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A large number of multifaceted quantum transport processes in molecular systems
and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins,
can be treated in terms of quantum relaxation processes which couple to one or
several fluctuating environments. A thermal equilibrium environment can conve-
niently be modelled by a thermal bath of harmonic oscillators. An archetype
situation provides a two-state dissipative quantum dynamics, commonly known
under the label of a spin-boson dynamics. An interesting and nontrivial physical
situation emerges, however, when the quantum dynamics evolves far away from
thermal equilibrium. This occurs, for example, when a charge transferring medium
possesses nonequilibrium degrees of freedom, or when a strong time-dependent
control field is applied externally. Accordingly, certain parameters of underlying
quantum subsystem acquire stochastic character. This may occur, for example, for
the tunnelling coupling between the donor and acceptor states of the transferring
electron, or for the corresponding energy difference between electronic states which
assume via the coupling to the fluctuating environment an explicit stochastic or
deterministic time-dependence. Here, we review the general theoretical framework
which is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows one to
investigate on a common basis, the influence of nonequilibrium fluctuations and
periodic electrical fields on those already mentioned dynamics and related quan-
tum transport processes. Most importantly, such strong fluctuating fields induce a
whole variety of nonlinear and nonequilibrium phenomena. A characteristic
feature of such dynamics is the absence of thermal (quantum) detailed balance.
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1. Introduction

The description and analysis of the dynamics of open quantum systems, i.e., quantum
systems interacting with a dissipative environment, presents a key challenge for non-
equilibrium statistical physics. Moreover, this theme is also of prominent importance
for many applications in physics, physical chemistry and physical biology. This can be
exemplified by the relaxation dynamics occurring in a two-level quantum system that
is coupled to the vibrational degrees of freedom of an environment. This latter theme
gained great popularity and is known under the label of ‘‘spin-boson dynamics’’ [1–4].
Several apparently different physical problems can formally be unified within such
a common mathematical description. For example, the relaxation dynamics of a
nuclear spin 1=2 in solids, the tunnelling of defects in metals, the relaxation dynamics
of atoms in optical cavities can all be modelled by (pseudo)-spin-boson dynamics.
Another important and relevant situation refers to donor–acceptor electron
transfer (ET) reactions in various molecular structures [5–9]. For spatially extended
quasi-periodic molecular structures like those formed by protein �-helices [10–13],
or DNA’s [14–18] many quantum states are generally required to describe charge
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transfer processes. Here, a multi-state tunnelling problem naturally emerges with the
tight-binding model serving as one of the simplest theoretical frameworks.

The primary problem is to describe the influence of the environmental degrees of
freedom on the quantum dynamics of interest. Many different approaches have been
developed to tackle this challenge. The fundamental methodology consists in separ-
ating the total system into two (or more) mutually interacting parts: the dynamical
subsystem with a small number of relevant degrees of freedom and a thermal bath
represented by a huge number of microscopic degrees of freedom which are at
thermal equilibrium. A most general quantum-mechanical description is provided
by the density operator of the whole, combined system which depends both on the
variables of the considered dynamical subsystem (relevant variables) and the vari-
ables of the thermal bath (irrelevant variables). The dynamical behaviour of a small
quantum subsystem presents the focus of interest with the thermally equilibrated
bath degrees of freedom serving as a source of randomness for the relevant
dynamics. This randomness can effectively be eliminated via a course-grained
description of the system of interest. A corresponding averaging procedure
results in a contracted, reduced dynamics which generally entails memory effects,
decoherence and dissipation.

Different approaches have been developed over the years within this general line
of reasoning. Within a variety of different approaches, the method of path-integrals
in real time [1, 2, 19–21] and the projection operator method [22–31] provide some
of the most frequently used methods. The path-integral approach can, however, be
technically cumbersome in practical applications of interest. The projection operator
method appeals because of its generality and technical elegance. It allows one to
obtain formally exact generalised master equations (GMEs) for the reduced density
matrix in a straightforward way. By and large, however, such exact GMEs cannot be
analytically elaborated further without invoking some sort of a perturbation tech-
nique with corresponding approximations. For example, already the seemingly sim-
ple spin-boson dynamics cannot be solved analytically exactly. The weak-coupling
approximation of the system-bath coupling is one of the most useful and commonly
employed schemes. Moreover, a strong-coupling problem can often be mapped onto
a (different) weak-coupling problem within a canonically transformed basis of the
total system. The projection operator method, combined with appropriate canonical
transformations, further improved by use of variational approaches, presents a
powerful and general method of wide acceptance. This well-established methodology
is, however, also rather demanding.

Yet another popular methodology consists in modelling the thermal bath influ-
ence through a classical stochastic field which acts upon the considered dynamical
system. Formally, this methodology corresponds to introduction of randomly fluc-
tuating time-dependent forces in the Hamiltonian of considered quantum system
[32–35] and, finding subsequently the stochastically averaged evolution of the con-
sidered system which is governed by a stochastic Liouville–von Neumann equation.
This methodology is known under the label of stochastic Liouville equation (SLE)
approach [34–41]. Due to a reasoning that involves the central limit theorem, classi-
cal random forces with Gaussian statistics are most frequently used in this kind of
approximate modelling. The Gaussian white noise serves here as the simplest imple-
mentation for the corresponding classical stochastic bath. It corresponds to a bath
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with an infinite spectrum of excitations. Such models can be solved exactly in
a number of specific cases [35, 38, 40–44]. All the thermal baths possess, however,
finite energy spectra. This circumstance gives rise to temporal autocorrelations in the
bath-induced classical stochastic fields. Gaussian-Markov noise with the exponen-
tially decaying temporal autocorrelations presents one of the simplest models of such
more realistic, coloured noise [45]. Yet, even in the simplest case of a two-state
tunnelling system this model cannot be solved exactly except for some limiting
cases (see, e.g., in [46] for the Landau-Zener model with a stochastic modulation).
Generically one must invoke some approximations; e.g., in the case of a weakly
coloured Gaussian noise some kind of cumulant expansion technique [38, 39, 47]
can be used.

There exists a different possibility. Continuous state noises can be approximated
by noise sources with a large number of discrete states (e.g., by a discretisation
procedure of a continuous diffusion process in a potential). Certain Markovian
discrete state noises provide then a rather general framework for a formally exact
stochastic averaging [34, 48, 49]. Moreover, the two-state Markovian noise (also
known as dichotomous noise) presents such a simple discrete noise source which
allows for an exact study of noise-driven two-level quantum systems [45, 50–56].
In addition, the multistate case of exciton transfer in molecular aggregates with
many quasi-independent noise sources modelled by independent two-state
Markovian noises presents another analytically tractable case, in the sense that it
can be reduced to the solution of a system of linear differential equations with
constant coefficients for averaged dynamics [57]. The discussed dichotomous noise
can model a quasi-spin 1/2 stochastic bath variable. In the case of ET in molecular
systems such a quasi-spin stochastic variable can simulate, for example, the bistable
fluctuations of a charged molecular group nearby the donor, or acceptor site, or the
conformational fluctuations of a bistable molecular bridge.

A well-known drawback of the SLE approach consists, however, in the asymp-
totic equal-population of the energy levels of quantum system which occurs for
arbitrary energy differences [38, 40, 41]. This means that the SLE approach corre-
sponds formally to an infinite bath temperature. At least, the thermal energy kBT
should thus be larger than the characteristic energy scale of the quantum system, e.g.,
larger than the energy width of the corresponding excitonic band. This corresponds
to a high-temperature approximation [40, 41, 52, 57]. The reason for this intrinsic
restriction is that the stochastic field unidirectionally drives the quantum system
without being modified by the system’s feedback (no back reaction). This drawback
within the SLE approach requires some ad hoc corrections to enforce the correct
thermal equilibrium [42, 58, 61]. Nevertheless, the SLE approach can yield a very
useful tool, notably in the nuclear magnetic resonance (NMR) theory [40, 59], the
theory of exciton transfer in molecular aggregates [40] and within the theory of
single-molecular spectroscopy [60].

Combined scenarios have been used in several works [61–63]. Initially, those were
aimed to model the influence of relaxation processes in the thermal bath [61], or to
account for non-Gaussian large-amplitude fluctuations of molecular charged groups
[62]. However, it was soon recognised that the addition of classical noise to a dis-
sipative quantum dynamics generally violates the detailed balance symmetry at the
environmental temperature [64]. Therefore, the stochastic field in these approaches
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correspond physically to a nonequilibrium noise influence. It has been shown theo-
retically that such a nonequilibrium non-Gaussian (e.g., two-state) noise can regulate
the quantum transition rates by several orders of magnitude [62, 64–66]. Moreover, it
may pump energy into the quantum system. This in turn gives rise to various inter-
esting nonlinear nonequilibrium phenomena such as a noise-induced enhancement of
thermally assisted quantum tunnelling [67], an inversion of population in discrete
quantum dissipative systems [68], a noise-induced absolute negative mobility (ANM)
for quantum transport [69], or also a fluctuation-induced transport of quantum
particles within a tight-binding description [70], to name the most prominent ones.
From a thermodynamical perspective these nonequilibrium effects are due to
a virtual presence of two heat baths of different nature: a first one assuming the
temperature of the environment T (modelled by a thermal bath of harmonic oscilla-
tors that are bi-linearly coupled to the relevant system), another one possessing
a virtually infinite temperature T� ¼ 1 (stochastic bath). In this intuitive picture,
a nonequilibrium stochastic field is expected to heat the quantum-mechanical degrees
of freedom, causing various, surprising nonequilibrium phenomena.

The study of the dynamics of such quantum dissipative systems which are driven
far from thermal equilibrium by nonequilibrium fluctuations is the focus of present
work. The situation here is similar in spirit to one in the recently emerged field of
(classical) Brownian motors [71–76], see, e.g., in [77–81] for surveys and further
references.

In this review, we present a general outline with many important examples given
of the following methodology: The nonequilibrium stochastic field is represented by
an external time-varying classical field in the Hamiltonian of the quantum system.
This field is treated without invoking any further approximation, until it becomes
necessary to do so. In doing so, a formally exact GME is obtained which includes
the external field both in the dynamical part and in the dissipative kernel of the GME
exactly. Subsequently, the dissipative kernel is expanded to the lowest order, i.e. the
second order in the system-bath coupling. [In a properly canonically transformed
basis this scheme allows one to study the opposite limit of strong dissipation/weak
tunnelling as well.] The overall procedure results in an approximate, GME for the
reduced density matrix of the considered, relevant quantum system. We recall
that within this methodology the external field is not only included exactly in
the dynamical part, but it modifies as well the dissipative kernel in a very
profound manner. In particular, the dissipative kernel becomes a retarded functional
of the driving field. Thereby, the field influence on quantum dynamics is taken
rigorously into account within the given order of the system-bath coupling. Such a
corresponding modification of the dissipative kernel becomes crucial for strong
driving fields.

This so-tailored approach allows one to describe stochastic and time-periodic
fields on equal grounds. The influence of a time-periodic driving on the dissipative
quantum dynamics has been investigated in [68, 82, 83, 85–87]. Other related work
has been done at the same time and in parallel by several other research groups
elaborating similar [88–90], or different [84, 91–97] approaches which reconcile
within some approximations [3, 4, 87, 98, 99].

The difference between the stochastic fields and the periodic fields enters within
our approach on the level of averaging of the corresponding field-driven GMEs.
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In this context, one must refer to some further approximations, which generally are
based on the separation of time-scales involving the external driving, the contracted
quantum dynamics and the decay of dissipative kernels in the GMEs. Remarkably,
in the case of dichotomous fluctuations this averaging can be done exactly without
further approximations [67, 100, 101]. The spin-boson model driven by such dichot-
omous Markovian fluctuations presents one instance of general interest which has
been studied in detail in [67, 68, 85, 86, 101]. Two other important situations, where
an exact averaging is feasible for a broad class of stochastic and periodic processes,
are given by an infinitely extended tight-binding model. These are: (i) the case of
coherent tunnelling in the absence of dissipation and (ii) the regime of incoherent
tunnelling (strong dissipation) when the tunnelling is weak (high tunnelling barriers).
Some explicit pertinent examples are discussed in [70, 102–104].

This review is organised as follows, see in figure 1. The study of a quantum
dynamics subjected to non-Markovian stochastic fields that are modelled by discrete
state processes of the renewal type is presented in section 2. Therein, a formally exact
averaging of the quantum evolution over the stationary realisations of stochastic
fields is given. The general results are illustrated by a new Laplace-transformed exact
solution of averaged two-level quantum dynamics driven by a symmetric non-
Markovian two-state field. The prior results for a quantum two-level dynamics
driven by a dichotomous Markovian field are reproduced as a particular limiting
case. This section contains the results for the fluctuating Kubo oscillator and
also a short primer into the projection operator formalism. Two-state quantum
dynamics in strong-periodic fields is considered in section 3. Section 4 outlines

Dynamics in external
fields, Sec. 2,  Sec. 3

Stochastic fields
Sec. 2 Kubo oscillator

Sec. 2.3.1

Driven quantum
dynamics in contact
with a thermal bath:
general formalism
Sec. 4

Driven spin-boson
model, Sec. 6

Weak system-bath
coupling, Sec. 6.2

Strong system-bath
coupling, Sec. 6.3

Quantum dynamics

Simple two-level
dynamics: origin of
various nonequilib-
rium effects, Sec. 5

Exact averaging of
quantum propagator:
non-Markovian jump
fluctuations, Sec. 2.3

Projection operator:
a  primer, Sec. 2.4

Driven tight-binding
model with dissipa-
tion: noise-induced
ANM and quantum
rectifiers, Sec. 7

Two-level quantum
dynamics in two-state
non-Markovian field
Sec. 2.3.2

Two state quantum
dynamics in periodic
field, Sec. 3

Figure 1. A flow diagram depicting the various topics and their mutual interrelations which
are covered by this review.
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the general formalism of dissipative quantum dynamics in strong, time-varying fields
within the reduced density matrix approach. The corresponding weak-coupling
GMEs and the generalised Redfield equations are presented there. These equations
serve as a basis for subsequent applications and analysis of stochastic field-induced
phenomena. Section 5 contains a simple implementation of our general approach
which manifests the origin and basic features of strongly nonequilibrium phenomena
described in the subsequent sections for more realistic models. The stochastically and
periodically driven spin-boson model is discussed in section 6, including quantum
stochastic resonance features. Section 7 is devoted to the phenomenon of noise-
induced, ANM in quantum transport and to the analysis of dissipative quantum
rectifiers. Concluding remarks are in section 8.

2. Quantum dynamics in stochastic fields

2.1. Stochastic Liouville equation

To begin, let us consider an arbitrary quantum system with a Hamilton operator
ĤH½�ðtÞ� which depends on a classical, noisy parameter �ðtÞ. This stochastic process �ðtÞ
can take on either continuous or discrete values. Accordingly, the Hamiltonian
ĤH acquires, randomly in time, different operator values ĤH½�ðtÞ� which generally do
not commute, i.e., ½ĤH½�ðtÞ�, ĤH½�ðt0Þ�� 6¼ 0.

The posed problem is to average the corresponding quantum dynamics in the
Liouville space, which is characterised by the Liouville-von-Neumann equation

d

dt
�ðtÞ ¼ �iL½�ðtÞ��ðtÞ, ð1Þ

for the density operator �ðtÞ over the realisations of noise �ðtÞ. L½�ðtÞ� in equation (1)
stands for the quantum Liouville superoperator, L½�ðtÞ�ð�Þ ¼ 1

�hh ½ĤH½�ðtÞ�, ð�Þ�. In other
words, the objective is to evaluate the noise-averaged propagator

hSðt0 þ t, t0Þi ¼ T exp �i

Z t0þt

t0

L½�ð�Þ�d�

� �� �
, ð2Þ

where T denotes the time-ordering operator.

2.2. Non-Markovian vs. Markovian discrete state fluctuations

We specify this task for a discrete state noise with N states �i (cf. figure 2). The noise
is generally assumed to be a non-Markovian renewal process which is fully charac-
terised by the set of transition probability densities  ijð�Þ for making random transi-
tions within the time interval ½�, � þ d�� from the state j to the state i. These
probability densities are obviously positive and do obey the normalisation
conditions XN

i¼1

Z 1
0

ijð�Þd� ¼ 1, ð3Þ

for all j ¼ 1, 2, . . . ,N.
The subsequent residence time-intervals between jumps are assumed to be

mutually uncorrelated. The residence time distribution (RTD)  jð�Þ in the
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state j reads

jð�Þ ¼
X
i

ijð�Þ ¼ �
d�jð�Þ

d�
: ð4Þ

The survival probability �jð�Þ of the state j follows then as

�jð�Þ ¼

Z 1
�

jð�Þd�: ð5Þ

This constitutes the general description for continuous time random walk (CTRW)
theory [106–109].

Several descriptions used for such simplest non-Markovian processes of the
renewal type are worth mentioning. The approach in [110] with the time-dependent
aging rates kijðtÞ for the transitions from state j to state i corresponds to a particular
choice

ijð�Þ :¼ kijð�Þ exp �
X
i

Z �

0

kijðtÞdt

" #
: ð6Þ

The Markovian case corresponds to time-independent transition rates kijð�Þ ¼ const.
Any deviation of  ijð�Þ from the corresponding strictly exponential form which can
be accounted for by introducing a time-dependence of the transition rates kijð�Þ
amounts to a non-Markovian behaviour.1 Furthermore, the survival probability
�jð�Þ in the state j is determined by

�jð�Þ ¼ exp �
XN
i¼1

Z �

0

kijðtÞdt

" #
ð7Þ

and equation (6) can be recast as

ijð�Þ :¼ kijð�Þ�jð�Þ: ð8Þ

1This observation which can be traced back to [111] can be rationalised as follows. Let us
consider a sojourn in the state j characterised by the survival probability �jð�Þ. The corre-
sponding residence time interval ½0; �� can be arbitrarily divided into two pieces ½0; �1� and
½�1; ��. If no memory effects are present, then �jð�Þ ¼ �jð� � �1Þ�jð�1Þ. The only nontrivial
solution of this latter functional equation which decays in time reads �jð�Þ ¼ expð��j�Þ, with
�j > 0.

t0 t1 t2 tk

x

x1

x2

xN

t...

Figure 2. Typical trajectory of the considered process [105].
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The introduction of time-dependent ‘‘aging’’ rates presents one possibility to describe
the non-Markovian effects. It is not unique though. A different scheme follows by
defining [112]:

ijð�Þ :¼ pijð�Þ jð�Þ ð9Þ

with
P

i pijð�Þ ¼ 1. The physical interpretation is as follows: The process stays in
a state j for a random time interval characterised by the probability density  jð�Þ.
At the end of this time interval, it jumps into another state i with a generally time-
dependent conditional probability pijð�Þ. Evidently, any process of the considered
type can be interpreted in this way. By equating equations (8) and (9) and taking into
account  jð�Þ :¼ �d�jð�Þ=d� one can deduce that the approach in [110] can be
reduced to that in [112] with the time-dependent transition probabilities

pijð�Þ ¼
kijð�ÞP
i kijð�Þ

ð10Þ

and with the non-exponential probability densities  jð�Þ which follow as  jð�Þ ¼
�jð�Þ exp½�

R �
0 �jðtÞdt� with �jð�Þ :¼

P
i kijð�Þ:

The description of non-Markovian effects with the time-dependent transition
probabilities pijð�Þ, is rather difficult to deduce immediately from the sample trajec-
tories of an experimentally observed random process �ðtÞ. The same holds true for the
concept of time-dependent rates. These rates cannot be measured directly from the
set of stochastic sample trajectories. On the contrary, the RTD  jð�Þ and the time-
independent pij (with pii :¼ 0) can routinely be deduced from sample trajectories
measured, say, in a single-molecular experiment [113]. Figure 2 renders these asser-
tions more obvious. The study of the statistics of the residence time-intervals allows
one to obtain the corresponding probability densities  jð�Þ and, hence, the survival
probabilities �jð�Þ. Furthermore, the statistics of the transitions from one state into
all other states allows one to derive the corresponding conditional probabilities pij.
From this primary information a complementary interpretation of experimental data
in terms of time-dependent rates kijð�Þ can readily be given as

kijð�Þ ¼ �pij
d ln½�jð�Þ�

d�
, ð11Þ

if one prefers to use this language to describe the non-Markovian effects. Moreover,
the description with a constant set pij provides a consistent approach to construct the
stationary realisations of �ðtÞ, and thus to find the corresponding averaged quantum
evolution [114].

2.3. Averaging the quantum propagator

The task of performing the noise-averaging of the quantum dynamics in equation (2)
can be solved exactly due the piecewise constant character of the noise �ðtÞ [34, 49].
Let us consider the time-interval ½t0, t� and take a frozen realisation of �ðtÞ assuming
k switching events within this time-interval at the time-instants ti,

t0 < t1 < t2 < � � � < tk < t: ð12Þ

                                      533



Correspondingly, the noise takes on the values �j0 , �j1 , . . . , �jk in the time sequel.
Then, the propagator Sðt, t0Þ reads

Sðt, t0Þ ¼ e�iL½�jk �ðt�tkÞe�iL½�jk�1 �ðtk�tk�1Þ � � � e�iL½�j0 �ðt1�t0Þ: ð13Þ

Let us assume further that the process �ðtÞ has been prepared in the state j0 at t0.
Then, the corresponding k-times probability density for such noise realisation is

Pkð�jk , tk; �jk�1 , tk�1; . . . ; �j1 , t1j�j0 , t0Þ ¼ �jkðt� tkÞ jkjk�1ðtk � tk�1Þ � � � j1j0ðt1 � t0Þ

ð14Þ

for k 6¼ 0 and P0ð�j0 , t0Þ ¼ �j0ðt� t0Þ for k ¼ 0. In order to obtain the noise-averaged
propagator hSðtjt0, j0Þi conditioned on such nonstationary initial noise preparation
in the state j0 one has to average (13) with the probability measure in (14) (for
k ¼ 0,1). This task can be easily done formally by use of the Laplace-transform
[denoted in the following as ~AAðsÞ :¼

R1
0 expð�s�ÞAð�Þd� for any time-dependent

quantity Að�Þ]. The result for h ~SSðsjt0, j0Þi ¼
R1
0 expð�s�ÞhSðt0 þ �jt0, j0Þid� reads

[110, 114]

h ~SSðsjt0, j0Þi ¼
X
i

�
~AAðsÞ½I� ~BBðsÞ��1

�
ij0
, ð15Þ

where the matrix operators ~AAðsÞ and ~BBðsÞ reads in components

~AAklðsÞ :¼ �kl

Z 1
0

�lð�Þe
�ðsþiL½�l�Þ�d�, ð16Þ

and

~BBklðsÞ :¼

Z 1
0

klð�Þe
�ðsþiL½�l�Þ�d�, ð17Þ

correspondingly, and I is the unity matrix.
To obtain the stationary noise averaging it is necessary to average (15) in addi-

tion over the stationary initial probabilities pstj0 . The averaging over the initial dis-
tribution alone is, however, not sufficient to arrive at the stationary noise-averaging
in the case of non-Markovian processes since the noise realisations constructed in the
way just described still remain non-stationary. This principal problem is rooted in
the following observation. By preparing the quantum system at t0 ¼ 0 in a none-
quilibrium state �ð0Þ, the noise will be picked up at random in some initial state �j0
with the probability pstj0 (stationary noise). However, every time when we repeat the
preparation of the quantum system in its initial state, the noise will already occupy a
(random) state �j0 for some unknown random time interval ��j0 (setting a clock at
t0 ¼ 0 sets the initial time for the quantum system, but not for the noise, which is
assumed to start in the infinite past, cf. figure 2, where �j0 ¼ �1 at t0 ¼ 0). Therefore,
in a stationary setting, a proper averaging over this unknown time ��j is necessary.
The corresponding procedure implies that the mean residence time h�ji is finite,
h�ji 6¼ 1, and yields a different RTD for the initial noise state,  ð0Þj ð�Þ; namely, it
is obtained as  ð0Þj ð�Þ ¼ �jð�Þ=h�ji [115]. Only for Markovian processes where �jð�Þ is
strictly exponential, does  ð0Þj ð�Þ coincides with  jð�Þ. Using this  ð0Þj ð�Þ instead of

jð�Þ for the first sojourn in the corresponding state and for the time-independent set
pij, the noise realisations become stationary [114–116]. The corresponding expression
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for the quantum propagator averaged over such stationary noise realisations has
been obtained in [114], cf. equations (25), (29) therein. In a slightly modified form it
reads

h ~SSðsÞi ¼ h ~SSðsÞistatic �
X
ij

�
~CCðsÞ � ~AAðsÞ½I� P ~DDðsÞ��1P ~AAðsÞ

�
ij

pstj
h�ji

, ð18Þ

where h ~SSðsÞistatic is the Laplace-transform of the statically averaged Liouville
propagator

hSð�Þistatic :¼
X
k

e�iL½�k��pstk , ð19Þ

pstj ¼ limt!1 pjðtÞ are the stationary probabilities which are determined by a system
of linear algebraic equations [114, 116],

pstj
h�ji
¼
X
n

pjn
pstn
h�ni

, ð20Þ

and P is the matrix of transition probabilities pij (‘‘scattering matrix’’ of the random
process �ðtÞ). Furthermore, the auxiliary matrix operators ~CCðsÞ and ~DDðsÞ in (18) read
in components:

~CCklðsÞ :¼ �kl

Z 1
0

e�ðsþiL½�l�Þ�
Z �

0

�lð�
0
Þd�0d� ð21Þ

and

~DDklðsÞ :¼ �kl

Z 1
0

lð�Þe
�ðsþiL½�l�Þ�d�: ð22Þ

This very same averaging procedure can be applied to any system of linear
stochastic differential equations.

2.3.1. Kubo oscillator. A prominent application of this general procedure is the
noise-averaging procedure for the Kubo phase oscillator [48, 108]; reading

_XXðtÞ ¼ i�½�ðtÞ�XðtÞ: ð23Þ

This particular equation emerges in the theory of optical line shapes, in the
NMR [32, 48], and for single-molecule spectroscopy [60]. It appears also naturally
within our approach, see below, where XðtÞ corresponds to a diagonal matrix ele-
ment of the evolution operator of a quantum system with fluctuating eigenenergies.
In the context of the stochastic theory of spectral line shapes [32, 48, 60], �½�ðtÞ� in
equation (23) corresponds to a stochastically modulated frequency of quantum
transitions between the levels of a ‘‘two-state atom’’, or transitions between the
eigenstates of a spin 1/2 system.

The spectral line shape is determined via the corresponding stochastically
averaged propagator of the Kubo oscillator as [48]

Ið!Þ ¼
1

p
lim
	!þ0

Re½ ~SSð�i!þ 	Þ�: ð24Þ
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Note that the limit 	!þ0 in equation (24) is necessary for the regularisation of the
corresponding integral in the quasi-static limit h�ji ! 1. Upon identifying L½�k�
with ��k in equation (18) we end up with

h ~SSðsÞi ¼
X
k

pstk
s� i�k

�
X
k

1� ~  kðs� i�kÞ

ðs� i�kÞ
2

pstk
h�ki

þ
X
n, l,m

1� ~  lðs� i�lÞ

s� i�l

�
1

I� P ~DDðsÞ

�
lm

pmn

1� ~  nðs� i�nÞ

s� i�n

pstn
h�ni

, ð25Þ

where ~DDnmðsÞ ¼ �nm ~  mðs� i�mÞ.
2 The corresponding line shape follows immediately

from equation (25) by virtue of equation (24). This result presents a non-Markovian
generalisation of the pioneering result by Kubo [48] for arbitrary N-state discrete
Markovian processes. The generalisation consists in allowing for arbitrary non-
exponential RTDs  kð�Þ, or, equivalently, in accordance with equation (11) also
for time-dependent transition rates kijð�Þ. This generalisation was put forward
originally in [114] for a particular case, pstj ¼ h�ji=

P
kh�ki, which corresponds to

an ergodic process with uniform mixing (meaning that in a long-time run each
state j is visited equally often).

Let us next apply this result to the case of two-state non-Markovian noise with
p12 ¼ p21 ¼ 1 and pst1, 2 ¼ h�1, 2i=½h�1i þ h�2i�. Then, equation (25) yields after some
simplifications:

h ~SSðsÞi ¼
X
k¼1, 2

1

s� i�k

h�ki

h�1i þ h�2i
þ

ð�1 � �2Þ
2

ðh�1i þ h�2iÞðs� i�1Þ
2
ðs� i�2Þ

2

�
½1� ~  1ðs� i�1Þ�½1� ~  2ðs� i�2Þ�

1� ~  1ðs� i�1Þ ~  2ðs� i�2Þ
: ð26Þ

With (26) in (24) one obtains the result for the corresponding spectral line shape
which is equivalent to the one presented recently in [117] by use of a different
method. It is reproduced within our treatment as a particular two-state limiting
case. Moreover, in the simplest case of Markovian two-state fluctuations with
~
1, 2ðsÞ ¼ 1=ð1þ h�1, 2isÞ and with zero mean, h�ðtÞi ¼ h�1i�1 þ h�2i�2 ¼ 0, this result

simplifies further to read

h ~SSðsÞi ¼
sþ 2


s2 þ 2
sþ �2
: ð27Þ

In (27), � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2ðtÞi

p
¼ j�2 � �1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�1ih�2i
p

=ðh�1i þ h�2iÞ denotes the root mean
squared (rms) amplitude of fluctuations. Moreover, 
 ¼ �=2þ i� sinhðb=2Þ is a
complex frequency parameter, where � ¼ 1=h�1i þ 1=h�2i is the inverse of the

2Note that the formal solution of another prominent problem of the first-order relaxation
kinetics with a fluctuating rate, _ppðtÞ ¼ ��½�ðtÞ� pðtÞ follows immediately from (25) upon
substitution �j ! i�j , see in [105] for some nontrivial non-Markovian examples and the
corresponding discussion.
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autocorrelation time of the considered process3 which possesses the autocorrelation
function h�ðtÞ�ðt0Þi ¼ �2 expð��jt� t0jÞ. Furthermore, b ¼ lnðh�1i=h�2iÞ ¼ ln j�2=�1j is
an asymmetry parameter. The spectral line shape corresponding to (27) has been first
obtained by Kubo [48]. It reads [48, 64],

Ið!Þ ¼
1

p
�2�

ð!þ �1Þ
2
ð!þ �2Þ

2
þ !2�2

: ð28Þ

Moreover, the expression (27) can be readily inverted into the time domain. It
is crucial that the corresponding averaged propagator hSðtÞi of Kubo oscillator
[70], i.e.,

hSðtÞi ¼ e�
t
h
cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 
2

p
tÞ þ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 
2

p sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 
2

p
tÞ
i
, ð29Þ

is complex when the process �ðtÞ is asymmetric, b 6¼ 0. This correlates with the
asymmetry of the corresponding spectral line shape, Ið�!Þ 6¼ Ið!Þ. Derived in a
different form [118] (for a two-state Markovian process with a non-zero mean and
in quite different notation) an expression equivalent to (29) is used in the theory of
single-molecule spectroscopy [118–120]. For a symmetric dichotomous process (with
b ¼ 0) equation (29) reduces to the expression (6.10) (with !0 ¼ 0) in [47].

2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state

stochastic fields. The outlined non-Markovian stochastic theory of quantum
relaxation can be exemplified for the instructive and relevant case of a two-level
quantum system, reading

HðtÞ ¼ E1j1ih1j þ E2j2ih2j þ
1

2
�hh�ðtÞðj1ih2j þ j2ih1jÞ, ð30Þ

which is driven by a two-state non-Markovian stochastic field �ðtÞ ¼ �� with iden-
tical RTDs,  1ð�Þ ¼  2ð�Þ ¼  ð�Þ. This stochastic field causes (dipole) transitions
between two states, j1i and j2i, and is zero on average.

This archetype model exhibits a very rich behaviour. In particular, it allows one
to study the problem of quantum decoherence of a two-state atom under the influ-
ence of two-state ‘‘1=f �’’ noises exhibiting long-range time-correlations with a power
law decay (for  ð�Þ possessing a long-time algebraic tail,  ð�Þ / 1=�3��, 0 < � < 1)
[121, 122]. It thus presents a prominent problem of general interest. Moreover, it
relates to activities for solid state quantum computing [123]. It is convenient to
express the Hamiltonian (30) in terms of Pauli matrices, �̂�z :¼ j1ih1j � j2ih2j, �̂�x :¼
j1ih2j þ j2ih1j, �̂�y :¼ iðj2ih1j � j1ih2jÞ and the unity matrix ÎI,

HðtÞ ¼
1

2
�hh�0�̂�z þ

1

2
�hh�ðtÞ�̂�x þ

1

2
ðE1 þ E2ÞÎI, ð31Þ

where �0 ¼ ðE1 � E2Þ=�hh. Then, the dynamics of the density matrix of the quantum
two-state quantum system can be given as �ðtÞ ¼ 1

2 ½ÎIþ
P

i¼x, y, z �iðtÞ�̂�i� in terms of
a classical spin dynamics (with components �iðtÞ ¼ Trð�ðtÞ�̂�iÞ) in a magnetic field.

3Note that throughout this work � is the inverse of the autocorrelation time. It is equal to the
sum of two rates.

                                      537



This latter dynamics evolves on a Bloch sphere of unit radius (i.e., the (scaled)
magnetic moment is conserved,4 j~��ðtÞj ¼ 1). It reads,

_��xðtÞ ¼ ��0�yðtÞ,

_��yðtÞ ¼ �0�xðtÞ � �ðtÞ�zðtÞ, ð32Þ

_��zðtÞ ¼ �ðtÞ�yðtÞ:

The above theory can readily be applied to a noise averaging of three-
dimensional system of linear differential equations (32) over arbitrary stationary
realisations of �ðtÞ. After some algebra, the following result is obtained [124]
for the Laplace-transformed averaged difference of populations h�zðtÞi ¼
h�11ðtÞi � h�22ðtÞi with the initial condition �zð0Þ ¼ 1, �x, yð0Þ ¼ 0, i.e., the state ‘‘1’’
is populated initially with the probability one:

h ~��zðsÞi ¼
s2 þ �20

sðs2 þ�2Þ
�

2�2

�s2ðs2 þ�2Þ
2

~AAzzðsÞ

~BBzzðsÞ
, ð33Þ

where

~AAzzðsÞ ¼ �
2
0½1� ~  ðsÞ�



ð�2
� s2Þð1� ~  ðsþ i�Þ ~  ðs� i�ÞÞ � 2i� s ½ ~  ðsþ i�Þ � ~  ðs� i�Þ�

�
��2s2½1þ ~  ðsÞ�½1� ~  ðsþ i�Þ�½1� ~  ðs� i�Þ�, ð34Þ

~BBzzðsÞ ¼ �
2
0½1� ~  ðsÞ�½1þ ~  ðsþ i�Þ�½1þ ~  ðs� i�Þ�

þ�2
½1þ ~  ðsÞ�ð1� ~  ðsþ i�Þ ~  ðs� i�ÞÞ,

and � :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ�2

p
. Furthermore, � is the mean residence time between the field’s

alternations. Note that for the considered initial condition, h�xðtÞi ¼ h�yðtÞi ¼ 0 for
all times. For �0 ¼ 0 the result in (33)–(34) reduces to one for Kubo oscillator (26)
with identical  1, 2ð�Þ. Moreover, for the Markovian case, ~  ðsÞ ¼ 1=ð1þ �sÞ,
equation (33) reduces to

h ~��zðsÞi ¼
s2 þ 2�sþ �2 þ �20

s3 þ 2�s2 þ ð�2 þ �20 þ �
2Þsþ�2�

, ð35Þ

where � ¼ 2=� is the inverse autocorrelation time. This latter result reproduces the
result for the averaged populations h ~��11ðsÞi ¼ ð1=sþ h ~��zðsÞiÞ=2 and h ~��22ðsÞi ¼
ð1=s� h ~��zðsÞiÞ=2 in [50, 51]. The same result (35) can also be reduced from a more
general solution for the Markovian case with an asymmetric field of non-zero
mean [54]. It possesses several remarkable features. First, the asymptotic difference
between populations is zero, h�zð1Þi ¼ lims!0ðsh ~��zðsÞiÞ ¼ 0. In other words, the
steady state populations of both energy levels equal 1=2, independently of the
energy difference �hh�0. One can interpret this result in terms of a ‘‘temperature’’

4This means that each and every stochastic trajectory runs on the Bloch sphere. The averaged
Bloch vector h~��ðtÞi becomes, however, contracted jh~��ðtÞij � 1, because h�iðtÞi

2
� h�2i ðtÞi. Thus,

the averaged density matrix h�ðtÞi is always positive in the considered model, cf. [47],
independent of the particular model used for the stochastic driving �ðtÞ.
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T� of the (quasi-)spin system. This spin-temperature is formally introduced by using
for the asymptotic distribution an Ansatz of the Boltzmann-Gibbs form, h�nnð1Þi ¼
exp½�En=kBT��=

P
n exp½�En=kBT��. Then,

5

T� :¼
�hh�0

kB ln h�22ð1Þi=h�11ð1Þið Þ
ð36Þ

for two-level systems. In accord with this definition, the result of equal asymptotic
populations, h�22ð1Þi ¼ h�11ð1Þi ¼ 1=2 can be interpreted in terms of an infinite
temperature T� ¼ 1. This constitutes a general finding: a purely stochastic bath
corresponds to an apparent infinite temperature [40, 41]. For this reason, such
stochastic approaches to describe the relaxation process in open quantum systems
is suitable only for sufficiently high temperatures kBT� �hhj�0j [40, 41]. An asymmetry
of unbiased stochastic perturbations does not change this conclusion, see in [54].
Moreover, the relaxation to the steady state can be either coherent, or incoherent,
depending on the noise strength and the autocorrelation time. In particular,
an approximate analytical expression for the rate k of incoherent relaxation,
h�11ðtÞi ¼ ½1þ expð�ktÞ�=2, has been obtained in a limit of small Kubo numbers,
K :¼ �=�	 1, which corresponds to a weakly coloured noise [47, 49]. This
analytical result reads [50, 51, 54]

k ¼
�2�

�2 þ �20
ð37Þ

and exhibits a resonance feature versus � at � ¼ �0. A similar such resonance feature
occurs also in the theory of NMR for a weakly coloured Gaussian noise [59].
Note that in [54] this notable result has been obtained for asymmetric fluctuations
of the tunnelling coupling possessing a non-vanishing mean value h�ðtÞi 6¼ 0.
This corresponds to a quantum particle transfer between two sites of localisation
which are separated by a fluctuating tunnelling barrier. A related problem with the
inclusion of dissipation has been elaborated in [67] within a stochastically driven
spin-boson model.

Yet another interesting solution can be obtained for h ~��xðsÞi with the initial
condition reading �xð0Þ ¼ 1. The Laplace-transform of the solution is obtained as

h ~��xðsÞi ¼
s2 þ�2

sðs2 þ�2Þ
�

2�2�20�
2

�s2ðs2 þ�2Þ
2

~AAxxðsÞ

~BBxxðsÞ
, ð38Þ

where

~AAxxðsÞ ¼ ½1� ~  ðsÞ�½1� ~  ðsþ i�Þ�½1� ~  ðs� i�Þ�, ð39Þ

~BBxxðsÞ ¼ �
2
0½1þ ~  ðsÞ�½1� ~  ðsþ i�Þ�½1� ~  ðs� i�Þ�

þ�2
½1� ~  ðsÞ�ð1� ~  ðsþ i�Þ ~  ðs� i�ÞÞ:

The physical relevance of this solution (38) is as follows. In a rotated quasi-spin basis,
i.e., �̂�x ! �̂�z0 , �̂�z ! �̂�x0 , �̂�y! �̂�y0 , the considered problem becomes mathematically

5This is a standard definition of the temperature of a spin subsystem in NMR and similar
areas [59]. It is used also to introduce the parlance of formally negative temperatures.
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equivalent to the problem of the delocalisation of a quantum particle in a symmetric
dimer with the tunnelling coupling �0 under the influence of a dichotomously fluc-
tuating energy bias �ðtÞ. Therefore, it describes the corresponding delocalisation
dynamics and, in particular, allows one to determine whether this dynamics is
coherent or incoherent, depending on the noise features.

For the Markovian case equation (38) reduces to6

h ~��xðsÞi ¼
s2 þ �sþ�2

s3 þ �s2 þ ð�2 þ �20Þsþ �
2
0�
: ð40Þ

Note that the denominators in equations (35) and (40) are different.7 In a more
general case of asymmetric Markovian noise, the corresponding denominator is a
polynomial of 6th-order in s, see in [54]. In the considered case of symmetric noise it
factorises into the product of two polynomials of 3rd-order, those in the denomi-
nators of equations (35) and (40). Thus, for a general initial condition the relaxation
of a two-level quantum system exposed to a two-state Markovian field involves
generally 6th-exponential terms. As a matter of fact, this seemingly simple, exactly
solvable model can exhibit an unexpectedly complex behaviour even in the simplest
Markovian case of a coloured noise driving. However, for certain initial conditions,
as exemplified above, the general solution being a fraction of two polynomials of s
simplifies to the results in equations (35) and (40).

In a general case of non-Markovian noise, the analytical solutions in equations
(33) and (38) can be inverted to the time domain numerically by use of a numerical
Laplace inversion procedure such as the one detailed in [125].

2.4. Projection operator method: a primer

Next we shall introduce the reader, following [126], into the projection operator
technique. We elucidate this scheme by addressing an example that is of physical
interest in its own right.

Let us consider the somewhat more general dynamics,

d~��ðtÞ

dt
:¼

_��xðtÞ

_��yðtÞ

_��zðtÞ

0
B@

1
CA ¼

0 ��ðtÞ 0

�ðtÞ 0 ��ðtÞ

0 �ðtÞ 0

0
B@

1
CA

�xðtÞ

�yðtÞ

�zðtÞ

0
B@

1
CA

:¼ B̂BðtÞ~��ðtÞ, ð41Þ

6The corresponding dynamics also exhibits a resonance feature versus � in a certain limit [56].
7A remarkable feature is, however, that both corresponding secular cubic equations have the
same discriminant, Dð�; �; �0Þ ¼ 0, separating the domains of complex and real roots. Hence,
the transition from a coherent relaxation (complex roots are present) to an incoherent relaxa-
tion (real roots only) occurs at the same values of noise parameters, independently of the
initial conditions. The corresponding phase diagram separating regimes of coherent and
incoherent relaxation ( judging from the above criterion) has been found in [56]. It must be
kept in mind, however, that the weights of the corresponding exponentials are also of impor-
tance for the character of relaxation process. These weights naturally depend on the initial
conditions.
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and let us pose the question: How can we extract a single, closed equation for the
evolution of �zðtÞ (without any approximation) for an arbitrary time-dependence of
the parameters governing the driven quantum dynamics? The use of a projection
operator method provides an elegant way to solve this problem [126]. The key idea is
to project the whole dynamics onto a corresponding subspace of reduced dimension-
ality by using a projection operator P with the idempotent property P2

¼ P. In the
present case, the choice of this projection operator follows naturally as:

P

�xðtÞ

�yðtÞ

�zðtÞ

0
B@

1
CA ¼

0

0

�zðtÞ

0
B@

1
CA :¼ ~��0ðtÞ: ð42Þ

The use of this projection operator allows one to split the whole dynamics into the
‘‘relevant’’ one ~��0ðtÞ, and a remaining, ‘‘irrelevant’’, ~��ðtÞ, part, respectively; i.e.,
~��ðtÞ 
 P ~��ðtÞ þ ð1� PÞ~��ðtÞ :¼ ~��0ðtÞ þ ~��ðtÞ by applying P and the complementary
projection operator 1� P to equation (41). From the resulting system of two
coupled linear equations for ~��0ðtÞ and ~��ðtÞ, i.e.,

d~��0ðtÞ

dt
¼ PB̂BðtÞ~��0ðtÞ þ PB̂BðtÞ ~��ðtÞ,

d ~��ðtÞ

dt
¼ ð1� PÞB̂BðtÞ~��0ðtÞ þ ð1� PÞB̂BðtÞ ~��ðtÞ, ð43Þ

a single integro-differential equation for ~��0ðtÞ follows, reading:

d~��0ðtÞ

dt
¼ PB̂BðtÞ~��0ðtÞ þ

Z t

0

PB̂BðtÞT exp

Z t

t0
d�ð1� PÞB̂Bð�Þ

� �
ð1� PÞB̂Bðt0Þ~��0ðt

0
Þdt0

þ PB̂BðtÞT exp

Z t

0

d�ð1� PÞB̂Bð�Þ

� �
~��ð0Þ: ð44Þ

The exponential matrix operations in (44) can be done explicitly without any
approximation, yielding the exact closed equation for �zðtÞ [126], reading

8

_��zðtÞ ¼ �

Z t

0

�ðtÞ�ðt0Þ cos½ðt, t0Þ��zðt
0
Þdt0

þ�ðtÞ sin½ðt, 0Þ��xð0Þ þ�ðtÞ cos½ðt, 0Þ��yð0Þ: ð45Þ

In equation (45), the time-dependent phase

ðt, t0Þ ¼

Z t

t0
�ð�Þd� ð46Þ

is introduced which is a functional of the time-varying parameter �ðtÞ. The projection
of the entire dynamics onto some subspace typically entails memory effects.

8Within the path-integral approach, the same equation can be derived from a non-interacting
blip approximation (NIBA) result of the dissipative spin-boson model [132] by putting
formally therein the strength of the system-bath coupling to zero. Astonishingly enough,
the NIBA turns out to provide the exact result for this singular limit of zero-dissipation.
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Put differently, a non-locality in time emerges for the reduced space dynamics.
Moreover, an explicit dependence on the initial conditions in the ‘‘irrelevant’’
subspace is necessarily present.

3. Two-state quantum dynamics in periodic fields

Let us illustrate the practical usefulness of the exact equation (45) by its application
to a quantum dynamics occurring in strong time-periodic fields. Towards this goal,
we consider a quantum two-state tunnelling system, where the two states j1i and j2i
correspond to the two sites of charge localisation (i.e., we work in the ‘‘tunnelling’’
representation) and � ¼ const corresponds to the tunnelling matrix element. This
charge dynamics is driven by a periodic electric field of frequency � which results
in a periodic modulation of the energy bias between two localised states �ðtÞ ¼
�0 þ A cosð�tÞ [3]. We assume that the particle is prepared initially on the site ‘‘1’’
at t ¼ 0, i.e., �zð0Þ ¼ 1 and �xð0Þ ¼ �yð0Þ ¼ 0. Further, one assumes that the fre-
quency of external field is rather high, �� � and we consider the correspondingly
averaged dynamics h�zðtÞi� using the high-frequency decoupling approximation
hcos½ðt, t0Þ��zðt

0
Þi� � hcos½ðt, t

0
Þ�i�h�zðt

0
Þi� [83]. Using equation (46) and the well-

known identity expðiz sin �Þ ¼
P1

n¼�1 JnðzÞ expðin�Þ (JnðzÞ denotes the Bessel func-
tion of the first kind) the high-frequency approximation in equation (45) yields

h _��zðtÞi� ¼ ��2

Z t

0

�ðt� t0Þh�zðt
0
Þi�dt

0 ð47Þ

with the kernel �ðtÞ ¼
P1

n¼�1 J2nðA=�Þ cos½ð�0 þ n�Þt�. This latter equation can be
solved by the use of the Laplace-transform. For ~��zðsÞ :¼

R t
0 expð�stÞh�zðtÞi�dt one

obtains

~��zðsÞ ¼
1

s

1

1þ�2
P1

n¼�1 ðJ
2
nðA=�ÞÞ=ðs

2 þ ð�0 � n�Þ2Þ
: ð48Þ

From this relation now follow some key-results.

3.1. Coherent destruction of tunnelling

The formal inversion of the result in equation (48) into the time domain reads

h�zðtÞi� ¼
X

j¼0,�1,�2, ...

cj expði!jtÞ, ð49Þ

where !j ¼ isj > 0 are the poles sj of equation (48). From the quasi-periodic char-
acter of the driven dynamics it follows that all these poles lie on the imaginary axis
in complex conjugated pairs. Therefore, !�j ¼ �!j and c�j ¼ c�j . Although there
appears an infinite number of poles, only few of them contribute significantly in
the regimes of interest.

Let us consider the case of symmetric two-level system (TLS), �0 ¼ 0. Then, the
approximate solution reads (only the term with n ¼ 0 in the sum in equation (48)
contributes significantly in the high-frequency limit �=�! 0)

h�zðtÞi� ¼ cosð�tuntÞ, ð50Þ
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where �tun ¼ �jJ0ðA=�Þj is the renormalised tunnelling frequency. When the ampli-
tude A of the high-frequency driving is chosen to obey J0ðA=�Þ ¼ 0, the tunnelling
dynamics is brought (within this high-frequency approximation) to a complete
standstill. This constitutes the celebrated phenomenon of coherent destruction of
tunnelling (CDT) [127, 128] which attracted much attention and generated many
applications over recent years, see e.g., in [3, 4] and references therein.

3.2. Driving-induced tunnelling oscillations (DITO)

Let us consider now the case of a large energy bias �0 � �. In the absence of driving,
the particle remains essentially localised on the site ‘‘1’’, �zðtÞ � 1, as can be deduced
from the well-known exact solution �zðtÞ ¼ ½�

2
0 þ�2 cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ�2

p
tÞ�=½�20 þ�2

�.
When, however, a high-frequency driving �� � is applied such that the resonance
condition n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ�2

p
� �0 is approximately fulfilled, large amplitude tunnelling

oscillations in equation (50) can be induced with a tunnelling frequency �tun ¼

�jJnðA=�Þj. This phenomenon of driving-induced tunnelling oscillations (DITO),
being opposite to CDT has been revealed in [87, 129, 130]. It has recently been
verified and observed experimentally [130]. This DITO phenomenon is illustrated
in figure 3 for an ‘‘exotic’’ 5-photon (n ¼ 5) resonance case where the precise numer-
ical solution of driven TLS dynamics using equation (41) and the approximation in
equation (50) with �tun ¼ �jJnðA=�Þj are plotted for the following set of parameters:
� ¼ 0:1, �0 ¼ 20, A ¼ 24, � ¼ 3:9 or � ¼ 4:0. For � ¼ 3:9 the dynamics is almost
localised exhibiting small-amplitude oscillation – cf. dotted line near �zðtÞ ¼ 1 which
is barely visible in figure 3a but becomes clearly seen in figure 3b due to a better
resolution on a different scale. A relatively small change of the periodic-field
frequency chosen to match the resonance condition 5� ¼ �0 induces large-amplitude
tunnelling oscillations which are nicely described on the long-time-scale by the
approximation in equation (50) with �tun ¼ �jJ5ðA=�Þj. It cannot be distinguished
from the precise numerical solution in figure 3a. The frequency of these oscillations is
controlled by both the bare tunnelling frequency � and the field amplitude A. It is
worth mentioning that DITO seems to be close in spirit to the famous Rabi oscilla-
tions [131] (an interpretation given in [130]), but are in fact by no means identical

Figure 3. Driving-induced tunnelling oscillations.
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with those. Rabi oscillations correspond usually to a particular case of a small-
amplitude, A	 �, resonant driving, � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �20

p
. For �0 ¼ 0, the corresponding

problem is equivalent (in a rotated quasi-spin basis, �̂�x ! �̂�z0 , �̂�z ! �̂�x0 , �̂�y! �̂�y0 ,
and with different initial conditions) to the resonant dipole excitation of a two-state
atom with eigenfrequency !0 ¼ �. In such a case, the frequency of Rabi oscillations
!R is determined approximately by the driving amplitude, i.e., !R � A [3, 161]. This
presents the most remarkable, characteristic feature of Rabi oscillations. The DITO
frequency presents rather a driving-renormalised tunnelling frequency as in the case
of CDT. The coarse-grained character of the result in equation (50) is illustrated in
figure 3b on a short-time-scale in comparison with the precise numerical solution of
the driven dynamics. This latter one exhibits step-like transitions with a number of
oscillations on each step. The number of oscillations corresponds to the number
of emitted (absorbed) photons. With the increase of n, the ‘‘steps’’ become longer
and sharper. In order to make a further ‘‘step’’ in the transfer of population the two
level system awaits for the next portion of n photons to be emitted, or absorbed
to match the resonance condition n� ¼ �0 (a quasi-classical interpretation of the
numerically observed step feature).

4. Dissipative quantum dynamics in strong time-dependent fields

4.1. General formalism

Without loss of generality we consider a N-level, driven quantum system charac-
terised by a time-dependent Hamilton operator HSðtÞ and which interacts VSB with a
thermal bath characterised by a Hamilton operator HB. The system-bath interaction
is assumed here to be generally also time-dependent. It is characterised by the
Hamilton operator VSBðtÞ which depends both on the (relevant) variables of the
system of interest and on the thermal bath variables. The total Hamiltonian HðtÞ
thus reads

HðtÞ ¼ HSðtÞ þ VSBðtÞ þHB: ð51Þ

The dynamics of the density operator �ðtÞ of the total system is then governed by the
corresponding Liouville-von-Neumann equation, cf. equation (1). Furthermore, the
reduced density operator of interest is obtained by performing a partial trace of �ðtÞ
over the bath variables, i.e., �SðtÞ ¼ TrB�ðtÞ. The average hAi of any operator A
which depends on the variables of the system of interest can be calculated as the
corresponding trace over the system variables, i.e., hAi ¼ TrSð�SðtÞAÞ. The reduced
density operator �SðtÞ , which also depends on the initial preparation scheme, thus
contains all the necessary information required to describe the time-evolution of the
system of interest. The main task consists in obtaining a tractable closed equation
of motion for �SðtÞ. This can be achieved by applying to �ðtÞ a properly chosen
projection operator �, which projects the whole dynamics onto the subspace of
the considered quantum system, thereby accounting indirectly for the ‘‘irrelevant’’
bath variables, i.e. �SðtÞ ¼ ��ðtÞ. A proper choice for the projection operator with
the idempotent property, �2

¼�, is � :¼ �BTrB [22–24], where �B ¼ expð��HBÞ=ZB

is the equilibrium density operator of the bath; ZB ¼ TrB expð��HBÞ is the corre-
sponding partition sum, and � ¼ 1=ðkBTÞ denotes the inverse temperature. Then, �ðtÞ
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can identically be split as �ðtÞ 
 �B � �SðtÞ þ 	ðtÞ, where 	ðtÞ ¼ Q�ðtÞ represents a
cross-correlation term. Here, Q :¼ 1�� is the complementary projection operator
with the properties Q� ¼ �Q ¼ 0,Q2

¼ Q. By applying � and Q to the Liouville-
von-Neumann equation for �ðtÞ, two coupled linear operator equations for �SðtÞ and
	ðtÞ can be obtained, respectively, which in turn yield a single closed equation for
�SðtÞ after having eliminated the part 	ðtÞ. The formally exact equation for the
reduced density operator, thus reads

_��SðtÞ ¼ �iLSðtÞ�SðtÞ �

Z t

0

�ðt, t0Þ�Sðt
0
Þdt0 þ I0ðtÞ, ð52Þ

where

�ðt, t0Þ ¼ TrB½LSBðtÞSSþBðt, t
0
ÞQLSBðt

0
Þ�B� ð53Þ

denotes the memory kernel. In equation (53),

SSþBðt, t
0
Þ ¼ T exp �i

Z t

t0
½LSð�Þ þ LB þQLSBð�Þ�d�

� 
ð54Þ

is a Liouvillian propagator. Furthermore, LSðtÞð�Þ ¼ ½ ~HHSðtÞ, ð�Þ�=�hh, LBð�Þ ¼ ½HB, ð�Þ�=�hh,
LSBðtÞð�Þ ¼ ½ ~VVSBðtÞ, ð�Þ�=�hh are the corresponding Liouville operators, where ~HHSðtÞ :¼
HSðtÞ þ hVSBðtÞiB is the renormalised Hamiltonian of the dynamical system
and ~VVSBðtÞ :¼ VSBðtÞ � hVSBðtÞiB is the correspondingly re-defined system-bath
coupling.9 Moreover, I0ðtÞ in equation (52)

I0ðtÞ ¼ �iTrB LSBðtÞSSþBðt, 0Þ�ð0Þ
� �

ð55Þ

constitutes the initial correlation term, sometimes also termed ‘‘initial value term’’.
Note that the GME (52)–(55) is still exact in the subspace of the quantum system

for a quantum evolution started at t0 ¼ 0, i.e., no approximations have been invoked
so far [26, 27, 133]. Generally, a reduced quantum evolution contains some depen-
dence on the initial conditions �ð0Þ in the irrelevant subspace. We note, however,
that for a factorised (uncorrelated) initial preparation �ð0Þ ¼ �B � �Sð0Þ (�ð0Þ ¼ 0)
this initial correlation term vanishes identically, i.e., I0ðtÞ ¼ 0. This standard class of
initial preparations will be assumed in the following.

4.1.1. Weak-coupling approximation. In the second-order approximation with
respect to the system-bath coupling VSBðtÞ (the so termed weak-coupling limit) one
sets LSBðtÞ ! 0 in SSþBðt, t

0
Þ, equation (54). Moreover, let us assume a factorising

9This issue deserves to be commented on in further detail: The generalised quantum thermal
forces acting on the system from the bath should be on average unbiased. This implies that the
thermal average h� � �iB :¼ TrBð�B:::Þ of a properly defined system-bath coupling, h ~VVSBðtÞiB :¼
TrBð�B ~VVSBðtÞÞ, should be zero, i.e., h ~VVSBðtÞiB ¼ 0. For this reason, the systematic, mean-field
like contribution hVSBðtÞiB of the thermal ‘‘force’’ should be separated from the very beginning

and be included in ~HHSðtÞ without change of the Hamiltonian of the total system. Obviously,
this can always be achieved. This formal renormalisation is always assumed in the following
(with ‘‘tilde’’ omitted when applicable).
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form of the system-bath coupling VSBðtÞ ¼
1
2

P
� ��ðtÞ�̂���̂�� þ h:c: where �̂�� denote

some system operators, �̂�� are the bath operators, and ��ðtÞ are the coupling strength
functions. The complete set �̂�� is assumed to be closed under commutation relations:
½�̂��, �̂��� ¼

P
� �����̂�� with ���� being some structural constants defining a correspond-

ing Lie algebra with generators �̂��. The Hamiltonian HSðtÞ is represented as a linear
superposition

HSðtÞ ¼
1

2

X
�

b�ðtÞ�̂�� þ h:c:

in the corresponding algebra. For N-level quantum systems the following set of
operators is conveniently used. It is given (here � :¼ ðn,mÞ) by the set of operators
�̂�nm :¼ jnihmj (they correspond to the elements of corresponding Liouville space).
Here, the ket-vectors jni provide an orthonormal vector basis with the scalar product
hnjmi ¼ �nm in the corresponding Hilbert space of the considered N-level quantum
system. The representation of the system Hamiltonian in this discrete basis reads

HSðtÞ ¼
X
nm

HnmðtÞ�̂�nm, ð56Þ

with HnmðtÞ ¼ H�mnðtÞ. It is evident that any quantum system with a discrete number
of states can be represented in this way. The system-bath coupling can be chosen in
the form

VSBðtÞ ¼
X
nm

�nmðtÞ�̂�nm�̂�nm, ð57Þ

with �mnðtÞ ¼ �
�
nmðtÞ and �̂�mn ¼ �̂�

y
nm. Moreover, the dissipative operator kernel in

equation (52) reads in the given approximation:

�ðt, t0Þð�Þ ¼
X

n, n0,m,m0

�nn0ðtÞ�mm0ðt
0
Þ

n
Knn0mm0 ðt� t0Þ

h
�̂�nn0 ,Sðt, t

0
Þ�̂�mm0 ð�Þ

i

� K�n0nm0mðt� t0Þ
h
�̂�nn0 ,Sðt, t

0
Þð�Þ�̂�mm0

io
, ð58Þ

where

Sðt, t0Þ ¼ T exp �i

Z t

t0
LSð�Þd�

� 
ð59Þ

is the Liouville evolution operator of the physical system under consideration. Note
that it does include the external, time-dependent field influences exactly. Moreover,

Knn0mm0ðtÞ :¼
1

�hh2
h�̂�nn0ðtÞ�̂�mm0iB ¼ K�m0mn0nð�tÞ, ð60Þ

is the autocorrelation tensor of the thermal force operators �̂�nn0ðtÞ :¼ eiHBt=�hh�̂�nn0e
�iHBt=�hh.

An expression formally similar to equation (58) has been obtained first, for a parti-
cular case of a spin 1/2 system (and for a time-independent system-bath coupling)
in [24]. For the reduced density matrix, �nmðtÞ :¼ hnj�SðtÞjmi the following GME
follows:

_��nmðtÞ ¼ �i
X
n0m0

Lnmn0m0 ðtÞ�n0m0 ðtÞ �
X
n0m0

Z t

0

�nmn0m0ðt, t
0
Þ�n0m0 ðt

0
Þdt0, ð61Þ

546                      



where Lnmn0m0 ðtÞ ¼
1
�hh ½Hnn0ðtÞ�mm0 �Hm0mðtÞ�nn0 � is the Liouville superoperator, written

in the supermatrix representation and the corresponding memory kernels read

�nmn0m0 ðt, t
0
Þ ¼

X
kk0

n
�nk0ðtÞ�kn0ðt

0
ÞKnk0kn0ðt� t0ÞUk0kðt, t

0
ÞU�mm0ðt, t

0
Þ

þ �k0mðtÞ�m0kðt
0
ÞK�mk0km0ðt� t0ÞUnn0ðt, t

0
ÞU�k0kðt, t

0
Þ

� �nk0ðtÞ�m0kðt
0
ÞK�k0nkm0 ðt� t0ÞUk0n0ðt, t

0
ÞU�mkðt, t

0
Þ

� �k0mðtÞ�kn0ðt
0
ÞKk0mkn0 ðt� t0ÞUnkðt, t

0
ÞU�k0m0 ðt, t

0
Þ

o
, ð62Þ

where Umm0ðt, t
0
Þ :¼ hmjT expf� i

�hh

R t
t0 HSð�Þd�gjm

0
i is the evolution operator of the

considered quantum system in the Hilbert space. This result presents the most gen-
eral form of weak-coupling GME in arbitrary external fields. Generalised master
equations of a similar form have been derived before, by making use of different
methods and in different notations in [64, 66, 82].10 The kernel (62) satisfies two
important properties which must be strictly obeyed; these are (i):

�nmn0m0 ðt, t
0
Þ ¼ ��mnm0n0 ðt, t

0
Þ

(imposed by the requirement that �SðtÞ must be Hermitian, �SðtÞ ¼ �
y

SðtÞ), and (ii):X
n

�nnn0m0ðt, t
0
Þ ¼ 0

(conservation of probability, TrS �SðtÞ ¼ 1 for all times).
This driven GME (61) presents our ‘‘working horse’’ that will be used frequently

for the discussion of various applications detailed below.

4.1.2. Markovian approximation: Generalised Redfield Equations. The integro-
differential equations (61)–(62) are, notably, non-local in time, i.e., they describe
a so-termed ‘‘non-Markovian’’ quantum dynamics. This non-locality in time makes
their practical use rather cumbersome. A corresponding Markovian approximation,
which renders a description that is local in time, is therefore of great use in practice,
if it can be justified on physical grounds. There are several ways to obtain such a
Markovian approximation. The most popular one is to perform a back propagation,
i.e., �Sðt

0
Þ ¼ S�1ðt, t0Þ�SðtÞ þOð�2Þ, in the kernel of GME making use of the Liouville

evolution operator Sðt, t0Þ of the dynamical subsystem. The corresponding master
equation for the reduced density matrix, which constitutes the generalisation of
the well-known Redfield equations [135] to the case of driven, open quantum
systems reads:

_��nmðtÞ ¼ �i
X
n0m0

Lnmn0m0ðtÞ�n0m0ðtÞ �
X
n0m0

Rnmn0m0 ðtÞ�n0m0 ðtÞ, ð63Þ

10For a periodic driving, the field influence on the relaxation kernel can alternatively be taken
into account applying the corresponding Floquet basis for periodically driven quantum
dynamics. This has been done in [84, 95]. Our approach is valid, however, for arbitrary
time-dependence.
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with the explicit time-dependent relaxation tensor

Rnmn0m0ðtÞ ¼
X
kk0

Z t

0

nX
l

½�nlðtÞ�kk0ðt
0
ÞKnlkk0ðt� t0ÞUlkðt, t

0
ÞU�n0k0 ðt, t

0
Þ�mm0

þ �lmðtÞ�kk0 ðt
0
ÞK�mlk0kðt� t0ÞUm0kðt, t

0
ÞU�lk0ðt, t

0
Þ�nn0 �

� �nn0 ðtÞ�kk0ðt
0
ÞK�n0nk0kðt� t0ÞUm0kðt, t

0
ÞU�mk0 ðt, t

0
Þ

� �m0mðtÞ�kk0ðt
0
ÞKm0mkk0 ðt� t0ÞUnkðt, t

0
ÞU�n0k0 ðt, t

0
Þ

o
dt0: ð64Þ

This relaxation tensor satisfies two important relations, namely, Rnmn0m0ðtÞ ¼
R�mnm0n0 ðtÞ (�SðtÞ is Hermitian), and

P
n Rnnn0m0 ðtÞ ¼ 0 (imposed by the conservation

of probability). Notable, the upper limit of integral in (64) is here the actual evolu-
tion time t (instead of 1) – this feature softens already the well-known problem
which relates to a possible violation of positivity at initial time-scales of the quantum
evolution [136] for Redfield equations for certain initial conditions.11 Upon neglect-
ing (setting to zero) the influence of external time-dependent fields in the relaxation
tensor, by using the basis of eigenstates of time-independent HS, and setting t!1
in (64), we recover the commonly known form of the Redfield relaxation tensor.

It must be stressed that the physical nature of the thermal bath operators was up
to now still not specified. Those can be either be of bosonic, fermionic nature, or also
describe a spin bath [134]. The corresponding autocorrelation tensor (60) has to be
calculated for every particular microscopic model. We next address within this
methodology several physical applications.

5. Application I: Quantum relaxation in driven, dissipative two-level systems

Let us consider a two-level quantum system with time-dependent eigenenergy levels,12

HSðtÞ ¼ E
ð0Þ
1 þ

~EE1ðtÞ
h i

j1ih1j þ E
ð0Þ
2 þ

~EE2ðtÞ
h i

j2ih2j, ð65Þ

11This problem can be resolved by the so-called slippage of the initial conditions, see in [137–
139]. Moreover, within the weak-coupling approximation the effect of dissipation should be
consistently taken into account to the second-order of the system-bath coupling only; i.e.,
in the solutions of Redfield equations (rather than in the relaxation kernels only). The dis-
sipation-induced frequency shifts (i.e. the Lamb shifts at T ¼ 0) should also be very small
(compared to the corresponding eigenfrequencies of quantum evolution in the absence of
dissipation). Otherwise, the theory needs to be renormalised. Notwithstanding these essential
restrictions, the Redfield equations provide one of the most widely used tools to describe open
quantum systems in many areas of physics and physical chemistry [3, 4, 9, 59, 140–143].
12These levels can correspond, e.g., to spatially separated localisation sites of a transferring
(excess) electron in a protein [11]. If such electronic states possess very different dipole
moments (the difference can reach 50 D [144]), an external time-dependent electric field will
modulate the energy difference in time due to the Stark effect. Such electric field dependence of
the electronic energy levels can be very strong [144, 145]. A large modulation of the local
electric field can be induced, e.g., due attachment/detachment of an ATP molecule/products of
its hydrolysis. A substantial shift of the electronic energy levels can then be induced [146]. In a
simple setting, the corresponding modulation of an energy level can be modelled by a two-state
Markovian process [147]. The chemical source of driving force can also be substituted by a
direct application of a stochastic electric field [147, 148]. This latter possibility has been
demonstrated experimentally for some ion pumps [148].
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which is coupled to a bath of independent harmonic oscillators, possessing the
spectrum f!�g, i.e.,

HB ¼
X
�

�hh!� by�b� þ
1

2

� �
, ð66Þ

where by� and b� are the bosonic creation and annihilation operators, respectively.
The interaction with the thermal bath causes the relaxation transitions between the
eigenstates of the dynamical system (‘‘longitudinal’’ interaction). Such transitions are
absent otherwise and thus require either the emission, or the absorption of bath
phonons. The interaction is chosen to be of a bi-linear form, reading

VSB ¼ �̂�ðj1ih2j þ j2ih1jÞ , ð67Þ

with the influence of the bath being presented by a random force operator, �̂�12 ¼

�̂�
y
21 ¼ �̂�,

�̂� ¼
X
�

��
�
by� þ b�

�
: ð68Þ

Here and elsewhere below, the (real-valued) coupling constants �’s are included into
the fluctuating force �̂�. From a phenomenological perspective, the considered model
represents an analogue of the model in section 2.3.2, where a classical random force
assuming two values is replaced by a quantum operator force which possesses a
Gaussian statistics. Moreover, a possible time-dependence of the energy levels is
assumed here.

The corresponding correlation function of this Gaussian quantum stochastic

force KðtÞ :¼ K1221ðtÞ ¼ h�̂�12ðtÞ�̂�
y
12ð0Þi is complex-valued. It reads explicitly

KðtÞ ¼
1

2p

Z 1
0

Jð!Þ coth
�hh!

2kBT

� �
cosð!tÞ � i sinð!tÞ

� �
d!, ð69Þ

with the bath spectral density given by

Jð!Þ :¼
2p
�hh2

X
�

�2��ð!� !�Þ: ð70Þ

Upon extending to negative frequencies ! < 0, it is convenient to formally define
Jð�!Þ :¼ �Jð!Þ.

The complex nature of this bath correlation function is crucial for the establish-
ment of thermal equilibrium at the finite temperatures. The application of GME
(61), (62) to the present case yields a closed system of GMEs for the level populations
pnðtÞ :¼ �nnðtÞ, n ¼ 1, 2, reading,

_pp1ðtÞ ¼ �

Z t

0

½w12ðt, t
0
Þp1ðt

0
Þ � w21ðt, t

0
Þp2ðt

0
Þ�dt0,

_pp2ðtÞ ¼

Z t

0

½w12ðt, t
0
Þp1ðt

0
Þ � w21ðt, t

0
Þp2ðt

0
Þ�dt0, ð71Þ
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with memory kernels13

w12ðt, t
0
Þ ¼ 2Re½Kðt� t0Þ expði�0ðt� t0Þ þ i ~ðt, t0Þ�,

w21ðt, t
0
Þ ¼ 2Re½Kðt� t0Þ expð�i�0ðt� t0Þ � i ~ðt, t0Þ�, ð72Þ

where �0 ¼ ðE
ð0Þ
1 � E

ð0Þ
2 Þ=�hh and ~ðt, t0Þ is a functional of time-dependent driving,

equation (46), with ~��ðtÞ ¼ ½ ~EE1ðtÞ � ~EE2ðtÞ�=�hh. We shall assume that ~��ðtÞ fluctuates
(either randomly, or periodically in time) around a zero mean value. In order to
obtain the quantum relaxation averaged over the fluctuations of ~��ðtÞ one needs to
perform a corresponding stochastic averaging of the GME (71). For an arbitrary
stochastic process ~��ðtÞ, this task cannot be carried out exactly any longer;
consequently one must resort to some approximation scheme(s).

5.1. Decoupling approximation for fast fluctuating energy levels

If the characteristic time-scale for ~��ðtÞ fluctuations �� is very small in comparison
with the characteristic system relaxation time-scale �r, i.e. �� 	 �r, then one
can use a decoupling approximation by averaging for hp1, 2ðtÞi�; namely,
hexpð�i ~ðt, t0Þp1, 2ðt

0
Þi� � hexpð�i ~ðt, t

0
Þi�hp1, 2ðt

0
Þi�. For fast fluctuations of the energy

levels the relaxation dynamics then follows hp1, 2ðtÞi� with fast, superimposed small-
amplitude fluctuations whose amplitude diminishes when the ratio ��=�r 	 1
becomes smaller. A subsequent Markovian approximation for the averaged
dynamics yields a master equation description of the form:

h _pp1ðtÞi� ¼ �hW12ð�0Þi�hp1ðtÞi� þ hW21ð�0Þi�hp2ðtÞi�,

h _pp2ðtÞi� ¼ hW12ð�0Þi�hp1ðtÞi� � hW21ð�0Þi�hp2ðtÞi� ð73Þ

with the averaged transition rates reading [64],

hW12ð�0Þi� ¼

Z 1
�1

e�hh!=kBTnð!ÞJð!ÞIð�0 � !Þd!,

hW21ð�0Þi� ¼

Z 1
�1

nð!ÞJð!ÞIð�0 � !Þd! : ð74Þ

Here nð!Þ ¼ 1=½expð�hh!=ðkBTÞÞ � 1� is the Bose function, and Ið!Þ is the spectral line
shape of a Kubo oscillator _XXðtÞ ¼ i ~��ðtÞXðtÞ (see in section 2). From equations (73),
(74) one can immediately deduce that in the absence of fluctuations, where
Ið!Þ ¼ �ð!Þ, the thermal equilibrium, p1ð1Þ ¼ e��hh�0=kBTp2ð1Þ, is attained indepen-
dently of the specific model for Jð!Þ for arbitrary temperatures T. Moreover, the
thermal detailed balance condition, p2ð1ÞW21ð�0Þ ¼ p1ð1ÞW12ð�0Þ is obeyed always
with the thermal bath temperature T. In other words, the temperature T� of the
considered TLS, defined through equation (36) coincides with the temperature of the
thermal bath T, T� ¼ T. This is in a sharp contrast to the stochastic bath modelling
in section 2.3.2, where we found that p1ð1Þ ¼ p2ð1Þ and T� ¼ 1. Furthermore, one
can see that the thermal equilibrium at the bath temperature T becomes violated

13One can immediately see that if KðtÞ would be real-valued, then the forward and backward
rate kernels were always equal. This would mimic the situation of an infinite temperature as it
was elucidated in section 2 for a classical stochastic bath.
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either by periodic, or by stochastic nonequilibrium fluctuations. This also implies
that, generally, T� 6¼ T. Put differently, either periodic, or stochastic (thermally
nonequilibrium) fields drive the system out of the thermal equilibrium with the
thermal bath. This fact lies at the heart for the emergence of a diversity of interesting
and often counter-intuitive nonequilibrium effects which we shall address next.

5.1.1. Control of quantum rates. A first application is the manipulation of the
transition rates by many orders of magnitude by use of a rapidly fluctuating, discrete
stochastic fields [62, 64–66]. This scheme becomes feasible when the spectral density
of the bath Jð!Þ is sharply peaked around some vibrational frequencies. The effect
can be demonstrated for a quantum Brownian oscillator model of the bath: It
corresponds to a single quantum vibrational mode �0 which acquires a frictional
broadening width � due to a bi-linear coupling to other environmental vibrational
modes.14 The corresponding spectral density assumes the form [5]:

Jð!Þ ¼
8�20
�hh2

��0!

ð!2 ��2
0Þ

2
þ 4�2!2

: ð75Þ

Let us start out by considering first a control scenario of quantum relaxation by use
of a symmetric dichotomous Markovian noise ~��ðtÞ ¼ �� with Ið!Þ given by (28),
where �1, 2 ¼ ��. For the case15 �	 �, this spectral line shape consists of two
sharply shaped peaks, located at ! ¼ �� and possessing the width �. For �	 �,
which is typically the case, this latter broadening can be neglected. Then,
Ið!Þ � 1

2 ½�ð!� �Þ þ �ð!þ �Þ�, and the averaged rates simplify to read

hW12ð�0Þi� �
1

2
½W12ð�0 þ �Þ þW12ð�0 � �Þ�

¼
4�20��0

�hh2
ð�0 � �Þe

ð�hhð�0��Þ=kBTÞnð�0 � �Þ

½ð�0 � �Þ
2
��2

0�
2
þ 4�2ð�0 � �Þ

2

þ
ð�0 þ �Þe

ð�hhð�0þ�Þ=kBTÞnð�0 þ �Þ

½ð�0 þ �Þ
2
��2

0�
2
þ 4�2ð�0 þ �Þ

2

!
ð76Þ

14 A fast (on the time-scale �r of system relaxation) equilibration of this single mode
with other vibrational modes is assumed. This imposes an important restriction
��1r :¼ hW12ð�0Þi� þ hW21ð�0Þi� 	 � which can always be justified by a proper tuning of the
coupling constant �0. Furthermore, the broadening of vibrational spectral lines in molecular
systems � exceeds typically � > 5 cm�1 (in spectroscopic units) which corresponds � > 1012 Hz
in units of the frequency. The considered relaxation transitions must consequently occur more
slowly, e.g., an (ET) can occur on a msec time-scale [11].
15This case presents a realistic situation for experimental realisations of molecular systems
since a significant stochastic perturbation with an energy exceeding one kBT , �hh�  25 meV (at
room temperatures), corresponds in the units of frequency �  4� 1013 1/s. The frequency �
of large amplitude bistable conformational fluctuations of molecular groups is typically much
smaller.
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hW21ð�0Þi� �
1

2
½W21ð�0 þ �Þ þW21ð�0 � �Þ�

¼
4�20��0

�hh2
ð�0 � �Þnð�0 � �Þ

½ð�0 � �Þ
2
��2

0�
2
þ 4�2ð�0 � �Þ

2

þ
ð�0 þ �Þnð�0 þ �Þ

½ð�0 þ �Þ
2
��2

0�
2
þ 4�2ð�0 þ �Þ

2

!
:

From equation (76) it follows that if the quantum transition frequency �0 matches
the vibrational frequency of the medium �0 an increase of energy fluctuation size
� (induced by local electric field fluctuations in the medium) from zero to some
finite value � � � can drastically reduce the relaxation rate �0ð�0Þ ¼ hW12ð�0Þi�þ
hW21ð�0Þi�; even a practical blockade of relaxation transitions can occur [62,
64–66]. On the contrary, in the case of a frequency mismatch between �0 and �0

one in turn can dramatically enhance the rate of relaxation transitions by tuning the
noise amplitude � appropriately [66], see in figure 4a.

5.1.2. Stochastic cooling and inversion of level populations. A second effect relates
to the blockage of the rate for backward transitions hW21ð�0Þi� relative to the for-
ward rate hW12ð�0Þi�. This can cause a stochastic cooling of the TLS, where the
temperature T� becomes smaller than the temperature of the environment, i.e.,
T� < T. This interesting phenomenon is demonstrated with figure 4b. Similar in
spirit, although different in the physical mechanism is the laser cooling (of the
nuclear degrees of freedom) as it has been studied both, theoretically and
experimentally for polyatomic molecules [149].

Figure 4. (a) The averaged relaxation rate of TLS, �0ð�0Þ, in units of �20=ð�hh
2�0Þ, is depicted

versus the noise amplitude � (in units of �0) for the averaged energy bias �0 ¼ 0:4�0 and the
thermal bath temperature T ¼ 0:25�hh�0=kB and � ¼ 0:05�0. (b) The effective temperature of
TLS, T� , in units of �hh�0=kB versus the noise amplitude � (in units of �0) for the same set of
parameters of TLS and the environmental temperature T. At � � 0:6�0, where the TLS is
maximally cooled, the lower level is populated with the probability being close to one. On the
contrary, for � � 1:4�0 the upper level becomes populated with the probability being close to
one; i.e., an almost complete inversion of populations occurs. The model assumptions are well
justified for the coupling constant �0 	 0:05�hh�0 such that �0ð�0Þ 	 �.
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Moreover, for � > �0 a noise-induced inversion of steady state averaged popu-
lations takes place, i.e., for a sufficiently small positive energy bias �0 the higher
energy level becomes more populated. This constitutes the third very important effect
under discussion, see figure 4b, where this pumping effect is interpreted in terms of
a negative temperature T�. In other words, the considered nonequilibrium noise of
a sufficiently large amplitude is capable to pump quantum particles from the lower
energy level to the higher one. This provides a possible archetype for quantum
molecular pumps driven by nonequilibrium noise.

This inversion of population can be accompanied by cooling. Namely, the
ensemble of TLSs becomes first effectively cooled and only then heated up (through,
formally, T� ¼ 1 to T� ¼ �1) until the inversion of population occurs – cf. in
figure 4b. For this pumping mechanism to work, an inverted transport regime [184]
is necessary; i.e., a regime where the static, unfluctuating forward rate becomes
smaller with the increasing energy bias after reaching a maximum at �max. In the
present model, this maximum is located in the neighbourhood of �0. More precisely,
�max corresponds to the maximum in the difference between the forward and the
backward rates, rather than to the maximum of the forward rate alone. The
inversion happens for � > �max and a sufficiently small energy bias �0. A similar
mechanism has been proposed in [68] within a spin-boson modelling of electron
tunnelling in proteins, see below in section 6, driven by nonequilibrium conforma-
tional fluctuations, e.g., utilising energy of ATP hydrolysis.

The underlying mechanism seems quite general. Indeed, the inversion of popula-
tions occurs whenever the difference of averaged rates h�Wð�0Þi� :¼ hW12ð�0Þi��
hW21ð�0Þi� becomes negative, h�Wð�0Þi� < 0, for a positive bias �0 > 0. In the
discussed limiting case, h�Wð�0Þi� �

1
2 ½�Wð�0 þ �Þ þ�Wð�0 � �Þ� with �Wð��Þ ¼

��Wð�Þ. Therefore, when � exceeds �max, where �Wð�Þ achieves a maximum and
d
d��Wð�Þ < 0 for � > �max, the averaged difference of forward and backward rates
becomes negative h�Wð�0Þi� < 0, for a positive energy bias �0 > 0, i.e. an inversion
of populations takes place. In application to the quantum transport in a spatially
extended system, a similar effect results in the noise-induced absolute negative mobi-
lity [69], see below in section 7. The existence of the static current-voltage character-
istics with a negative differential conductivity part is important for the latter
phenomenon to occur.

5.1.3. Emergence of an effective energy bias. The fourth important effect, the onset
of which can be seen already in the discussed archetype model, is rooted in a possible
asymmetry of the unbiased on average fluctuations. Namely, let us consider the
symmetric quantum system, �0 ¼ 0, with asymmetric dichotomous fluctuations
of the energy levels with zero mean, see in section 2.3.1. Since in this case,
the averaged propagator of the corresponding Kubo oscillator is complex-valued,
Im hexp½i ~ðt, t0Þ�i� 6¼ 0, it can be readily seen from equation (72) after invoking the
decoupling approximation that hw12ðt, t

0
Þi� � hw21ðt, t

0
Þi� 6¼ 0 even if �0 ¼ 0. This

means that an effective asymmetry emerges. Moreover, the above difference is
proportional also to Im Kðt� t0Þ 6¼ 0. If the autocorrelation function of the
thermal bath, KðtÞ, were real (like for a stochastic bath), then no asymmetry
between the forward and backward rates could emerge in principle. Therefore,
the discussed asymmetry does emerge due to a subtle interplay of the equilibrium
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quantum fluctuations of the thermal bath and nonequilibrium classical fluctuations
of the energy levels, both of which are unbiased on average. Here is rooted the origin
of quantum dissipative rectifiers put forward in [70, 102]. The very same effect can
also be deduced from equation (74), since the corresponding spectral line Ið!Þ, cf.
equation (28), is asymmetric. Yet, ultimate insight is achieved in the slow-modulation
limit of the Kubo oscillator, K� :¼ �=�� 1, like in equation (76) where the mean
forward and backward rates are the static rates W12ð�Þ and W21ð�Þ averaged over
the energy bias distribution, pð�1, 2Þ ¼ h�1, 2i=ðh�1i þ h�2iÞ, correspondingly, i.e.,
hW12ð0Þi� ¼

P
j¼1, 2 pð�jÞW12ð�jÞ and hW21ð0Þi� ¼

P
j¼1, 2 pð�jÞW21ð�jÞ.

For several applications of quantum transport in spatially extended systems
our driving-induced breaking of symmetry leads to a rectification current in
tight-binding Brownian rectifiers [70, 102], see in section 7.

5.2. Quantum relaxation in strong periodic fields

The considered strong nonequilibrium effects are present as well in the case of a fast
periodic driving, ~��ðtÞ ¼ A cosð�tþ ’0Þ, with a static phase ’0 which is uniformly
distributed between 0 and 2p. Then, the corresponding spectral line shape form
Ið!Þ is Ið!Þ ¼

P1
n¼�1 J2nðA=�Þ�ð!� n�Þ, where JnðzÞ is the Bessel function of the

first kind.
The rate expressions (76) take on the form

hW12ð�0Þi� ¼
X1

n¼�1

J2n

�A
�

�
e�hh½�0�n��=kBTnð�0 � n�ÞJð�0 � n�Þ,

hW21ð�0Þi� ¼
X1

n¼�1

J2n

�A
�

�
nð�0 � n�ÞJð�0 � n�Þ: ð77Þ

Such an expansion of the transition rates as a sum over different emission (absorp-
tion) channels with n emitted (absorbed) photons with the corresponding probabil-
ities pn ¼ J2nðA=�Þ is similar to one used by Tien and Gordon in a different context
[3, 150]. For the averaged relaxation rate the above expression yields the same result
as in [82] where the principal possibility to regulate quantum relaxation processes in
condensed molecular systems by strong periodic external fields has been indicated.
Moreover, the inversion of populations by periodic driving takes also place for the
above model Jð!Þ and some properly adjusted parameters of the periodic driving.
For a periodically driven spin-boson model (see below in section 6) and a strong
system-bath coupling, this latter effect has been theoretically predicted and described
in [83, 89] (see also [3] for a review and further references). For the case of a weak
system-bath coupling, the inversion of populations in the spin-boson model has been
shown in [87].

5.3. Approximation of time-dependent rates

If the external field varies sufficiently slow on the characteristic time-scale, �d,
describing the decay of the kernels in equation (71), an adiabatic approxima-
tion of time-dependent rates that follow the time-variation of the energy levels
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can be invoked; i.e.,

_pp1ðtÞ ¼ �W12ð�ðtÞÞp1ðtÞ þW21ð�ðtÞÞp2ðtÞ,

_pp2ðtÞ ¼W12ð�ðtÞÞp1ðtÞ �W21ð�ðtÞÞp2ðtÞ, ð78Þ

where W21ð�Þ ¼ nð�ÞJð�Þ and W12ð�Þ ¼ expð�hh�=kBTÞW21ð�Þ are the static rates. For
discrete state noise, this approximation holds whenever h�ji � �d. Then, the corre-
sponding rates describe a discrete state stochastic process and the averaging method
of section 2 can be applied. In this limiting case, the corresponding Laplace-
transformed averaged populations can be given in exact analytical form. In the
considered case this corresponds to the averaging of a Kubo oscillator with an
imaginary frequency. The corresponding averaged solution can be analytically
inverted into the time domain in the case of two-state Markovian fluctuations.
This solution is generally bi-exponential. Two limiting cases can be distinguished
which can be classified by the Kubo number KW of the rate fluctuations, i.e. by the
product of the variance of the rate fluctuations multiplied with the corresponding
autocorrelation time. In a slow modulation limit (in terms of the rate fluctuations),
KW � 1 and the (ensemble) averaged relaxation is approximately described by a
quasi-static averaging of the time-dependent solutions with the static, ‘‘frozen’’
energy bias randomly distributed. It assumes a bi-exponential form, but can be
multi-exponential and anomalously slow in a more general case of multi-state fluc-
tuations. The opposite limit of fast modulation (in terms of the rate fluctuations,
KW 	 1) corresponds to the averaged rate description which is detailed above and
which invokes the decoupling approximation and in addition can possibly involve a
slow modulation limit in terms of the energy level fluctuations, K� � 1. The resulting
averaged relaxation process remains approximately single-exponential.

In view of the presence of many different time-scales the underlying physics is
nontrivial. Therefore, it is useful to be able to resort to a case study where the
stochastic averaging can be performed exactly. Such an archetypal investigation
has been put forward in [100] and has been applied to the stochastic spin-boson
model in [68, 101].

5.4. Exact averaging for dichotomous Markovian fluctuations

By use of the conservation of probabilities, the system of integro-differential
equations (71) can be reduced to a single equation for the difference of populations
�zðtÞ ¼ p1ðtÞ � p2ðtÞ. It reads:

_��zðtÞ ¼ �

Z t

0

fðt, t0Þ�zðt
0
Þdt0 �

Z t

0

gðt, t0Þdt0 ð79Þ

with the integral kernels

fðt, t0Þ ¼ f0ðt, t
0
Þ cos½�0ðt� t0Þ þ ~ðt, t0Þ�,

gðt, t0Þ ¼ g0ðt, t
0
Þ sin½�0ðt� t0Þ þ ~ðt, t0Þ�, ð80Þ

where

f0ðt, t
0
Þ ¼ f0ðt� t0Þ ¼ 4 Re½Kðt� t0Þ�,

g0ðt, t
0
Þ ¼ g0ðt� t0Þ ¼ �4 Im½Kðt� t0Þ�: ð81Þ
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The kernel fðt, t0Þ in equation (79) denotes a stochastic functional of the driving field
~��ðtÞ on the time interval ½t0, t� (with times later than t0) whereas �zðt

0
Þ is a functional of

the dichotomous Markovian process (DMP) for the times prior to t0. The task of
stochastic averaging of the product of such functionals, h fðt, t0Þ�zðt

0
Þi, can become

very difficult, see [151]. However, in the case ~��ðtÞ ¼ ��ðtÞ, where �ðtÞ ¼ �1 is sym-
metric DMP with unit variance and an autocorrelation time �c ¼ 1=� this task can be
solved exactly by referring to a theorem by Bourret, Frisch and Pouquet [152] (for a
different proof of this remarkable exact result, see also [153]). It reads:
h fðt,t0þ �Þ�ðt0þ�Þ�ðt0Þ�zðt

0
Þi¼ h fðt,t0þ �Þih�ðt0þ �Þ�ðt0Þih�zðt

0
Þiþh fðt,t0þ �Þ�ðt0þ �Þi�

h�ðt0Þ�zðt
0
Þi for � � 0. By passing to the limit �! 0 and using the characteristic

property of the DMP, namely that �2ðtÞ ¼ 1 (without averaging), the above relation
yields an important corollary [100]:

h fðt, t0Þ�zðt
0
Þi ¼ h fðt, t0Þih�zðt

0
Þi þ h fðt, t0Þ�ðt0Þih�ðt0Þ�zðt

0
Þi: ð82Þ

This result is beyond the decoupling approximation, given by the first term in the
sum. The result for the cross-correlation function h�ðtÞ�zðtÞi is more intricate. The
equation of motion for this cross-correlation function can be obtained thanks to a
theorem by Shapiro-Loginov [51, 154], reading,

d

dt
h�ðtÞ�zðtÞi ¼ ��h�ðtÞ�zðtÞi þ

�
�ðtÞ

d�zðtÞ

dt

�
: ð83Þ

Use of this relation in turn generates an integro-differential equation for h�ðtÞ�zðtÞi,
where the problem of decoupling of h�ðtÞfðt, t0Þ�zðt

0
Þi emerges. It can be solved in the

same way as in equation (82), namely

h�ðtÞfðt, t0Þ�zðt
0
Þi ¼ h�ðtÞfðt, t0Þih�zðt

0
Þi þ h�ðtÞfðt, t0Þ�ðt0Þih�ðt0Þ�zðt

0
Þi: ð84Þ

All these averaged functionals, like h f ðt, t0Þi, h�ðtÞ f ðt, t0Þi, h f ðt, t0Þ�ðt0Þi,
h�ðtÞ f ðt, t0Þ�ðt0Þi can be expressed in terms of the averaged propagator of the corre-
sponding Kubo oscillator Sð0Þðt� t0Þ ¼ hexp½i�

R t
t0 �ð�Þd��i given in equation (29)

with 
 ¼ �=2 (zero asymmetry), and its derivatives SðnÞðtÞ :¼ ð1=�nÞðd n=dtnÞSð0ÞðtÞ
[100, 101]. Applying the general results in equations (82), (83) and (84) to
equation (79) yields a closed system of two integro-differential equations [100, 101]:

d

dt
h�zðtÞi ¼ �

Z t

0

�
Sð0Þðt� t0Þf0ðt� t0Þ cos½�0ðt� t0Þ�h�zðt

0
Þi

� Sð1Þðt� t0Þf0ðt� t0Þ sin½�0ðt� t0Þ�h�ðt0Þ�zðt
0
Þi

þ Sð0Þðt� t0Þg0ðt� t0Þ sin½�0ðt� t0Þ�
�
dt0, ð85Þ

d

dt
h�ðtÞ�zðtÞi ¼ ��h�ðtÞ�zðtÞi þ

Z t

0

�
Sð2Þðt� t0Þf0ðt� t0Þ cos½�0ðt� t0Þ�h�ðt0Þ�zðt

0
Þi

þ Sð1Þðt� t0Þf0ðt� t0Þ sin½�0ðt� t0Þ�h�zðt
0
Þi

þ Sð1Þðt� t0Þg0ðt� t0Þ cos½�0ðt� t0Þ�
�
dt0:
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A subsequent Markovian approximation for equation (85) then yields [100]:

d

dt
h�zðtÞi ¼ ��0h�zðtÞi � �1h�ðtÞ�zðtÞi � r0,

d

dt
h�ðtÞ�zðtÞi ¼ ��1h�zðtÞi � ð�þ �2Þh�ðtÞ�zðtÞi � r1 ð86Þ

with

�k ¼

Z 1
�1

coth
�hh!

2kBT

� �
Jð!ÞIkð�0 � !Þd!,

rk ¼

Z 1
�1

Jð!ÞIkð�0 � !Þd!, ð87Þ

where Ikð!Þ ¼ ð�!=�Þ
kIð!Þ and Ið!Þ is given in equation (28) with �1, 2 ¼ ��. It can

be shown that all known limiting cases are reproduced from this remarkable result.
For the case of weakly coloured noise K� 	 1 (i.e. the fast modulation limit of

the Kubo oscillator), the spectral line Ið!Þ becomes a Lorentzian with the width
D ¼ �2=�. The same result holds true in the white noise limit �!1, �!1,
with D ¼ const and K�! 0. In these limits �1 is negligible small, �1 � 0, and the
relaxation is described by the averaged rate �0. Precisely the same result re-emerges
also for white Gaussian noise ~��ðtÞ with the noise intensity D. The spectral line Ið!Þ
becomes narrower when � increases, – this constitutes the celebrated motional nar-
rowing limit of NMR [33, 32] –, and approaches zero when �!1 (with � kept
constant). Such infinitely fast fluctuations have no influence on the considered rate
process; the field-free description is thus reproduced with the thermal equilibrium
being restored.

In the slow modulation limit of the Kubo oscillator (K� � 1), Ið!Þ � I2ð!Þ �
1
2 ½�ð!þ �Þ þ �ð!� �Þ� and I1ð!Þ �

1
2 ½�ð!þ �Þ � �ð!� �Þ�, with the corresponding

line widths neglected. In this case, the approximation of time-dependent fluctuating
rates following adiabatically to the energy levels fluctuations becomes justified. The
relaxation is generally bi-exponential with the two rates given by

�1,2 ¼
�

2
þ �0 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ � ��Þ

2
þ �2

q
: ð88Þ

Here, �� ¼ coth½�hhð�0 � �Þ=2kBT�Jð�0 � �Þ is the relaxation rate in the quasi-static
limit and �0 ¼ ð�þ þ ��Þ=2. Furthermore, if �� �0, we have �1 � � (note that the
corresponding exponent expð��1tÞ contributes, however, with a very small weight),
and �2 � �0 (with a weight which approximately equals one): This in turn implies
that the relaxation is practically single exponential with rate �0 and corresponds
to the fast modulation limit in terms of the fluctuating rates.

6. Application II: Driven electron transfer within a spin-boson description

Let us proceed with an application of our general theory to the celebrated driven
spin-boson model [3]. This model is of special importance since it describes a large
variety of physical phenomena [1, 2], such as relevant aspects of ET in molecular
systems.
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6.1. Curve-crossing problems with dissipation

The simplest case of a two-state donor–acceptor ET reaction can be considered as a
curve-crossing problem within the description of two diabatic electronic states j1i
and j2i with electronic energies V1ðxÞ and V2ðxÞ that depend on a nuclear reaction
coordinate x [8, 9, 157–159] (cf. figure 5). Namely, after separating nuclear
and electronic degrees of freedom within the Born-Oppenheimer approximation,
the electron tunnelling process coupled to the nuclear dynamics (modelled by the
reaction coordinate x) can be described by the following Hamiltonian

Htunðx, p, tÞ ¼
p̂p2

2M
þ V1ðx, tÞ

" #
j1ih1j þ

p̂p2

2M
þ V2ðx, tÞ

" #
j2ih2j

þ
1

2
�hh�ðtÞ

�
j1ih2j þ j2ih1j

�
: ð89Þ

The time-dependent electronic curves in equation (89)

V1, 2ðx, tÞ ¼
1

2
M�2

1, 2ðx� x0=2Þ
2
� �hh�0=2� d1, 2EðtÞ, ð90Þ

can generally possess different curvatures in the parabolic approximation with
minima energetically separated by �hh�0 and separated by a distance x0 (the tunnelling
distance). Moreover, such electronic states generally possess electric dipole moments
d1, 2 (their coordinate dependence is neglected) and thus the discussed energy levels
will generally become dependent either on the stochastic microscopic fields of the
environment, or on an externally applied electric field EðtÞ. The corresponding time-
dependence can likewise reflect also some nonequilibrium conformational dynamics.
Moreover, the coupling or tunnelling matrix element �ðtÞ can also parametrically
depend on a nonequilibrium reaction coordinate which generally introduces an
explicit stochastic time-dependence. The reaction coordinate x is coupled to the

∈0

x0

V(x)

x

V2

V1

Figure 5. Sketch of the diabatic electronic curves. Note that two crossing points occur in the
presence of different curvatures [160].
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rest of vibrational degrees of freedom of the environment. This introduces a
dissipation mechanism into the tunnelling problem which can be modelled by a
bilinear coupling of x to the thermal bath of harmonic oscillators [5, 20],

HBI ¼
1

2

X
i

�
p̂p2i
mi

þmi!
2
i

�
xi �

ci
mi!

2
i

x

�2
: ð91Þ

It is worth pointing out that the frequencies �1, 2 of the oscillator x can depend on
the electronic state. In other words, the relevant vibration modes can become either
softer, or more rigid depending on the electronic state. In the following, we neglect
this possible effect and assume that �1 ¼ �2 ¼ �0, but note the studies in [155, 156,
160] for the more general situation. Moreover, one assumes that the reaction coor-
dinate relaxes rapidly (with respect to the time-scale of ET) into thermal equilibrium
with the bath of oscillators. Then, a canonical transformation from the ‘‘reaction
coordinateþN bath oscillators’’ to ‘‘Nþ 1 new bath oscillators’’ brings the original
problem into the spin-boson form, i.e., [5]

HðtÞ ¼
1

2
�hh�ðtÞ�̂�z þ

1

2
�hh�ðtÞ�̂�x þ

1

2
x0�̂�z

X
�

~cc� ~xx� þ
1

2

X
�

�
~pp2�
~mm�

þ ~mm� ~!!2
� ~xx2�


, ð92Þ

where �ðtÞ ¼ �0 � ðd1 � d2ÞEðtÞ=�hh. The coupling between the quasi-spin and boson
bath is characterised by a so-called spectral density16 ~JJð!Þ ¼ ðp=2Þ

P
ið ~cc

2
�= ~mm� ~!!�Þ�

�ð!� ~!!�Þ [1]. Moreover, we assume for the low frequency behaviour an Ohmic-
like coupling between the reaction coordinate and the environmental vibrational
modes (which corresponds in the classical limit to a viscous frictional force F ¼
� _xx acting on the reaction coordinate x) which in turn yields the effective spectral
density ~JJð!Þ ¼ !ð�4

0=ðð!
2
��2

0Þ
2
þ 4!2�2ÞÞ; � ¼ =2M. This scheme corresponds

to the model of a damped Brownian harmonic oscillator used in equation (75)
with �0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hh�0Þ�

p
, where � ¼Mx20�

2
0=2 is the reorganisation energy. The coupling

strength  can be related to the dimensionless (Kondo) parameter � ¼ x20=2p�hh ¼
ð2=pÞð�=�hh�0Þð�=�0Þ. The use of the representation of bosonic operators in
equation (6.1) then yields

HðtÞ ¼
1

2
�hh�ðtÞ�̂�z þ

1

2
�hh�ðtÞ�̂�x þ

1

2
�̂�z	ðtÞ

X
�

��
�
by� þ b�

�
þ
X
�

�hh!�

�
by�b� þ

1

2

�
ð93Þ

(the ‘‘tilde’’ over !� is omitted here). To address formally the most general case we
assume in addition that the system-bath coupling can be modulated in time as well,
i.e., �� ! ��	ðtÞ with some prescribed time-dependent function 	ðtÞ.

6.2. Weak system-bath coupling

Let us consider first the case of a weak system-bath coupling. The corresponding
generalised master equations are obtained by applying equations (61), (62) (in the
representation of �̂�nm) to the considered spin-boson model. This yields after some

16This definition is related to the one given in equation (70) by: Jð!Þ ¼ 2x20 ~JJð!Þ=�hh with
�� ¼ x0 ~cc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh=ð2 ~mm� ~!!�Þ

p
, ~xx� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh=ð2 ~mm� ~!!�Þ

p
ðby� þ b�Þ.
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cumbersome calculations by using the quasi-spin basis the following GMEs:

_��xðtÞ ¼ ��ðtÞ�yðtÞ �

Z t

0

�xxðt, t
0
Þ�xðt

0
Þdt0�

Z t

0

�xyðt, t
0
Þ�yðt

0
Þdt0�AxðtÞ,

_��yðtÞ ¼ �ðtÞ�xðtÞ ��ðtÞ�zðtÞ �

Z t

0

�yxðt, t
0
Þ�xðt

0
Þdt0�

Z t

0

�yyðt, t
0
Þ�yðt

0
Þdt0�AyðtÞ, ð94Þ

_��zðtÞ ¼�ðtÞ�yðtÞ,

with the kernels reading

�xxðt, t
0
Þ ¼ 	ðtÞ	ðt0ÞRe½Kðt� t0Þ�Re½U2

11ðt, t
0
Þ þU2

12ðt, t
0
Þ�,

�yyðt, t
0
Þ ¼ 	ðtÞ	ðt0ÞRe½Kðt� t0Þ�Re½U2

11ðt, t
0
Þ �U2

12ðt, t
0
Þ�,

�xyðt, t
0
Þ ¼ 	ðtÞ	ðt0ÞRe½Kðt� t0Þ�Im½U2

11ðt, t
0
Þ �U2

12ðt, t
0
Þ�,

�yxðt, t
0
Þ ¼ �	ðtÞ	ðt0ÞRe½Kðt� t0Þ�Im½U2

11ðt, t
0
Þ þU2

12ðt, t
0
Þ�, ð95Þ

and the inhomogeneous terms given by

AxðtÞ ¼ 2

Z t

0

	ðtÞ	ðt0ÞIm½Kðt� t0Þ�Im½U11ðt, t
0
ÞU12ðt, t

0
Þ�dt0,

AyðtÞ ¼ 2

Z t

0

	ðtÞ	ðt0ÞIm½Kðt� t0Þ�Re½U11ðt, t
0
ÞU12ðt, t

0
Þ�dt0 : ð96Þ

The evolution operator of the driven TLS in the absence of coupling, which defines
the Hamiltonian HDðtÞ of the driven, nondissipative dynamics, is denoted by

Unmðt, t
0
Þ ¼ hnjT exp �

i

�hh

Z t

t0
HDð�Þd�

� �
jmi:

This propagator enters the above memory kernels; it can be found numerically
from the solution of the corresponding Schrödinger equation for an arbitrary time-
dependence. Moreover, in the case of a periodic driving, an expansion into Floquet
modes is conveniently applied, see in [161], and further references therein. Other
methods, e.g., the use of a Magnus expansion [162] are also possible. Due to the
unitary quantum evolution in the absence of dissipation we have U22ðt, t

0
Þ ¼ U�11ðt, t

0
Þ

and U21ðt, t
0
Þ ¼ �U�12ðt, t

0
Þ with det½Unmðt, t

0
Þ� ¼ 1 for arbitrary time dependence

of �ðtÞ.
Time nonlocality of the GMEs in equation (94) makes them difficult to study

from a numerical viewpoint. To work with a memoryless Markovian description
presents, therefore, a pivotal advantage. If the dissipation is very weak, this descrip-
tion suffices to capture the main influences of dissipation on the driven quantum
dynamics, i.e., the emergence of an exponential relaxation (and decoherence)
described by some small rate constants and corresponding dissipation-induced
frequency shifts, i.e. the Lamb shifts occurring even at T ¼ 0. Both the relaxation
rates and the frequency shifts are proportional, in the lowest order, to �2�.
Applying equations (63), (64) to the considered dynamics yields the following driven
Bloch-Redfield equations:

_��xðtÞ ¼ ��ðtÞ�yðtÞ � RxxðtÞ�xðtÞ � RxzðtÞ�zðtÞ � AxðtÞ,

_��yðtÞ ¼ �ðtÞ�xðtÞ ��ðtÞ�zðtÞ � RyyðtÞ�yðtÞ � RyzðtÞ�zðtÞ � AyðtÞ, ð97Þ

_��zðtÞ ¼ �ðtÞ�yðtÞ
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with the relaxation matrix elements reading

RxxðtÞ ¼ RyyðtÞ ¼

Z t

0

	ðtÞ	ðt0ÞRe½Kðt� t0Þ�½jU11ðt, t
0
Þj
2
� jU12ðt, t

0
Þj
2
�dt0,

RxzðtÞ ¼ 2

Z t

0

	ðtÞ	ðt0ÞRe½Kðt� t0Þ�Re½U11ðt, t
0
ÞU12ðt, t

0
Þ�dt0, ð98Þ

RyzðtÞ ¼ �2

Z t

0

	ðtÞ	ðt0ÞRe½Kðt� t0Þ�Im½U11ðt, t
0
ÞU12ðt, t

0
Þ�dt0:

In the common case of a time-independent tunnelling matrix element, i.e. �ðtÞ ¼
const and a time-independent system-bath coupling, i.e. 	ðtÞ ¼ 1 (what is assumed in
the following), this result reduces to the driven Bloch-Redfield equations derived in
[87]. Note the different signs of � and � used throughout this work and in [87], as
well as some other cited references.

For constant bias �ðtÞ ¼ �0, and constant tunnelling coupling �ðtÞ ¼ �,

U11ðt, t
0
Þ ¼ cos½!0ðt� t0Þ=2� � i

�0
!0

sin½!0ðt� t0Þ=2�,

U12ðt, t
0
Þ ¼ �i

�

!0

sin½!0ðt� t0Þ=2�, ð99Þ

where !0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ�2

p
. Then, the equations reduce to the non-driven Bloch-Redfield

equations of [163]. Some different weak-coupling master equations for the driven
spin-boson model have been derived in [94] using the path integral approach. The
equation for �zðtÞ (not shown here) has the form of a closed integro-differential
equation of rather involved form. In the limit of vanishing dissipation it reduces
to equation (45) derived within a projection operator formalism.

The numerical equivalence of the our driven Bloch-Redfield equations and the
weak-coupling integro-differential equation of [94] has been demonstrated in [87],
both by comparison of the numerical solutions of both equations for the initial-
to-intermediate part of the relaxation time-scale and by comparison of the numerical
solution of the Bloch-Redfield equation and an approximate analytical solution
of the weak-coupling GME of path-integral approach on the whole relaxation
time-scale. This numerical comparison has been performed for periodically driven
case, �ðtÞ ¼ ��0 � s cosð�tÞ, for the Ohmic bath with exponential cutoff, Jð!Þ ¼
4p�!e�!=!c , where � is the dimensionless coupling strength (Kondo parameter)
which has to be sufficiently small.17

Both approaches agree quite well, cf. in figure 6. The presented approach, how-
ever, is technically more convenient. The results possess a broad range of applica-
tions; for example, it allows one to study a mechanism of suppression of quantum

17 An important restriction is: �ð�=!0Þ
2 lnð!c=!0Þ 	 1 for !c � !0. It stems from the require-

ment of the smallness of the frequency Lamb shift, !0 ! !r, at T ¼ 0. This restriction is most
crucial for �0 ¼ 0, where !0 ¼ � and !r ¼ �r � �½1� � lnð ~!!c=�Þ� � � exp½�� lnð ~!!c=�Þ� �
�ð�= ~!!cÞ

�=ð1��Þ (for �	 1, to the linear order in � lnð ~!!c=�Þ). Thus, this frequency shift is
consistent with the renormalisation in section 6.3. For a large asymmetry �0 � �, the validity
range of Bloch-Redfield equations in � becomes broader.
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decoherence by strong periodic fields for a two-level atom dynamics in an optical
cavity [164]. The investigation of similar mechanisms is also of prime importance
for the investigation of the quantum decoherence in various quantum information
processing applications [165].

Figure 6. (a) Numerical comparison of the driven Bloch-Redfield equations of [87] (dotted
line) and the path-integral GME of [94] (full line) for an oscillatory high-frequency driving
�� !0 (data taken from [87]). Both depicted numerical solutions practically coincide within
line width. The dashed-dotted line depicts a quasi-analytical solution (for details see in [87]) of
the driven path-integral GME. It captures well the main features of the driven dynamics,

lacking only some finer details. Time and frequencies are measured in units of ��1 and �,
correspondingly. The used parameter sets are depicted in the figure. (b) Corresponding asymp-
totic long-time dynamics: the numerical solution of the driven Bloch-Redfield equations
(dotted line) is compared with the quasi-analytical solution of driven path-integral GME
(full line). Both solutions agree well within the width of the small-amplitude, driving induced
oscillations. The two insets depict the analytical results for the rate of averaged relaxation
�Rð�0Þ and the difference of asymptotic populations P1ð�0Þ :¼ � limt!1 �zðtÞ, respectively.
The rate of incoherent relaxation �R exhibits characteristic resonance peaks, being located
at multiple integers of the driving frequency �. These peaks are shifted replicas of the
dc-driven rate with different weights, i.e. the case with no oscillatory forcing acting (i.e.
a vanishing driving amplitude s ¼ 0). Thus, a suitable chosen static field �0 can enhance or
suppress the decay of populations. The asymptotic population difference P1 exhibits a non-
monotonic dependence versus the asymmetry �0 when combined with a high-frequency driving
field. For appropriate values of bias �0, a population inversion takes place (P1 < 0 when
�0 > 0, and vice versa).
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6.3. Beyond weak-coupling theory: Strong system-bath coupling

Thus far we concentrated on the case of weak-coupling to quantum thermal heat
bath, or the regime of weak dissipation, respectively. The analytic theory is, however,
not restricted to the case of weak dissipation only. In fact, by use of a combination
with the method of canonical (unitary) transformations one can study the opposite
limit of strong dissipation and weak tunnelling. To do so, let us consider the spin-
boson problem in equation (93) in the case of a strong coupling between the quasi-
spin and the bath degrees of freedom. As a primary effect, the bath oscillators will
become shifted due to this coupling to new positions which depend on the spin state.
If the tunnelling coupling � were absent, then the small polaron unitary transforma-
tion [1, 11, 166–171]

ÛU ¼ exp

�
1

2
�̂�zR̂R

�
, R̂R ¼

X
�

��
�hh!�

�
By� � B�

�
ð100Þ

to the new basis of displaced bath oscillators By� ¼ Uyby�U ¼ by� þ ð��=2�hh!�Þ�̂�z, B� ¼
Uyb�U ¼ b� þ ð��=2�hh!�Þ�̂�z and boson-dressed spin states, j ~nni :¼ ÛUyjni would in fact
diagonalise the Hamiltonian, solving thereby the problem of finding the eigenstates
of the total system exactly. For this reason, the corresponding canonically trans-
formed basis of phonon-dressed quasi-spin states (polaronic states) and displaced
bath oscillators is well suited for an approximate treatment in the case of weak
intersite tunnelling and strong system-bath coupling. In this new polaronic basis
the Hamiltonian reads,

HðtÞ ¼
1

2
�hh�ðtÞ

h
j~11ih~11j � j~22ih~22j

i
þ
1

2
�hh�ðtÞ

��
eR̂R
�
B
j~11ih~22j þ

�
e�R̂R

�
B
j~22ih~11j

�
þ
1

2
�hh�ðtÞ

�h
eR̂R �

�
eR̂R
�
B

i
j~11ih~22j þ

h
e�R̂R �

�
e�R̂R

�
B

i
j~22ih~11j

�
þ
1

2

X
�

�hh!�ðB
y

�B� þ 1=2Þ � �ÎI=4 ð101Þ

where

� ¼
�hh

2p

Z 1
0

Jð!Þ

!
d! ð102Þ

is the reorganisation energy.
Since hexp½�R̂R�iB ¼ exp½hR̂R2

iB=2� ¼ exp½�D�, where D ¼ 1
4p

R1
0 ½Jð!Þ cothð��hh!Þ=

!2
�d! and � ¼ 1=ðkBTÞ, the effective tunnelling coupling, �r :¼ � expð�DÞ, between

the polaronic states is exponentially suppressed by the Debye-Waller factor [11, 167,
168]. For the relevant case of Ohmic coupling, Jð!Þ ¼ 4p�! expð�!=!cÞ, D!1
and �r ! 0 due to the infrared divergence of the corresponding integral. One can
attempt to remove this divergence by using instead of �� in the polaron transforma-
tion some variational parameters to be determined from the requirement of a mini-
mum of the (free) energy of the whole system [170]. An approximate solution of the
corresponding variational problem by using the Peierls-Bogolyubov-Feynman upper
bound for the free energy [172, 173] leads [170] to a self-consistent equation for �r

which at T ¼ 0 and for the symmetric case �ðtÞ ¼ 0 reads,

�r ¼ � exp
h
�

1

4p

Z 1
0

Jð!Þ

ð!þ�rÞ
2
d!
i
: ð103Þ
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Numerically, it can be solved by iterations. An approximate analytical solution is
also available in the limiting case !c � � for � < 1. It yields the celebrated renor-
malised tunnelling matrix element, i.e., �r ¼ �ð�= ~!!cÞ

�=ð1��Þ [1, 2, 170, 174, 175] with
~!!c ¼ C!c, where C is some constant which depends on the precise form of cutoff
function in Jð!Þ. In this case, the use of the variationally optimised polaron basis
allows one to obtain an effective Bloch-Redfield description which interpolates
well between weak and strong dissipation, see for the undriven case the study
in [170]. The corresponding generalisation of this approach onto the driven case
for an intermediate coupling strength � < 1 remains yet to be done. Within our
approach this generalisation is rather straightforward.

We proceed further with the case of a strong coupling, i.e. � � 1, where �r does
iterate to zero for any fixed value of !c. This fact indicates the famous dissipation-
induced localisation transition [1, 174, 175]. In this case, the discussed divergence is
not removable; it is real. The polaronic states are strictly localised in this case. This is
also the feature that causes the localisation phase transition in the dissipative tight-
binding model [2, 176, 177]. The second line in equation (101) presents a (small) time-
dependent interaction between the dressed system and the bath which can be handled
in perturbation theory in the lowest order of tunnelling coupling �. Applying the
GME (61) to the considered case of an Ohmic bath yields [67, 101] a GME in the
form of equations (79), (80) wherein f0ðt, t

0
Þ and g0ðt, t

0
Þ assume, however, a distinct

different form; namely,

f0ðt, t
0
Þ ¼ �ðtÞ�ðt0Þ exp½�ReQðt� t0Þ� cos½ImQðt� t0Þ�,

g0ðt, t
0
Þ ¼ �ðtÞ�ðt0Þ exp½�ReQðt� t0Þ� sin½ImQðt� t0Þ�, ð104Þ

where

QðtÞ ¼

Z t

0

dt1

Z t1

0

Kðt2Þdt2 þ i�t=�hh ð105Þ

denotes the doubly-integrated autocorrelation function of the bath, KðtÞ, in
equation (69). For �ðtÞ ¼ const the same generalised master equation was derived
in [88] using a different approach. It has been derived also in [98] using the path-
integral method within the so-called noninteracting blip approximation (NIBA). In
the case �ðtÞ ¼ const and �ðtÞ ¼ const, it reduces to the NIBA master equation of
[178–180].

Notably, the driven NIBA master equation is valid for � � 1 at T ¼ 0 and �0 ¼ 0
(and sufficiently small �	 �=�hh ¼ 2�!c). It can also be used, however, for � < 1 for
an asymmetric case, �0 6¼ 0, and/or for T > 0, where the dynamics (in the absence of
driving) is incoherent and where �r ¼ 0. The parameter domain, where this latter
condition is fulfilled, is defined from the solution of a (more complicated than
equation (103)) self-consistent equation for �r which generally depends on the static
bias �0, temperature T, cutoff !c, It can be solved only numerically: in particular, for
�0 6¼ 0 and T ¼ 0, the renormalised tunnelling coupling vanishes, �r ¼ 0, already for
� > 1=2. Moreover, even for zero energy bias, �0 ¼ 0, the renormalised tunnelling
coupling vanishes at a sufficiently high temperature, p�kBT > �hh� [170]. Even more,
for �r 6¼ 0, the incoherent tunnelling regime holds obviously when kBT� �hh�r.
Surprisingly, however, for the symmetric situation, �0 ¼ 0, the NIBA master
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equation turns out to be a very good approximation even for arbitrarily small �
and T (including coherent dynamics) in the so-called scaling limit !c � � with �r

fixed. This remarkable fact is rationalised within the path-integral approach [2].
Some understanding can be obtained by observing that in the limit of vanishing
dissipation �! 0 the NIBA master equation is exact and it reduces to the one in
equation (45), for the initial condition being �zð0Þ ¼ �1. This, however, amounts to
a singular limit which must be handled with care.

6.3.1. Fast fluctuating energy levels. Let us assume for the following an incoherent
quantum dynamics with a time-independent tunnelling matrix element �ðtÞ ¼ const.
In the case of fast stationary fluctuating energy levels the procedure of section 5 leads
(after Markovian approximation) to an averaged dynamics in equation (73) with the
time-averaged transition rates given by

hW12ð�0Þi� ¼
1

2
�2Re

Z 1
0

ei�0t�QðtÞhSðtÞi� dt ð106Þ

hW21ð�0Þi� ¼
1

2
�2Re

Z 1
0

e�i�0t�QðtÞhS�ðtÞi� dt, ð107Þ

where,

hSðtÞi� :¼ hSðtþ t0, t0Þi� ¼ e
i
R tþt0

t0
~��ðt0Þdt0

� �
�

ð108Þ

is the averaged propagator of the corresponding Kubo oscillator which does not
depend anymore on the initial time t0, or the initial phase of driving. These averaged
rates can be also given in the equivalent spectral representation form, like in
equation (74),

hW12ð�0Þi� ¼
p
2

�2

Z 1
�1

FCð!ÞIð�0 � !Þd!,

hW21ð�0Þi� ¼
p
2

�2

Z 1
�1

e��hh!=kBTFCð!ÞIð�0 � !Þd!, ð109Þ

where

FCð!Þ ¼
1

2p

Z 1
�1

exp½i!t�QðtÞ�dt ð110Þ

is the Franck-Condon factor18 which describes spectral line shape due to multi-
phonon transitions [8, 181, 182], and Ið!Þ denotes the spectral line shape of
the Kubo oscillator, _XXðtÞ ¼ i ~��ðtÞXðtÞ. The result in equation (106) is in essence the
Golden Rule result generalised here to fast fluctuating nonequilibrium fields. This
fact underlines the generality and importance of the nonequilibrium Golden Rule
result which is very useful in many applications. Many profound nonequilibrium

18i.e. the thermally weighted overlap of the wave functions of displaced quantum oscillators.
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effects described in this work can be rationalised within its framework. The structure
of this result has a clear physical interpretation. Namely, FCð!Þ in (110) is nothing
but the spectral line shape of a quantum Kubo oscillator with the frequency modu-
lated by the quantum Gaussian force �̂�ðtÞ in equation (68) (in the corresponding
Heisenberg representation) which has the complex-valued equilibrium autocorrela-
tion function in equation (69). Due to the Gaussian character of the quantum ran-
dom force, this spectral line shape in equation (110) is expressed merely in terms of
the doubly-integrated autocorrelation function KðtÞ and the reorganisation energy
term in equation (105). Due to the equilibrium character of quantum fluctuations,
FCð!Þ possesses a symmetry property, FCð�!Þ ¼ e���hh!FCð!Þ, which is enforced
by the thermal detailed balance condition. It holds independently of the form of
the bath spectral density Jð!Þ [1]. Thus, the thermal equilibrium for localised energy
levels,19 p1ð1Þ ¼ e��hh�0=kBTp2ð1Þ, holds always in the absence of nonequilibrium fluc-
tuations of the energy levels. Furthermore, by splitting �̂� into a sum of two arbitrary
statistically independent components (two subsets of quantum bath oscillators),
�̂� ¼ �̂�1 þ �̂�2 one can show that FCð!Þ can exactly be represented as a frequency
convolution of the corresponding (partial) Franck-Condon factors FC1ð!Þ and
FC2ð!Þ [2, 8], namely,

FCð�Þ ¼

Z 1
�1

FC1ð!ÞFC2ð�� !Þd!: ð111Þ

Such frequency convolution can be generalised to an arbitrary number of partitions.
The nonequilibrium Golden Rule in equation (109) presents an additional frequency
convolution with the spectral line shape Ið!Þ of the nonequilibrium Kubo oscillator
which corresponds to a generally non-Gaussian and nonequilibrium stochastic force.
Ið!Þ does now no longer possess the above symmetry imposed by thermal detailed
balance. Thus, the violation of the thermal detailed balance condition by the non-
equilibrium fluctuations lead generally to intriguing nonequilibrium effects described
in section 5, and below. It is important to notice that the localised states can be
stabilised by strong, fast oscillating periodic fields [183] and the Golden Rule descrip-
tion is generally improved for such fields [97]. This latter fact can be readily under-
stood from the representation of the (quantum) stochastic force as a sum of
statistically independent components. Namely, if �r ¼ 0, due the interaction with
a subset of oscillators, the addition of an interaction with further oscillators cannot
enhance �r. It will work always in the direction to make the effective tunnelling
coupling smaller (when �r 6¼ 0), thus improving the perturbation theory in �.
Replacing equilibrium oscillators with a fast fluctuating field does not change
this trend.

6.3.2. Exact averaging over dichotomous fluctuations of the energy levels. An exact
averaging of the NIBA master equation of the driven spin-boson model in the
dichotomous Markovian field is possible by analogy with the consideration pursued
in section 5.4. The result is formally the same as in equation (85) with f0ðt� t0Þ and
g0ðt� t0Þ given but in equation (104) (with �ðtÞ ¼ const) [101]. An interesting feature

19Reminder: we consider the case �r ¼ 0, or kBT � �hh�r.
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is that for �0 ¼ 0 the equations for the average h�zðtÞi and the correlator h�ðtÞ�zðtÞi
are decoupled. Moreover, in the dissipation-free case, QðtÞ ¼ 0, the solution of equa-
tion for h�zðtÞi with the initial condition h�zð0Þi ¼ 1 yields the same result as in
equation (40) with the following substitutions implemented, i.e., h�zi ! h�xi,
�! �, �! �0. This finding provides a rather nontrivial cross-check of the validity
of different methods of stochastic averaging.

6.3.3. Electron transfer in fast oscillating periodic fields. Let us next focus on the
case with strong and fast periodic driving fields ~��ðtÞ ¼ A cosð�tþ ’0Þ, yielding

hW12ð�0Þi� ¼
p
2

�2
X1

n¼�1

J2n

�A
�

�
FCð�0 � n�Þ,

hW21ð�0Þi� ¼
p
2

�2
X1

n¼�1

J2n

�A
�

�
e��hh½�0�n��=kBTFCð�0 � n�Þ: ð112Þ

This result of the Golden Rule type for the nonadiabatic ET rates in strong periodic
fields has been derived in [83] and independently in [89]. In particular, the quasi-
static (Gaussian) approximation for FCð!Þ for kBT� �hh!c with KðtÞ replaced by
Kð0Þ � 2kBT�=�hh

2 in equation (105) leads in absence of driving, i.e. A ¼ 0,
independent of the detailed structure of Jð!Þ, to the celebrated Marcus–
Dogonadze–Levich rate expression [184, 185] for the ET rates with

FCð!Þ ¼
�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p�kBT
p exp

�
�
ð�hh!� �Þ2

4�kBT

�
: ð113Þ

This approximation is suitable for a thermal bath with a low frequency cut-off and in
the high-temperature limit, e.g., for polar solvents. This presents a semiclassical limit
for the Franck-Condon factor. If some high-frequency (quantum) vibrational mode
!0 couples to ET with the coupling constant �0 in addition to the low-frequency
vibrations, being of relevance for ET in molecular aggregates, then a different model
for FCð!Þ is more appropriate, namely [8, 186],

FCð!Þ ¼
�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p�kBT
p e�D0

X1
p¼�1

IjpjðxÞe
�p�hh!0=2kBT exp

�
�
ð�hh!� �þ p�hh!0Þ

2

4�kBT

�
ð114Þ

where S ¼ ð�0=�hh!0Þ
2, D0 ¼ S cothð�hh!0=2kBT Þ, x ¼ S= sinhð�hh!0=2kBT Þ, and IpðxÞ

is the modified Bessel function. The periodic driving may induce an inversion of
ET transfer direction and modulate the ET transfer rates by orders of magnitude.
This has been theoretically predicted in [83, 89] for both of the above-mentioned
models of FCð!Þ.20

20The use of an improved perturbation theory in � in the case of fast fluctuating fields does not
imply that the Golden Rule rates cannot be enhanced by such nonequilibrium fields. A large
enhancement of the forward (backward) rate can occur, e.g., when the absorption of n photons
helps to overcome the corresponding forward (backward) activation barrier of the thermally-
assisted incoherent tunnelling. For example, for the generalised Marcus rates a condition
is �0 � �=�hh� n�hh� ¼ 0, with the field amplitude A chosen such that the probability J2

n ðA=�Þ
of the corresponding reaction channel is maximised.
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6.3.4. Dichotomously fluctuating tunnelling barrier. Another relevant situation
involves the case of fluctuating tunnelling matrix element �ðtÞ and constant energy
bias �ðtÞ ¼ �0 ¼ const. In the superexchange picture of ET this corresponds to a
physical situation where the stochastic dynamics of the bridge states, which mediate
the ET between the donor and acceptor molecules, introduces an explicit, stochastic
time-dependence into �ðtÞ. Generically, this corresponds to a fluctuating tunnelling
barrier. In the case of dichotomous Markovian fluctuations �ðtÞ ¼ �0 þ��ðtÞ,
the stochastic averaging of the NIBA master equation can be done exactly [67].
Towards this goal one makes use of the Shapiro-Loginov theorem (83) and the
following exact decoupling property [152, 153, 187]:

h�ðtÞ�ðt0Þ�zðt
0
Þi ¼ h�ðtÞ�ðt0Þih�zðt

0
Þi: ð115Þ

Applying these two theorems and using the DMP property, �2ðtÞ ¼ 1, the averaging
of the GME yields the following exact results [67]:

d

dt
h�zðtÞi ¼ �

Z t

0

�
½�2

0 þ�2e��ðt�t
0
Þ
� f ðt� t0Þh�zðt

0
Þi þ�0�½1þ e��ðt�t

0
Þ
�

� fðt� t0Þh�ðt0Þ�zðt
0
Þi þ ½�2

0 þ�2e��ðt�t
0
Þ
�gðt� t0Þ

�
dt0, ð116Þ

d

dt
h�ðtÞ�zðtÞi ¼ ��h�ðtÞ�zðtÞi �

Z t

0

�
½�2
þ�2

0e
��ðt�t0Þ

�fðt� t0Þh�ðt0Þ�zðt
0
Þi

þ�0�½1þ e��ðt�t
0
Þ
�f f ðt� t0Þh�zðt

0
Þi þ gðt� t0Þg

�
dt0,

where

fðtÞ ¼ exp½�ReQðtÞ� cos½ImQðtÞ� cos½�0t�,

gðtÞ ¼ exp½�ReQðtÞ� sin½ImQðtÞ� sin½�0t�: ð117Þ

For the case of vanishing dissipation, QðtÞ ¼ 0, and for �0 ¼ 0, the solution of this
integro-differential equation for h�zðtÞi for the initial condition h�zð0Þi ¼ 1 yields
the same result as in equation (35). This agreement provides an additional test
for the mutual consistency of different methods of stochastic averaging used here.

Furthermore, in the absence of dissipation the rate of incoherent relaxation
exhibits a resonance-like feature as a function of the frequency � of the barrier
fluctuations. Namely, a resonance occurs when � matches the transition frequency
�0, i.e. � ¼ �0 (see equation (37) in section 2.3.2). This presents a physical stochastic
resonance, which should not to be identified with a well-known phenomenon of
noise-assisted Stochastic Resonance [188]. It occurs when a stochastic frequency
of the driving matches an eigenfrequency of a quantum transition. In the presence
of dissipation, this resonance feature is maintained, but becomes modified. Namely,
the resonance can occur at � ¼ j�0 � �=�hhj, rather than at � ¼ �0 [67]. This resonance
is responsible for the interesting phenomenon of a stochastic acceleration of dissi-
pative quantum tunnelling which is predicted by the theory [67]: For the case that
� :¼ �0, when �ðtÞ fluctuates between zero and 2�0 the rate of incoherent transfer
can exceed that for the static tunnelling barrier with tunnelling coupling strength
�ðtÞ ¼ 2�0 ¼const. At the first sight, this effect seems paradoxical; it must be
remembered, however, that the considered noise is nonequilibrium and it is capable
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of pumping energy into the system enhancing thereby the rate of incoherent
quantum tunnelling. Unfortunately, for the parameters typical for molecular ET
the experimental conditions for this effect to occur can barely be met experimentally
because the required frequency � is too high. Nevertheless, this fact does not inva-
lidate the principal possibility of the discussed effect for some other physical systems
in view of the generality of the model set-up.

In contrast, when �ðtÞ fluctuates very slowly on the time-scale of decay of kernels
fðtÞ and gðtÞ, which corresponds roughly to the inverse of the width of corresponding
Franck-Condon factor FCð!Þ, then our theory predicts – after use of the Markovian
approximation – the known results which corresponds to the approximation of a
dichotomously fluctuating rate [189], see also discussion in section 5.3. The corre-
sponding problem of such fluctuating rates is known under the label of dynamical
disorder and can be met in quite different areas of physics and chemistry [190].
Depending on the relation between the stochastic frequency � and the values of
transfer rates corresponding to the ‘‘frozen’’ instant realisations of �ðtÞ, the transfer
kinetics can exhibit different regimes of a (i) quasi-static disorder, (ii) an averaged
rate description, and (iii) a gated regime [67]. In the latter case, the mean transfer
time becomes locked to the autocorrelation time of the fluctuations [68, 191].

The influence of strong laser fields on the ET with nonequilibrium dynamical
disorder [86], or driven by nonequilibrium conformational fluctuations [68] has been
studied within the obtained NIBA master equation approach in [68, 86]. In parti-
cular, it has been shown there, that a strong periodic field can induce a turnover
between the nonadiabatic regime of electron transfer and a gated regime. Moreover,
the direction of ET in the gated regime can be inverted, whereas the mean transfer
time remains chiefly controlled by the nonequilibrium stochastic fluctuations and it is
not influenced by periodic field [86]. These theoretical predictions discussed here
are still awaiting their experimental realisation. The area of chemically gated, or
chemically driven electron transfer [192], that is the ET controlled by nonequilibrium
fluctuations due to spontaneous release of energy by breaking some energy-
rich chemical bonds (e.g., due to the ATP hydrolysis), is currently still in its
infancy [192].

7. Quantum transport in dissipative tight-binding models subjected to

strong external fields

A salient application of our theoretical efforts relates to charge and particle transfer
in spatially extended molecular structures. It can be described within a model similar
to the Holstein model of a molecular crystal [167, 193]. Namely, one considers
a molecular chain using the assumption that only one energy, namely, a lowest
unoccupied molecular orbital (LUMO)-level describes the ET (or highest occupied,
HOMO-level in case of a hole transport) per molecule, or molecular group. These
energy levels are coupled to the local intramolecular vibrations which are therma-
lised. The transferring particle is delocalised due to a tunnelling coupling between the
nearest neighbours. The intersite coupling between the intramolecular vibrations is
however neglected (like in the Einstein model of optical phonons), i.e. the electron
(or hole) energy levels in neighbouring molecules (or molecular groups) are assumed
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to fluctuate independently. In other words, one assumes uncorrelated identical ther-
mal baths formed by vibrational degrees of freedom of each molecule in a molecular
chain. Such a model is close in spirit to one used for exciton transfer within a
stochastic Langevin description [40]. In the approximations employed below, this
model becomes equivalent to the model of a Quantum Brownian Motion within a
single band, tight-binding description. In an external electric field EðtÞ, the latter one
reads [3, 4]:

HTBðtÞ ¼ �
�hh�

2

X1
n¼�1

ðjnihnþ 1j þ jnþ 1ihnjÞ � eEðtÞx̂xþHBI, ð118Þ

HBI ¼
1

2

X
i

p̂p2i
mi

þmi!
2
i

�
q̂qi �

ci
mi!

2
i

x̂x
�2" #

,

where x̂x ¼ a
P

n njnihnj is the operator of the coordinate (within the single band
description). The model in equation (118) can be derived from a different perspective
than the Holstein model, namely, by starting out from a model of Quantum
Brownian Motion in a periodic potential [2, 3, 80] and by restricting the correspond-
ing consideration to the lowest band for the tunnelling particle in the deep quantum
regime. We consider this model in the limit of a strong coupling by applying the small
polaron transformation which now reads ÛU ¼ exp½�ix̂xP̂P=�hh�, P̂P ¼

P
i cip̂pi= ðmi!

2
i Þ.

In the polaron basis, the Hamiltonian reads

HTBðtÞ ¼ �
�hh�r

2

X1
n¼�1

ðj ~nnih ~nnþ 1j þ j ~nnþ 1ih ~nnjÞ � eEðtÞx̂x

�
X1

n¼�1

ð�̂�j ~nnih ~nnþ 1j þ h:c:Þ þ
1

2

X
i

�
p̂p2i
mi

þmi!
2
i

~QQ2
i

�
, ð119Þ

where �r ¼ �he�iaP̂P=�hhiB ¼ �e�a
2
hP̂P2
iB=2�hh2 is the renormalised tunnelling coupling

(polaron band width), ~QQi :¼ ÛUqiÛU
�1
¼ q̂qi � ðci=mi!

2
i Þx̂x are displaced bath oscillators

and �̂� ¼ �hh
2 ½�e�iaP̂P=�hh ��r� is the quantum random force operator in the polaron

basis which is considered further as a small perturbation. Note that x̂x is not
changed. Assuming a strong Ohmic dissipation with � � 1 yields �r ¼ 0 at
T ¼ 0K and for EðtÞ ¼ 0. This indicates the celebrated localisation phase transition
[176, 177], which alternatively can also be interpreted as a polaron band collapse. In
the presence of a constant electric field and/or for T > 0 this localisation transition
occurs for smaller values of �. Given our case of strong coupling, the transport
occurs predominantly via incoherent tunnelling hops between the nearest sites of
localisation. As a side remark, we note that also in the dissipation-free case the Bloch
band can collapse in presence of strong periodic fields [194], known as the effect of
dynamical localisation [195]. Use of equation (61) for the case in (119) with �r ¼ 0
yields for the diagonal elements of the reduced density matrix a set of coupled
generalised master equations

_��nnðtÞ ¼

Z t

0

n
W ðþÞ
ðt, �Þ�n�1n�1ð�Þ þW ð�Þ

ðt, �Þ�nþ1nþ1ð�Þ

� ½W ðþÞ
ðt, �Þ þWð�Þðt, �Þ��nnð�Þ

o
d� ð120Þ
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with memory kernels

Wð�Þðt, �Þ ¼
1

2
�2e�Re Qðt��Þ cos Im Qðt� �Þ �

ea

�hh

Z t

�

Eðt0Þdt0
� �

: ð121Þ

The very same equations are obtained in the NIBA approximation of the path-
integral approach [196]. The Holstein-like model which has been discussed at the
beginning of this section yields in similar approximations the same set of GMEs
(with a trivial renormalisation of the coupling constant in the identical bath spectral
densities Jnð!Þ ¼ Jð!Þ) [69]. The stationary electrical current carried by one particle
reads j ¼ e limt!1

d
dt hxðtÞi, where hxðtÞi ¼ a

P
n n�nnðtÞ denotes the mean particle

position in the considered infinite chain. It obeys (this result follows immediately
from equation (120))

d

dt
hxðtÞi ¼ a

Z t

0

�
Wþðt, �Þ �W�ðt, �Þ

�
d�: ð122Þ

This current in (122) still needs to be averaged of the stochastic field realisations.21

This objective is again reduced to the averaging of an effective Kubo oscillator which
can be done exactly for many different models of stochastic driving. We decompose
the electric field EðtÞ into the sum of the mean, or constant field E0 and a fluctuating,
unbiased component ~EEðtÞ, i.e. EðtÞ ¼ E0 þ ~EEðtÞ. The resulting expression for the
averaged current jðE0Þ can be put into two equivalent forms. First, it can be
written in terms of a time integral [70, 102],

jðE0Þ ¼ ea�2

Z 1
0

exp½�Re Qð�Þ� sin½Im Qð�Þ�Im½eieaE0�=�hhhSð�Þi�d�, ð123Þ

where hSð�Þi is given in equation (108) with ~��ðtÞ ¼ ea ~EEðtÞ=�hh and QðtÞ in
equation (105). Alternatively, the current expression can be given as a frequency
convolution in a spectral representation form, i.e.,

jðE0Þ ¼

Z 1
�1

jdcð!ÞIðeaE0=�hh� !Þd!, ð124Þ

where

jdcð!Þ ¼
p
2
ea�2

�
1� e��hh�!

�
FCð!Þ: ð125Þ

Ið!Þ denotes the spectral line shape corresponding to hSð�Þi. The dc-current obeys
the symmetry property jdcð�!Þ ¼ �jdcð!Þ which is imposed by the thermal detailed
balance symmetry, FCð�!Þ ¼ e��hh�!FCð!Þ with FCð!Þ in (110). It is important to
note that the averaged current in (124) does not obey such a symmetry requirement.

7.1. Noise-induced absolute negative mobility

As a first application of the above results we consider the phenomenon of ANM, or
absolute negative mobility, where the transferring particles move around zero bias in

21In the case of periodic driving, this additional averaging is obsolete by defining the current
in a self-averaged manner as j ¼ e limt!1 hxðtÞi=t.
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opposite direction to the average applied force. This effect was anticipated for semi-
conductors in strong periodic fields almost thirty years ago using a Boltzmann
equation approach [197, 198]. The first experimental realisation was obtained in
1995 for semiconductor superlattices [199]. The corresponding experimental results
were seemingly consistent [199] with a mechanism of incoherent sequential tunnelling
like one just described. The occurrence of the ANM phenomenon for a sinusoidal
driving within the considered dissipative tight-binding model has been demonstrated
in [196].

The question we addressed in [69] within a Holstein-like model was whether
an external stochastic field can also induce ANM. The occurrence of such noise-
induced ANM has been shown for dichotomous Markovian fields. ANM presents
a multi-state analogy of the effect of inversion of populations in TLS described
in section 5. A simple criterion for ANM to occur can be found within the quasi-
static approximation for the spectral line shape Ið!Þ. For a symmetric dichotomous
field ~EEðtÞ ¼ ð�hh�=eaÞ�ðtÞ with the inverse autocorrelation time �, this quasi-static
approximation holds whenever � � �, being almost always the case in the relevant
regime of parameters even if the field fluctuations are fast on the time-scale of the
charge transfer. Then, Ið!Þ � 1

2 ½�ð!� �Þ þ �ð!� �Þ� and jðE0Þ ¼
1
2 ½ jdcðeaE0=�hh� �Þ þ

jdcðeaE0=�hhþ �Þ�.
Given the symmetry property, jdcð��Þ ¼ �jdcð�Þ, one can conclude that the

phenomenon of ANM will occur in any such system with the static current–voltage
characteristics jdcð�Þ assuming a maximum at some �max which is complemented by
a corresponding regime of differential negative conductance occurring for � > �max.
Then, jðE0Þ < 0 for a sufficiently small static force, eE0 > 0, whenever � > �max [69],
i.e. whenever the charge transfer is driven into the regime of negative differential
conductance by some appropriately chosen alternating, two-state stochastic fields.
This mechanism is quite general and robust. It does not depend on the details of the
dissipation mechanism. In particular, for the Gaussian FCð!Þ in equation (113), we
obtain

jdcðeaE0=�hhÞ ¼
p
2

ea�2�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�kBT

p exp

�
�
�2 þ ðeaE0Þ

2

4�kBT

�
sinh

�
eaE0
2kBT

�
: ð126Þ

This corresponds to a (nonadiabatic) small polaron conductance [167, 200] with the
differential mobility, �ðE0Þ ¼ dvðE0Þ=dE0, obeying in the linear response range

�ð0Þ ¼

ffiffiffiffiffiffiffiffiffiffi
p

2Wp

r
ea2V2

�hhðkBTÞ
3=2

e�Wp=2kBT, ð127Þ

where Wp ¼ �=2 is the polaron binding energy and V ¼ �hh�=2. For this nonadiabatic
small polaron model the regime of negative differential mobility occurs for E0 > Emax

with Emax defined implicitly by the equation eaEmax ¼ 2Wp cothðeaEmax=2kBTÞ.
Quasi-one-dimensional systems exhibiting this small polaron conductance (in the
nonadiabatic ET regime with respect to �) can be considered along with the semi-
conductor superlattices as possible candidates to exhibit the phenomenon of noise-
induced ANM experimentally. A finite photo-induced small polaron mobility of the
hole type is found, for example, in columnar liquid crystals [201–203]. We then
estimate the value of Emax for these systems with the lattice period of about
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a ¼ 0:35 nm to be in the range of 5� 106 V/cm, which is rather large. For super-
lattices with a larger period a, Emax can be much less [199]. Basically, this crucial
quantity is determined by two factors: (i) the width of FCð!Þ due to multi-phonon
transitions (it depends on the precise mechanism of dissipation and should be made
as small as possible) and (ii) the lattice period a (it should be engineered as large as
possible). These criteria can serve as a useful guides in identifying the appropriate
experimental materials.

7.2. Dissipative quantum rectifiers

Yet another intriguing application is provided by the fluctuation-induced quantum
transport in the absence of a mean electric field, E0 ¼ 0. Similar nonequilibrium
phenomena are known under the notion of Brownian motors, or Brownian ratchets
[71–81]. The first case of a quantum ratchet in a periodic spatially asymmetric
(ratchet)-potential was studied theoretically in [204] within a semi-classical approach
and for an adiabatically varying driving field. In [70, 102, 104], we put forward
periodic dissipative nonadiabatic quantum rectifiers [209] operating in the absence
of spatial asymmetry. The current is produced by a nonlinear transport mechanism
due to an interplay between equilibrium quantum fluctuations and an unbiased, but
asymmetric nonequilibrium external noise [70]. Likewise, an asymmetric periodic
driving of the harmonic mixing type can be used instead of the nonequilibrium
noise [102, 104]. Our rectifier behaves genuinely quantum mechanically and
corresponds to the case of a strong dissipation when the transport mechanism is
incoherent and the transport proceeds by incoherent tunnelling hopping as outlined
above. The origin of the resulting current can be traced to equation (123) and
equation (124). Namely, jð0Þ 6¼ 0, when hSð�Þi assumes complex values, i.e.,
ImhSð�Þi 6¼ 0. This corresponds to a complementary criterion which follows from
equation (124), namely, jð0Þ 6¼ 0, when the corresponding spectral line Ið!Þ is
asymmetric, Ið�!Þ 6¼ Ið!Þ.

In particular, this is the case of asymmetric dichotomous field of zero mean,
cf. section 2.3.1 and equation (28), which takes on the (frequency scaled) two discrete
values ea ~EE1, 2=�hh ¼ �1, 2 ¼ ��e

�b=2, where b characterises the field asymmetry and � is
the (scaled) rms of field fluctuations. The emergence of a finite current in this case
can readily be seen in the quasi-static approximation of Ið!Þ for � � �, Ið!Þ �
p1�ð!� �e

�b=2
Þ þ p2�ð!þ �e

b=2
Þ with p1, 2 ¼ j�2, 1j=ðj�1j þ �2Þ. In this adiabatic (with

respect to driving) approximation,

jð0Þ ¼ p2 jdcð�e
b=2
Þ � p1 jdcð�e

�b=2
Þ: ð128Þ

In the semiclassical high-temperature approximation for FCð!Þ in equation (113)
(this corresponds to noise-driven small polaron transport), one can see that the
rectification current appears as a nonlinear response to the external, unbiased on
average driving. Namely, to the lowest order, the current is proportional to hE3ðtÞi,
jð0Þ / hE3ðtÞi � b�3 (b	 1), with a nontrivial prefactor. Moreover, the current flows
into the direction of he3E3ðtÞi, which is the direction of the larger force realisation,
if the applied random force is sufficiently small. With an increase of the noise rms �
the current can however reverse its direction. In the considered approximations
and for a small driving asymmetry b	 1 this occurs when � exceeds some maximum
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associated with FCð!Þ. Thus, this change of the current direction from the expected
to physically counter-intuitive direction is closely related to the mechanism of
noise-induced absolute negative mobility, as was outlined in the previous subsection.

Moreover, the current can flow in the physically counter-intuitively direction also
for small applied forces when the coupling strength � is sufficiently small. For T ¼ 0
a very insightful approximate analytical expression can be obtained in the adiabatic
limit for driving and in the lowest order of the asymmetry parameter b.
Namely, assuming an Ohmic friction mechanism for the thermal bath with an expo-
nential cutoff !c, FCð!Þ can be exactly evaluated at T ¼ 0 to yield FCð!Þ ¼
ð1=!c�ð2�ÞÞ � ð!=!cÞ

2��1 exp½�!=!c�Yð!Þ, whereYð!Þ is the Heaviside step function
[2]. For b	 1 in (128), this then yields the averaged, zero bias current value, reading
for � > 1=2:

jð0Þ � b
p
2

ea�2

!c�ð2�Þ

� �
!c

�2��1�
�� 1�

�

2!c

�
expð��=!cÞ: ð129Þ

The result in equation (129) predicts that for � � 1 the current flows into the
physically counter-intuitive direction. Furthermore, for � > 1, the rectification cur-
rent flows first in the expected, natural direction, but it changes subsequently its
direction for � > �� ¼ 2ð�� 1Þ!c. Moreover, the absolute value of current has two
maxima at �max ¼ ð2�� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1
p

Þ!c for � > 1 and one maximum at �max ¼

ð2�� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1
p

Þ!c for 1=2 < � � 1. Furthermore, the current diminishes for
large �. In the low-temperature limit, all these features are in the remarkable agree-
ment with the numerical evaluation of equation (123) in [70]. A related comparison is
provided in figure 7 for � ¼ 2. For kBT ¼ 0:01�hh!c, the agreement is indeed excellent,
except for very small values �hh� 	 kBT. On the scale of � variation used in figure 7
the rectification tunnel current seems be maximal at T ¼ 0 for most �. From this
point of view, the rectification results from an interplay between the zero-point

Figure 7. Noise induced rectification of current for an asymmetric dichotomous driving
field vs. rms of field fluctuations at different temperatures. The set of used parameters is
indicated in the figure.
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quantum fluctuations and the nonequilibrium noise, i.e. has a manifestly quantum
origin.

For larger values of � than those depicted in figure 7, the rectification current can
be enhanced for sufficiently small �/!c by increasing temperature and go through a
maximum, exhibiting thereby the phenomenon of Quantum Stochastic Resonance
[205–208] in the nonlinear current response [70].

7.3. Limit of vanishing dissipation

In the limit of vanishing dissipation QðtÞ ! 0, the result in equation (123) predicts
that jð0Þ ¼ 0, independently of the form and strength of driving. This prediction
should be considered, however, with care since the result in equation (123) is not
valid for very small � and T, because we have assumed throughout incoherent
transport regime where either �r ¼ 0, or the temperature is sufficiently high,
kBT� �hh�r. Nevertheless, the dissipationless single-band, infinite tight-binding
model can be solved exactly in arbitrary time-dependent fields [70, 103, 104, 195,
210, 211]. The corresponding exact solution for the current then shows [70, 103, 104]
that the stationary current is forced to vanish identically by the stochastic fluctua-
tions of driving. Put differently, in the absence of quantum dissipation such a rec-
tified current can exist at most as a transient phenomenon. As a matter of fact, the
stationary rectification current within the single-band tight binding description is due
to a nonlinear interplay of quantum dissipation and external nonequilibrium forces.
Its origin presents a highly nonlinear and nonequilibrium statistical effect. This result
does not hold for more general situations. For the case of the full potential problem,
with its intrinsic interband transitions, a finite, stationary current can be generated
even in the absence of dissipation; it results as a dynamical effect due to an interplay
of a nonlinear dynamics and the breaking of some space-time symmetries by the
driving mechanism [103, 212, 213].

It must be emphasised, however, that the full potential problem has little relation
to the electron transport in molecular chains which is our main focus here. This is
because the tight-binding description emerges for the electron (or hole) transport
processes in molecular systems in a very different way, being not the result of a
truncation of a full potential problem to the description within the lowest band only.

7.4. Case of harmonic mixing drive

Another instance of quantum rectifiers in presence of dissipation is realised with a
harmonic mixing driving [102, 214, 215],

EðtÞ ¼ E1 cosð�tÞ þ E2 cosð2�tþ �Þ, ð130Þ

with the driving strengths E1,E2, angular frequency � and a relative phase �,
respectively. This model seems more promising and readily can be implemented
with experimental realisations.

The corresponding expression for hSð�Þi reads [102]

hSð�Þi ¼
X1

k¼�1

J2k
�
2�1 sinð��=2Þ

�
Jk
�
�2 sinð��Þ

�
e�ikð�þp=2Þ, ð131Þ
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where �1, 2 ¼ eaE1, 2=ð�hh�Þ and JnðzÞ are standard Bessel functions. With its help the
current in equation (123) can be evaluated numerically for the Ohmic model with
the exponential cutoff, where the exact analytical expression for QðtÞ is available
[2, 3, 69]. Independent of other parameters, the current vanishes identically for
� ¼ p=2, 3p=2, where ImhSð�Þi ¼ 0 exactly. Otherwise, the current can be different
from zero. For sufficiently high temperatures and weak fields applied,
jð0Þ / hE3ðtÞi ¼ 3

4E
2
1E2 cosð�Þ with a nontrivial quantum prefactor. At T ¼ 0, the

current response is not analytical in the driving amplitude. Unfortunately, in this
case we do not find a simple approximate analytical expression for the current like
the one in equation (129). Some numerical calculations [102], see also in figure 8,
reveal a series of nontrivial features as the occurrence of current inversion and the
occurrence of current maxima similar to the the case of stochastic dichotomous
driving. Moreover, in the case of harmonic mixing driving the direction of the
rectification current can be conveniently controlled by the phase �. For a sufficiently
large dissipation strength �, the rectification current response can also exhibit
a Quantum Stochastic Resonance feature [188, 205–208, 216–218], i.e., it exhibits
a maximum versus the temperature T. An experimental realisation of the
dissipative quantum rectifiers in the studied incoherent tunnelling regime can be
expected for the semiconductor superlattices [219] and for a small polaron like
transport in molecular chains.

8. Summary

We have surveyed, extended and justified in great detail the results of recent research
which relates to quantum dynamics with fluctuating parameters. The nature
of those fluctuations, that usually stem from the influence of externally applied fields,

Figure 8. The rectified quantum current induced by a harmonic mixing drive is depicted vs.
the strength of the first harmonic at different values of the coupling strength �. The strength
of the second harmonic is held fixed. The used parameters are given in the figure.
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or intrinsic degrees of freedom, is either of stochastic or coherent deterministic
origin. Our general findings are applied to specific situations, encompassing solid
state applications, but mainly we did focus on the theme of driven ET in molecular
aggregates.

A first major result is the derivation of the generalised non-Markovian master
equations and the generalised Redfield equations for quantum systems composed of
a finite, discrete number of states which are subject to the influence of external either
stochastic, or periodic fields. The resulting kinetic equations allow one to study a rich
variety of different physical problems within a unified framework. In the simplest
cases, the relevant part of the reduced dynamics is either described by the Markovian
balance equation of the Pauli master equation type [220] which is generalised to
include the influence of explicit time-dependent, external field manipulations into
the quantum transition rates; those becoming therefore functionals of the driving
field, or by its generalisation which accounts as well for the memory effects in the
corresponding dissipative kernels.

In the case of fast (on the time-scale of the averaged relaxation process) fluctu-
ating, or oscillating fields these quantum kinetic equations can be averaged.
The relaxation transitions can be described by the averaged quantum transition
rates of the Golden Rule type. These averaged transition rates, however, generally
do not satisfy the detailed balance condition at the temperature of the thermal
bath. This violation of the thermal detailed balance, being induced by the non-
equilibrium driving fields, in turn paves a roadway for identifying several intriguing
nonequilibrium phenomena.

An important case is provided by symmetric dichotomous driving fields for which
our approximate theories and considerations can be made rigorous, tested and reaf-
firmed [67, 100, 101] because the corresponding averaging can be performed exactly.

The problem of averaging a quantum dynamics in stochastic fields modelled
by non-Markovian processes of the continuous time random walk type with a
discrete number of states (with Markovian processes emerging as a particular limit-
ing case) has been investigated in the absence of dissipation in section 2. Using
a classical stochastic path integral approach, we obtained some general exact results
on the averaging of quantum propagator of the driven quantum system over the
stationary realisations of such non-Markovian jump processes. In particular, the
exact result for the Laplace transform of the correspondingly averaged quantum
propagator has been obtained. This novel result bears the potential for future appli-
cations since it opens a way for a rigorous study of an extreme case of 1=f � noise,
implying long-range temporal correlations, where standard perturbation theory is
expected to fail. As a first important application, we obtained the spectral line shape
of the corresponding Kubo oscillator and the Laplace-transformed averaged evolu-
tion of a spin-1/2 system that is driven by a symmetric alternating renewal process
possessing an arbitrary distribution of the residence times. This implies a very broad
class of autocorrelation functions including those which correspond to noise sources
with 1=f� power spectrum. This general result is shown to reproduce the known
solution in the Markovian limit, i.e. when the the residence time intervals are
exponentially distributed.

Starting out with section 4, we have investigated the combined effects of fluc-
tuating parameters and dissipation on the evolution of the corresponding
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quantum dynamics. In doing so, we considered both the role of fluctuations of the
energy bias, and/or the effects of a fluctuating intersite tunnelling matrix element.
A generalised master equation was obtained which corresponds to the known NIBA
approximation obtained within the quantum path-integral approach. The obtained
master equation was averaged exactly both over dichotomous fluctuations of the
energy bias and dichotomous fluctuations of the tunnelling coupling, i.e. the case
with a fluctuating tunnelling barrier. These results have been used to study a rich
repertoire of nonequilibrium phenomena for ET in condensed media with dynamical
disorder and possibly being driven by stochastic or deterministic, coherent periodic
laser fields.

In section 7 we have studied the quantum transport in extended quantum
systems within a tight-binding description, with the dynamics being subjected to a
strong system-bath coupling and weak tunnelling, i.e. in the limit of an incoherent
hopping regime. A general result for the quantum-noise assisted transport current,
being averaged over the field fluctuations, has been derived. The correspond-
ing expression is shown to be equivalent to the NIBA approximation result of
a corresponding quantum path integral treatment.

Our theory for dissipative systems with fluctuating parameters predicts scores of
interesting nonequilibrium phenomena that are the result of a stunning interplay
between equilibrium quantum fluctuations and nonequilibrium perturbations. A few
noteworthy such effects are: (i) the suppression, or acceleration of quantum transi-
tion rates by many orders of magnitude; (ii) a noise-induced enhancement of the
thermally assisted quantum tunnelling; (iii) the inversion of populations in the spin-
boson model; or (iv) a noise-induced absolute negative mobility in quantum trans-
port. We further elaborated on the theme of dissipative quantum rectifiers. Several
of these novel predictions are presently being investigated in a number of research
groups, both theoretically and experimentally. Our research in particular also
impacts such timely activities like the investigation of the electronic transport in
infrared laser driven molecular wires [221]. Here, the fermionic thermal baths are
provided by the electronic reservoirs in the leads and the electron transport through
the wire is mainly coherent. This corresponds to the regime of a weak dissipation
within our approach, being opposite to the regime of incoherent tunnelling. The role
of the size, inter-electrode coupling effects, etc. [222] as well as the inelastic Coulomb
repulsion effects [223], are also important for molecular wires. This brings about
further complications that still need to be investigated theoretically with greater
detail. Experimental progress is presently also forthcoming [224]: this particularly
holds true for quantum Brownian motors and quantum rectifiers as witnessed by the
exemplary set of recent experimental studies [225–230]. We share the confident belief
that this research topic will remain flourishing and, moreover, will invigorate the
readers in pursuing their own future research in this area.
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