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Correlated hopping of electrons:
Effect on the Brinkman-Rice transition and the stability of metallic ferromagnetism

M. Kollar* and D. Vollhardt
Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics,

University of Augsburg, D-86135 Augsburg, Germany
~Received 2 August 2000; published 8 January 2001!

We study the Hubbard model with bond-charge interaction~‘‘correlated hopping’’! in terms of the
Gutzwiller wave function. We show how to express the Gutzwiller expectation value of the bond-charge
interaction in terms of the correlated momentum-space occupation. This relation is valid in all spatial dimen-
sions. We find that in infinite dimensions, where the Gutzwiller approximation becomes exact, the bond-charge
interaction lowers the critical Hubbard interaction for the Brinkman-Rice metal-insulator transition. The bond-
charge interaction also favors ferromagnetic transitions, especially if the density of states is not symmetric and
has a large spectral weight below the Fermi energy.
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The microscopic origin of magnetic ordering in system
like transition metals, transition-metal oxides, and hig
temperature superconductors is intricate, since it is due
correlations between the electrons. The simplest mode
attempt a description of such systems is the single-band H
bard model1–3

ĤHubbard5(
i j s

t i j ĉis
1 ĉ j s

1 1U(
i

n̂i↑n̂i↓ , ~1!

where hats indicate operators. This model describes the c
petition between kinetic and potential energy which is at
heart of the quantum-mechanical correlation problem.4 The
Hubbard interactionU represents the Coulomb repulsion
electrons in the same orbital at a given lattice site. It is giv
by the matrix elementU5^ i i uV(r2r8)u i i & of the Coulomb
potential, and is typically on the order of a few eV. Th
matrix elements involving neighboring lattice sitesi andj are
generally smaller thanU, but may not be negligibly small
One of them is the bond-charge interactionXi j 5^ i i uV(r
2r8) u i j &,1,5–7 which is typically on the order of 0.1–1 eV
and hence is comparable in magnitude to the tight-bind
hopping amplitudet i j . It describes a density-dependent ho
ping of the electrons

ĤX5(
i j s

Xi j ĉis
1 ĉ j s

1 ~ n̂i s̄1n̂ j s̄!, ~2!

which only contributes if the lattice site from or onto whic
an electron with spins is hopping is occupied by an electro
with spin s̄ ~‘‘correlated hopping’’!. The effect ofĤX com-
petes strongly with both the kinetic energy and the Hubb
interaction. Correlated hopping of spin-s electrons between
two sites is enhanced if spin-s̄ electrons are present, but th
in turn will cost the latter kinetic energy, as well as Coulom
energy for the double occupations. Moreover, in a band
ture the coupling of densities and kinetic energy can lead
a band narrowing which lowers the amount of energy tha
necessary for a ferromagnetic spin polarization. Th
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mechanisms explain why, in principle,ĤX may play an im-
portant role in the stabilization of ferromagnetism and t
localization of electrons.

The modelĤ5ĤHubbard1ĤX cannot be solved exactly
and only mean-field and finite-size diagonalization resu
are available.8 Recently Schiller9 showed how to incorporate
ĤX into the framework of dynamical mean-field theory,10,11

but no numerical results have yet been obtained forĤ.
One of the standard tools to approach the correlated e

tron problem is the Gutzwiller wave function3

uCG&5)
i

@12~12g!n̂i↑n̂i↓#uF0&, ~3!

whereg is a variational parameter (0<g<1), and the start-
ing wave functionuF0& is a product state of spin-up an
spin-down Fermi seas. By construction bothuF0& and uCG&
are translationally invariant and have a fixed particle den
n5n↑1n↓ and magnetizationm5n↑2n↓ . The uncorrelated
caseU5Xi j 50 corresponds tog51, while U5` forbids
any doubly occupied sites and thus corresponds tog50. For
mÞ0 andgÞ0 the wave functionuCG& describes an itiner-
ant ferromagnetic state. Starting wave functionsuF0& with
other broken symmetries can also be considered. Here, h
ever, we will only consider paramagnetism and ferroma
netism.

Using the Gutzwiller wave function one may, in principl
calculate expectation values of any operatorÂ as ^Â&G

5^CGuÂuCG&/^CGuCG&. The energy expectation valueE
5^Ĥ&G , when optimized with respect tog, is an upper
bound for the exact ground-state energy ofĤ by the varia-
tional principle. The variational energyE can be written as

E5^Ĥ&G5(
ks

eknks1(
ks

2jkRe~xks!1U d, ~4!

where thek-space occupationnks , bond-charge occupation
xks , and double occupationd are defined by (L is the num-
ber of lattice sites!
©2001 The American Physical Society07-1
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nks5
1

L (
iÞ j

eik(Ri2Rj )^ĉis
1 ĉ j s

1 &G , ~5!

xks5
1

L (
iÞ j

eik(Ri2Rj )^n̂i s̄ĉis
1 ĉ j s

1 &G , ~6!

d5
1

L (
i

^n̂i↑n̂i↓&G . ~7!

They each depend ong, n, and m. Here ek and jk are the
Fourier transforms oft i j and Xi j , respectively. By conven
tion, t i i 5Xii 50.

In general the expectation values in Eqs.~5!–~7! are not
independent of one another. In particular, for the Gutzwi
wave function thek space and bond-charge occupation
closely related. Using the techniques of Ref. 12 we obta
for all Bravais lattices in arbitrary dimensionsD,

xks5
@~11g!nks

0 2g#nks2nks
0

12g
1ns̄ nks

0 2d, ~8!

with nks
0 5nksug51 as the uncorrelated Fermi function.

should be noted that althoughxks and nks are linearly re-
lated, the bond-charge energy and the kinetic energy
generallynot be, since the regions of the Brillouin zone in
side (nks

0 51) and outside (nks
0 50) of the Fermi sea con

tribute differently.
Gutzwiller approximation. Now we turn to evaluate the

variational energyE within the Gutzwiller approximation,
which is known to yield the exact evaluation of expectati
values in terms of the Gutzwiller wave function in the lim
of infinite spatial dimensions (D→`).10,12–14It describes a
Fermi liquid15 with piecewise constantk-space occupation,

nks5ns1~nks
0 2ns!qs , ~9!

where the discontinuity at the Fermi surface is given by

qs5
@A~ns2d!~12n1d!1A~ns̄2d!d#2

ns~12ns!
. ~10!

The variational parameterg is related to the double occupa
tion d by

g25
~n↑2d!~n↓2d!

~12n1d!d
, ~11!

and it is convenient to use the latter as variational parame
For the variational energy we obtain

E5E02(
s

~12qs!~e0s1j0s!1Ueff ~d2n↑n↓!, ~12!

wheree0s5(1/L)(keknks
0 is the uncorrelated kinetic energy

and similarlyj0s5(1/L)(kjknks
0 . The effective Hubbard in-

teraction Ueff and the uncorrelated variational energyE0

(5Eug51) in Eq. ~12! are given by

Ueff5U1(
s

~122ns!

~12ns!ns
j0s , ~13!
04510
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E05(
s

~e0s12ns̄j0s!1U n↑n↓ . ~14!

Within the Gutzwiller approximation the bond-charge inte
action thus leaves the form of the variational energy u
changed, but enters into the effective kinetic energy and
fective Hubbard interaction viaj0s . The effect on the
kinetic energy can be interpreted as a spin-dependent b
narrowing or widening, which is also found in the Hartre
Fock approximation of the correlated hopping term, and c
lead to a stabilization of ferromagnetism.6,8 However, the
Gutzwiller approximation reveals two distinct effects th
cannot be resolved in ordinary Hartree-Fock theory, wh
the suppression of double occupancies can only be achie
by spin polarizing the system. On the one hand, the kin
energy increases ifj0s.0, i.e., the effective hopping be
comes smaller. This corresponds to an effective narrowin
the band, which lowers the amount of energy that must
expended for a ferromagnetic spin polarization. Furtherm
the bond-charge interaction contributes toUeff , which sup-
presses double occupancies already at lower values of
bare Hubbard interactionU. The balance between these tw
effects is determined by the optimal variational parameted.

Brinkman-Rice metal-insulator transition. We now dis-
cuss the effect ofĤX on the Brinkman-Rice transition tha
occurs in the Gutzwiller approximation at half-filling (n
51).16,15 For convenience we define the strength of t
bond-charge interactionX by

j0s52Xe0s . ~15!

Note thatj0s will remain proportional toe0s according to
Eq. ~15! for all densities ift i j andXi j have the same range
e.g., if they are nonzero only for nearest-neighbor sites
the limit of D→` both t i j and Xi j must both be scaled a
1/AZi j (Zi j is the number of neighborsi j ),10 which is com-
patible with Eq.~15!. The dispersionek enters only through
the density of states~DOS! N(e) ~which determinese0s), as
expected in dimensionD5`. We will consider several den
sities of states below.

With the above definition ofX, the Gutzwiller approxima-
tion energy for n51 and m50 simplifies to E58d(1
22d)(12X)e01U d, where e0[(se0s,0. Optimization
with respect tod yields a critical value forU,

Uc~X!58ue0u~12X!, ~16!

above which the localized state withd50 is lowest in en-
ergy. Hence the Brinkman-Rice transition is moved to low
U for X.0, i.e., the bond-charge interaction favors localiz
tion. ~Only U>0 and X<1 will be considered from now
on.! We find that theU dependence of the double occupati
d, the discontinuity of thek-space occupationq ([qs), and
the energy E is formally the same as in the origina
Brinkman-Rice theory forX50, i.e.,

d5
1

4 S 12
U

Uc
D , ~17!

q512
U2

Uc
2

, ~18!
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E52
Uc

8 S 12
U2

Uc
D , ~19!

except thatUc now depends onX @Eq. ~16!#. We note that
the simultaneous vanishing ofq and double occupationd at a
finite value ofU is characteristic of the Brinkman-Rice tran
sition, in contrast to the numerical solution of the Hubba
model, whered remains nonzero across the transition.11,17

Ferromagnetic transition.The instability of the paramag
netic state toward ferromagnetism can be determined f
the bulk susceptibilityx. For half-filling, we obtain

1

x
5

q

2N~eF! F ~12X!S 12
p U~U12Uc!

~U1Uc!
2 D 1

r X Uc

U1Uc
G , ~20!

where we have introduced the dimensionless parameter

p54 N~eF!ue0u, ~21!

r 54 N~eF!eF . ~22!

The Fermi energyeF in Eq. ~22! represents an absolute sca
since the first moment of the DOS is fixed at zero~due to
t i i 50). There are two factors inx that can diverge: eithe
q→0, i.e., the effective band massm* /m5q21 diverges at
Uc(X), indicating a localization transition, or the Stoner-ty
factor in square brackets in Eq.~20! vanishes at

U fm~X!5
Ar 2X224p~12p!~12X!22rX

2~12p!
1X21, ~23!

signaling an instability toward ferromagnetism. The latter
stability precedes the localization transition wheneverp
.pfm , where

pfm5
4

3 S 11
rX

2~12X! D . ~24!

These results reduce to the known valuespfm5 4
3 and U fm

5„A@p/(p21)#21… Uc for X50.16,15

Let us first consider the effect of the bond-charge inter
tion in the case of a symmetric DOS,N(e)5N(2e), which
results if hopping takes place only between different sub
tices of a bipartite lattice. The Fermi energy at half-filling
theneF50; hencer 50. In this casepfm5 4

3 , the same crite-
rion as forX50. On the other hand, for an asymmetric DO
ferromagnetism is favored byX.0 if r ,0, i.e.,eF,0. This
is the case if the Fermi energy is below the center of mas
the DOS, which means that there is large spectral we
below the Fermi energy. The tendency toward ferrom
netism in such a situation was already proposed lo
ago.1–3,18

We now consider nearest-neighbor hoppingt i j

52t* /AZ and bond-charge interactionXi j 5X t* /AZ on
several infinite-dimensional lattices. Their densities of sta
and phase diagram are shown in Fig. 1. The Gaussian D
of the hypercubic lattice,N(e)5exp(2e2/2)/A2p, has a pa-
rameterp51/p, and the semielliptic DOS of the Bethe la
tice, N(e)5A42e2/2p, has p532/3p3, and both haver
50 due to particle-hole symmetry. Sincep, 4

3 in both cases,
the metal-insulator transition atUc , drawn as a solid line in
04510
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the phase diagram in Fig. 1, will mask the ferromagne
phase. The variational phase diagram forĤHubbard ~i.e., X
50) on the hypercubic lattice was calculated by Faze
et al.,19 who predicted the ferromagnetic and antiferroma
netic phases to coexist as the system phase separates a
preempt the metal-insulator transition. Here we consi
only homogeneous ferromagnetic phases, thus allowing
metal-insulator transition to take place, and do not attemp
distinguish between paramagnetic and ferromagnetic ins
tors at half-filling, which are degenerate in energy (E50).

A more complicated scenario arises if the lattice system
not particle-hole symmetric, so that the DOS is asymme
and thusrÞ0. The generalized infinite-dimensional fcc la
tice, with hopping scaled ast i j 521/A2D(D21), has a
DOS ~Ref. 20!

N~e!5
exp~2~11A2e!/2!

Ap~11A2e!
, ~25!

showing a square-root singularity at the lower band ed
The Hubbard model@Eq. ~1!# on this lattice was studied nu
merically by Ulmke within dynamical mean-field theory,21

who found ferromagnetism at low enough temperatures
band filling. For half-filling one haseF520.3854, p
51.6157, andr 521.0272. Thus ferromagnetism occurs
this case already forX50, but the criticalU is lowered by
the presence ofX.0. Hence a ferromagnetic phase is fou
for U fm(X),U,Uc(X).

Finally, for the class of densities of states withp, 4
3 fer-

romagnetism is absent forX50 for all U, and is only en-
abled by switching on the bond-charge interactionX.0. It is
useful to consider a model DOS,22

N~e!5
11A12a2

2p

A42e2

21ae
, ~26!

FIG. 1. Phase diagram for the Hubbard model with bond-cha
interaction X at half-filling (n51). The Brinkman-Rice metal-
insulator transition takes place forUc(X)58ue0u(12X) ~solid
line!. The dashed lines mark the ferromagnetic phase transition
the fcc lattice@Eq. ~25!# and for the model DOS of Eq.~26! for a
51 and 0.9, respectively. The inset shows various densities
states, all with unit variance. The lower band edge has been s
the same value for better comparison.
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where the tunable parametera521, . . . ,1 determines the
distribution of spectral weight: fora50 this DOS reduces to
the Bethe DOS, whereas fora51 there is a square-root sin
gularity at the lower band-edge similar to the fcc DOS. F
a51 we havep51.1353 andr 520.5006, while for a
50.9 the parameters arep51.1008 andr 520.2821. Thus
in these cases only a metal-insulator transition is found
X50, but for large enoughX a ferromagnetic phase is pre
dicted, as shown in Fig. 1.

Away from half-filling. Since the metal-insulator transitio
takes place only at half-filling, metallic ferromagnetism o
cupies a larger part of the phase diagram fornÞ1. Figure 2
shows results for the Bethe lattice with particle densityn
50.9. Whereas for half-filling the strong-coupling phase w
insulating, now there is metallic behavior for all coupling
with ferromagnetism setting in for largeU whenX is small,
and moving to smallU whenX becomes large. Compared
Hartree-Fock theory the Gutzwiller approximation predict
much reduced region of stability of ferromagnetism, which
due to the correlated nature of the Gutzwiller wave functi
While in Hartree-Fock theory, owing to the lack of correl
tions, double occupation can be reduced only through a
bal spin polarization of the system, the Gutzwiller wa
function describes a paramagnetic state with reduced do
occupation controlled by the variational parameterg. Fur-
thermore, the Hartree-Fock prediction of a phase boundar
a range where eitherU or X is comparable with the hoppin
amplitude ~see Fig. 2!, is not consistent with the weak
coupling nature of this approximation, i.e., self-consist
perturbation theory tofirst order inU andX. Hence we ex-
pect that the Gutzwiller wave function in general provide
quantitatively better estimate than Hartree-Fock theory.

Figure 3 shows theU vs n phase diagram for the mode

FIG. 2. Phase diagram for the Bethe lattice at densityn50.9.
The Gutzwiller approximation gives a much smaller region of s
bility of ferromagnetism than Hartree-Fock theory.
04510
r
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DOS of Eq.~26! with a50.9 for several values ofX. Already
for X50 the Gutzwiller theory predicts a large region
ferromagnetic ground states, in qualitative agreement w
numerical results.22 The bond-charge interaction again lea
to a further stabilization of ferromagnetism.

Conclusion.We found that within Gutzwiller’s approach
the bond-charge interaction can enhance the instability
wards ferromagnetism both at and away from half-fillin
This effect is particularly strong when the uncorrelated DO
is asymmetric, and there is large spectral weight below
Fermi energy. This provides further support for th
conclusion22,18 that such a situation is favorable for ferro
magnetism. At half-filling, the presence of the bond-cha
interaction leads to a metal-insulator transition at lower v
ues than in the standard Brinkman-Rice scenario, sinc
tends to immobilize the electrons. Although the Gutzwill
theory can be expected to be reliable only at small to in
mediate couplings, it represents a major improvement o
Hartree-Fock theory, which, for example, cannot describ
nonmagnetic localization transition.

In conclusion the bond-charge interaction leads to a su
competition between paramagnetism, ferromagnetism,
localization. Of course, a variational method is not capa
of proving the actual stability of a phase. It can only provi
estimates for the occurrence of instabilities. Neverthele
since the Gutzwiller theory treats kinetic and interaction
fects nonperturbatively on the same footing, it provides
ditional insight into the physical mechanism behind the
instabilities.

This work was supported in part by the Sonderfo
chungsbereich 484 of the Deutsche Forschungsgemeinsc
We would like to thank K. Held for providing us with the
Hartree-Fock data of Fig. 2.

FIG. 3. Phase diagram for the model density of states@Eq. ~26!#
for a50.9 away from half-filling.
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