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Correlated hopping of electrons:
Effect on the Brinkman-Rice transition and the stability of metallic ferromagnetism
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We study the Hubbard model with bond-charge interactibcorrelated hopping’) in terms of the
Gutzwiller wave function. We show how to express the Gutzwiller expectation value of the bond-charge
interaction in terms of the correlated momentum-space occupation. This relation is valid in all spatial dimen-
sions. We find that in infinite dimensions, where the Gutzwiller approximation becomes exact, the bond-charge
interaction lowers the critical Hubbard interaction for the Brinkman-Rice metal-insulator transition. The bond-
charge interaction also favors ferromagnetic transitions, especially if the density of states is not symmetric and
has a large spectral weight below the Fermi energy.
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The miCrOSCOpiC Origin of magnetic Ordering in SystemSmechanismS exp|ain Why’ in princip|é||x may p|ay an im-
like transition metals, transition-metal oxides, and high-portant role in the stabilization of ferromagnetism and the
temperature superconductors is intricate, since it is due t@ycalization of electrons.
correlations between the electrons. The simplest model to
attempt a description of such systems is the single-band Hutgi—n
bard modéi—

The modelH = Hmpars Hx cannot be solved exactly,
d only mean-field and finite-size diagonalization results
are availablé Recently Schillet showed how to incorporate
Hy into the framework of dynamical mean-field thedfy:!
ﬂHubbard:Z tijéitr&jtr"'uz ﬁiTﬁil , (1)  but no numerical results have yet been obtainedor
ijo [ One of the standard tools to approach the correlated elec-
tron problem is the Gutzwiller wave functidn

where hats indicate operators. This model describes the com-
petition between kinetic and potential energy which is at the ~ A
heart of the quantum-mechanical correlation probfefine |‘I’G>:1_i[ [1=(1=g)nin; ]| Do), €)
Hubbard interactiorJ represents the Coulomb repulsion of
electrons in the same orbital at a given lattice site. It is giveRyhereg is a variational parameter €g<1), and the start-
by the matrix element =(ii|V(r—r')[ii} of the Coulomb  ing wave function|®,) is a product state of spin-up and
potential, and is typically on the order of a few eV. The gpin-down Fermi seas. By construction bodhy) and| W g)
matrix elements involving neighboring lattice siteandj are  are translationally invariant and have a fixed particle density
generally smaller that), but may not be negligibly small. n=n, +n  and magnetizatiom=n,—n, . The uncorrelated
One of them is the bond-charge interactidy=(ii|V(r  caseU=X;;=0 corresponds tg=1, while U= forbids
—r') [ij),%*~" which is typically on the order of 0.1-1 eV any doubly occupied sites and thus corresponds®. For
and hence is comparable in magnitude to the tight-bindingn+ 0 andg+0 the wave functiod¥s) describes an itiner-
hopping amplitudé;; . It describes a density-dependent hop-ant ferromagnetic state. Starting wave functidfs) with

ping of the electrons other broken symmetries can also be considered. Here, how-
ever, we will only consider paramagnetism and ferromag-
. apay oA . netism.
Hx= E XijCigCio(Ni 5Ny ), ) Using the Gutzwiller wave function one may, in principle,

ijo S ~
calculate expectation values of any operaforas (A)g
which only contributes if the lattice site from or onto which =(¥g|A|¥s)/(¥s|¥s). The energy expectation valle
an electron with spimr is hopping is occupied by an electron =(H),, when optimized with respect tg, is an upper

with spin o (“correlated hopping’). The effect ofHy com-  bound for the exact ground-state energyrbby the varia-
petes strongly with both the kinetic energy and the Hubbardional principle. The variational enerdy can be written as
interaction. Correlated hopping of spinelectrons between

two sites is enhanced if spim-electrons are present, but this ~

in turn will cost the latter kinetic energy, as well as Coulomb E=(H)e= % €Nkt % 2§Relx,) +U d, )
energy for the double occupations. Moreover, in a band pic-

ture the coupling of densities and kinetic energy can lead tavhere thek-space occupation,,, bond-charge occupation
a band narrowing which lowers the amount of energy that i, , and double occupatiod are defined byl( is the num-
necessary for a ferromagnetic spin polarization. Theséer of lattice sites
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1 . nn
nko_:E ; elk(Ri_Rj)<C:7_CJ.—'—a_>G s (5) EOZ 2 (600'+ 2n;§00.) + U nTnl . (14)
1 Within the Gutzwiller approximation the bond-charge inter-
Xy =T > eik(Ri_RJ)<ﬁi;6i'trE:j';>G, (6)  action thus leaves the form of the variational energy un-
7]

changed, but enters into the effective kinetic energy and ef-

fective Hubbard interaction vig,,. The effect on the

d= E D <ﬁ_ A ) 7) kinetic energy can be interpreted as a spin-dependent band
L4 VTG narrowing or widening, which is also found in the Hartree-

Fock approximation of the correlated hopping term, and can

lead to a stabilization of ferromagneti$fi.However, the

. Gutzwiller approximation reveals two distinct effects that

tion, tj; = X;; =0. cannot be resolved in ordinary Hartree-Fock theory, where

_In general the expectation values in ES—(7) are not o 5ppression of double occupancies can only be achieved
independent of one another. In particular, for the Gutzwrllerby spin polarizing the system. On the one hand, the kinetic

wave function thek_space and b_ond—charge occupation al€nergy increases i€y, >0, i.e., the effective hopping be-
closely related. Using the techniques of Ref. 12 we obtainggmes smaller. This corresponds to an effective narrowing of
for all Bravais lattices in arbitrary dimensioi the band, which lowers the amount of energy that must be
[(1+g)n(k’ —glNe— nck) expended for a fe_rromag_netic spin polarization. Furthermore
Xy = il il ?+ny nga—d. (8)  the bond-charge interaction contributesUgy, which sup-
1-9 presses double occupancies already at lower values of the
with nckJU: nka-|g=l as the uncorrelated Fermi function. It Pare HLrbbard inreractioU. The k_)alance _be_tween these two
should be noted that although, and n,, are linearly re- effecrs is deter.mlned by rhe optimal var_ratronal param_dter
lated, the bond-charge energy and the kinetic energy will Brrnkman-cheAmetaI-rnsulator transitioWWe now dis-
generallynot be, since the regions of the Brillouin zone in- cuss the effect oHy on the Brinkman-Rice transition that
side (0,=1) and outside rf),=0) of the Fermi sea con- occurs in the Gutzwiller approximation at half-fillingn (

They each depend og, n, and m. Here ¢, and &, are the
Fourier transforms of;; andX;; , respectively. By conven-

tribute differently. =1).181% For convenience we define the strength of the
Gutzwiller approximation Now we turn to evaluate the bond-charge interactio by
variational energyE within the Gutzwiller approximation, Eo5=—X€py - (15

which is known to yield the exact evaluation of expectation
values in terms of the Gutzwiller wave function in the limit
of infinite spatial dimensionsO— ).1%¥2-14|t describes a
Fermi liquid® with piecewise constark-space occupation,

Note thaté,, will remain proportional toeq,, according to
Eq. (15 for all densities ift;; and X;; have the same range,
e.g., if they are nonzero only for nearest-neighbor sites. In
the limit of D—co both t;; and X;; must both be scaled as
Ny = ng+(n80—ng)q,,, (9) 1/\/2_”- (Z;; is the number of neighboiig ),'° which is com-
patible with Eq.(15). The dispersiore, enters only through
where the discontinuity at the Fermi surface is given by  the density of state€DOS) N(e) (which determineg,,), as
— 5 expected in dimensiob =«. We will consider several den-
:[\/(n(,—d)(l— n+d)+(n,—d)d] (10  sities of states below.
7 Ne(1—n,) ' With the above definition oX, the Gutzwiller approxima-
tion energy forn=1 and m=0 simplifies to E=8d(1
—2d)(1-X)egt+ U d, where eg=% ,€0,<0. Optimization

The variational parametey is related to the double occupa-

tion d by with respect tad yields a critical value foiJ,
= (11
(I-n+d)d above which the localized state with=0 is lowest in en-
and it is convenient to use the latter as variational parametef’dy- Hence the Brinkman-Rice transition is moved to lower
For the variational energy we obtain U for X>0, i.e., the bond-charge interaction favors localiza-

tion. (Only U=0 and X<1 will be considered from now
0 on.) We find that thdJ dependence of the double occupation
E=E%- 2 (1-d,)(€ostéos) T Uer (d=Nyn), (12 g the discontinuity of thé-space occupatiog (=q,,), and
7 the energyE is formally the same as in the original
whereeogz(llL)Ekekn‘k’U is the uncorrelated kinetic energy, Brinkman-Rice theory foX=0, i.e.,

and similarlyé,,= (1/L)2k§kn80. The effective Hubbard in- 1 U
teraction U4 and the uncorrelated variational energy d:Z(l_U_ , 17
(=E|g=1) in Eqg.(12) are given by ¢
2
(1—-2n,) B U
= o T q=1-—, (18
Ueff U+§ (1_n0)nU§001 (13) U(z:
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£ Uc(l Uz) (19) 1 H Bethe
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except thatJ. now depends oiX [Eq. (16)]. We note that ", metal
the simultaneous vanishing gfand double occupatiothat a
finite value ofU is characteristic of the Brinkman-Rice tran- 08 [ ™ T
sition, in contrast to the numerical solution of the Hubbard x “
model, whered remains nonzero across the transitton’ 04|
Ferromagnetic transitionThe instability of the paramag- S £
netic state toward ferromagnetism can be determined from \\_\
the bulk susceptibility. For half-filling, we obtain 0z
paramagnetic metal "\\\

1 U(u+2u rxu - - " -
__ 9 (1—X) 1_p ( J °l, (20 % 0.2 04 06 0.8 1
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FIG. 1. Phase diagram for the Hubbard model with bond-charge

where we have introduced the dimensionless parameters interaction X at half-filling (n=1). The Brinkman-Rice metal-

p=4N(ep)| €| (21) insulator transition takes place fdu(X)=8]|eo|(1—X) (solid
FIIsob line). The dashed lines mark the ferromagnetic phase transition for
r=4N(er)er . (22) the fcc lattice[Eq. (25)] and for the model DOS of Eq26) for a

=1 and 0.9, respectively. The inset shows various densities of
The Fermi energyr in EqQ. (22) represents an absolute scale states, all with unit variance. The lower band edge has been set to
since the first moment of the DOS is fixed at zédwe to  the same value for better comparison.
t;;=0). There are two factors iy that can diverge: either
q—0, i.e., the effective band mass*/m=q~* diverges at the phase diagram in Fig. 1, will mask the ferromagnetic

U(X), indicating a localization transition, or the Stoner-type phase. The variational phase diagram Fupbarg (€., X

factor in square brackets in E(0) vanishes at =0) on the hypercubic lattice was calculated by Fazekas
AV — —7 et al,” who predicted the ferromagnetic and antiferromag-

Ugn(X) = VX2 —4p(1-p)(1-X)*~rX +X—1 (23 netic phases to coexist as the system phase separates and to
" 2(1-p) ’ preempt the metal-insulator transition. Here we consider

only homogeneous ferromagnetic phases, thus allowing the
metal-insulator transition to take place, and do not attempt to
distinguish between paramagnetic and ferromagnetic insula-
tors at half-filling, which are degenerate in ener@=0).

signaling an instability toward ferromagnetism. The latter in-
stability precedes the localization transition wheneyer
> Pim, Where

D :f 14 rx ) (24) A more complicated scenario arises if the lattice system is
fm=3 2(1—-X))° not particle-hole symmetric, so that the DOS is asymmetric
These results reduce to the known valugs= 4 and U and thusr #0. The generalized infinite-dimensional fcc lat-
=3 fm ; ; ;
tice, with hopping scaled a;=—1/y2D(D—1), has a
=([p/(p—1)]-1) U, for X=016:15 DOS (Ref Zopp g 5i (b-1)
Let us first consider the effect of the bond-charge interac- '

tion in the case of a symmetric DON{e)=N(— ¢€), which exp(—(1+ \/EE)/z)
results if hopping takes place only between different sublat- N(e)= , (25
tices of a bipartite lattice. The Fermi energy at half-filling is Var(1+ \/Ee)

thener=0; hencer =0. In this casey,= 3, the same crite-

rion as forX=0. On the other hand, for an asymmetric DOS showing a square-root singularity at the lower band edge.

ferromagnetism is favored by>0 if r<0, i.e.,e<0. This = The Hubbard mod€IEq. (1)] on this lattice was studied nu-

is the case if the Fermi energy is below the center of mass aherically by Ulmke within dynamical mean-field thed?y,

the DOS, which means that there is large spectral weighivho found ferromagnetism at low enough temperatures and

below the Fermi energy. The tendency toward ferromagband filling. For half-filling one haser=—0.3854, p

netism in such a situation was already proposed long=1.6157, and =—1.0272. Thus ferromagnetism occurs in

agol—318 this case already foX=0, but the criticalU is lowered by
We now consider nearest-neighbor hopping; the presence ok>0. Hence a ferromagnetic phase is found

=—t*/y/Z and bond-charge interactiod;;=X t*/\Z on  for U(X)<U<U(X).

several infinite-dimensional lattices. Their densities of states Finally, for the class of densities of states wjik: 3 fer-

and phase diagram are shown in Fig. 1. The Gaussian DO®magnetism is absent fot=0 for all U, and is only en-

of the hypercubic lattice(e) = exp(— €/2)/\/2m, has a pa-  abled by switching on the bond-charge interactior0. It is

rameterp= 1/, and the semielliptic DOS of the Bethe lat- useful to consider a model DG3,

tice, N(e) = \J4— €%/27, has p=32/37°, and both have

=0 due to particle-hole symmetry. Sinpe: £ in both cases, N(e) = 1+VJ1-a® y4—¢

the metal-insulator transition &t., drawn as a solid line in 2 2+ae’

(26)
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FIG. 2. Phase diagram for the Bethe lattice at densiy0.9. FIG. 3. Phase diagram for the model density of st (26)]
The Gutzwiller approximation gives a much smaller region of sta-for a=0.9 away from half-filling.
bility of ferromagnetism than Hartree-Fock theory.
DOS of Eq.(26) with a= 0.9 for several values &f. Already
where the tunable parametar—1, ...,1 determines the

for X=0 the Gutzwiller theory predicts a large region of
distribution of spectral weight: faa=0 this DOS reduces to ferromagnetic ground states, in qualitative agreement with
the Bethe DOS, whereas far=1 there is a square-root sin- humerical resulté? The bond-charge interaction again leads
gularity at the lower band-edge similar to the fcc DOS. Fort® @ further stabilization of ferromagnetism.

a=1 we havep=1.1353 andr=—0.5006, while fora Conclusion.We found that within Gutzwiller's approach
—0.9 the parameters ape=1.1008 and = —0.2821. Thus the bond-charge interaction can enhance the instability to-
in these cases only a metal-insulator transition is found fo¥

ards ferromagnetism both at and away from half-filling.
X=0. but for large enougl a ferromagnetic phase is pre- his effect is particularly strong when the uncorrelated DOS
dicted, as shown in Fig. 1.

is asymmetric, and there is large spectral weight below the

- . . .. Fermi ener%y. This provides further support for the

Away from half-filling Since the metal-insulator transition ., cjusioR? 1 that such a situation is favorable for ferro-
takes place only at half-filling, metallic ferromagnetism oc- i agnetism. At half-filling, the presence of the bond-charge
cupies a larger part of the phase diagramrferl. Figure 2 jneraction leads to a metal-insulator transition at lower val-
shows results for the Bethe lattice with particle density ,es than in the standard Brinkman-Rice scenario, since it
=0.9. Whereas for half-filling the strong-coupling phase wasengs to immobilize the electrons. Although the Gutzwiller
insulating, now there is metallic behavior for all couplings, theory can be expected to be reliable only at small to inter-
with ferromagnetism setting in for largé when X is small,

X mediate couplings, it represents a major improvement over
and moving to smalU whenX becomes large. Compared 10 yaytree-Fock theory, which, for example, cannot describe a
Hartree-Fock theory the Gutzwiller approximation predicts 8nonmagnetic localization transition.

much reduced region of stability of ferromagnetism, which is

¢ s In conclusion the bond-charge interaction leads to a subtle
due to the correlated nature of the Gutzwiller wave functioncompetition between paramagnetism, ferromagnetism, and
While in Hartree-Fock theory, owing to the lack of correla- |ocqjization. Of course, a variational method is not capable
tions, double occupation can be reduced only through a glogf proying the actual stability of a phase. It can only provide

bal spin polarization of the system, the Gutzwiller waveggtimates for the occurrence of instabilities. Nevertheless,
function describes a paramagnetic state with reduced doublgnce the Gutzwiller theory treats kinetic and interaction ef-
occupation controlled by the variational parameger-ur-

a range where eithey or X is comparable with the hopping jnstanpilities.
amplitude (see Fig. 2, is not consistent with the weak-

coupling nature of this approximation, i.e., self-consistent
perturbation theory tdirst order inU and X. Hence we ex-

e fects nonperturbatively on the same footing, it provides ad-
thermore, the Hartree-Fock prediction of a phase boundary igjtional insight into the physical mechanism behind these
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pect that the Gutzwiller wave function in general provides achungsbereich 484 of the Deutsche Forschungsgemeinschatt.
guantitatively better estimate than Hartree-Fock theory.
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