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1. Introduction

Originally, the spin-boson model has been introduced

as a generic description of particle or quasi-particle

transfer in two-level systems coupled to a dissipative

environment with the latter described as huge set of
independent harmonic oscillators [1–4]. This model at-

tracted particular interest when studying the driving by

external regular and stochastic fields [5–8]. However, the

outstanding importance of the spin-boson model is

mainly related to the fact that a large variety of results

do exist. A generalization of the spin-boson model to

multi-level systems can be found at different places (cf.,

e.g. [6,9,10]). In the present paper, we will carry out such
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a generalization to describe the inelastic charge trans-

mission through molecular wires [11,12].

Intensive research work has been invested on the

study of molecular wires, i.e., single molecules or poly-

mer strands embedded in between two electrodes (for a

recent reviews, see [13–21]). These diversified activities
are not only caused by the fundamental interest on

electron transfer (ET) processes in single molecules or

solid-state molecule hybrid structures. Further motiva-

tion has also been originated by the long-standing wish

to control micro-currents in molecular devices via, e.g.,

rectification or gating [11,12,22–28]. Recent experimen-

tal results on the conductivity of single molecules [29–34]

may serve as a good starting point to clarify the physical
mechanisms of such a control.

Most of the theoretical approaches on molecular

wires focused on the description of an elastic current in

utilizing the Landauer–B€uuttiker theory [35,36]. In this

approach charge motion trough the molecular wire is

described as a multitude of elastic scattering processes

[20,28,30,31,37]. If inelastic processes contribute to the
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overall current what will be the case whenever dephasing

processes within wire units destroy the ET coherency the

problem becomes more involved [14,17,38–44].

The investigation of the current–voltage (I–V ) char-
acteristics of a molecular wire combined with a study of
its wire-length dependency became an important way to

reveal the mechanism of charge transmission. It is well-

known from studies on ET reactions in molecular

complexes that fast nuclear relaxation processes result in

the sequential (hopping) mechanism of ET along the

molecular chain (see, e.g. [45]). In the case of a molec-

ular wire and if a small voltage V is applied this mech-

anism is responsible for the Ohmic regime of ET. Now,
the dependence of the wire conductance on the number

of wire units N is proportional to the factor

� ½1þ nðN � 1Þ��1 [41]. A similar dependence (like

� ½Aþ BðN � 1Þ��1) has been proposed by Nitzan and

co-workers [46] to fit data on the N -dependency of an

overall steady-state rate constant. Moreover, Bixon and

Jortner [47] used such types of expressions to describe

long-range charge transfer reactions in DNA stacks.
The other basic ET mechanism may become ob-

servable in those molecular wires where the energy gaps

between the wire LUMO-levels and the Fermi-levels of

the electrodes are large. Now, one may state that the

LUMO-levels act as virtual states only. The inter-elec-

trode current results from a coherent tunneling process

which is induced by the so-called superexchange inter-

electrode coupling [13,20,28,48]. It drops exponentially
(� exp½�ðf=2ÞðN � 1Þ�) with an increase of the number

of bridge units N . As in the theory of ET reactions in

molecular complexes the sequential as well as the su-

perexchange mechanism have also to be considered as

fundamental charge transfer processes in molecular

wires [20,28,37,44,49].

Elastic as well as inelastic mechanisms of charge

transmission through molecular wires result from a
complicated interplay of dynamic and relaxation

processes. For instance, the efficiency of the elastic in-

terelectrode current strongly depends on the level-

broadening of the terminal wire units. This broadening

results from the coupling to the continuous conduction

band spectrum of the electrodes [13,28,30,37]. More-

over, relaxation processes within each wire determine

the inelastic part of the overall current [14,28,41–43]. To
achieve a correct consideration of all ET mechanisms

(including the formation of superexchange couplings

between the electrodes and separated wire units, as well

as the various dephasing processes) a unified theoretical

description becomes necessary.

It is the goal of the present paper to present such a

unified description of the interelectrode current medi-

ated by a molecular wire. However, we will concentrate
on the nonadiabatic regime of charge transmission [50].

Within such a regime the ET occurs against the back-

ground of fast nuclear relaxation and, thus, the molec-
ular vibrational degrees of freedom can be considered as

a thermal bath. Additionally, our description focuses on

a model for which the electronic energy levels of the

terminal wire-units are positioned much below the

electronic levels of the internal wire-units. In this case, a
long-ranged superexchange ET between the terminal

sites has to be considered along with the complete se-

quential charge transfer processes through the wire.

Then, the total inelastic current is formed by a mixture

of sequential and superexchange contributions.

The paper is organized as follows. Section 2 is de-

voted to a generalization of the spin-boson model for

the description of the ET system ‘‘left electrode (L)–
molecular wire–right electrode (R)’’ (LWR). Section 3

deals with the derivation of an analytic expression for

the inelastic interelectrode current. We take a particular

model for the wire where the LUMO energies of its

terminal units are positioned much below the LUMO

energies of the internal wire-units. In Section 4, an exact

analytic form of the thermally activated current is de-

rived. The conditions are specified at which the current
is given by additive contributions from the sequential

(hopping) mechanism and the superexchange mecha-

nism (related to the superexchange coupling between the

terminal wire units). Analytic and numerical results on

the length-dependence of the inelastic interelectrode

current are presented in Section 5. In Section 6, a gen-

eral discussion can be found on the length-dependence

of the wire mediated current.
2. Spin-boson model of a molecular wire

This section is devoted to a derivation of the LWR-

system Hamiltonian valid for an arbitrary number of

wire units. We will employ a semiphenomenological

tight-binding approximation and suppose the electronic
coupling among the wire units and between the wire and

the electrode to be weak. The wire should be charac-

terized by a linear arrangement of N þ 2 units which are

embedded between two nano-electrodes (cf. Fig. 1). The

energy of the transferred excess electron at the mth wire

unit is given by Em ¼ Eð0Þ
m þ DEmðV Þ where DEmðV Þ is

the shift caused by the applied voltage V . Obviously, the

Em differ from the site energy eð0Þm valid in the absence of
the excess electron. Therefore, the energetic differences

�m ¼ Em � eð0Þm ¼ Deð0Þm þ DEmðV Þ; Deð0Þm

�
¼ Eð0Þ

m � eð0Þm

�
;

ð1Þ
define the affinity of the mth wire unit to an extra elec-

tron and thus can be refer to LUMO-level energies.

One way to characterize the electronic levels of the

LWR-system is the use of a second-quantization nota-
tion (see, e.g. [53]) based on fermionic creation (aþj ) and
annihilation (aj) operators which act on the states jNji.
Since the occupation numbers are Nj ¼ 0; 1 the states



Fig. 1. Energetic (a) and kinetic scheme (b) of nonadiabatic ET

through a linear molecular wire. The quantity VLk (VRk) is the coupling

among the LUMO-level with energy E0 (ENþ1) and the electrode level

with band energy ELk (ERk). The coupling VLk (VRk) are responsible for

the formation of the wire-site electrode transition rate vL and v�L (vR
and v�R). The wire-site to site electronic transfer couplings V1 � V10
(VN � VNNþ1) between the (local) LUMO-levels with energies �0 and �1
(�N and �Nþ1) form the intersite rate constants a0 and a1 (b0 and b1).
Analogously, the coupling VB � Vmmþ1 are responsible for the forma-

tion of wire internal interior site–site transition rates a and b.
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j0ji and j1ji refer to the vacuum states of the excess

electron and for the state of a single excess electron,

respectively (for the present purposes there is no need to
account for the electron spin). Note also the normali-

zation conditionX
Nj¼0;1

jNjihNjj ¼ 1: ð2Þ

For the LWR-system under consideration the index j
has to be related to the states of the two electrodes

(j ¼ Lk;Rk, where k is the wave vector of the electrode

conduction band) and the local wire-unit states

(j ¼ m ¼ 0; 1; . . . ;N þ 1). Accordingly, the electronic

Hamiltonian of the LWR-system can be represented in

the following form:

H ðelÞ
LWR ¼ H ðelÞ

LR þ H ðelÞ
W þ H ðelÞ

LR–W; ð3Þ

where the two electrode Hamiltonian read

H ðelÞ
LR ¼

X
s¼L;R

X
k

Eskaþskask: ð4Þ

The electronic part of the wire Hamiltonian follows as

H ðelÞ
W ¼

XNþ1

m¼0

Emaþmam
�

þ eð0Þm amaþm
�

þ
XN
m¼0

Vmmþ1aþmamþ1

�
þ Vmþ1maþmþ1am

�
: ð5Þ
The Vmm0 denote the intersite electronic couplings. Fi-

nally, the wire–electrode coupling Hamiltonian is taken

as

H ðelÞ
LR–W ¼

X
k

VLkaþLka0
�

þ V �
Lka

þ
0 aLk

�
þ
X
q

VRqaþRqaNþ1

h
þ V �

Rqa
þ
Nþ1aRq

i
; ð6Þ

where VLk and VRq are the couplings of the terminal wire

units, 0 and N þ 1, to the left and to the right electrode,
respectively. The electronic Hamiltonian, Eqs. (3)–(6)

will be taken as a basic quantity for any further de-

scription. The expression has only to be completed by

those contributions following from the nuclear dynamics.

To achieve a notation similar to that used for the

standard spin-boson system we change to an electronic

occupation number representation. An application of

the rules aþj jNji ¼ ð1� NjÞjð1� NÞji and ajjNji ¼ Njj
ð1� NÞji yields

H ðelÞ
W ¼

XNþ1

m¼0

X
Nm¼0;1

EmNm

�
þ eð0Þm ð1� NmÞ

�
jNmihNmj

þ
XN
m¼0

Vmmþ1j1mih0mj½ � j0mþ1ih1mþ1j þ h:c:�: ð7Þ

The nuclear part of wire Hamiltonian, H ðnuclÞ
W , will be

taken in its most simple form by providing that each
vibrational frequency xkm with mode index k is inde-

pendent on the presence or absence of the transferred

electron at site m. [For the Holstein model [54] the vi-

brational frequencies become independent on the site

index m as well.] Let Mkm be the effective mass corre-

sponding to the kth normal mode and let the quantities

�Ckm and þCkm define the vibrational equilibria at the

presence or the absence of the excess electron, then we
may write

H ðnuclÞ
W ¼

XNþ1

m¼0

X
k

p2mk
2Mmk

(
þMmkx2

mk

2
qmk

�
� ð2Nm

� 1Þ Cmk

Mmkx2
mk

�2)
� jNmihNmj: ð8Þ

Next, we introduce the vectorial operator rm which

components are given by

rz
m ¼ j1mih1mj � j0mih0mj; ð9Þ

rx
m ¼ j1mih0mj þ j0mih1mj; ð10Þ

ry
m ¼ �iðj1mih0mj � j0mih1mjÞ: ð11Þ

The rx;y;z
m satisfy Pauli�s commutation relations and rm

can be referred to a local Pauli pseudo-spin operator.

Noting the definitions (9)–(11) as well as the normali-

zation condition (2) one can rewrite the wire Hamilto-

nian HW ¼ H ðelÞ
W þ H ðnuclÞ

W to obtain the following
expression:
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HW ¼ EðelÞ
0 þ EðnuclÞ

0 þ ð1=2Þ
XNþ1

m¼0

�m

"
þ
X
k

jkm bþkm
�

þ bkm
�#

rz
m

þ
XNþ1

m¼0

X
k

�hxkm bþkmbkm
�

þ 1=2
�

þ
XN
m¼0

Vmmþ1r
þ
mr

�
mþ1

�
þ Vmþ1mr

þ
mþ1r

�
m

�
: ð12Þ

Note the introduction of local transition operators
r�
m � ð1=2Þðrx

m � iry
mÞ as well as creation (bþkm) and an-

nihilation (bkm) operators for the various vibrational

modes. The electron–vibrational coupling at site m is

denoted by jkm � Ckm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h=Mkmxkm

p
. The quantities

EðelÞ
0 ¼ ð1=2Þ

X
m

Em

�
þ eð0Þm

�
ð13Þ

and

EðnuclÞ
0 ¼

X
m

X
k

j2
km=4�hxkm

� �
; ð14Þ

are independent on the concrete wire state and thus do

not influence the ET process. The wire Hamiltonian, Eq.

(12) has to be considered as the multi-site generalization

of the ordinary spin-boson Hamiltonian.

Since our approach is aimed at a description of

nonadiabatic charge motion based on a fast vibrational

relaxation we will consider the vibrational modes as
passive bath modes and perform a polaron transfor-

mation of the wire Hamiltonian HW. Therefore, the

unitary operator ŜS ¼
QNþ1

m¼0 ŜSm is introduced containing

the local unitary operators (see e.g. [44,54–57])

ŜSm ¼ exp ð1=2ÞR̂Rmr
z
m

h i
; ð15Þ

with

R̂Rm ¼
X
k

gkm bþkm
�

� bkm
�
; gkmð � jkm=�hxkmÞ: ð16Þ

If applied to the wire Hamiltonian we obtain

~HHW ¼ ŜSHWŜS
þ ¼ EðelÞ

0 þ ~HH ðelÞ
W þ V̂V ðtrÞ

W þ HB: ð17Þ
The expression

~HH ðelÞ
W ¼ ð1=2Þ

XNþ1

m¼0

�mr
z
m; ð18Þ

is the electronic part of the transformed wire Hamilto-

nian

HB ¼
XNþ1

m¼0

X
k

�hxkm bþkmbkm
�

þ 1=2
�
; ð19Þ

defines the bath Hamiltonian (associated with the vi-

brational states of the wire and its surrounding), and

V̂V ðtrÞ
W ¼

XN
m¼0

Vmmþ1~rr
þ
m ~rr

�
mþ1

h
þ Vmþ1m~rr

þ
mþ1~rr

�
m

i
; ð20Þ

gives the modified off-diagonal interaction which is re-

sponsible for the ET processes in the wire. In the latter

expression, we introduced
~rr�
m ¼ ŜSmr�

m ŜS
þ
m ¼ r�

m e
�R̂Rm : ð21Þ

[We took into consideration the fact that

r�
mr

z
m � rz

mr
�
m ¼ �2r�

m , and that ðrz
mÞ

n
is equal rz

m (if n is

the even integer) or 1 (if n is the odd integer).] The wire

Hamiltonian, Eq. (17) is suitable for the description of
long-range ET through the wire because the off-diagonal

interaction (20) includes the coupling of a particular

electronic state to the bath. (Beside this property one has

to bear in mind that the pseudo-spin operators rx;y;z
m

commutate if they refer to different sites m.)
Performing the polaron-transformation at the com-

plete Hamiltonian of the LWR-system, HLWR ¼ H ðelÞ
LWR þ

H ðnuclÞ
W , we get

H ¼ ~HH0 þ V þ HB: ð22Þ
Here, HB is given by Eq. (19), and we have

~HH0 ¼ H ðelÞ
LR þ ~HH ðelÞ

W ; ð23Þ
and

V ¼ V̂V ðtrÞ
W þ V̂V ðtrÞ

LR–W: ð24Þ
In both equations the operators H ðelÞ

LR ,
~HH ðelÞ
W and V̂V ðtrÞ

W are

defined by the Eqs. (4), (18) and (20), respectively.
Furthermore, we introduced

V̂V ðtrÞ
LR–W ¼

X
k

VLkaþLk~rr
�
0

h
þ V �

Lk~rr
þ
0 aLk

i

þ
X
q

VRqaþRq~rr
�
Nþ1

h
þ V �

Rq~rr
þ
Nþ1aRq

i
: ð25Þ

The LWR-system Hamiltonian, Eq. (22) is the one on

which all further derivations of kinetic equations will be

based. Note that it does not contain the nuclear energy
EðnuclÞ
0 , Eq. (14) as it is the case for the nuclear Hamil-

tonian (12). The absence is originated by the polaron-

transformation which leads to a complete compensa-

tion. The wire electronic energy EðelÞ
0 , Eq. (13) has been

omitted since it does not depend on the concrete elec-

tronic state.
3. Formation of an interelectrode current

Let us specialize the model of the LWR-system a little

bit further. We provide for all what follows that the local

LUMO-level energies �m of the various wire internal units

(m ¼ 1; . . . ;N ) are position considerably above the Fer-

mi-levels EF of the electrodes (cf. Fig. 1(a)). And for any

applied voltage considered in the following these levels
should not come into resonance with the Fermi-levels.

Thus, direct long-ranged resonant tunneling is of no

importance [58]. In contrast, the terminal wire units

m ¼ 0 and m ¼ N þ 1 should have a structure different

from the internal wire part (originated, for example, by

absorbed atoms, by atomic clusters at the wire–electrode

interface, or by additional molecular groups which be-

long to the terminal units [20]). As a result the LUMO-
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level energies �0 and �Nþ1 may become degenerated with

the electrode�s Fermi-energies at a certain voltage.

Therefore, only those transition processes as represented

in scheme Fig. 1(a) are assumed to contribute to the

formation of the interelectrode current I .
To derive an expression for the current I we start

from the general relation

I ¼ �e _NNL; ð26Þ
where e denotes the absolute value of the electron charge

and _NNL ¼ � _NNR is the time-derivative of the number of

those electrons moving through the molecular wire from

the left (L) to the right (R) electrode. Since the total left

electrode population reads as

NLðtÞ ¼
X
k

PLkðtÞ; ð27Þ

we have to determine the time-derivative of the band-

state population PLkðtÞ. This population is defined in the

occupation number representation according to

PLkðtÞ ¼ trðqðtÞN̂NLkÞ

¼
X
NLk

X
fNsg6¼NLk

hNLk; fNsgjqðtÞjfNsg;NLkiNLk; ð28Þ

with qðtÞ denoting the electronic density matrix of the

LWR-system. The electronic occupation number oper-

ator has the following form:

N̂NLk ¼
X

NLk¼0;1

NLkjNLkihNLkj; ð29Þ

and is diagonal with respect to the occupation number

states jNLki. In the same manner one can define the

electronic populations PRqðtÞ of the right electrode. The

wire-site populations read

PmðtÞ ¼ trðqðtÞN̂NmÞ

¼
X
Nm

X
fNsg6¼Nm

hNm; fNsgjqðtÞjfNsg;NmiNm; ð30Þ

with

N̂Nm ¼
X

Nm¼0;1

NmjNmihNmj; ð31Þ

being the site occupation number operator. Note the

general notation PjðtÞ with j ¼ Lk;Rq; 0; 1; . . . ;N þ 1

which covers all populations and which can be obtained

from the occupation number distribution

P ðNj; tÞ ¼
X

fNsg6¼Nj

hNj; fNsgjqðtÞjfNsg;Nji: ð32Þ

Here, the summation runs over a complete set of occu-

pation numbers fNsg except Nj. Combining Eq. (32)

with the Eqs. (30) and (31) one obtains

PjðtÞ ¼
X
Nj¼0;1

NjP ðNj; tÞ;
and

1� PjðtÞ ¼
X
Nj¼0;1

NjP ð1� Nj; tÞ; ð33Þ

what yields

PjðtÞ ¼ P ð1j; tÞ; 1� PjðtÞ ¼ Pð0j; tÞ: ð34Þ
In particular, we may write (m ¼ 0; 1; . . . ;N þ 1)

rz
mðtÞ ¼ tr qðtÞrz

m

� �
¼ Pð1m; tÞ � P ð0m; tÞ ¼ 2PmðtÞ � 1:

ð35Þ
Applying standard methods of nonequilibrium statisti-

cal mechanics [2,56,59–61] one may derive a closed set of

kinetic equations for just all introduced populations (cf.

Appendix A):

_NNLðtÞ ¼ �vL þ CLP0ðtÞ;

_PP0ðtÞ ¼ �ðCL þ a0 þ k1ÞP0ðtÞ þ vL þ b0P1ðtÞ þ k2PNþ1ðtÞ;

_PP1ðtÞ ¼ �ðaþ b0ÞP1ðtÞ þ a0P0ðtÞ þ bP2ðtÞ;

_PPmðtÞ ¼ �ðaþ bÞPmðtÞ þ aPm�1ðtÞ þ bPmþ1ðtÞ;

_PPN ðtÞ ¼ �ðaN þ bÞPN ðtÞ þ aPN�1ðtÞ þ bNPNþ1ðtÞ;

_PPNþ1ðtÞ ¼ �ðCR þ bN þ k2ÞPNþ1ðtÞ þ vR þ aNPN ðtÞ þ k1P0ðtÞ;

_NNRðtÞ ¼ �vR þ CRPNþ1ðtÞ: ð36Þ
Here, the index m runs over the wire units 2; 3; . . . ;
N � 1, only. Forward hopping rates are denoted by

a0 � k01, aN � kNNþ1, a � kmmþ1 (for explanation see also

Fig. 1(b)). The related backward rates are b0 � k01,
bN � kNþ1N , and b � kmþ1m. Since the considered rates
characterize single-electron transitions between neigh-

boring wire units the corresponding kinetic equations as

well as the rate constants (describing the hopping pro-

cesses within the wire) can be derived in the Born ap-

proximation with respect to the inter-site couplings

Vmm�1 (cf. Hamiltonian (5)). Concrete expressions for

each rate are given in Eq. (A.41). There, ðFCÞms denotes
the Franck–Condon factor (cf. Eqs. (A.35) and (A.36)),
and Vms is the coupling between neighboring sites (m and

s ¼ m� 1). Based on the same Born approximation, one

can specify the rate describing the ET between each

electrode and the adjacent terminal unit of the wire. In

the Eq. (36) these are the electrode–wire rates (vL, vR)
and the wire–electrode rates (v�L, v�R). Concrete ex-

pressions for these rates can be found in Eq. (A.45). The

quantities

CLðRÞ � vLðRÞ þ v�Lð�RÞ; ð37Þ

determine the broadening of the 0th (ðN þ 1Þth) termi-
nal electronic wire level. The broadening is caused by the

interaction of these levels with the conduction band

levels of the left (right) electrode as well as by the cou-

pling to vibrational modes. If the latter coupling van-
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ishes CLðRÞ reduces to the standard expression for elec-

tronic level broadening [28,30,37].

Along with a standard sequential site-to-site ET

process the set (36) contain contributions which result

from the distant superexchange coupling V0Nþ1, Eq.
(A.51) between the terminal units of the wire 0 and

N þ 1. There are two superexchange ET rates, the wire

internal forward rate k1 � k0Nþ1 and the backward rate

k2 � kNþ10, defined by Eq. (A.50). Details of the deri-

vation of the basic set of coupled linear kinetic equa-

tions (36) are given in Appendix A. [Note that a linear

form of set of equations is only valid for bulk electrodes

where the Eq. (A.44) is fulfilled in LWR system. Besides,
the population of each interior wire unit has to be small

during the ET process, cf. Eq. (A.39).]

Having established the set (36) of kinetic equations

we will restrict ourselves to the consideration of its

stationary solution only. It allows to characterize the

stationary ET regime where _PPm ¼ 0, and _NNL ¼ � _NNR ¼
const. Noting the first relation the set of equations for

the site populations Pm can be solved exactly. Then, the
substitution of the solution for P0 into the first equation

of the set (36) leads to the following analytic expression

for the interelectrode current:

I ¼ e
vLCRANþ1 � vRCLA0

CLA0 þ CRANþ1

: ð38Þ

The newly introduced constants A0 and ANþ1 read as

A0 ¼ ðvL þ vRÞ k2½ðaaN
�

þ bb0 þ aNb0ÞDðN � 2Þ
� ðaN þ b0ÞabDðN � 3Þ� þ b0bNb

N�1
	

þ vLCR½ðaaN þ bb0 þ aNb0ÞDðN � 2Þ
� ðaN þ b0ÞabDðN � 3Þ�; ð39Þ

and

ANþ1 ¼ ðvL þ vRÞ k1½ðaaN
�

þ bb0 þ aNb0ÞDðN � 2Þ
� ðaN þ b0ÞabDðN � 3Þ� þ a0aNa

N�1
	

þ vRCL½ðaaN þ bb0 þ aNb0ÞDðN � 2Þ
� ðaN þ b0ÞabDðN � 3Þ�: ð40Þ

Both foregoing formulas contain the quantity

DðMÞ ¼ ðabÞM=2 sinh½KðM þ 1Þ�
sinhK

; ðe�K ¼ ðb=aÞ1=2Þ;

ð41Þ
which mainly determines the length-dependence of the

hopping contribution to the total interelectrode current.
4. Analytic expression for the current

The Eqs. (38)–(40) enable us to compute the I–V
characteristics of the wire for different ratios among the

rate constants. To get a somewhat simpler expression
ready to study the wire-length dependence of the current

we will specify the geometry of the wire (sites of electron

localization) as well as the relations among the forward

and the backward transfer rates. In the case of non-

adiabatic ET under consideration the intersite electronic
couplings V1 � V10, VB � Vmmþ1 (m ¼ 1; 2; . . . ;N ), and

VN � VNNþ1 (see Fig. 1(a)) are assumed to be small.

Therefore, it is not necessary to introduce extended

LUMO wire level. Just the local site energies Em deter-

mine the direction of the ET process. To derive a concrete

expression for the energies Em we suppose that the

transferred electron captured by a wire unit is located at

the center of this unit. Furthermore, we introduce l0 and
lNþ1 as the distances between the centers of the left and

the right terminal wire unit and the corresponding left

and right electrode, respectively. l1 and lN denote the

distances between the centers of the terminal units and

the adjacent right (1th) and left (N th) wire units. Finally, l
is the distance between the remaining internal wire cen-

ters. Then we get the voltage dependent site energies as

E0 ¼ Eð0Þ
0 � eV ðl0=dÞ; ð42Þ

ENþ1 ¼ Eð0Þ
Nþ1 � eV ½1� ðlNþ1=dÞ�; ð43Þ

Em ¼ Eð0Þ
m � eV ð1=dÞ½l0 þ l1 þ ðm� 1Þl�;

ðm ¼ 1; 2; . . . ;NÞ: ð44Þ

Here, the distance between the two electrodes is given by

d ¼ l0 þ l1 þ ðN � 1Þlþ lN þ lNþ1: ð45Þ

According to the given expressions for the site energies

we remind on the detailed balance relations among the

different rate expressions, which read

a0 ¼ b0 expð�DE1=kBT Þ;

bN ¼ aN expð�DEN=kBT Þ;

b ¼ a expð�DEm=kBT Þ; ðm ¼ 1; . . . ;N � 1Þ; ð46Þ

and

k2 ¼ k1 expð�DE=kBT Þ: ð47Þ

The corresponding energy gaps are defined as

DE1 ¼ E1



þ eð0Þ0

�
� E0



þ eð0Þ1

�
¼ De1 � eV ðl1=dÞ;

De1



¼ Eð0Þ
1



þ eð0Þ0

�
� Eð0Þ

0



þ eð0Þ1

��
; ð48Þ

DEN ¼ EN



þ eð0ÞNþ1

�
� ENþ1



þ eð0ÞN

�
¼ DeN þ eV ðlN=dÞ;

DeN



¼ Eð0Þ
N



þ eð0ÞNþ1

�
� Eð0Þ

N



þ eð0ÞNþ1

��
; ð49Þ

DEm ¼ Em



þ eð0Þmþ1

�
� Emþ1

�
þ eð0Þm

�
¼ eV ðl=dÞ; ð50Þ
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and

DE ¼ E0



þ eð0ÞNþ1

�
� ENþ1



þ eð0Þ0

�
¼ Deþ eV ½1� ðl0 þ lNþ1Þ=d�;

De



¼ Eð0Þ
0



þ eð0ÞNþ1

�
� Eð0Þ

Nþ1



þ eð0Þ0

��
: ð51Þ

For the sake of definiteness we assumed zero voltage at

the left electrode (remember e > 0).

Analogous relation among the rate constants of the

transitions between the electrodes and adjacent terminal

wire units read as

vLðRÞ ¼ v�Lð�RÞ expð�DELðRÞ=kBT Þ: ð52Þ

The site–electrode energy gaps are

DEL ¼ E0 � eð0Þ0



þ EF

�
¼ DeL � eV ðl0=dÞ;

DeL



¼ Eð0Þ
0 � eð0Þ0



þ EF

��
; ð53Þ

and

DER ¼ ENþ1 � eðNþ1Þ
0 � ðEF � eV Þ ¼ DeR þ eV ðlNþ1=dÞ;

DeR



¼ EðNþ1Þ
0 � eðNþ1Þ

0



þ EF

��
: ð54Þ

Below we will consider the formation of an electronic
current from the left to the right electrode, i.e., at V > 0.

It follows from relations (46)–(54) that

v�LvRb0bNb
N�1 ¼ v�RvLa0aN expð�eV =kBT Þ;

vRv�Lk2 ¼ v�RvLk1 expð�eV =kBT Þ: ð55Þ
Therefore, expression (38) can reduce to the more
compact form

I ¼ e 1½ � expð � eV =kBT Þ�
vL
CL

F1
F2

; ð56Þ

where

F1 ¼ k1
1� cN�1

1� c

�
þ a
b0

þ a
aN

cN�1



þ a0
b0

a; ð57Þ

F2 ¼ 1

�
þ k1
CL

þ k2
CR



1� cN�1

1� c

�
þ a
b0

þ a
aN

cN�1




þ aa0
CLb0

þ abN

CRaN
cN�1: ð58Þ

The parameter

c � b=a ¼ expð�eVl=dkBT Þ; ð59Þ

characterizes the ratio between the backward and the

forward wire-internal inter-site ET rate constants.

Eqs. (56)–(58) define the final analytic expression for
the current. This expression has been obtained from the

exact stationary solution of the set of rate equations (36)

and shows a mixture of the two superexchange rate

constants k1 and k2 and the remaining sequential rate
constants. Such a mixture results in a rather complicated

dependence of the current on the number N of wire

units. If, however, the inequalities

k1; a0 	 CL; k2; bN 	 CR; ð60Þ

are fulfilled the current (56) reduces to the sum of two

separate contributions

I ¼ 1½ � expð � eV =kBT Þ� IsupðNÞ
�

þ IseqðNÞ
�
: ð61Þ

The superexchange component of the interelectrode

current reads

IsupðNÞ ¼ eðvL=CLÞk1: ð62Þ

This expression indicates that the distant dependence of

the superexchange contribution is concentrated in the

rate constant k1 defined in Eq. (A.50). Below we con-

sider the distant behavior of the current at such voltages

which do not essentially alternate the gaps (A.49). In

this case the simplified form of the superexchange cou-

pling, Eq. (A.53) is valid. It allows to reduce Eq. (62) to

the expression

IsupðNÞ ¼ I ð0Þsup e
�fðN�1Þ; ð63Þ

where

f ¼ �2 ln jVBj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE0DENþ1

ph i
; ð64Þ

and

I ð0Þsup ¼ eðvL=CLÞkð0Þ1 ; ð65Þ

kð0Þ1 ¼ 2p
�h

jV1VNþ1j2

DE0DENþ1

ðFCÞ0Nþ1: ð66Þ

As to the sequential component it has the form

IseqðNÞ ¼ I ð0Þseq 1

�
þ n

1� cN�1

1� c

��1

; ð67Þ

with

I ð0Þseq ¼ e
vL
CL

a0aN
b0 þ aN

; ð68Þ

and

n ¼ 1� ða=aN Þð1� cÞ
ða=b0Þ þ ða=aN Þ

: ð69Þ

The analytic dependence of each component on the

bridge unit number N is provided by the diminishing

parameters (64) and (69). Note that the diminishing

parameter n valid for the sequential transfer is defined

through elementary rate constants. Thus, the suppres-

sion of the sequential part of the current is defined by

kinetic processes. In contrast, the superexchange di-
minishing parameter f reflects the dynamic properties of

the wire.
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Fig. 2. Length-dependence of the interelectrode current at a fixed

strength of the applied electric field E ¼ V =d ¼ 1:5� 105 V/cm. The

description based on the exact expression, Eq. (56), and the approxi-

mate one, Eq. (61) coincide. As a consequence, the current can be

represented in this case as an additive contribution of the superex-

change ET mechanisms and the sequential mechanism. The rate con-

stants are defined by Eqs. (70)–(74) with the parameters De0 ¼
DeNþ1 ¼ 0.1 eV, De1 ¼ DeN ¼ 0.25 eV, De ¼ 0, EðrÞ

0 ¼ EðrÞ
Nþ1 ¼ 0.7 eV,

EðrÞ
1 ¼ EðrÞ

N ¼ 0.4 eV, EðrÞ
B ¼ 0:6 eV, EðrÞ ¼ 0.2 eV, V1 ¼ VN ¼ 0.02 eV,

VB ¼ 0.03 eV, x0 ¼ xNþ1 ¼ 800 cm�1, x1 ¼ xN ¼ xB ¼ X¼ 50 cm�1,

v0 ¼ 1013 s�1, l0 ¼ lNþ1 ¼ 4 �AA, l1 ¼ lN ¼ l¼ 3 �AA.
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5. Discussion of the results

The exact expression, Eq. (56) for the wire mediated

current as well as the approximated ones, Eqs. (63) and

(67) have to be considered as the main results of the
present work. In particular, these formulas allow us to

analyze the dependence of the current on the number of

wire units, and in this way, to specify the concrete

mechanism of the interelectrode current formation

through the molecular wire. To present some numerical

results we will use Jortner�s expression for the various

site–site rate constants (see Appendix A, Eqs. (A.41),

(A.37) and (A.38)). They are given by

b0 ¼
2p
�h

jV1j2

�hx1

Um1 ; ð70Þ

aN ¼ 2p
�h

jVN j2

�hxN
UmN ; ð71Þ

a ¼ 2p
�h

jVBj2

�hxB

UmB ; ð72Þ

k1 ¼
2p
�h

jV0Nþ1j2

�hX
Um; ð73Þ

where x1, xN , xB and X are the characteristic vibra-

tional frequencies related to 1 ! 0, N ! N þ 1,

m ! mþ 1 and 0 ! N þ 1 electron transitions, respec-

tively. The corresponding reorganization energies are

denoted by EðrÞ
1 , EðrÞ

N , EðrÞ
B and EðrÞ. In Eqs. (70)–(73), each

function Umf (cf. definition (A.38)) depends on two pa-

rameters: S1 ¼ EðrÞ
1 =x1 and m1 ¼ DE1=x1 (function Um1),

SN ¼ EðrÞ
N =xN and mN ¼ DEN=xN (function UmN ), SB ¼

EðrÞ
B =xB and mB ¼ DEm=xB (function UmB), and

S ¼ EðrÞ=X and m ¼ DE=X (function Um). [Note that the

gaps DE1, DEN , DEm and DE are defined through rela-

tions (48)–(51).]

The electrode–wire transfer rates have been chosen in

the form [41,42]

v�Lð�RÞ ¼ v0½1� nFðDELðRÞÞ�UðLðRÞÞ
0 ; ð74Þ

where nFðDELðRÞÞ ¼ ½expðDELðRÞ=kBT Þ þ 1��1
is the Fer-

mi distribution function with the energy gaps defined in
the Eq. (53) as well as (54), and we introduced

UðLÞ
0 ¼ e�S0 cothð�hx0=kBT ÞI0 2S0½nðx0Þð1



þ nðx0ÞÞ�1=2

�
:

ð75Þ
[The quantity UðRÞ

0 follows from UðLÞ
0 by replacing

S0 ¼ EðrÞ
0 =x0 and x0 by SNþ1 ¼ EðrÞ

Nþ1=xNþ1 and xNþ1,

respectively.] In Eq. (74), v0 is the width of a single

electronic level caused by the interaction with one of the

two electrodes in the absence of electron–vibration
coupling. This conclusion is based on the definition of

the level broadenings CLðRÞ, Eq. (37). Actually, for a
symmetric wire and in the absence of electron–vibration

coupling where UðLðRÞÞ
0 equals one, it follows CL ¼ CR ¼

v0.
Fig. 2 demonstrates the agreement between the exact

and the approximate description of the current, thus
supporting the conclusion that the additive form of the

current, Eq. (61) is sufficiently correct if the inequalities

(60) are fulfilled. If this is not the case, there is a dif-

ference in the wire-length dependence of the current,

Fig. 3. This difference is more significant for a small

number of wire units at which the influence of the su-

perexchange ET channel is larger. Fig. 4 shows that the

superexchange channel becomes dominant if the current
is measured at lower temperature. Note, however, that

the drop of the superexchange component does not

follow the conventional dependence Isup �
exp½�fðN � 1Þ� (see the curve at T ¼ 180 K). This is due

to the fact that Eq. (63) contains an additional weak

dependence on N via I ð0Þsup, Eq. (65). Indeed, I
ð0Þ
sup is pro-

portional to the rate kð0Þ1 , Eq. (66) which in turn is

proportional to the Franck–Condon factor ðFCÞ0Nþ1.
This Franck–Condon factor depends on the driving

force DE ¼ �0 � �Nþ1 ¼D�ð0Þ � eV ½l1 þ lN þ lðN � 1Þ�,
Eq. (51) which for V 6¼ 0 is a function of the number of

wire units connecting the sites 0 and N þ 1. Therefore,

we may conclude that the superexchange part of the

current results in a slightly corrected exponential de-

crease with increasing N , while the sequential part shows

a smooth decrease.
The N -dependence of Iseq is contained in the factor

ð1� cN�1Þ=ð1� cÞ which has the two limits, N � 1 (at
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Fig. 3. Length-dependence of the interelectrode current at a fixed

strength of the applied electric field E ¼ V =d ¼ 2� 105 V/cm. There

occurs a distinct difference between the exact expression, Eq. (56) and

the approximate theory, see Eq. (61). The set of parameters are the

same as in Fig. 2 except x0 ¼ xNþ1 ¼ 50 cm�1, x1 ¼ xN ¼ xB ¼
X¼ 100 cm�1.
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Fig. 4. Length-dependence of the interelectrode current at a fixed

strength of the applied electric field E ¼ V =d ¼ 3� 106 V/cm and for

two different temperatures at T ¼ 298 K and at T ¼ 180 K. The de-

scription is based on the exact result (56). The approximate description

using Eq. (61), is depicted by dashed lines. The deviation from an

exponential decrease of the superexchange component of the current

can be clearly identified. The rate constants are defined according to

the Eqs. (70)–(74) with parameters De0 ¼ DeNþ1 ¼ 0.1 eV, De1 ¼
DeN ¼ 0.4 eV, De ¼ 0, EðrÞ

0 ¼ EðrÞ
Nþ1 ¼ 0.7 eV, EðrÞ

1 ¼ EðrÞ
N ¼ 0.8 eV,

EðrÞ
B ¼ 0:6 eV, EðrÞ ¼ 1 eV, V1 ¼ VN ¼ 0.05 eV, VB ¼ 0.07 eV,

x0 ¼ xNþ1 ¼ 800 cm�1, x1 ¼ xN ¼ xB ¼ X¼ 50 cm�1, v0 ¼ 1013 s�1,

l0 ¼ lNþ1 ¼ 4 �AA, l1 ¼ lN ¼ l¼ 3 �AA.
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Fig. 5. Length-dependence of the interelectrode current at a fixed

strength of the applied electric field E ¼ V =d ¼ 4:35� 105 V/cm and at

a voltage V ¼ 0.9 V. There occurs a strong difference in the wire-length

dependence which is caused by the contribution corresponding the

sequential ET. The insert depicts the variation of the sequential di-

minishing parameter f as a function of the wire length. The description

is based on the exact Eq. (56). The parameters are the same as those for

Fig. 2.

                                               259
c 
 1), and 1 (at c 	 1). Therefore, the sequential con-

tribution to the total current shows to limiting cases

IseqðNÞ ¼
I ð0Þseq

1þ nðN � 1Þ ;

n ¼ 1

ða=b0Þ þ ða=aN Þ
; ðb 
 aÞ; ð76Þ

and

IseqðNÞ ¼
I ð0Þseq

1þ n
;

n ¼ 1� ða=aN Þ
ða=b0Þ þ ða=aN Þ

; ðb 	 aÞ: ð77Þ

In the first limit, Eq. (76), IseqðNÞ shows a hyperbolic

decrease with increasing N . Such a behavior of the

current is caused by the presence of hopping processes
for which the forward and backward wire-internal in-

tersite rate constants are equal one to another. Physi-

cally, this case corresponds to a small intersite voltage

bias so that expð�eVl=dkBT Þ 
 1. The second limit, Eq.

(77), is realized for a large intersite voltage bias when

expð�eVl=dkBT Þ 	 1. Here, the ET along the regular

part of the wire is exclusively defined by the forward rate

constant a. It corresponds to a directed ET in the wire so
that the interelectrode current does not depend on the

number of wire units. Both limiting cases clearly indicate

that at a large number of wire units the sequential

mechanism prevails the superexchange one. Such a

conclusion follows from the additive form of the cur-

rent, Eq. (61) and additionally, if the conditions for deep

tunneling are fulfilled. As a matter of fact, the additive

form of the current is obtained if, and only if, the in-
equalities (60) are fulfilled in the course of the ET.

Furthermore, in this case all site populations Pm related

to the internal wire units m ¼ 1; 2; . . . ;N become small.

Note that above mentioned N -dependence of the se-

quential contribution to the total current is only valid if

this dependence is studied at a fixed strength of the

applied electric field E ¼ V =d. Just in this case the ratio

(59) becomes a length-independent parameter. Thus the
length dependence of the hopping component of the

current is only given by the factor cN�1 (see Eqs. (56)–

(58) as well as Eqs. (61) and (67)). Such a result does not

remain valid if the N -dependence is studied for a

fixed voltage V (see also the discussion in [62]). Fig. 5
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illustrates this statement. If the N -dependence is studied

at V ¼ const., the sequential diminishing parameter n
exhibits an additional N -dependence (see inset in Fig. 5).

It follows from the ratio (59) of the backward and the

forward intersite rate constants and by the electrode–
electrode distance d, Eq. (45).
6. Conclusions

In the present paper, we have generalized the spin-

boson model to a description of nonadiabatic electron

transfer (ET) processes which take place in systems
with an arbitrary number of localization sites of the

excess electron. Site pseudo-spin operators (9)–(11)

have been introduced and a Hamiltonian (22) has been

presented which describes the ET in the system ‘‘left (L)

electrode–molecular wire–right (R) electrode’’. The

linear coupling of the excess electron levels to nuclear

vibrations was taken into account in an exact manner

by carrying out the well-known polaron transformation
(15). After such a transformation the coupling among

the electronic levels is combined with a coupling to the

nuclear vibrations, Eq. (24), and in turn becomes a

weak perturbation. The used local pseudo-spin opera-

tors act in the space of occupation number states.

Correspondingly, we have derived a master equation

for the occupation number distribution, Eq. (A.28).

This equation presents a key-result for the unified de-
scription of charge motion through a molecular wire.

We arrived at a set of kinetic equations for state pop-

ulations including corresponding sequential and super-

exchange ET rate constants. It is of prominent

importance to utilize the occupation number represen-

tation, since it easily allows to consider Pauli�s exclu-

sions principle which results in a nonlinearity in the

kinetic equations (A.34) and (A.42).
The generalization of the spin-boson model to the

description of charge motion through molecular wires

has been done for the case of thermally activated in-

terelectrode transfer. In this case, the transferred elec-

tron is released from the electrode to the adjacent

terminal unit of the wire. Afterwards the electron either

moves through the wire units (the sequential pathway)

or it performs a single transition to the terminal group at
the other tail of the wire (the superexchange pathway).

A particular model has been considered for which the

wire-internal units 1; 2; . . . ;N (cf. the scheme in Fig. 1)

act as a bridging molecular structure between the ter-

minal units. This model also ensures that these units are

only weakly populated by the transferred electron. Re-

sulting from this we may utilize a linear version of the

kinetic equations, Eq. (36). In this connection it is im-
portant that we have been able to derive the exact so-

lution of these kinetic equations and thus to have at

hand an analytic form for the interelectrode current
(Eqs. (38)–(41)). Taking the exact (Eqs. (56)–(58)) as

well as approximated analytic expressions for the cur-

rent (Eqs. (61)–(67)) we have analyzed its length-de-

pendence at a fixed electric field E ¼ V =d as well as at a

fixed voltage V . Such an analysis of the wire-length
dependence of the current allowed us to draw the fol-

lowing conclusions.

(1) The general case of interelectrode current forma-

tion there is a strong mixing between the sequential and

the superexchange mechanism, note the exact expression

for the current, Eq. (56). An naive, additive contribution

of both mechanisms, see Eq. (61) only becomes justified

if the specific conditions, Eq. (60) are fulfilled. Physi-
cally, these conditions correspond to a fast ET between

the electrodes and the adjacent wire units. (Then, an ET

is defined by the integral level broadenings CL and CR,

Eq. (37).)

(2) If V > Vres, where Vres is defined by the gap be-

tween the terminal LUMO-level energy �0, Eq. (1) and
the Fermi-level EF, a resonant ET from electrode L to

the terminal wire unit 0 occurs. Furthermore, the site–
electrode transition rate v�L becomes small compared to

the electrode–site rate vL, so that CL starts to coincide

with vL. This means that a release of an electron from

electrode L to the terminal wire unit 0 does not require

thermal activation. Therefore, the part of the current

based on the superexchange ET between the terminal

wire units is also present at low temperatures. This fact

is illustrated by Eqs. (65) and (66), and Fig. 4.
(3) There exists a distinct difference in the wire-length

dependence of the current found at a fixed electric field

E ¼ V =d and at a fixed voltage V (cf. Fig. 5). This dif-

ference is caused by several factors. First of all, if

E ¼ V =d ¼ const. the parameter c, Eq. (59) as well as the
rate constants a, b, a0ðNÞ and b0ðNÞ (defining the se-

quential ET channel) become wire-length independent

quantities. Therefore, the N -dependence of the sequen-
tial component of the current is completely defined by

the factor cN�1 (or/and ð1� cN�1Þ=ð1� cÞ). In contrast,

the superexchange site–site coupling defined by Eq.

(A.51) includes an N -dependence only via the number of

inter-wire transfer couplings, thus it can be approxi-

mated by the simplified expression (A.53). The latter

contains the diminishing parameter f, Eq. (64), which
does not depend on N . Therefore, at E ¼ V =d ¼ const.
the superexchange component of the current shows a

weak deviation from an exponential law � exp½� fðN �
1Þ� caused by the dependence of the driving force DE,
Eq. (51) on N . The length-dependence of the current

becomes more complicated if the current is measured at

V ¼ const. In this case all rate constants depend on N
due to the dependence of the driving forces, which all

belong to separate ET reactions, Eqs. (48)–(51) on the
distance d. Additionally, the ratio (59) and the super-

exchange coupling (A.51) also show the N -dependence.

Thus, the length-dependence of the current is much
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more complex as compared to the case of bridge-medi-

ated donor–acceptor ET [52].
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Appendix A. Master equation in the occupation number

representation and kinetic equations

In the case of the considered nonadiabatic ET the
transition processes take place on a time scale Dt which
significantly exceeds the characteristic time srel of vi-

brational relaxation. Following from this the vibrational

degrees of freedom can be considered as a thermal bath.

Moreover, the considered regime of ET can be charac-

terized by a certain property of the total density oper-

ator qðS�BÞðtÞ of the LWR-system (including the

vibrational degrees of freedom). This property is related
to the part qðS�BÞ

d ðtÞ of qðS�BÞðtÞ which is diagonal in a

representation based on the used local electronic states

and the related vibrational states. We have

lim
t�srel

qðS�BÞ
d ðtÞ ¼ WBqdðtÞ; ðA:1Þ

where qdðtÞ is the diagonal part of the electronic density
operator (taken in the mentioned basis). The latter is

defined according to the standard expression

qðtÞ ¼ trvibq
ðS�BÞðtÞ; ðA:2Þ

where trvib denotes the trace with respect to all vibra-

tional states. Finally, we also introduced

WB ¼ expð�HB=kBT Þ=trvib expð�HB=kBT Þ; ðA:3Þ
which is the equilibrium vibrational (bath) density op-

erator. The factorization ansatz (A.1) corresponds to a

basic assumption of nonequilibrium statistical mechan-
ics (see, e.g. [2,56,59,61]). If ÔO is an electronic operator

which is diagonal in the mentioned basis then the cor-

responding average can be derived according to

�OOðtÞ ¼ trðqðtÞÔOÞ ¼ trðqdðtÞÔOÞ: ðA:4Þ
Consequently, only the diagonal part of the electronic

density operator qdðtÞ is important for the determination

of �OOðtÞ. Indeed, this is the case when evaluating the

electronic state populations PLkðtÞ and PRqðtÞ for the

electrodes as well as the site populations P ðNm; tÞ for

the wire units m ¼ 0; 1; . . . ;N þ 1 (see definition (32)).
Our next aim will be the derivation of kinetic equa-

tions for the population number distributions P ðNj; tÞ
(j ¼ Lk;Rq; 0; 1; . . . ;N þ 1). In doing this we note that

the occupation number operators N̂Nj replace the diago-

nal operator ÔO introduced so far. The eigenstates of the
LWR system are defined by the set of occupation

numbers fNj ¼ 0; 1g and read

jai � jfNjgi ¼
Y
k

jNLki
Y
q

jNRqi
YNþ1

m¼0

jNmi: ðA:5Þ

Therefore, we get

P ðNLk; tÞ ¼
X
a6¼NLk

qaaðtÞ

¼
X

fNsg6¼NLk

hNLk; fNsgjqðtÞjfNsg;NLki; ðA:6Þ

where the summation covers all occupation numbers

fNjg except NLk. In an analogous way we obtain for the

distribution function of the wire-site populations

P ðNm; tÞ ¼
X
a6¼Nm

qaaðtÞ

¼
X

fNsg6¼Nm

hNm; fNsgjqðtÞjfNsg;Nmi: ðA:7Þ

Denoting the diagonal elements of the electronic density

matrix (in the occupation number representation) as

PaðtÞ � qaaðtÞ ¼ hajqðtÞjai ¼ hajqdðtÞjai; ðA:8Þ
then it becomes obvious that

P ðNj; tÞ ¼
X
a6¼Nj

PaðtÞ; ðj ¼ Lk;Rq; 0; 1; . . . ;N þ 1Þ:

ðA:9Þ
Therefore, the derivation of kinetic equations for the
populations P ðNj; tÞ may be based on the master equa-

tion for PaðtÞ or, what is equivalent, on the master

equation for the diagonal density operator qdðtÞ.
A.1. Master equation for the diagonal components of the

density matrix of an open quantum system

Following the approach which leads to the well-

known Nakajima–Zwanzig equation (see details in [61])

we introduce the projection operators T̂Td and T̂Tnd ¼
1� T̂Td . They separate any operator A ¼

P
ab Aabjaihbj

expanded with respect to the basis states defined in Eq.
(A.5) into diagonal and off-diagonal components:

T̂TdA ¼ Ad ¼
X
a

Aaajaihaj;

T̂TndA ¼ And ¼
X
ab

ð1� dabÞAabjaihbj: ðA:10Þ

Of course, the definition of the projection operators

becomes unambiguously only since we related the defi-

nition to a particular basis set.
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In the following we will identify the arbitrary opera-

tor A with qðS�BÞðtÞ which is governed by the Liouville–

von Neumann equation

_qqðS�BÞðtÞ ¼ �iLqðS�BÞðtÞ; ðA:11Þ
L � ð1=�hÞ½H ; . . .� is the Liouville superoperator speci-

fied by the total Hamiltonian H ¼ H0 þ V . According to

this separation we may write L ¼ L0 þLV with

L0 � ð1=�hÞ½H0; . . .�LV � ð1=�hÞ½V ; . . .�. In the studied

case of the LWR-system the Hamiltonian H is given by

Eq. (22) and thus we may identify

H0 ¼ ~HH0 þ HB; ðA:12Þ
with ~HH0 and HB given in the Eqs. (23) and (19), respec-

tively. Moreover, the interaction V is defined by Eq. (24)

together with the Eqs. (20) and (25).

Utilizing the initial condition in the standard form

qðS�BÞ
nd ð0Þ ¼ 0 (decoupling of the system from the bath)

and bearing in mind the properties

T̂TdL0q
ðS�BÞðtÞ ¼ 0; ðA:13Þ

T̂TndL0q
ðS�BÞ
d ðtÞ ¼ 0; ðA:14Þ

T̂TndL0q
ðS�BÞðtÞ ¼ L0q

ðS�BÞ
nd ðtÞ; ðA:15Þ

T̂TdLV q
ðS�BÞðtÞ ¼ T̂TdLV q

ðS�BÞ
nd ðtÞ; ðA:16Þ

we may reduce Eq. (A.11) to

_qqðS�BÞ
d ðtÞ ¼ �iT̂TdLV q

ðS�BÞ
nd ðtÞ; ðA:17Þ

where the off-diagonal component is coupled to the di-

agonal one by the relation

qðS�BÞ
nd ðtÞ ¼ �i

Z t

0

dsUðsÞT̂TdLV q
ðS�BÞ
d ðt � sÞ: ðA:18Þ

The unitary time-propagation superoperator reads

UðsÞ ¼ exp
h
� iðL0 þ T̂TndLV Þs

i
: ðA:19Þ

In the case of the considered nonadiabatic ET memory

effects are of less importance. We replace in Eq. (A.18)

qðS�BÞ
d ðt � sÞ by qðS�BÞ

d ðtÞ and extend the time-integral up

to infinity. Then, employing relation (A.18) and the as-

ymptotic property (A.1) we end up with the following

master-equation:

_qqdðtÞ ¼ �RqdðtÞ; ðA:20Þ
where

R ¼
Z 1

0

ds trvib T̂TdLVUðsÞT̂TndLVWB

n o
; ðA:21Þ

is the superoperator which determines the transfer pro-

cesses.

In order to compute R we expand
R1
0

dsUðsÞ with

respect to LV . Defining the superoperator Uð0ÞðsÞ ¼
expð�iL0sÞ and noting
Z 1

0

dseixsUðsÞ ¼ i lim
e!þ0

ðx�L0 � T̂TndLV þ ieÞ�1

� iGðxÞ; ðA:22ÞZ 1

0

dseixsUð0ÞðsÞ ¼ i lim
e!þ0

ðx�L0 þ ieÞ�1

� iGð0ÞðxÞ; ðA:23Þ

one can see that [61]

GðxÞ ¼ Gð0ÞðxÞ þ Gð0ÞðxÞT̂TndLVG
ð0ÞðxÞ

þ Gð0ÞðxÞT̂TndLVG
ð0ÞðxÞT̂TndLVG

ð0ÞðxÞ
þ � � � ðA:24Þ

Since Gð0Þð0Þ ¼
R1
0

dsUð0ÞðsÞ, we get the expansionZ 1

0

dsUðsÞ ¼
Z 1

0

dsUð0ÞðsÞ þ
Z 1

0

dsUð1ÞðsÞ

þ
Z 1

0

dsUð2ÞðsÞ þ � � � ;

Z 1

0

dsUðnÞðsÞ ¼ ð�iÞn
Z 1

0

ds
Z 1

0

ds1

Z 1

0

ds2 � � �

�
Z 1

0

dsnU
ð0ÞðsÞT̂TndLVU

ð0Þðs1Þ

� T̂TndLVU
ð0Þðs2Þ � � � T̂TndLVU

ð0ÞðsnÞ:
ðA:25Þ

A.2. Kinetic equations for occupation number populations

Let us start from the following linear balance equa-

tions:

_PPaðtÞ ¼ �
X
b

haj Rjbihbjð ÞjaiPbðtÞ; ðA:26Þ

for the total electronic populations PaðtÞ of the LWR-

system. [In line with definition (A.8) these equations are
completely identical to master Eq. (A.20).] Taking into

account the fact that for the occupation number repre-

sentation the many-particle state (A.5) appears as a

product of single-particle states jNji, it is convenient to
denote the many-particle population PaðtÞ ¼ PfNjgðtÞ as
a product of single-particle populations

PfNjgðtÞ ¼
Y
k

P ðNLk; tÞ
Y
q

P ðNRq; tÞ
YNþ1

m¼0

PðNm; tÞ:

ðA:27Þ
Introducing this ansatz into Eq. (A.26), summarizing

both parts of Eq. (A.26) over all occupation numbers

except Nj, and utilizing the definition Eq. (A.9) we arrive

at the following kinetic equations for the occupation
number distributions P ðNj; tÞ
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_PP ðNj; tÞ ¼
X

fN 00
j g6¼Nj

X
fN 0

jg
fN 00

j gj RjfN 0
jg


 E
fN 0

jgj
D �

jfN 00
j g

D E

�PfN 0
jgðtÞ: ðA:28Þ

These equations represent master equations written in
the occupation number representation. They are of basic

importance for the derivation of kinetic equations for

the occupation number distributions P ðNj; tÞ and for the

state populations PjðtÞ. To write down the set of equa-

tions (A.28) in a more concrete form one can utilize the

expansion Eq. (A.25) and the expression for the Ham-

iltonian H0, Eqs. (A.12), (23) and (19), as well as the

interaction V , Eq. (24). Moreover, one also has to take
into consideration the following rules specifying the

action of the pseudo-spin operators on the occupation

number states

rz
mjNmi ¼ ð2Nm � 1ÞjNmi; ðA:29Þ

rþ
m jNmi ¼ ð1� NmÞjð1� NÞmi;

r�
m jNmi ¼ Nmjð1� NÞmi: ðA:30Þ

A.3. Kinetic equations in the Born approximation

In deriving kinetic equations for the wire-internal

populations PmðtÞ, (m ¼ 1; 2; . . . ;N ) one has to notice

the restriction on the limit of nonadiabatic transfer.

Therefore, we can restrict ourself to the (second) Born
approximation with respect to V . We replace UðsÞ by

Uð0ÞðsÞ in the superoperator Eq. (A.21), and in line with

relation Eq. (33) we have to derive an equation for

P ðNm; tÞ. It follows from Eq. (A.28) that

_PP ðNm; tÞ ¼
1

�h2
X
s

jVmsj2
X
Ns

½Nmð1� NsÞ þ ð1� NsÞNm�

� fPðð1� NÞm; tÞP ðð1� NÞs; tÞðKsm þK�
smÞ

� PðNm; tÞPðNs; tÞðKms þK�
msÞg: ðA:31Þ

The correlation function reads as

Kms ¼
Z 1

0

dse�ið�m��sÞs=�htrvib WB e
R̂RmsðsÞ e�R̂Rms


 �
; ðA:32Þ

where the �m are defined by Eq. (1), while

R̂RmsðsÞ ¼ expð�iHBs=�hÞR̂Rms expðiHBs=�hÞ: ðA:33Þ
The concrete form of R̂Rms is determined by the used type

electron–vibrational coupling. In the case of a local-

coupling model, we have R̂Rms ¼ R̂Rm � R̂Rs with R̂Rm defined

by Eq. (16). When a Holstein model is employed then

R̂Rms ¼
P

kðgmk � gskÞðbþk � bkÞ, (gmk ¼ jmk=�hxk).
According to the relations Eq. (33) it becomes pos-

sible to derive the following kinetic equation for the

population PmðtÞ of the mth site:
_PPmðtÞ ¼ � 2p
�h

X
s

jVmsj2fPmðtÞð1� PsðtÞÞðFCÞms

� ð1� PmðtÞÞPsðtÞðFCÞsmg: ðA:34Þ

Here, we introduced the Franck–Condon factor ðFCÞms
(as well as ðFCÞsm) which has been obtained as a result

of the averaging of the operators HB, Eq. (19) and R̂Rms,
Eq. (16) with respect to the vibrational states. It follows

the standard expression

ðFCÞms ¼
1

2p�h

Z þ1

�1
dse�ið�m��sÞs=�h e�QmsðsÞ; ðA:35Þ

where the function

QmsðsÞ ¼ 2

Z þ1

�1

dx
x2

JmsðxÞ coth
�hx
kBT

ð1
�

� cosxsÞ

� i sinxs

�
; ðA:36Þ

comprises the influence of the bath vibrational modes on

the ET via the vibrational spectral density JmsðxÞ. (This
quantity is of basic importance for any calculation done

on the spin-boson model [3,5,6,61].) If the transition

m ! s is accompanied by the coupling to a single vi-

bration with frequency xf one can utilize the Song–
Marcus model [64], where we have Jms ¼
ð1=2�hÞEðrÞ

f xdðx� xfÞ and where EðrÞ
f denotes the reor-

ganization energy for the m ! s ET. As it well-known

the Song–Marcus model leads to Jortner�s form of the

Franck–Condon factor [63]

ðFCÞms ¼
1

�hxf

Umf : ðA:37Þ

Here, we introduced

Umf ¼ exp

�
� Sf coth

�hxf

kBT

�
1þ nðxfÞ
nðxfÞ

� 
mf=2

� Imf 2Sf ½nðxfÞð1



þ nðxfÞÞ�1=2
�
: ðA:38Þ

The expression contains the modified Bessel function

ImðzÞ, the Bose distribution function nðxÞ ¼
½expð�hx=kBT Þ � 1��1

, and we have set Sf � EðrÞ
f =�hxf . The

energy EðrÞ
f is the above mentioned reorganization energy

of the f th transition caused by the driving force DEf ,

and mf � DEf=�hxf . For instance, at m ¼ 1; s ¼ 0 we put
EðrÞ
f ¼ EðrÞ

1 , DEf ¼ DE1 ¼ �1 � �0, xf ¼ x1, mf ¼ m1.
The derived kinetic equations (A.34) depend nonlin-

early on the site populations. However, it can be guar-

anteed for the reactions studied in the present paper that

the wire-internal units are less populated during the ET

process, i.e.

PmðtÞ 	 1; ðm ¼ 1; 2; . . . ;NÞ; ðA:39Þ
is fulfilled at any time t. Resulting from this property a

reduction to linear balance-like equations
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_PPmðtÞ ¼ �
X
s

kmsPmðtÞ½ � ksmPsðtÞ�; ðA:40Þ

becomes possible. Here, each rate constant is defined as

kms ¼
2p
�h
jVmsj2ðFCÞms; ðA:41Þ

with the Franck–Condon factor given by Eq. (A.35). A

similar Born approximation results in a nonlinear ki-

netic equation valid for the population of the kth level of

the left-electrode conduction band

_PPLkðtÞ ¼ � 2p
�h
jVLkj2 PLkðtÞð1

�
� P0ðtÞÞðFCÞLk0

� ð1� PLkðtÞÞP0ðtÞðFCÞ0Lk
�
: ðA:42Þ

The Franck–Condon factors are defined via the above

given general expression Eqs. (A.35) and (A.36), where

now m ¼ Lk, s ¼ 0 or m ¼ 0, s ¼ Lk. Correspondingly,

we obtain

ðFCÞLk0 ¼
1

2p�h

Z þ1

1
dse�iðELk��0Þs=�h e�Q0ðsÞ: ðA:43Þ

The function Q0ðsÞ is defined by Eq. (A.36) through the

spectral density J0ðxÞ. The only difference to QmsðsÞ re-
sults from the fact that during the wire-internal ET

JmsðxÞ is defined by the vibrations related to the two

sites, m and s, while for electrode–site or site–electrode

transition the vibrations are relate to a single site, m ¼ 0
(m ¼ N þ 1 for a right electrode).

Let us sum up Eq. (A.42) with respect to k and

bearing in mind that the total number of electrons oc-

cupying the conducting band of the left electrode is

NLðtÞ, Eq. (27). For a bulk electrode, NLðtÞ is given by a

macroscopic large number. Practically, it does not

change during the electron motion through the molec-

ular wire. Therefore, we may set

NLðtÞ ’ NL ¼
X
k

fLk; ðA:44Þ

where fLk ¼ fexp½ðELk � EFÞ=kBT � þ 1g�1
is the equilib-

rium Fermi distribution function for the left electrode.

According to Eq. (A.44) one can replace in the right part

of Eq. (A.42) the population PLkðtÞ by the equilibrium

distribution fLk once the summation of Eq. (A.42) over

k has been carried out. This treatment leads us to the

first equation of the set of equations (36) with the rate

constants

vL ¼ 2p
�h

X
k

jVLkj2fLkðFCÞLk0;

v�L ¼ 2p
�h

X
k

jVLkj2ð1� fLkÞðFCÞ0Lk: ðA:45Þ

Analogously, one derives the last equation of set (36).

The form of corresponding rate constants, vR and v�R,

follows from Eq. (A.45) replacing the symbol Lk by Rq.
A.4. Formation of a superexchange transfer rate between

the terminal wire units

In the considered model of ET through a molecular

wire the terminal wire units 0 and N þ 1 act as a donor
and an acceptor with respect to internal wire units.

Therefore, the terminal units do not only couple to the

adjacent electrodes and the neighboring wire units but

also one to another through the bridging sites

m ¼ 1; 2; . . . ;N . To derive the rate constants k1 � k0Nþ1

and k2 � kNþ10 which include the distant superexchange

coupling between the sites 0 and N þ 1 one has to con-

sider higher orders of perturbation theory with respect
to the interaction V . Our aim is to derive a kinetic

equation for the population P0ðtÞ starting from the basic

master Eq. (A.28). For the computation of the super-

operator R responsible for the ET we utilize the ex-

pansion (A.25) and keep the necessary number of terms

to couple site 0 to site N þ 1. The Born approximation

results in kinetic processes which couple site 0 to the left

electrode (with rate constants vL and v�L) and to site 1
(with rate constants a0 � k01 and b0 � k10). [Details on

the formation of these processes are given in the previ-

ous subsection.]

Since the interaction V is off-diagonal with respect to

the electronic states, the first nonvanishing contribution

following the second-order contribution stems from the

time-propagation superoperator Uð2ÞðsÞ. This contribu-
tion leads to two different contributions, a renormal-
ization of the rate constants (vL, v�L, a0 and b0), and
transitions between the sites 0 and 2 (with rates k02 and

k20). Since nonadiabatic ET is considered the intersite

matrix elements Vmm�1 are small. Therefore, we can omit

the rate constant renormalization. The rates expressions

k02 and k20 are of the type of superexchange ET rates.

But, if the number of internal wire units N exceeds 1,

then site 2 belongs to the bridging units. Due to the large
gap �2 � �0 between bridging site 0 and 2 the rates k02
and k20 become too small to have any significant influ-

ence on the ET process (more details with respect to this

question can be found in [51]). Of course, if the wire has

only a single bridging unit one can not ignore the rates

k02 and k20.
To determine the superexchange rates k02 and k20 at

N ¼ 1 one has to expand Eq. (A.28) with R defined by
UðsÞ ¼ Uð2ÞðsÞ. There are a number of different terms

which specify the superoperator R, each of them con-

tains the integration over s, s1 and s2. Let us consider a
typical integral

A ¼ 1

�h4

Z 1

0

ds
Z 1

0

ds1

Z 1

0

ds2 e
�ið�1��2Þs2=�h e�ið�0��2Þs1=�h

� e�ið�0��1Þs=�h trvib WB
~VV01ðs

n
þ s1Þ ~VV21ðsÞ ~VV10ð0Þ

� ~VV12ðsþ s1 þ s2Þ
o
; ðA:46Þ
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where we introduced ~VVmm0ðsÞ ¼ Vmm0 expð�iHBs=�hÞ
expðR̂Rmm0Þ expðiHBs=�hÞ. It follows from the structure of

the integrand that its oscillatory contributions are de-

fined by the factors that contain the energy gaps D�12 ¼
�1 � �2, D�02 ¼ �0 � �2 and D�10 ¼ �1 � �0. The relation
provide that at N ¼ 1 just the energy �1 characterizes

the position of the bridging LUMO-level. In line with

the condition for deep tunneling one has to suppose the

validity of the inequalities D�10 � jD�02j and D�12 �
jD�02j. Following from this the characteristic oscillation

time s1 � �h=D�02 strongly exceeds the characteristic

times s � �h=D�10 and s2 � �h=D�12. This circumstance

allows us to omit the times s and s2 in the interac-
tions ~VV01ðsþ s1Þ, ~VV21ðsÞ and ~VV12ðsþ s1 þ s2Þ. Noting

that
R1
0

ds expð�ixsÞ ¼ �i lim
d!þ0

ðx� idÞ and thusR1
0

ds expðiD�10sÞ
R1
0

ds2 expð�iD�12sÞ 
 �h2=ðD�10D�12Þ
the integral Eq. (A.46) is reduced to

A 
 1

�h2
jV01V12j2

D�10D�12
K02; ðA:47Þ

where the correlation function is defined by Eq. (A.32).
The multiple time-integrals in the other terms contrib-

uting to the expansion have an analogous structure.

Collecting all contributions it results a kinetic equation

for P0ðtÞ which is represented as a second equation in the

set (36) with the superexchange rate constants

k1ð2Þ � k02ð20Þ ¼
2p
�h

jV01V12j2

D�10D�12
ðFCÞ02ð20Þ: ðA:48Þ

At large numbers N of internal wire units one has to

take into consideration the superoperators Uð4ÞðsÞ,
Uð6ÞðsÞ and so on. The superoperator Uð4ÞðsÞ leads to a

renormalization of the previously discussed rates k01ð10Þ
as well as k02ð20Þ, and generates the formation of the
superexchange rate constants k03 and k30. But again, if
site 3 belongs to a bridge we can neglect the kinetic

processes characterized by the rate constants k03 and k30.
Thus, one can omit the contribution of the superoper-

ator Uð4ÞðsÞ. Generally, one can neglect the contribution

from any superoperator Uð2ðm�1ÞÞðsÞ, since it couples site
0 to any internal wire site m ¼ 2; 3; . . . ;N . However, for

m ¼ N þ 1 we have to consider the respective contribu-
tion since we arrived at the superoperatorUð2NÞðsÞ which
is responsible for the formation of the superexchange

transfer process between the 0th and the N þ 1th ter-

minal sites.

Thus, to derive the kinetic equations for P ðN0; tÞ for
the case of large energy gaps

D�m0 � �m � �0; D�mNþ1 � �m � �Nþ1; ðA:49Þ

between the LUMO-levels of internal and terminal wire

units, it is quite appropriate to only keep in the expan-
sion (A.25) the superoperators Uð0ÞðsÞ andUð2NÞðsÞ. This
results in the second equation of set (36) with rate ex-

pressions
k1ð2Þ ¼
2p
�h
jV0Nþ1j2ðFCÞ0Nþ1ðNþ10Þ: ðA:50Þ

Here, the square of the superexchange coupling reads

jV0Nþ1j2 ¼
jV1V N�1

B VN j2QN
m¼1 D�m0D�mNþ1

; ðA:51Þ

while the Franck–Condon factors coincide with those

given in Eq. (A.35) for m ¼ 0, s ¼ N þ 1 or m ¼ N þ 1,

s ¼ 0. Note that Eq. (A.50) for the rate constants is valid

if the condition

jVmm�1j 	 D�m0;D�mNþ1; ðA:52Þ
of deep tunneling is valid for all internal wire units

m ¼ 1; 2; . . . ;N . Take also into account that the super-

exchange coupling jV0Nþ1j depends on the applied volt-

age V through the gaps D�m0 and D�mNþ1. If, however,

the voltage does not essentially alternate the gaps one
can set D�10 
 D�20 
 � � �D�N0 � DE0, D�1Nþ1 
 D�2Nþ1 

D�NNþ1 � DENþ1. This leads to the simplified form of the

superexchange coupling so that we may set

jV0Nþ1j2 

jV1VN j2

DE0DENþ1

e�fðN�1Þ; ðA:53Þ

where the diminishing constant f is defined by Eq. (64).
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