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We study the impurity-induced critical behavior in an integra®lé(2)-invariant model consisting of an
open spin chain of arbitrary spi (Takhatajian-Babujian modeinteracting with an impurity of spiré’
located at one of the boundaries. F&+1/2 or S’ =1/2, the impurity interaction takes a very simple form
JS,- S that describes the deformed boundary bond between the imi@irand the first bulk spirs, with an
arbitrary coupling strengtld. For a weak coupling €J<J,/[(S+S')2—1/4], the impurity is completely
compensated, undercompensated, and overcompensat8t=f@, S'>S, andS’'<S as in the usual Kondo
problem. While for strong coupling=J,/[(S+S')?—1/4], the impurity spin is split into two ghost spins.
Their cooperative effect leads to a variety of new critical behaviors with different valugs$'efS|.
[S0163-18299)03530-4

. INTRODUCTION to conformally invariant boundary conditioh$:'® The
impurity-bulk coupling strength] flows either to infinity
Quantum fluctuations induced by an impurity coupledwhen the impurity is screened, or to finite as if it is over-
with the one-dimensionallD) Tomonaga-Luttinger liquid screened, no matter what the signJak initially. In particu-
(TLL) play essential roles in understanding the low temperalar, numerical studies of the finite-size spectrum support the
ture behavior of quasi-1D systems, such as quantum Wirespicture that the fixed point corresponds to a chain discon-
fractional quantum Hall effed, carbon nanotubes,or ~ nected at the impurity site for repulsive interactidrHow-
quasi-1D organic conductofsThe problem of an impurity €Ver, the low-temperature impurity behavior described by
spiné’ coupled with both of its neighboring sites in a quan- previous Bethe_ ansatz mtegrab_le models do not_correspond
twm chain was studied by a class of integrable (B to the.s.table qrmcal p0|.nts.ment.|oned above. For ms_tance, at
) . 56 . S the critical point the spirs impurity coupled to the spin-1/2
mvz_anant quel ‘ For_the I-!elsgnberg chal_n with ferromag- antiferromagnetic Heisenberg chain has the effective
netic coupling, the impurity is locked into the critical

) - " _screened spif. ;= S— 1/2 rather thar8— 1, despite the fact
behavior of the lattice, i.e., at low temperatures the specifig, 5 jt couples with two neighboring 1/2 spinsn this re-

heat is proportional g and the susceptibility diverges as gpact, the critical point described by the integrable impurity
T~2 with logarithmic correction$.For a chain with antifer- models is unstable, owing to the fact that these models have
romagnetic coupling, the impurity spin is compensated bya fixed impurity coupling, a “fine-tuned” impurity interac-
bulk spins with three different situations similar to those oftjon term, and no backward scatteriﬁgg[t is recalled that
the multichannel Kondo problefnfor S'=S, it is the com-  backward scattering is one of the essences of the quantum
plete compensation and the impurity just corresponds to oninpurity problem in 1D TLL®'! From the point of view of
more site in the chain; fo8’>S, the partial compensation RG, electrons or spin waves moving in one-dimensional
with Schottky anomaly when an external magnetic fidlis ~ space will be largely scattered back by the impurity, while
applied on; and forS'<S, the overcompensation, which the tunneling effect could be perturb&d’In the fixed-point
gives rise to quantum critical behavior. limit, they are completely scattered back after a phase shift
The effects of an impurity embedded in 1D TLL have by the impurity, as long as the tunneling is plausibly ne-
been recently extensively discussed. By renormalizationglected at sufficient low temperature. We remark that in
group(RG) techniques, bosonization methods, and boundarghese models only one channel host electron is tredtee
conformal field theories, many interesting results have beeward scattering for the transparent impurity, and one half-
obtained, showing unusual properties of TLL in the presencehain for the boundary impurity For a general impurity
of a local potential barrier or a magnetic impurity’> Gen-  (nonintegrablg one should consider two half-chains inter-
erally speaking, these new findings indicate that the quanturacting symmetrically with the impurit$? which is effec-
impurity models renormalize to critical points correspondingtively a two-channel orfé?*at low-energy scales, as long as
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the tunneling across the impurity is plausibly negled®®  with  x,=3;n(n+1)—S(S+1), n=0,1,..,25. One
fixgd poind. General_lyz tunneling.through the ?mpurity may recovers HUZZJOE]N;llgj,ng, Hl:JOEJ_N;ll[gj.ng
exist. It causes hybridization, splitting, and anisotropy of the—(éj-§j+1)2] as the usual spin-1/2 Heisenberg model and

i ghannels. Homeyer, e unnelng mte e nEGIGDY e S akiatafan-Babujan model, respectvep o an
paring P PUY irrelevant constant The construction of the model is based

otentia? at low-energy scales from the RG point of view. . )
?herefore these effgc):/ts are not very harmll%l to the two" the vertex weight operatof(1), represented by matri-

channel behavio? The two-channel Kondo behavior is re- Ees acting on the tensor product spagsV; of two spins

ally found in the spin-1/2 Heisenberg chain with a spin-1/251, Sz, With a parameten identified as spectral parameter.

impurity 25 Its explicit form is

In this paper, we solve a related integrable model, i.e., the 25 |
Takhatajian-Babujian spin chain coupled with a boundary RlZ()\):_E )‘__kp (5)
spin, via algebraic Bethe ansatz. It is argued thatSerl, S <hizo Atk

the model corresponds to a bulk impurity in a spin-1/2 . . . , .
Heisenberg chain. The structure of the present paper is th‘@herep' is the projector selecting the states with total pin
following: In the subsequent section, we construct the model’ tgse tensor product of the two spins involves(x)
and derive the Bethe ansatz equation. The ground-state prop-n#1.n=0o(X—Xn)/(X|=Xy). Owing to the Yang-Baxter
erties and the boundary bound states are discussed in Sec. f@uations satisfied by tte matrix, we have the relationship
In Sec. IV, we discuss the thermodynamics of the operts*(d/dN)INt(\)|\—o, with t(X) being the transfer-matrix
boundary as well as the impurity. It is found that the opendefined by

boundary behaves as an overscreened spin and the impurity

_ _ AN y \. .. pAl
itself, may show different quantum critical behaviors, de- L) =tra TV =tra{ RN+ sRTE (M- 6)
pending on thg coupling constait Section V is attributed Here, the trace is taken in the auxiliary spin spate
to the concluding remarks. (dimV,=2S+1) introduced to help us track the proliferat-
ing spin indices. Becaudé(\),t(x)]=0, VA, u, Hgis in-
[l. THE MODEL AND ITS BETHE ANSATZ tegrable under the periodic boundary condition.
Let us start with the following Hamiltoniaf® Now, we put a magnetic impurit’ at one end of the
chain, by considering the followinotegrable Hamiltonian
N—1
H=302, [Sy'Syi1+S 'S o 1]+ ($i+8y), H=Hg+Himp, (7
n=
1) S+s' | K
whereJ,>0 (antiferromagnetic couplir)g§n is the spin-1/2 Himp:‘]ol |sZs/|+1 ) \323/\ ) k2—c2)
=2 =|S- =|S-s'|+
operator,S’ is the impurity spin operator. By inverting the
coordinates of one half-chain, we readily map the model S+¢8' y—y
onto a two-channel spin system coupled with a boundary X n (8)
impurity. As discussed in earlier worR$* a 2S-channel nzln=|s-s'| Y1~ Yn

Kondo system has the same low-temperature behavior to that _& & o _1 _ e )

of spinS Takhatajian-Babujian mod&l with an impurity yvhereyt;tSrS, y'_ZEI(IJ]') .bS.(SJ;h:L) ts (St; 1f)%k,1 Cb Ik

spin® Therefore, the mode(l) has similarity to the follow- IS an arbitrary parameter describing the strength ot the bulk-

ing Hamiltonian: impurity interaction. The impurity is assumed to be sited at
' the left end of the chain, say the site-0, while its neigh-

. . ) . boring spin is§1. For S=1/2, the model is reduced to that
H:Jozl [Sh:Sni1= (S Sht1)]+3IS-S1, (2 considered in Ref. 21. Interestingly, whe®=1/2 or S'
" =1/2, the interaction term takes the simple form
with S=1. Based on these arguments, we study the low- o
temperature behavior induced by an magnetic impugity Himp=3S- S, 9
coupled with an open antiferromagnetic Takhatajian- . . _ 11 g)2_ 2 ;
Babujian chain of spir§ by use of Bethe ansatz. It is well with coupling constant=Jo/[(S'+ S)*~c"], which can

K that int bl lizati  isotrofie 1/2 spi range from negative infinity to positive, and meet all the
nown that integrable generalization ot IS0 ro_ﬁe spin physical situations. So at least in these two cases, the Hamil-
chain to arbitrary spirs leads to the Hamiltonif

tonian could be expected to describe properly the boundary

N—-1

N-1 bond effect in some real quasi-1D materials at very low tem-
Ho=J S.S..), 3 perature, such as the possible bond impuBty=1/2 in S
° 0121 Qusl(Sy5+) ® =1 Heisenberg antiferromagnet TMNA{.To show the in-

tegrability of the Hamiltonian(7), let us first notice that the
impurity termH;,,, can be more conveniently treated as the
boundary operator, similar to the usual open boundary prob-
1) 28 lem with boundary field. In addition to the Yang-Baxter
2,

whereQ,g(x) is a polynomial of degreeof SU(2) invari-
ant quantitiesx=5;-Sj, 1,

(4) equation(YBE) as the integrable condition of the bulk, there
11=0 Xj—= X | are some new consistent constraidften called the reflec-




6596 JIANHUI DAI, YUPENG WANG, AND U. ECKERN PRB 60

tion YBE) for the same model to be integrable under the i

open boundary conditions, and the QISM is still availaBle. AL, =N+ (0=2)+1), j=12,..n, (15
A new K operator is introduced to describe the boundary

effect. In most works, th& operator is a X2 matrix with | &y \n being a positive real number. Sinceand — ¢ give
c-number elements that describes the boundary ffekhe the sayme Hamiltonian, we consider-0 (c rea) or Imc

Sklyanin formalism can be extended to the generic represens g (¢ imaginary cases without losing generality. Far
tations ofK operator, which is written as ax22 matrix but <S' and or imaginaryc, Eq. (15) are the only p(.)ssible

. ) 0,21
Wr']th elements blemg( 0||3erators rattf'lelr trlmmumbersz. _ solutions of the BAE13). For each class of states classified
This operator-value& plays an useful role in constructing . srings, we introduce the usual density distribution

the boundary problem where the quantum degrees of fre%nction pn(\) and pan()), representing occupied states

dom of the boundary enter interactions. Of course genera"y('particles and missing stategoles, respectively. The BAE

both R,K matrices could be interpreted as the inhomoge—of then strings reads

neous vertices in a 2D lattice model. Our model corresponds

to a very special one in that the only “inhomogeneity” o

comes from the boundary row, leaving others uniform. It is pn'h()\)Jrz Anpi(N)

built as =1
K(\)=sgR*®(\—ic)sgRM(\ +ic) (10)

1
=anas(M+ 5len "M+ %], (16
and sgR(\)A? is given by

S+8' | where ay(\)=ni2m(\*+n?/4), an,i(N)
RO =— 3 11 Ak =3mna 1 1-2(\); Ay is an integral operator with the
I-js 5| k=|s-s'|+1 NTK kernel
ss Y—VYn min(n,l)—1

X

I RV D AN =anqM)+2 3 an-ad)F a0,
It is straightforward to show that the doubled monodromy

matrix HMP(N)=a, 55/ (A —iC) +a, 5 (N +ic) is the impurity con-

tribution; ¢EY\)=a,(\)—8(\) is the surface or edge
OMN)=T(MKN)TL(=N) (12)  term, which is independent of the magnetic impurity. Notice
that as a direct result of the restrictian\;, &) in ¢§d9
excludes the case m";=o, which corresponds to a vanish-
ing wave function. In the ground state, onlySstrings
exist® and Eq.(16) is reduced to

satisfies the reflection YBE and its tragé\) =tr, ® (\) sat-
isfies [O(N),0(u)]=0, VN, u. Similarly, becauseH
oc(d/dN\)In 8(\)|,—o, the Hamiltonian(7) is indeed inte-
grable. Its spectrum is uniquely determined by the following
Bethe ansatz equatioiBAE):

1 :
_ 4+ imp + edg, )
NjFI(S +C)Nj+i(S —c) [N +iS| 2 Azsspas(N) =azs25(N) 2N[¢2s (M) +¢357(N)]
N—i(S Fo)N—1(S —c)|x—is (7
B M Nj=NHIN N s By Fourier transforming Eq(17), we readily obtain
S NN NN = a3 1
_ 0 T r.imp ed
The eigenvalue of the Hamiltonig(d) is P2s(N)=pas(\) + 2N[p28 (M)FpzsiM)] (18
M
S
_ 1
E=—J 14
0121 A+ S a4 pas(\) = 2 cosiian)’ (19
up to a rapidity-independent constant, whareare the ra-
pidities of the spin waves. The magnetization is given by imp 1 sinh(S'w)costicw) _,
S,=NS+S' —M with M being the number of down spins. pas (M=o > e '"do
For convenience, we pup=1 in the following text. coshgsinl'(Sw)
I1l. GROUND STATE, BOUNDARY CORRELATOR, for S>9', (20
AND BOUNDARY STRINGS
Due to the reflection symmetry of the model and its BAE, imp ) ) 1 e 5" 9lvlcoskicw) “iong
there is a restriction on the rapidities;# =\, for j#I. p2s (M= 5 P € @
Therefore \;=0 is forbidden in this system. Generally, the COShg

bulk solutions of Eq(13) can be described by the following
strings in the thermodynamic limit for S<9, (21
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& Slw aa S
1 tanh5(1-e ) Ebs:__f 525N po M)~ 2 a7
39N ) = f—ef”“”dw (22) 2 =k S°—(c—=S'+1)
P3s 2 2 sinh(Sw) ' (31
The ground-state energy is obtained as By solving Eq.(30) via Fourier transformation and submit-
ting pps iNto Eg. (31), we find €,s=0. Therefore there is no
0 1 0 net contribution from the boundary string to the total energy
Eo/N=fouict § (Fimpt Fedg)s (23)  in the thermodynamic limit, similar to problem of a charged
vacuum in the sine-Gordon thed?y However, we remark
here that such a kind of boundary string will be stabilized
foun= [‘I’( ) —W(i+9)], (24)  with a finite magnetization, like those of the fermion systems
with boundary potentidf or Kondo impurity?®22
Foum %r:+ [W(L+1[S—S'|+irc) IV. THERMODYNAMICS
N In this section, we consider the thermodynamicscof
—W(3+3(S+S)+irc)], (25) <S' (antiferromagneticcase. The thermodynamic BAE can
be derived by following the standard methtdf:>! At finite
1 aprlal 1 temperatures, the solutions of BAE are described by Eq.
Foag= H{PI3+3(S—H)]1-V[3+3(S+ )]} (15). The energy of the system takes the form
+3[V(39)-P(3S+1)], (26) e oc
) . . E=—w2 fa (N pa(N AN+ D nH | py(N)dA
whereW is the digamma function. As a by-product, the cor- N & n,2si %/ Fn =4 n '

relator of S’ and §1 can be exactly derived for the present
model. WhenS=1/2 or S’ =1/2 we have

N J
(§-8)=—5E 27

Since the coupling (and therefore)) dependent effects are
all encoded irp/2P(\), we will mainly focus on the impurity

energyFImp later on. The boundary correlator can be calcu-

lated as

0
imp -

N Jd
<S'~sl>=r2p|= (29

Now we turn toc>S' case. In addition to th@-string
solutions(15), an imaginary mode.=i(c—S’) appears to
be a solution of the BAE13). In fact, in this case, the so-
called n—k boundary string’ is a possible solution of the
BAE

A KM=i(c—S)+im, m=kk+1..n, (29
wherek<S'—c or k=0. Generally, there is no restriction
for n in the spin chain with a boundary fiefd However, in
our model A= *i(S'+c) are not solutions of the BAE, in-
dicatingn<2S'. In addition, for Z=integer casek must be
zero due to the restriction;#\;, j#I|. The formation of
n—k boundary string in the ground-state configuration will
induce a distortion of the original2string. The change of
the 2S-string distributiondenoted by,s(\)] can be derived
from the following equation:

n

Azs 2spps(N) = _Ek {azsod A —i(c—S'+1)]

+aps AN +i(c—S'+1)]}. (30)

The energy carried by the boundary string is

(32

whereH is the external magnetic field. The entropy of the
system reads

S/N:nzl {(Pn+Pn,h)|n(Pn+pn,h)_Pn Inpy,

—PnnINpnptdX. (33

By minimizing the free energlF = E— TS we readily obtain
the following equation:

— man 2s

In(1+ 7, = T

+> A In(1+ 7Y, (34
=1
where 7,(N) = pn n(N)/pn(N) and no(N)=0. With the iden-
tities
5n,ma GAZ,m: 51,m:
(395

A m_G(Anfl,m+An+l,m): Al,m_

m— G(anl,m'l' Bn+1,m) = 5n,mGi

Bl,m_ GBZ,m: 5l,mG- (36)

where B, ,, and G are integral operators with the kernels
anm(\) and 1/2 coshf)) respectively, Eq(34) can be re-
duced to

In M= — 2T cosi{m\) 5n,28+ G[In(1+ 77nfl)
+IN(1+ 7441)], (37)
with the boundary condition
_Inp, H
lim = ? (38)

n—o
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Equation (37) is almost the same equation as that of the
2S-channel Kondo problefnwith only a different driving
term. The free energy reads

1 1
FIN=fput NFimp_" NFedgv (39

fbulk:fgulk_Tf [2 costimh )]~ In[1+ 7,5(N)JdX,
(40

Feaq=Flug— %TJ [2 costimN)]~In[1+ 74(N)]dN,
(41)

Fimp=—S'H— %TZl f @ "P(N)In[1+ 7, *(N) JdX.
(42

The boundary behaves always as a spin¢li4act one half
of a spin-1/2 and its critical effect in th&XXZ spin-1/2 chain
has been discussed in a previous wirkn our case, the
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1 _
Sghos=5NM2(S=S)+1] for [S]>S, (49
7 2S5+1
1 M7 sv1 _
Sghostzzln—w for |§<S. (50
SNos+ 1)

The summation of the two ghost spins’ entropy gives that of
the whole impurity. Wherc,# 2c, the difference between
the residual entropies for,#2c and c,=2c, i.e., ASy,
reads

1
ASimp=7 2, [IN(1+ fos g 21-0) ~INfosv21-1],
(51
with fn=limXO_)0 ». . This result shows that the spin con-

figuration of the ground state is very complicated and
strongly depends on the impurity-bulk coupling. In fact, the

“boundary spin” shows overscreened critical behavior, asresidual entropy has jumps et=c,/2. That means quantum

will be discussed in the following section.

When T—0, the driving term in Eq(37) diverges. That
meansz,s—0 and all others, tend to constants), that
satisfy the following algebraic equations:

2
7 =1+ 7y )1+ 70.0), (43
with the boundary conditions
n
o Ingy H
ne=13s=0, lim——"= 7=2Xp. (44)

n—o

Since the equation is decoupledrat 2S, we have different
solution$ for n>2S andn=<2S

_sintF(n—2S+1)xg

n
7N SN g , for n=2S, (45
o,mn+1
CSToE
Ny = -1, for n<2S. (46)
) aa
S 55+ 1)
The residual entropy of the open boundary is
1 T
Sedgzzln 2 COSM . (47)

To calculate the free energy of the impurity, we rewrite the
integral kernekb"? in Eq. (42) with real variable as

PPN =[] an 25 o (N) FLalan s 16 (M)

-a,(M)(1-68,0> Onos'—c+2-1, (48)
=1

wherec, denotes the integer part ot2anda=2c—c,. For
2c=c,, the impurity behaves as two ghost spi@'s+c,/2

andS' —c,/2. The entropy of a ghost spﬁreads

phase transition occurs faracross a half-integer or an inte-
ger.

To obtain the leading order of some thermodynamic quan-
tities such as the specific heat and the susceptibility, we need
the low-temperature TM<T,) expansion. This can be
achieved by following the standard method developed for the
multichannel Kondo problefh.For T—0, only the excita-
tions near the Fermi surface.{+) are important. The
driving term in Eq.(37) can be approximately replaced by
— (wIT)exp(=m|\|). We introduce the new variables. =
*aN+In(w/T), then 7, takes the following asymptotic
forms?®

(L)~ +(an+ Baxd)e ¢ for n=2S, (52
(L)~ nt +(an+ Bx5)e” ™= for n<2S. (53

(L)~ ni +(ar+Bix§){.e ™= for S=1. (54

Here a,, and B,, are constantsy=2/(S+1) and = denotes
the two Fermi points. For imaginary=ib, the free energy
of the impurity reads

o 1 1
FimpNFimp_ ET -
2 cosV( {+mb—In —)
T
2 COSVE {—mb—In ?)

Notice that we have replacet. by ¢ in the integral. In this
case, the bond deformation does not change the effective
strength of the impurity but the energy scalg (Kondo
temperaturg’

T~ mcosh }(7b). (56)
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The system behaves as &2hannel Kondo system with an V. CONCLUDING REMARKS

impurity S'. Forc real and 2=c,, the free energy of the

! ! C In conclusion, we propose an integrable model of a
impurity can be rewritten as

boundary impurity spin g coupled with an open
Takhatajian-Babujian spiB-chain. The relation between the

In(1+ - . o .
FE _F0 _ ET N1+ 725 *C') (57) present model and the problem of the bulk impurity in a spin
mpotimp 2 & 5 7 chain is discussed. In our model, wh8ror S’ is one half,
cosh {— nT the interaction term takes a very simple form. The coupling

constant] can take arbitrary value without destroying the
Forc,#2c, integrability of the Hamiltonian, this allows one to exhibit
the exact features of the system. While in the periodic mod-
FoF0 TS J’ G i(g—lnz els, there is a constraint ah Though a similarg sR*(\
‘mp "~ imp = =l T —c) can be introduced in the periodic modéfsthe param-
L eterﬁ rl’nukstdbe rea{imagirrl]arﬁ/ ir;)ohj(r carl]s)eNhich describtles af
1 weak-linked impurity with the bulk. The interaction only af-
+§T|21 aa(MIN(1+ 755 ¢ 12-1)d8 (58 focts the energy scalékondo temperatujebut does not
change the fixed point of the system. With an imaginary
where the model Hamiltonians constructed for bulk impurities are
B non-Hermitian and their spectra generally lie in the complex
ele-dallel plané® rather than in the real axis. In our model, both real
G.(M)= o ¢ ldo. (59 and imaginaryc define Hermitian Hamiltonians due to the
A coshE reflection symmetry, and the coupling constdnineets all
physical situations. Some new quantum critical phenomena
Notice thatG..(\) are convergent in the real axis since driven by the impurity-bulk coupling have been found
—c,/2<1/2. The specific heat and the susceptibility can belwhich have not been explicitly found yet in the periodic
easily derived from the free energy by substituting Eqsmodels: (i) The strong couplingl may split the impurity
(52)—(54) into Egs.(57) or (58). With different values o, ~ spin into effective “ghost spins”S’'—¢,/2 and S’ +¢/2.
different quantum critical behavior may appeéy. For S The coupling not only changes the energy scdksndo
+¢,/2=S, both of the ghost spins are underscreened and thi&@mperaturgas in the conventional Kondo problem but also
leading terms in the specific heat and the susceptibility aréenormalizes the effective strength of the impurity spin. Such
the Schottky term and the Curie term, respectivélly. For @ phenomenon reveals a pure correlation effect. We note that
S'—¢,/2<S<S' +¢,/2, no matter how largé'’ is, the larger  the spin splitting or the ghost spins have also been pointed
ghost spin is underscreened and the smaller ghost spin @it in our earlier publications in some different
overscreened. The leading order of the impurity specific heagituations™? (i) Depending on the strength of the cou-
is governed by the smaller ghost spin that shows an anom&ling, the system may show a variety of critical behaviors,

IN(1+ 7251 +¢,)d{

lous power law which are different from those of the conventional Kondo
problem. A typical example is that whe®l —c,/2<S<S’
2 +¢,/2, the leading term in the susceptibility is Curie type
Cimp~T", 7= Str1° (60 (contributed by the larger ghost spinvhile that of the spe-

cific heat is an overscreenedszhannel Kondo typécon-
while that of the susceptibility of the impurity is governed by tributed by the smaller ghost spirSuch a fascinating non-

the larger ghost spin with the usual Curie law Fermi liquid behavior has never been found in the
conventional impurity probleninotice that they are induced
Ximp~ T 1+O(T™ 1), (61) by the same impurity (iii) The open boundary, which can

o . o , be produced by either an impuritymagnetic or nonmag-
indicating a novel critical behaviotlii) For $'+¢,/2<S,  peti) or bond deformation, shows overscreened multichan-
the system behaves as a conventional overscreened Konﬂ@ behavior as long as the bulk spi1/2. Such kind of

system. Especially fo=1, S'=1/2, andc, =0, the model  gfect is caused by the self-avoiding scattering of a spin wave
is related to Eq(1) and the low-temperature behavior of the it jts reflection counterpart, and is expected to be a com-
impurity shows as mon feature of the multichannel systems in one dimension.
Our results strongly suggest that some new intermediate
fixed points may exist for the Kondo problem in a strongly

which coincides with the numerical results obtained in Ref.correlated system.
25. The above results show that the bond deformation leads
to two kinds of effect: The half integdor integej part ofc
(c,/12) splits the impurity spin into two ghost spinsS'(
+¢,/2), and the residuec(-c,/2) renormalizes the effective Two of the authorgJ.D., Y.W) are grateful to Professor
energy scalel, (Kondo temperatupeas well as the ampli- N. Andrei and Professor Yu Lu for helpful discussions. Y.W.
tudes of the physical quantitigbut without changing the also acknowledges the financial support of AvH-Stiftung,
critical behavio}. Thus the critical behavior is only governed NSFC, FCAS, and NOYSFC, National Natural Science
by the integer part of @ Foundation of China.
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