phononic thermal conduc-
tivity (kph

xx). In YBa2Cu3O7−δ kel
xx shows a pronounced

maximum in the superconducting state. This maximum
is much weaker in Bi2Sr2CaCu2O8+δ, which we attribute
to stronger impurity scattering in Bi2Sr2CaCu2O8+δ. An
additional magnetic field independent contribution to the
maximum of kxx occurs in YBa2Cu3O7−δ, reminiscent of
the contribution of the CuO-chains, as determined from
the anisotropy in untwined single crystals. Our data anal-
ysis reveals that below Tc as in the normal state a trans-
port (τ) and a Hall (τH) relaxation time must be distin-
guished: The inelastic (i.e. temperature dependent) con-
tribution to τ is strongly enhanced in the superconducting
state, whereas τH displays the same temperature depen-
dence above and below Tc.

The unusual magnetic field dependence of kxx and kxy
below Tc can be attributed to a B-dependent QP scat-
tering time. We suggest that the origin is the scatter-
ing of quasiparticles on vortices. Our data give evidence
that the corresponding QP-vortex scattering rate varies
linearly with B.

Finally, we have calculated the electronic thermal con-
ductivity from the transverse effects also in the normal
state. We find that kel

xx and the (transverse) Lorenz num-
ber increase roughly linearly with temperature. This im-
plies in particular that the Wiedemann-Franz law is not
valid in the normal state.
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