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Abstract. By use of a stochastic generalization of the Hodgkin-Huxley model we
investigate the phenomena of Stochastic Resonance (SR) and Coherence Resonance
(CR) in assemblies of ion channels. If no stimulus is applied we find the existence
of an optimal size of the membrane for which the internal noise alone causes a
most regular spiking activity (intrinsic CR). In the presence of an applied stimulus
we demonstrate SR vs. decreasing patch size (i. e., vs. increasing internal noise
strength). SR with external noise occurs only for large sizes which possess sub-
optimal internal noise levels. SR in biology thus seemingly is rooted in the collective
properties of large ion channel assemblies. Investigating the signal-to-noise ratio
(SNR) for sub-threshold sinusoidal driving vs. the frequency we find a bell-shaped
behavior vs. frequency which reflects the existence of a random internal limit cycle.
Finally we study the role of synchronization vs. decreasing internal noise intensity
(i.e. increasing path area).

1 Introduction

A fundamental question in neurophysiology concerns the limiting factors of
the reliability of neuronal responses to a given stimulus. In this article we
focus on a particular aspect of this complex issue: the impact of channel
noise, which is generated by the random gating dynamics of the ion channels,
on the reliability of signal transmission. In doing so, we consider the effects
of stochastic resonance, coherence resonance and synchronization.

During the last decade, the effect of stochastic resonance (SR) — a co-
operative phenomenon wherein the addition of external noise improves the
detection and transduction of signals in nonlinear systems (for a compre-
hensive survey and prominent references, see Ref. [1]) — has been studied
experimentally and theoretically in various biological systers (2,3,4,5,6]. For
example, SR has been experimentally demonstrated within the mechanore-
ceptive system in crayfish (2], in the cricket cercal sensory system (3], for
human tactile sensation [4], visual perception [5], and response behavior of
the arterial baroreflex system of humans [6]. The importance of this SR-
phenomenon for sensory biology is by now well established; yet, it is presently
not known to which minimal level of the biological organization the stochas-
tic resonance effect can ultimately be traced down. Presumably, SR has its
origin in the stochastic properties of the ion channel clusters located in a
receptor cell membrane. Indeed, for an artificial model system Bezrukov and
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Vodyanoy have demonstrated experimentally that a finite ensemble of the
alamethicin ion channels does exhibit stochastic resonance [7]. This in turn
provokes the question whether a single ion channel is able to exhibit SR, or
whether stochastic resonance is.the result of a collective response from a finite
assembly of channels.

Stochastic resonance in single, biological potassium ion channels has also
been investigated both theoretically [8] and experimentally [9]. This very ex-
periment (9] did not convincingly exhibit SR in single voltage-sensitive ion
channels versus the varying temperature. Nevertheless, the SR phenomenon
versus the externally added noise can occur in single ion channels if only the
parameters are within a regime where the channel is predominantly dwelled in
the closed state, as demonstrated within a theoretical modeling for a Shaker
potassium channel [8]. The manifestation of SR on the single-molecular level,
is not only of academic interest, but is also relevant for potential nanotech-
nological applications, such as the design of single-molecular biosensors. The
origin and biological relevance of SR in single ion channels, however, remains
still open.

Indeed, biological SR can be a manifestation of collective properties of
large assemblies of ion channels of different sorts. To display the phenomenon
of excitability these assemblies must contain an assemblage of ion channels
of at least two different sorts — such as, e.g., potassium and sodium channels.
The corresponding mean-field type model has been put forward by Hodgkin
and Huxley in 1952 [10] by neglecting the mesoscopic fluctuations which orig-
inate from the stochastic opening and closing of channels. SR due to external
noise in this primary model and related models of excitable dynamics has
extensively been addressed [11]. These models further display another inter-
esting effect in the presence of noise, namely so termed coherence resonance
(CR) [12,13]: even in absence of an external periodic signal the stochastic
dynamics exhibits a surprisingly more regular behavior due to an optimally
applied external noise intensity.

Synchronization presents another phenomenon, which is also closely re-
lated to SR and CR {14,15]. The mechanisms of synchronization are presently
well-established for some chaotic and excitable systems. Depending on the
type and strength of coupling, several kinds of synchronization can be distin-
guished: complete synchronization, generalized synchronization, lag synchro-
nization, phase synchronization, and burst (or train) synchronization {14,15].
In the context of excitable systems, frequency and phase synchronization has
been found, for example, in the integrate-and-fire model of neuron driven by
white noise and an externally applied stochastic spike train [16]. Namely, for
an optimal dose of noise the mean firing rate of the driven neuron becomes
locked by the mean frequency of the external spike train {16].

A challenge though still remains: does internal noise play a constructive
role for SR, CR and synchronization? Internal noise is produced by fluctu-
ation of the number of open channels within the assembly, and diminishes
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with increasing number of channels. For a large, macroscopic number of chan-
nels this noise becomes negligible. Under the realistic biological conditions,
however, it may play an important role [17].

2 The Hodgkin-Huxley Model

Our starting point is due to the model of Hodgkin and Huxley [10], i.e. the
ion current across the biological membrane is carried mainly by the motion
of sodium, Na*, and potassium, K*, ions through the selective and voltage-
gated ion channels embedded across the membrane. Besides, there is also a
leakage current present which is induced by chloride and remaining other ions.
The ion channels are formed by special membrane proteins which undergo
spontaneous, but voltage-sensitive conformational transitions between open
and closed states [{18]. Moreover, the conductance of the membrane is directly
proportional to the number of the open ion channels. This number depends on
the potential difference across the membrane, V. The different concentrations
of the ions inside and outside the cell are encoded by corresponding reversal
potentials Fn, = 50 mV, Ex = —77 mV and Fy, = —54.4 mV, respectively,
which give the voltage values at which the direction of partial ion currents is
reversed [18]. Taking into account that the membrane possesses a capacitance
C =1 pF/cm?2, Kirchhoff’s first law reads in presence of an external current
Ioxt(2) stimulus:

cditv +Gx(n) (V — Ex) |
+ Gralm, h) (V — Ena) +G1, (V = Ey) = Iem(t). (1)

Here, Gna(m, h), Gk(n) and G, denote the conductances of sodium, potas-
sium, and the remaining other ion channels, respectively. The leakage con-
ductance is assumed to be constant, G, = 0.3mS/cm?; in contrast, those of
sodium and potassium depend on the probability to find the ion channels
in their open conformation. To explain the experimental data, Hodgkin and
Huxley did assume that the conductance of a potassium channel is gated by
four independent and identical gates. Thus, if n is the probability of one gate
to be open, the probability of the K* channel to stay open is Px = n*. More-
over, the gating dynamics of sodium channel is assumed to be governed by
three independent, identical gates with opening probability m and an addi-
tional one, being different, possessing the opening probability h. Accordingly,
the opening probability of Nat channel (or the fraction of open channels)
reads Pna = m3h. The conductances for potassium and sodium thus read

GK(n) = glrga.x n4a GNa(m, h) = gﬁ:x mah ) (2)
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where git2* = 120 mS/cm? and g2 = 36 mS/cm? are the maximal conduc-
tances. Furthermore, the gating variables (probabilities) m, h and n obey the
two-state, ”opening-closing” dynamics,
m = an(V) (1-m) - Bn(V)m, :
h=an(V) (1—h)—=Br(V) h, (3)
n=ap(V) (1—-n)—Bp(V)n,
with the experimentally determined voltage-dependent transition rates, read-
ing for a squid giant axon [10,19]:

(V) = 0.1(V + 40)

T 1 — exp[—(V +40)/10]°
Brn(V) = 4 expl~(V +65)/18), (42)
ar(V) = 0.07 exp[—(V + 65)/20],
Br(V) = {1+ exp[—(V + 35)/10]}*, . (4b)
(V) — — 00L(V + 55)

"7 1 — exp[—(V +55)/10]’
Br(V) =0.125 exp[—(V + 65)/80]. (4c)

The rate constants in (4a)-(4c) are given in ms~! and the voltage in mV.
These nonlinear Hodgkin-Huxley equations (1)-(4c) present a cornerstone
model in neurophysiology. Within the same line of reasoning this model can
be generalized to a mixture of different ion channels with various gating
properties [19,20].

3 Stochastic Version of the Hodgkin-Huxley Model

It has been suspected since the time of Hodgkin and Huxley, and known with
certainty since the first single-channel recordings of Neher, Sakmann and
colleagues, that voltage-gated ion channels are stochastic devices [21]. An es-
sential drawback of the Hodgkin-Huxley model, however, is that it operates
with the average number of open channels, thereby disregarding the corre-
sponding number fluctuations (or, the so-called channel noise [21,17]). These
fluctuations, i.e. their strength, scale inversely proportional to the number of
ion channels, see eq. (6) below. Thus, the original Hodgkin-Huxley model can
be valid, strictly speaking, only within the limit of very large system size. We
emphasize, however, that the size of an excitable membrane patch within a
neuron is typically finite. As a consequence, the role of internal fluctuations
cannot be a priori neglected [17]. As a matter of fact, as shown below, they
do play a key role for SR, CR, and synchronization.

3.1 Quantifying Channel Noise

The role of channel noise for the neuron firing has been first studied by Lecar
and Nossal as early as in 1971 [22]. The corresponding stochastic generaliza-
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Fig.1l. Numerical simulation of the

. . —_— . stochastic Hodgkin-Huxley system

0 (@) ] (1),(5),(6) with vanishing external
40 } 4 - stimulus. We computed several re-
T T T T T alizations of the voltage signal for

different numbers of the ion chan-

o 40F ] nels: a) Nno = 6000, Nk = 1800;
‘B o} : b) Nna = 600, Nx = 180; and c)
> 0| VJJJ/ ] Nna = 60, Nx = 18. Upon de-

WWMJ : - LA creasing the system size the influ-

ence of channel noise on the sponta-

0r neous firing dynamics becomes more
o and more pronounced. Note that
40l . ] the non-stochastic Hodgkin-Huxley
| L, ) A model does not exhibit spikes at all

0 100 200 300 for the parameters given in the text
t[ms] and in the absence of external stimuli

tions of Hodgkin-Huxley model (within a kinetic model which corresponds to
the above given description) has been put forward by DeFelice et al. (23] and
others; see [17] for a review and further references therein. The main conclu-
sion of these previous studies is that the channel noise can be functionally
important for neuron dynamics. In particular, it has been demonstrated that
channel noise alone can give rise to a spiking activity even in the absence of
any stimulus [17,23,24].

To include the channel noise influence in a theoretical modeling within the
stochastic kinetic schemes [17,23], however, necessitates extensive numerical
simulations [25]. To aim at a less cumbersome numerical scheme we use a
short-cut procedure that starts from Eq. (3) in order to derive a corresponding
set of Langevin equations for a stochastic generalization of the Hodgkin-
Huxley equations of the type put forward by Fox and Lu {26]. Following their
reasoning we substitute the equations (3) with the corresponding Langevin
generalization:

m=am(V) (1-=m) = Bn(V) m+E£n(t),
h=on(V)(1-h)~Bu(V) h+&(), (5)
n=an(V) (1~-n)—Bu(V) n+&(t),

with independent Gaussian white noise sources of vanishing mean. The noise
autocorrelation functions depend on the stochastic voltage and the corre-
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sponding total number of ion channels as follows

(En(On (V) = o 7B 80— ),
E6n) = 1o 2P 50—, Q

" Nxa (on + Bn)

' 2 anfn '
(E6n) = R ooy Bt 1),

In order to confine the conductances between the physically allowed values
between 0 (all channels are closed) and g™2* (all channels are open) we have
implemented numerically the constraint of reflecting boundaries so that m(t),
h(t) and n(t) are always located between zero and one [26].

Moreover, the numbers Nn, and Nk depend on the actual area S of the
membrane patch. With the assumption of homogeneous ion channel densities,
pNa = 60 pm~2 and px = 18 um~2, one finds the following scaling behavior

Nna = pnaS, Nk = pkS. : (7)

Upon decreasing the system size S, the fluctuations and, hence, the internal
noise increases. Consequently, with abating cell membrane patch the spiking
behavior changes dramatically, cf. Fig. 1.

3.2 Numerical Integration

Before integrating the system of stochastic equations (1), (6), (6) numerically,
the external stimulus e (t) must be specified. We take a periodic stimulus
of the form

Ly (t) = A sin(£2t) + n(t) : (8)

where the sinusoidal signal with amplitude A and angular frequency §2 is con-
taminated by the Gaussian white noise 7(t) with the autocorrelation function

(n(t)n(t")) = 2Dext 8(t — 1), (9)

and noise strength Dey:.

The numerical integration is carried out by the standard Euler algorithm
with the step size At ~ 2- 1073 ms. The ”Numerical Recipes” routine ran2
is used for the generation of independent random numbers [27] with the
Box-Muller algorithm providing the Gaussian distributed random numbers.
The total integration time is chosen to be a multiple of the driving period
Tq = 2w/ 42, as to ensure that the spectral line of the driving signal is centered
on a computed value of the power spectral densities. From the stochastic
voltage signal V (1) we extract a point process of spike occurrences {t;}:

N
u(t) := Zé(t —t), (10)
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where N is the total number of spikes occurring during the elapsed time
interval. The occurrence of a spike in the voltage signal V(¢) is obtained by
upward-crossing a certain detection threshold value V. It turns out that the
threshold can be varied over a wide range with no effect on the resulting spike
train dynamics. The power spectral density of the spike train (PSD,), the
interspike interval histogram (ISIH) and the coefficient of variation (CV) have
been analyzed. The coefficient of variation CV, which presents a measure of
the spike coherence, reads:

CV := —————\W , (11)

where (T') := limpy oo Y (tiy1—t:)/N and (T?) := limy_0o Y (tiy1 —t:)%/N
are the mean and mean-squared interspike intervals, respectively. From the
PSD,, we obtain the height of the spectral line of the periodic stimulus as
the difference between the peak value and its background offset. The signal-
to-noise ratio (SNR) is then given by the ratio of signal peak height to the
background height (in the units of spectral resolution of signals).

3.3 Coherence Resonance and Synchronization

We have analyzed the spike coherence in the autonomous, nondriven regime
(i.e., we have used I = 0) as a function of the decreasing cluster size. Our
simulation reveals, cf. Fig. 2(a), the novel phenomenon of intrinsic coher-
ence resonance, where the order in the spike sequence increases; i.e. the CV
is falling, solely due to the presence of internal noise. The fully disordered

1.0-10° LA R S B S A S
(b) . Ni=18, Nyu=60
0.5-107
% 0.0 ‘
e 3 Ni=576, N,=1920 |
0.5-107 HH
[
. 1 4
04 s gl At v aagsed o4 121y 00
0.1 1 10 100 0
Area [pm”]

Fig. 2. (a) The coefficient of variation (CV) in (11) is plotted versus the area S in
absence of external noise Deyxy = 0 for periodic sub-threshold driving with A = 1.0
pA/cm? and 2 = 0.3 ms™! (solid line) and without any stimulus (dotted line).
The ISIH are depicted in the presence of the periodic signal for $ = 1 um? (b), see
downward arrow in (a), and S = 32 um?® (c), see upward arrow in (a). The vertical
lines denote the driving period and its first two multiples
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Fig.3. The interspike inter-
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sequence (which corresponds to a Poissonian spike train) would assume the
value CV = 1. We note, however, that near S = 1 um? (optimal dose of inter-
nal noise), CV = 0.44, i.e. the spike train becomes distinctly more ordered!
For S < 1 um?, the internal noise increases further beyond the optimal value
and destroys the order in spiking again. It is worth noting that for S < 1
um? the model reaches limiting validity; in that regime the kinetic scheme
[17,23,24,25] should be used instead. Such a corresponding study, however,
has been put forward independently by Jung and Shuai [25]; their results are
in qualitative agreement with our findings.

Next we switch on an external sub-threshold sinusoidal driving. Inter-
estingly enough the interspike intervals distribution is not affected for small
patch sizes, cf. Fig. 2(b). In this case, the spike-activity possesses an inter-
nal rhythm which dominates over the external disturbances. For larger patch
sizes the internal noise decreases and the periodic drive induces a reduction of
the CV as compared to the undriven case, note the right arrow in Fig. 2(a). In
this latter regime the external driving rules the spiking activity as depicted
with the characteristic peaks in the ISIH in Fig. 2(c) at multiple driving
periods.

In the deterministic limit the Hodgkin-Huxley equations exhibit the phe-
nomenon refractoriness, i.e. no firing event occurs before a minimal time
interval of about 15 ms has elapsed since the last firing [10]. In the presence
of channel noise, see Fig. 1, the refractory time interval (or dead-time) be-
comes reduced [24,25]; note the distinct reduction of 12-13 ms in Fig. 2(b)
and (c).

For a different sub-threshold driving, with the amplitude A = 1 pA/cm?
and frequency £2 = 0.2 ms™?!, the ISIH is plotted for different patch areas in
Fig. 3. In the intermediate and small noise regime the spike occurrences are
locked to the multiples of driving period. Even though such locking presents
clearly a synchronization behavior, the perfect frequency synchronization,
characterized by the Rice frequency (w) := limy_,00 2/N 37,1, 1/(tip1—t:),
could not be detected. In fact, a frequency mismatch between the driving
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frequency §2 and the Rice frequency (w) has been observed (not shown).
This frequency mismatch happens due to the multimodal structure of the
ISIH, which is caused by the locking of firing occurrences to the external
force period in ratios different from 1:1. A similar phenomenon of imperfect
synchronization has also been found in human cardiorespiratory activity [28].

3.4 Stochastic Resonance

Next, the focus is on the SNR in absence of external noise, see Fig. 4(a). Here
we discover the novel effect of genuine intrinsic stochastic resonance, where
the response of the system to the sub-threshold external stimulus is optimized
solely due to internal, ubiquitous noise. For the given parameters it occurs
at S =~ 32 um?. For S < 32 um? growing internal noise monotonically dete-
riorates the system response. Under such circumstances, one would predict
that the addition of an external noise (which corresponds to the conventional
situation in biological SR studies) cannot improve SNR further, i.e. conven-
tional SR will not be exhibited. Our numerical simulations, Fig. 4(b), fully
confirm this prediction. Conventional stochastic resonance therefore occurs
only for large membrane patches beyond optimal size, and reaches saturation
in the limit S — oo (limit of the deterministic Hodgkin-Huxley model). Thus,
the observed biological SR {2,3] is rooted in the collective properties of large
ion channels arrays, where ion channels are globally coupled via the common
membrane potential V().

250 T T T T T TV 250 - ! T T v T T
(2)
200
gy 150
=
“ 100
50
D=0
0 PR T S | 14 gaas L 1
1 10 9 100 0 2 24 4 6 8
Area {pm”) Dy |uA” /em” ms]

Fig. 4. The signal-to-noise ratio (SNR) for an external sinusoidal stimulus with
amplitude A = 1.0 pA/cm® and angular frequency 2 = 0.3 ms™' for different
observation areas: (a) no external noise is applied; (b) SNR versus the external
noise for the system sizes indicated by the arrows in Fig. 4(a): S = 8 pm?, solid line
through the diamonds; $ = 16 pm?, long dashed line connecting the circles; S = 32
pm?, short dashed line through the triangles; S = 64 um?, dotted line connecting
the squares. The situation with no internal noise (i.e., formally S — 00) is depicted
by the dotted line connecting the filled dots
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In addition, by changing the driving frequency we rediscover the effect
of combined stochastic and conventional resonance [13], cf. Fig. 5. In other
words, SNR becomes optimized not only versus the patch size, but also ver-
sus the driving frequency. Moreover, due to the noisy character of gating
variables, the mean frequency of a corresponding random limit cycle in the
stochastic Hodgkin-Huxley model (1),(5),(6) depends on the membrane patch
area. Thus, the maxima of SNR are located for various system sizes at dif-
ferent driving frequencies.

(a)

SNR
SNR

10 2 T %1 o0z 03 04 05 06 07
area [um’] Q[ms ]

Fig. 5. The signal-to-noise ratio (SNR) for a sub-threshold external stimulus with
amplitude A = 1.0 pA/cm® and different angular frequencies: (a) SNR versus the
observation area for 2 = 0.3 ms™! (dotted line through the triangles), 2 = 0.4
ms™! (solid line connecting the squares), and 2 = 0.5 ms™ (dashed line through
the circles); (b) SNR versus the driving frequency for two areas (S = 8 pm?, dotted
line; S = 32 um?, solid line), depicted by vertical lines in Fig. 5(a). The curves
exhibit clear maxima and, therefore, the effect of double-stochastic resonance

4 Conclusions

In conclusion, we have investigated the stochastic resonance and the coher-
ence resonance [24], as well as the synchronization in a noisy generalization of
the Hodgkin-Huxley model. The spontaneous fluctuations of the membrane
conductivity due to the individual ion channel dynamics has systematically
been taken into account. We have shown that the excitable membrane patches
with observation area around S =~ 1 pm? exhibit a rhythmic spiking activ-
ity optimized by omnipresent internal noise. In other words, the collective
dynamics of globally coupled ion channels become more ordered solely due
to internal noise. This new effect can be regarded as the intrinsic coherence
resonance phenomenon,; it presents a first important result of our work. This
very finding has also been confirmed independently within a complementary
approach by Jung and Shuai [25). Moreover, for the case of a sub-threshold



periodic driving we have stown that ior intermediate patch sizes a synchro-
nization of firing events with the multiplies of the driving period occurs. This
is reflected by an improper synchronization between the Rice frequency and
the frequency of external driving.

The second main result of this study refers to the phenomenon of intrinsic
SR. Here, the channel noise alone gives rise to SR behavior, cf. Fig. 4(a) (see
also Ref. [25]). Moreover, such intrinsic SR is optimized versus the driving
frequency, cf. Fig. 5. Conventional SR versus the external noise intensity also
takes place, but for sufficiently large membrane patches, where the internal
noise strength alone is not yet at its optimal value. We thus conclude that the
observed biological SR likely is rooted in the collective properties of globally
coupled ion channel assemblies.

The authors gratefully acknowledge the support of this work by the Deut-
sche Forschungsgemeischaft, SFB 486 Manipulation of matier on the nano-
scale, project A10. Moreover, we appreciate most helpful and constructive
discussions with Peter Jung and Alexander Neiman.
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