Bosonization of dimerized Hubbard chains
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The role of Klein factors is investigated for the bosonized Hamiltonian of the dimerized Hubbard model.
Contrary to previous approaches we take into account their number changing property, i.e. we do not re-
place them by Majorana fermions. We show how to treat Klein factors in the framework of the self-
consistent harmonic approximation, both for finite systems and in the thermodynamic limit.

1 Introduction

The foundations of bosonization were laid more than 50 years ago in a seminal paper by Tomonaga [1].
During the following decades the method was worked out and successfully applied to one-dimensional
electron and spin systems [2—4]. Despite its long history there are still some subtle points in the bosoni-
zation formalism which are not taken into consideration in the majority of the literature. One of these is
the proper treatment of the so-called Klein factors which have to be introduced in order to preserve the
anticommuting property of the fermionic fields during the bosonization procedure. The role of the Klein
factors deserves particular attention when nonlinear perturbations arising e.g. from impurity scattering or
lattice modulations are to be considered in finite systems.

In this paper we demonstrate how to handle the Klein factors in a systematic way, both in the thermo-
dynamic limit and for finite systems. As a prototypical model we study the one-dimensional dimerized
Hubbard model where the hopping is periodically modulated due to the Peierls distortion of the lattice.
We extend the self-consistent harmonic approximation [5—7] by treating bosonic fields and Klein factors
on equal footing [8]. As an application we use the formalism to calculate spin and charge gaps of this
model.

2 Bosonization and Klein factors

We consider the dimerized Hubbard model

H=—=1Y (1+(=D't) (ClyCrag + i) TU X nanyy (1)

which differs from the ordinary one-dimensional Hubbard model by a periodic modulation of the hop-
ping described by the dimerization parameter u. This modulation is relevant in one dimension due to the
coupling between the lattice and the electronic degrees of freedom. A finite u corresponds to a periodic
lattice distortion known as Peierls instability. We study the case of half-filling, and have chosen the
modulation accordingly to be of the form (—1)'u. The quantity u is considered to be a parameter of the
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model. ¢}, creates an electron with spin direction o =T, at site i, and ¢ and U are the hopping matrix
element and the on-site Hubbard interaction, respectively.

In the following we list the main steps which have to be performed in order to bosonize the Hamilto-
nian (1). For more details we refer the reader to the reviews [3, 4, 6]. First we represent H in momentum
space:

; U
+ k + + +
H= 2 EClCro + tuz (" CiyCrino The)+ I Z g 1CirCrrg 1 Cirl 2)
kk'.q

where £ =-2tcosk, and N is the number of lattice sites. We linearize the spectrum around the two
Fermi points tk;, k. = /2, and introduce left and right moving fermions labeled by L and R, respec-
tively. This allows us to sort the various scattering processes according to their initial and final states
(“g-ology”). Then we define bosonic operators b,, which are related to fermionic particle-hole excita-
tions via [} g, (k) = o 10,0 €1C5 Crgs ¢, are the standard Fermion operators]

b;a=—j—2¥f;<k+q> w.(k) (¢>0) 3)

n,

where g =(2n/N)n, and & =R T,LT,R{,L 1 .Returning to real space we define the bosonic fields

q>0

¢O_(x) o_ ﬂqx aq/Z’ q)o_(x): - lq( aq/2, aﬁo (4)
Ly z \/7 qL R o \/7 qR

which are related to the fermionic field operators via the bosonization identities

1 —ipfy (x) i X) | ~2MiN sx/L
Lo (_x) = L FLo‘ e Q1 (X) e P15 (x) e TulN X (5)
1 —i(g], () 2N sx/L
= 2 FLo‘ e H(Pre (X)+¢15 (X)) e TUN 16X (6)
a
1 +i(op, ¢ i
— (Pro (X)+Pps (X)) +2WN g x/L
5UR0‘ (X) — T FRG e Ro Ro e Ro' (7)
vV ZTa

where N, counts the particle number with respect to the filled Fermi sea, and L is the length of the sys-
tem.' The Klein factors F, (F,) are unitary operators that commute with the bosonic fields. They change
the number of the fermion species & by £1, a change which cannot be achieved by any combination of
the bosonic field operators. In order to ensure the correct anticommutation relations for ¥, (x), the Klein
factors have to fulfill the following relations:

(F Fpy ={F; , Fg}=0, (F,,Fg}=20,5, [N, ,Fyl==0,F,. ®)

Here [...] denotes the commutator, and [...] the anticommutator. In a last step one combines ¢, and @, to
new fields ¢, and 6,

1

@, = m(‘/’m 10, +@Ppr £@p +he) ©)
1

0., = ﬁ((/’m QL Prr FPpy The) (10)

' We have chosen the lattice constant to be unity, i.e. L = N. Nevertheless we retain L and N for easy reference.
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and introduces N, =N, =N and J. =J;£J where N, =N, + Ny, and J, =N, — N,,. Combin-
ing everything we obtain

H=H,+H, +H, +H, (11)

where H, is the Luttinger Hamiltonian:

HO = 2 J% : {Va(ax¢a)2 +Vaga(ax0a)2

a=c,s 8a
0

T Vg a2 2
S Y SN +v,8,d0 12
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H, the Umklapp contribution:

L
- : ~ UL
H, =U[dx (FLF,F, F, e the), U=—"—; 13
1 _(!. { RTERIT LIS LY } (27m)2N (13)
H, the backscattering contribution:
L
H, =U[dx {F},F) Fy Fy €7 +hel; (14)
0
and H, the dimerization contribution (& = tu/na):
L
Hy =il dx (iFy Fyy €% +iFy F, %% 4+hey (15)
0

In Eqgs. (13) — (15) we have used N, = N, = 0 at half filling. The parameter a is a short-distance cutoff of
the order of the lattice spacing, i.e. of order one. The Luttinger parameters g , and the charge and spin
velocities v, can either be calculated perturbatively or from the Bethe ansatz solution of the Hubbard
model [9, 10]. In the following we focus on the role of the Klein factors. In the literature it is common
practice either to ignore them or to replace them by Majorana fermions [4, 11]. It is argued that the latter
approach — which neglects the number changing property of the Klein factors — should be justified in the
thermodynamic limit. In the following we aim to present a more rigorous approach. Due to the conserva-
tion of charge and spin all combinations of Klein factors appearing in the Hamiltonian (11) can be ex-
pressed in terms of the operators A, = F,F,, and A = F, F, plus their hermitean conjugates. In par-
ticular, the four-fermion terms arising from Umklapp and backscattering read

wbei bk = FnFaF By = AdA (16)
i FL L Fpu b = FyFaF Fy = AGAT (17)

Since the Klein factors are unitary, F, F, = F,F,] =1, it is easy to show that
[Ar,Af1=[A,A[1=0, (18)

and we may choose a basis where A, and A, are both diagonal. From A{A, = A{A, =1 one concludes
that the eigenvalues of A, are pure phase factors, i.e.

A lkesky=e" Tk k) AL Tk k) = €7 ke k) (19)
ALk k) =e" Tk k) Al Tk = e keky) (20)

with 0 <k, <2m. The terms ~ J. appearing in H, do not commute with the Klein factors; however it
appears reasonable to neglect them in the thermodynamic limit L — co. We will come back to this ques-
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tion in Section 4. We thus replace the Klein factors in H,,H, and H, by their eigenvalues, and obtain

L
H =0 [dx{e™™ e +he) @1
0
L
Hy=0U [dx (™™ ™™ the) (22)
0
L
H, =i de {i eikTe”ﬁ("" ) 4 e"kie’iﬁ("" %) +hcl}. (23)
0

As a result the Hamiltonian of the dimerized Hubbard model separates into different sectors of purely
bosonic Hamiltonians which are labeled by k; and k. Note that when replacing Klein factors by Majo-
rana fermions [4] one obtains only the eigenvalues *i for the two-fermion terms and *1 for the four-
fermion terms, i.e. continuity is lost. Shifting the field operators according to @, , — ¢, , +(k; k| )/2\/5 ,
the phase factors can be absorbed, with the result

H=H,+20 ‘[dx (cos 2\/5@ +cos 2\/§¢Y)+ 4ﬁ‘|.dx sin \/5(,71. cos \/EQ_ . (24)

In this sine-Gordon-like Hamiltonian the operator constraint [¢, ],_, =0, see Eq. (4), has to be replaced
by
L
jdx @ . =L(kTik¢) . 25)
T2

0

3 The self-consistent harmonic approximation

In order to study the charge and spin gaps in the dimerized Hubbard model we use the self-consistent
harmonic approximation (SCHA) in which the exponentials of field operators appearing in (21)—(23) are
replaced by quadratic forms. We introduce the trial Hamiltonian

L
Hu=2j%

a=c,s ()

2

2 2 Aa 2
(ax¢a) +Vaga(ax9a) +7¢a (26)

ga ada

Ve

which provides us with a variational estimate for the ground state energy

E=(H,), +(H,), +(H,), +(H,), , 27)
E _E, A (82),

—=w N De Falv 4 Bk k). 28
L L Z; 2nv, g, ( T i) (28)

Here the expectation value is with respect to the ground state of H,, E,, is its ground state energy, and
E(k;,k;)=2B,cos (ky +k;)+2B, cos (ky —k;)—2B(sin ky +sin k| ) (29)
with

- ) ~ ) R 2
B =U e o , B,=U e o , B=iie % o (30)
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Table 1 Minimum E, of E(k;,k;) — see Eq. (29) — which is used in the gap equations (31) and (32).
The first line is applicable for u = 0 (Hubbard model without dimerization) whereas the second line ap-
plies for u > 0.

range ky k, E,(B,,B,,B)
0<B<2B arcsini Tc—arcsini —2B, 2B, B
2 2B, 2B, B,
2B, <B K3 T —4B—2B, +2B,
2 2
Minimizing E with respect to 4, and A, yields the gap equations
2
4 —4B, Bi_BBE (€20
2mv,g. | 0B, 0B
2
A =-4B, ai—BaE (32)
271y, g, * 0B, 0B

where E; is the minimum of E(k;,k;) (see Table 1). In order to solve these equations analytically we
consider the case U >0 where g, =1 and g, <1, and restrict ourselves to the limit of small dimerization
u. Since H,, is quadratic in the bosonic fields it is straightforward to calculate

(@), =2 1an (33)
l _gn 4 34
(02, nT (34)

where 4, is a cutoff-dependent energy scale of the order of the bandwidth, and 4., < 4, is assumed. For
nonzero dimerization u > 0 the solutions of the gap equations lie in the range B > 2B,; thus the second
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Fig. 1 Charge gap A and spin gap A (in units of 7) of the dimerized Hubbard model for U/t =2 ob-

tained within the SCHA. [Weused v, =v,/1£U/mv,, g =1land g =1/~/1£U/nv, ; note that v, =2r].

The straight lines are the analytic results (35) and (36) valid for u <u,. Note that 4 (0) is subtracted
from the charge gap in order to highlight the power law behavior.
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line of Table 1 with 0E,/dB, = —2,0E,/dB, =2 and dE,/dB = —4 has to be used in Egs. (31), (32). For

u — 0 the spin gap vanishes while the charge gap approaches a constant according to [12]

A (u)—4.(0) o< u*”? (35)

A) o< " (36)

with cutoff-dependent prefactors. The exponent 2 that characterizes the spin gap is in accordance with
the corresponding exponent of the dimerized antiferromagnetic Heisenberg chain up to a logarithmic
correction in the prefactor [13, 14]. Since the Heisenberg model corresponds to the U — oo limit of the
half-filled Hubbard model, this indicates that as far as the exponent is concerned the SCHA result (36) is
exact and persists even in the strong-coupling regime U/t > 1. For u > u,, the behavior of the gaps is
changed to [15]

A )= Au) o< ) (37)

where the crossover value u,, is defined by A (u,,)=A_(0). In Fig. 1 we show A («)—A_(0) and A, (u)
as a function of u for U/t =2 as obtained from the numerical solution of the gap equations. For compari-
son, the analytical results (35) and (36) are also given.

4 Finite systems

For a finite system of length L it is not possible to simply replace the Klein factors by their eigenvalues
since the terms ~ J f . in the Luttinger Hamiltonian (12) do not commute with the F’s. However one may
decouple the Klein factors from the bosonic fields using a variational ansatz. To this end we introduce
the “Klein Hamiltonian”

Hy =iLB(Fgy Fyy + Fy\ F, )+ LB F Fy F, Fry + LBy Fig F Fy Fry + e,
(gl 4,8 D) (38)
4L T

where B,,B, and B are variational parameters to be determined self-consistently. H_ is of the form of a
tight-binding Hamiltonian for a particle moving on a 2d lattice in a harmonic potential. A class of simi-
lar Hamiltonians for general potentials in 1d has been studied in [16]. The choice of the trial Hamiltonian
is equivalent to a decoupling of the non-linearities according to

—i2v2¢,

+ —i22, + —i2v2¢,
Fo B Fy Fpe = (Fy B Foy Fpdo€ 2% + FF Fy iy (@770%) (39)

and analogously for the Umklapp and dimerization term. This means that instead of replacing the prod-
ucts of Klein factors by their eigenvalues as in the thermodynamic limit, we now have to replace them by
their expectation values with respect to the ground state of H_. In both cases one ends up with a sine-
Gordon type model like the one explicitly given in Eq. (24). It is conceivable that for a finite-size system
the eigenvalues are not identical to the expectation values, i.e. different sine-Gordon models arise.

The question is then whether identical sine-Gordon models arise at least in the thermodynamic limit.
We can answer this question within the framework of the SCHA. Here the introduction of the “Klein
Hamiltonian” amounts to replacing the quantity E,(B,, B,,B) which enters the gap equations (and which
is explicitly given in Table 1) by the ground state energy of H”/L. Apart from this modification Egs. (30)—
(32) remain unchanged. Consider first a system with both a spin and a charge gap. For large systems the
parameters B, B, and B, become size-independent, with the consequence that the kinetic energy in H_
dominates the confining potential. The ground state energy of H” is then given by the minimum of
E(k;,k, ), see Eq. (29), and expectation values of the Klein factors are equal to their eigenvalues.
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In the absence of dimerization, i.e. for the “pure” Hubbard model, we encounter a different situation
since the spin gap vanishes. For large system size one finds B =0, B, =const, and B, o U(a/L)*. Thus
the confining potential in the spin sector dominates the corresponding kinetic energy (proportional to B,)
in the thermodynamic limit. Hence the ground state of H” is the eigenstate of the current operator with
J, =0, and the expectation value of the operator F,,F, | F, F,, in this state is zero, in contrast to the
eigenvalues which are exp (ik, —ik;), see Egs. (16)—(20).

5 Conclusions

We studied the role of Klein factors for the bosonized Hamiltonian of the dimerized Hubbard model.
Since the Klein operators do not commute with the total spin and charge currents J_ they cannot acquire
a definite value at the same time as the current operators.

The ground state of the gapped system is a superposition of many spin and charge states. In this situa-
tion it is justified to choose a fixed phase for the Klein operators. The bosonized Hamiltonian is then the
conventional sine-Gordon-like Hamiltonian, cf. Eq.(24). In an ungapped system where the non-
linearities introduced by backscattering are (marginally) irrelevant operators, the ground state has a well
defined current. In this case the phase of the Klein operators is undetermined and Eq. (24) has no justifi-
cation.

We have extended the self-consistent harmonic approximation in such a way that Klein factors can be
handled systematically, and we worked out the theory for the Hubbard model. In a previous paper [8] we
applied the SCHA to spinless fermions with nearest-neighbor interaction and dimerization, and studied
in detail finite-size effects. In the spinless case the Klein Hamiltonian H can be mapped onto a Mathieu
equation which can be solved analytically in certain limits. It turns out that finite-size corrections to the
gap equation are not important as long as the dimerization gap is larger than the finite-size gap. In addi-
tion, the finite-size formalism allows to calculate the size-dependence of the Drude weight in the gapped
regime [8].
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