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Abstract
The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned
excitable membrane patches is studied by use of a stochastic generalization of the
Hodgkin–Huxley model. Internal noise stemming from the stochastic dynamics of individual
ion channels is known to affect the collective properties of the whole ion channel cluster. For
example, there exists an optimal size of the membrane patch for which the internal noise alone
causes a regular spontaneous generation of action potentials. In addition to varying the size of
ion channel clusters, living organisms may adapt the densities of ion channels in order to
optimally regulate the spontaneous spiking activity. The influence of a channel block on the
excitability of a membrane patch of a certain size is twofold: first, a variation of ion channel
densities primarily yields a change of the conductance level; second, a down-regulation of
working ion channels always increases the channel noise. While the former effect dominates
in the case of sodium channel block resulting in a reduced spiking activity, the latter enhances
the generation of spontaneous action potentials in the case of a tailored potassium channel
blocking. Moreover, by blocking some portion of either potassium or sodium ion channels, it
is possible to either increase or decrease the regularity of the spike train.

1. Introduction

Following the study of Hodgkin and Huxley [1], most of the
models of axons have treated the generation and propagation
of action potentials using deterministic differential equations.
Since the work of Lecar and Nossal [2] it became clear,
however, that not only the synaptic noise but also the
randomness of the ion channel gating itself may cause
threshold fluctuations in neurons [3]. Therefore, channel
noise which stems from the stochastic nature of the ion
channel dynamics must be taken into account [3]. It impacts
such features as the threshold to spiking and the spiking
rate itself [4–10], the anomalous noise-assisted enhancement
of transduction of external signals, i.e. the phenomenon
of stochastic resonance [11–14] and the efficiency for
synchronization [15], to name but a few such phenomena.
The origin of the channel noise [3] is basically due to
fluctuations of the mean number of open ion channels around

the corresponding mean values. Therefore, the strength of
the channel noise is mainly determined by the number of ion
channels participating in the generation of action potentials.
Interestingly, there is an optimal patch size for which the spike
production becomes more regular [11, 12]. The objective of
this work is to investigate how the regularity of the spiking
can possibly be controlled for a given membrane patch size.
Toxins such as tetraethylammonium (TEA) and tetrodotoxin
(TTX) allow to reduce the number of working potassium or
sodium ion channels, respectively, for an extended period of
time [16]. Moreover, the densities of ion channels can be
adapted by the living cell also dynamically [17, 18] over
an extended time span which is needed, e.g., to express the
required ion channel proteins in the membrane [18]. The effect
of blocking the ion channels entails several different tendencies
at the same time. For sodium ion channels, the reduction in
the density of channels results in an increase of the activation
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barrier towards excitation from the resting state and, therefore,
in the reduction of neuronal activity. On the other hand,
however, the corresponding channel noise component will
also be increased due to reduction of the absolute number
of ion channels in the membrane patch. As a consequence, the
increased channel noise will help to overcome the activation
barrier and to initiate spontaneous spikes. A reduction in
the density of potassium channels will in contrast generally
result in lowering of the activation barrier (an increase in
the excitability—see, e.g., in [19]) and, simultaneously, an
increase in the recovery time which should favour longer
interspike time intervals. Moreover, the reduction in the
total number of potassium ion channels will also increase the
corresponding channel noise component which is expected to
lead to an increased variability of the refractory period. Which
of these various concurrent effects will dominate is not clear a
priori. This depends both on the ion channel densities and on
the size of the studied membrane patch. It is the main objective
of this paper to study this highly nontrivial, subtle issue in a
stochastic model which extends the Hodgkin–Huxley model
of the neuronal excitability.

2. A stochastic Hodgkin–Huxley model

According to the Hodgkin–Huxley model the dynamics of the
membrane potential V , measured throughout in this work in
mV, is given by

C
d

dt
V + GK(n)(V − EK) + GNa(m, h)(V − ENa)

+ GL(V − EL) = 0. (1)

In equation (1), C = 1 µF cm−2 is the capacity of the cell
membrane. Furthermore, ENa = 50 mV, EK = −77 mV
and EL = −54.4 mV are the reversal potentials for the
sodium, potassium and leakage currents, respectively. While
the leakage conductance is assumed to be constant, GL =
0.3 mS cm−2, the potassium and sodium conductances read:

GK(n) = gmax
K xKn4, GNa(m, h) = gmax

Na xNam
3h, (2)

where gmax
K = 36 mS cm−2 and gmax

Na = 120 mS cm−2 denote
the maximal conductances (when all the channels are open).
In equation (2) we introduce the factors xK and xNa which
are the fractions of working, i.e. non-blocked ion channels,
to the overall number of potassium, NK, or sodium, NNa, ion
channels, respectively. These factors are confined to the unit
interval. Experimentally, they can be controlled by adding cell
toxins such as tetraethylammonium (TEA) and/or tetrodotoxin
(TTX) which completely block and disable potassium or
sodium ion channels, respectively [16].

While the gating variables n,m and h describe the mean
ratios of the open gates of the working channels, the factors n4

and m3h are the mean portions of the open ion channels within
the membrane patch. This follows from the fact that the gating
dynamics of each ion channel is assumed to be governed by
four independent gates, each of which can switch between
an open and a closed conformation. The voltage-dependent
opening and closing rates αx(V ) and βx(V )(x = m,h, n),
read [11, 12]:

αm(V ) = 0.1(V + 40)

1 − exp[−(V + 40)/10]
, (3a)

βm(V ) = 4 exp[−(V + 65)/18], (3b)

αh(V ) = 0.07 exp[−(V + 65)/20], (3c)

βh(V ) = {1 + exp[−(V + 35)/10]}−1, (3d)

αn(V ) = 0.01(V + 55)

1 − exp[−(V + 55)/10]
, (3e)

βn(V ) = 0.125 exp[−(V + 65)/80]. (3f )

Fox and Lu [8] have extended the Hodgkin–Huxley model by
taking into account the fluctuations of the numbers of open
ion channels around the corresponding mean values. Within
the corresponding stochastic description, the gating variables
become stochastic quantities obeying the following Langevin
equations:

d

dt
x = αx(V )(1 − x) − βx(V )x + ξx(t), x = m,h, n, (4)

with independent Gaussian white noise sources ξx(t) of the
vanishing mean. For an excitable membrane patch with NNa

sodium and NK potassium ion channels, the noise correlations
assume the following form:

〈ξm(t)ξm(t ′)〉 = 2

NNaxNa

αm(V )βm(V )

[αm(V ) + βm(V )]
δ(t − t ′), (5a)

〈ξh(t)ξh(t
′)〉 = 2

NNaxNa

αh(V )βh(V )

[αh(V ) + βh(V )]
δ(t − t ′), (5b)

〈ξn(t)ξn(t
′)〉 = 2

NKxK

αn(V )βn(V )

[αn(V ) + βn(V )]
δ(t − t ′). (5c)

The overall numbers of involved potassium and sodium ion
channels are re-scaled by xNa and xK, respectively, in order
to disregard the blocked channels which do not contribute to
the channel noise. With an assumption of homogeneous ion
channel densities, ρNa = 60 µm−2 and ρK = 18 µm−2, the ion
channel numbers are given by NNa = ρNaS, NK = ρKS, where
S is the size of the membrane patch. The number of working
ion channels, i.e. the size of the excitable membrane patch S,
respectively, determines the strength of the fluctuations and
thus the channel noise level. With decreasing patch size, i.e.
decreasing number of ion channels, the noise level caused by
fluctuations of the number of open ion channels increases,
cf equation (5a)–(5c). It is worth noting that the Itô–
Stratonovich dilemma of the interpretation of the studied
system of stochastic differential equations does not appear
since each of the noise sources ξx(t) does not depend explicitly
on the state of the corresponding variable x [20, 21].

3. Poisoning in the deterministic Hodgkin–Huxley
model

Before discussing the impact of channel noise on the
spontaneous spiking activity of the poisoned membrane
patches, we first consider the role of channel toxins on the
excitability and resting potential of the original Hodgkin–
Huxley model which neglects the fluctuations of the number
of open ion channels. Then, the equations for the gating
dynamics [1] read:

62



                                        

(a)

−100

−50

0

50

V
m

in
,V

m
a
x
[m

V
]

0 0.25 0.5 0.75 1
xNa

(b)

−100

−50

0

50

0 0.25 0.5 0.75 1
xK

Figure 1. The bifurcation diagrams for the undriven original Hodgkin–Huxley model are plotted versus the ratio of intact sodium channels
xNa (a) and the ratio of intact potassium channels xK (b), respectively, as bifurcation parameters. The solid line in (a) denotes the stable fixed
point solution. For potassium channel blocking (b), the stable fixed point solution (single solid line) becomes unstable with decreasing xK ,
and a stable spiking and oscillatory solution arise (the two solid lines refer to the maximal and minimal membrane potentials). The dashed
lines correspond to unstable solutions.
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Figure 2. Mean interspike interval for poisoning: the dependence of the mean time between two subsequent, spontaneous action potentials
versus (a) the ratio of intact sodium channels and (b) versus the fraction of active potassium ion channels is shown for four different patch
sizes: S = 1 µm2 (solid line), S = 4 µm2 (dashed line), S = 16 µm2 (dotted line) and S = 64 µm2 (dashed–dotted line).

d

dt
x = αx(V )(1 − x) − βx(V )x, x = m,h, n, (6)

with the opening and closing rates given by equations (3a)–
(3f ). Hence equations (1), (2) and (6) form a deterministic
Hodgkin–Huxley model which takes poisoning into account.
Remarkably, this set of equations corresponds to the limit of
infinitely large numbers of ion channels within the stochastic
generalization which was introduced in section 2.

Figure 1 depicts the bifurcation scenario which is derived
from the deterministic model for the case of poisoning the
membrane cluster. The poisoning of sodium channels causes
only a small, practically negligible variation of the resting
voltage, see figure 1(a). Obviously it cannot—upon neglecting
the role of channel noise—induce spiking events. In contrast,
a reduction in the number of working potassium channels
changes dramatically the qualitative behaviour of the spiking
activity, see figure 1(b). Upon decreasing the number of intact
potassium channels, a sub-critical Hopf-bifurcation takes
place—a stable spiking and oscillatory solution arises and
the stable, non-spiking solution becomes unstable. Moreover,
there is a region between 0.549 � xK � 0.636, where a stable
spiking and a stable fixed point solution coexist. With further
reduction in the ratio xK, the oscillatory spiking solution loses
stability, a sub-critical Hopf-bifurcation takes place and a
stable fixed point solution arises again. Once more, a region
of bistability within 0.0859 � xK � 0.1068 is identified.

4. The mean interspike interval

The numerical integration of the stochastic generalized
Hodgkin–Huxley model, cf equations (1)–(5c), is carried

out by the standard stochastic Euler algorithm with a step
size of 1 µs. The Gaussian random numbers are generated
by the ‘numerical recipes’ routine ran2 using the Box–
Muller algorithm [22]. To ensure the confinement of the
gating variables between 0 (all gates are closed) and 1 (all
gates are open), we have implemented numerically reflecting
boundaries at 0 and 1. The occurrences of action potentials are
determined by upward crossings of the membrane potential V

of a certain detection threshold. Due to very steep increase
in the membrane potential at firing the actual choice of
the detection threshold does not affect the results. In our
simulations the spontaneous spikes are found by upward
crossings at zero threshold voltage. The occurrences of action
spikes ti, i = 1, . . . , N form a point process.

Unlike the original, deterministic Hodgkin–Huxley
model, where the action potentials occur only for certain super-
threshold current stimuli, the intrinsic channel noise alone
initiates spontaneous spikes [3–7, 9]. The mean interspike
interval, i.e.

〈T 〉 = 1

N

N∑

i=1

(ti − ti−1), (7)

with t0 = 0, becomes a function of the patch size S. The
inverse mean interspike interval defines the spiking rate. With
the increasing noise level or decreasing patch sizes S, the spike
production increases respectively, and thus the mean interspike
interval 〈T 〉 decreases and can approach the refractory time
[11, 12].

In figure 2 we depict the mean interspike interval 〈T 〉
against the fractions xNa and xK of the working sodium
channels or potassium ion channels, respectively, for different
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Figure 3. Same as in figure 2, but for the coefficient of variation CV , cf equation (8). By addition of TEA or TTX the regularity of the spike
output can be both increased and decreased.

patch sizes S. A reduction in the number of working sodium
ion channels, i.e. smaller xNa values, increases the strength of
channel noise which is caused by the stochastic behaviour
of the sodium ion channels. Because the channel noise,
which is induced by the sodium channels, is seemingly
responsible for the initiation of action potentials from the
rest potential [9]; one might expect that a reduction in the
number of sodium ion channels could then lead to more spikes.
Concurrently, however, a reduction in the number of working
sodium channels causes a diminishment of the maximal
sodium conductance. Given this competition between these
two mechanisms, it is the latter effect that dominates and,
consequently, causes an increase in the mean interspike
interval, cf figure 2(a).

The reduction in potassium conductance by poisoning the
potassium channels changes dramatically the dynamics of the
original, deterministic Hodgkin–Huxley model which ignores
the impact of the channel noise. With decreasing potassium
conductance a stable spiking solution emerges at xK = 0.636.
The stable silent solution coexists with the stable spiking
solution until xK = 0.549. Depending on the initial value, the
deterministic system spends the time either in the silent state,
or on the limit cycle for 0.549 < xK < 0.636. Consequently,
the noisy system undergoes noise-induced stochastic temporal
transitions between both stable manifolds. The motion on the
spiking limit cycle becomes randomized. For xK < 0.549, the
stable fixed point disappears and the dynamics takes place on a
stochastic limit cycle manifold. Then, the noise does not seem
to affect strongly the mean period of the stochastic cycling.
For different patch sizes this mean period 〈T 〉 is about the
same, cf figure 2(b).

However, before the Hopf-bifurcation occurs, the increase
in the potassium channel noise can enhance the mean
frequency of the stochastic spikes occurrences. Here, the
mean interspike interval 〈T 〉 can be drastically decreased with
a reduction in working potassium channels xK, cf figure 2(b).
This behaviour is rather different from that known before. It is
generally appreciated [3, 9] that the fluctuational increase in
the number of open sodium channels is the reason for the
spontaneous spike generation. The role of the potassium
channel noise is usually thought to be negligible. However, the
decrease in the potassium conductance is known to enhance the
excitability and it can even induce spikes deterministically (see
before). Therefore, the fluctuational decrease in the number
of open potassium channel can also induce spikes. Note in

this respect that about one third of the potassium channels is
open at the resting potential. This is contrary to the sodium
channels which are almost all closed at the resting potential.
The described alternative mechanism of the fluctuational spike
generation can be clearly seen at work in figure 2(b) where
the sodium channel noise remains unchanged for each plotted
curve. The effect strongly depends, however, on the size
of the membrane patch. For a sufficiently large membrane
patch (dashed–dotted line in figure 2(b)) the discussed effect
is indeed very strong. However, when the patch size
becomes small (solid line in figure 2(b)), the poisoning of
potassium channels does not cause much effect since the
stochastic dynamics is dominated in this case by the channel
noise component stemming from the stochastic dynamics of
sodium channels. These qualitative features are displayed in
figure 2(b).

5. Controlling the coherence of poisoned
spiking activity

We next address the regularity of spontaneous action
potentials. A proper measure is the coefficient of variation,
CV , a measure of coherence, which is given as the ratio of
standard deviation to the mean value

CV =
√

〈T 2〉 − 〈T 〉2

〈T 〉 , (8)

where 〈T 2〉 := 1
N

∑
(ti − ti−1)

2 is the mean-squared interspike
interval. For a fully disordered point process (the case of
Poisson process) the coefficient of variation CV assumes the
value CV = 1, while for more ordered processes it assumes
smaller values and for a deterministic signal it vanishes. In
previous studies it has been demonstrated that CV exhibits
a distinct minimum for an optimal patch size S ≈ 1 µm2 at
which the spiking is mostly regular [11, 12]. This phenomenon
has been termed an intrinsic coherence resonance.

In figure 3, the coefficient of variation is plotted versus
the fractions xNa (a) and xK (b). Any addition of TTX which
blocks sodium ion channels leads to an increase in the CV ,
cf figure 3(a). In contrast, toxins which disable potassium
channels yield a rise of the regularity, even beyond the level
which can be reached for an optimal patch size with the
unmodified density of the ion channels, cf [11]. This result is
due to the fact that the lowering of the potassium conductance
level promotes a stable oscillatory spiking solution in the
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deterministic model. The channel noise, in contrast, tends
to disturb the regular spiking. Nevertheless, the former effect
dominates resulting in the observed behaviour for the CV .
In the case of optimal patch size, where the phenomenon
of intrinsic coherence resonance occurs, the poisoning of
potassium channels does not produce a strong effect. This
is in contrast with the poisoning of sodium channels which
destroys the coherence resonance (solid line in figure 3(a)).

6. Conclusion and outlook

Our study of the stochastically generalized Hodgkin–Huxley
model reveals the possibility of manipulating the response of
a spiking membrane patch by adding toxins which selectively
block ion channels. For example, by a fine-tuned addition of
tetrodotoxin (TTX) a certain portion of sodium ion channels
could be experimentally disabled on purpose. This in turn
results in a reduction in the spontaneous action potentials
and causes a less regular production of spikes. On the other
hand, the addition of tetraethylammonium (TEA) can be used
in order to block potassium ion channels. This causes a
surprising increase in the spiking activity (i.e. a decrease
in the mean interspike interval) and yields in turn a more
regular spontaneous spiking coherence. These characteristic
features are expected to impact as well the behaviour of
biological ‘stochastic resonance’, i.e. the phenomenon that the
application of an appropriate dose of noise can boost signal
transduction [13, 14] and, also, the phenomenon of ‘coherence
resonance’ [23] in oscillatory or excitable biological
entities [11].

We share the confident belief that our study of the
tailored control of channel noise via channel blocking in an
archetypal model of excitable biological membranes provides
some insight into the underlying principles and mechanisms
and thus will motivate further studies of more realistic models
of real neurons where such channel noise phenomena do play
an essential and constructive role.
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Glossary

Action potential/spike. A rapid change of the trans-
membrane electrical potential in the excitable cell membrane.

Bifurcation. A qualitative change in the topology of the
attractor-basin phase portrait under a small variation of a
parameter within a nonlinear system.

Channel noise. The fluctuations of the number of open ion
channels.

Coherence resonance. Noise-induced improvement in the
regularity of the system’s output.

Excitable membrane. Cell membranes that are capable of
rapidly changing their trans-membrane electrical potential in
the form of spikes.

Gates/gating. Closing and opening functions of an ion
channel. This usually refers to the movement of protein
structural elements of the channel that occludes the channel
pore.

Gating variable. A variable which accounts for the fraction
of open channel gates of a certain type.

Gaussian white noise. Stochastic trajectories whose
distributions are uncorrelated in time and are Gaussian
distributed.

Hopf-bifurcation. A bifurcation of a fixed point to an
oscillatory solution. When the oscillatory solution is unstable
and exists at subcritical values of the control parameter, we
term it a subcritical Hopf-bifurcation. Conversely, when the
oscillatory solution is stable and exists at supercritical values
of the control parameter, a supercritical Hopf-bifurcation is
observable.

Ion channel. A protein folded in the cell membrane which
enables the transport of specific ions through the membrane.

Itô–Stratonovich dilemma. Interpretation problem which
arises in the context of Langevin equations in case of
multiplicative Gaussian white noise.

Langevin equation. An equation of motion that describes
the temporal evolution of a variable which is subjected to
noise acting on the system.

Limit cycle. An attracting set of a nonlinear system to
which trajectories converge. Upon the limit cycle these
trajectories are closed and periodic.

Manifold. A topological space wherein a stable solution of
a nonlinear system remains.

Membrane patch. A portion of the cell membrane with a
certain size.

Membrane potential. The trans-membrane electrical
potential.

Opening/closing rate. Under the two-state assumption for
the gate dynamics (open and closed), these give the
probability per time unit for transitions between the two
states of a single gate.

Poisson process. A stochastic process which is
memory-less (Markovian) with exponentially distributed
waiting times between two successive events.

Recovery time. The time needed for relaxation to the resting
state after an excitation occurred. Under physiological
conditions an initiation of an action potential within this time
span is not possible.

Reversal potential. The electrical potential for which the
trans-membrane flux of specific ions vanishes.
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Rest potential/rest state. The equilibrium position of the
trans-membrane potential of a certain membrane patch.

Spontaneous spiking activity. The occurrence of action
potentials which are not initiated by an externally applied
stimulus.

Stochastic resonance. A anomalous, noise-assisted
enhancement of transduction of weak (deterministic or
stochastic) signals.
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