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Abstract. By use of a stochastic generalization of the Hodgkin-Huxley model we inve-
stigate the phenomenon of Stochastic Resonance (SR) for a distribution of ion channels
within a cluster of variable size. In the presence of a periodic stimulus we demonstrate
intrinsic SR vs. decreasing patch size, or, put differently, vs. increasing internal noise
strength. SR with external noise occurs only for large cluster sizes which possess sub-
optimal internal noise levels. In particular, SR in biology thus seemingly is rooted in
the collective properties of optimally selected ion channel assemblies. Moreover, upon
investigating the signal-to-noise ratio (SNR) for sub-threshold sinusoidal driving vs.
driving frequency we encounter also a stochastic resonance behavior which reflects the
existence of a random internal limit cycle. The occurrence of intrinsic SR in a combina-
tion with the conventional frequency resonance may be of importance for the frequency
tuning in biological signal processing.

12.1 Introduction

Much attention is presently given to the behavior of complex networks with the
particular focus being on so termed scale-free networks, which are believed to
present many complex phenomena in nature [1, 2, 3, 4, 5, 6, 7]. Such networks
naturally also occur in biological settings. In this spirit we focus here on the
constructive role of noise on voltage gated, globally connected assemblies of ion
channels. If the distribution of such ion channels consists of at least two types,
excitable behavior becomes possible which in turn rules the transduction of bio-
logical information. The transduction of signals in presence of ambient, internal
noise then likely makes use of a cooperative behavior between nonlinearity and
noise, known under the label of Stochastic Resonance [8].

During the last decade, the effect of Stochastic Resonance (SR) – a coopera-
tive phenomenon wherein the addition of external noise improves the detection
and transduction of signals in nonlinear systems (for comprehensive surveys and
relevant further references, see in [8, 9]) – has been studied experimentally and
theoretically in various biological systems [10, 11, 12, 13, 14]. For example, SR
has been experimentally demonstrated within the mechanoreceptive system in
crayfish [10], in the cricket cercal sensory system [11], for human tactile sensa-
tion [12], visual perception [13], and response behavior of the arterial baroreflex
system of humans [14]. The importance of this SR-phenomenon for sensory bio-
logy is by now well established; yet, it is presently not known to which minimal
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level of the biological organization the stochastic resonance effect can ultimately
be traced down. Presumably, SR has its origin in the stochastic properties of the
ion channel clusters located in a receptor cell membrane. Indeed, for an artificial
model system Bezrukov and Vodyanoy have demonstrated experimentally that a
finite ensemble of the alamethicin ion channels does exhibit stochastic resonance
[15]. This in turn provokes the question whether a single ion channel is able to
exhibit SR, or whether stochastic resonance is the result of a collective response
from a finite assembly of channels.

Stochastic resonance in single, biological potassium ion channels has also
been investigated both theoretically [16] and experimentally [17]. Thus far, the
experimental work did not convincingly reveal SR in single voltage-sensitive
ion channels versus the varying temperature. Nevertheless, the SR phenomenon
versus the externally added noise can occur in single ion channels if only the
parameters are within a regime where the channel is predominantly dwelled
in the closed state, as demonstrated within a theoretical modeling for a Shaker
potassium channel [16]. The manifestation of SR on the single-molecular level, is
not only of academic interest, but is also relevant for potential nano-technological
applications, such as the design of single-molecular bio-sensors. The origin and
biological relevance of SR in single ion channels, however, remains still open.

Indeed, biological SR is a manifestation of collective properties of large assem-
blies of ion channels of different sorts. To display the phenomenon of excitability
these assemblies must contain an assemblage of ion channels of at least two dif-
ferent sorts – such as, e.g., potassium and sodium channels. The corresponding
mean-field model has been put forward by Hodgkin and Huxley as early as in
1952 [18] by neglecting the intrinsic fluctuations which originate from the sto-
chastic opening and closing of channels. SR due to external noise in this primary
model and related models of excitable dynamics has extensively been addressed
[19, 20]. A challenge though still remains: does internal noise play a constructive
role for SR? Internal noise is produced by fluctuation of the number of open
channels within the assembly, and diminishes with increasing number of chan-
nels. For a large, macroscopic number of channels this noise becomes negligible.
Under the realistic biological conditions, however, it may play an important role
[21].

12.2 The Hodgkin-Huxley Model

Our starting point is the well-established model of Hodgkin and Huxley [18]. The
membrane patch of area S is considered as an electrical capacitor possessing the
specific area capacitance C. The membrane separates two ionic bath solutions
(which in vivo correspond to the interior and the exterior of the excitable cell)
with different concentrations of the ions of different sorts, mainly potassium, K+,
sodium, Na+, and chloride, Cl− ions. The macroscopic concentration differences
are kept approximately constant. In the cell, this task is accomplished by the
ATP-driven ionic pumps. Furthermore, the ionic baths are on the average electri-



                               197

cally neutral. However, due to the different ionic concentrations on the opposite
sides of the semi-permeable membrane, the membrane becomes charged. As a
consequence, an equilibrium transmembrane electrical potential difference emer-
ges. The lipid membrane creates an almost impenetrable barrier for the ions.
However, they can flow across the membrane through special ion selective pores
created by specialized membrane proteins – the ion channels [22]. The specific
potassium, IK , and sodium, INa, ion currents through the open ion channels are
approximately proportional to the differences of the transmembrane potential V
and the specific (for the particular sort of ions) equilibrium potentials, EK and
ENa, respectively. The stochastically averaged, mean conductances, GNa(m,h)
and GK(n), are, however, strongly nonlinear functions of V . This nonlinearity
emerges due to the gating dynamics (see below). There exists also the leakage
current IL, mainly due to the chloride ions. If the membrane is driven by the
external current Iext(t), the sum of the specific ion currents and the capacitive
current, IC , must be equal to Iext(t) as a consequence of the charge conservation.
Therefore, the equation for the transmembrane potential V (t) reads

C
d

dt
V +GK(n) (V − EK) +GNa(m,h) (V − ENa)

+GL (V − EL) = Iext(t) . (12.1)

For a squid giant axon, the parameters in eq. (12.1) are ENa = 50 mV,
EK = −77 mV, EL = −54.4 mV, and C = 1µF/cm2. Furthermore, the leakage
conductance is assumed to be constant, GL = 0.3 mS/cm2. On the contrary, the
sodium and potassium conductances are controlled by the voltage-dependent ga-
ting dynamics of single ion channels and are proportional to their respective num-
bers. These latter assumptions have been fully confirmed in the single-channel
recordings by Neher, Sakmann and colleagues which indeed have proven that
ion channels undergo the opening-closing stochastic gating dynamics [23]. In the
Hodgkin-Huxley model, the opening of the potassium ion channel is governed by
four identical activation gates characterized by the opening probability n. The
channel is open when all four gates are open. In the case of sodium channel, the
dynamics is governed by the three independent, identical fast activation gates
(m) and an additional slow, so-termed inactivation gate (h). The independence
of the gates implies that the probability PK,Na of the occurrence of the con-
ducting conformation is PK = n4 for a potassium channel and PNa = m3 h for
a sodium channel, respectively. In the mean-field description, the macroscopic
potassium and sodium conductances thus read:

GK(n) = gmax
K n4, GNa(m,h) = gmax

Na m3h , (12.2)

where gmax
K = 36 mS/cm2 and gmax

Na = 120 mS/cm2 denote the maximal conduc-
tances (when all channels are open). The two-state, open–closing dynamics of
the gates is given by the voltage dependent opening and closing rates αx(V ) and
βx(V ) (x = m,h, n), i.e.
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αm(V ) =
0.1(V + 40)

1 − exp[−(V + 40)/10]
, (12.3a)

βm(V ) = 4 exp[−(V + 65)/18] , (12.3b)
αh(V ) = 0.07 exp[−(V + 65)/20], (12.3c)

βh(V ) = {1 + exp[−(V + 35)/10]}−1 , (12.3d)

αn(V ) =
0.01 (V + 55)

1 − exp[−(V + 55)/10]
, (12.3e)

βn(V ) = 0.125 exp[−(V + 65)/80] . (12.3f)

Hence, the dynamics of the opening probabilities for the gates are given by:

ẋ = αx(V ) (1 − x) − βx(V ) x, x = m,h, n . (12.4)

The voltage equation (12.1), (12.2) and the rate equations of the gating dynamics
(12.3), (12.4) define the original, purely deterministic Hodgkin–Huxley model
[18] for the squid giant axon.

The rate constants in (12.3) are given in ms−1 and the voltage in mV . These
nonlinear Hodgkin-Huxley equations (12.1)–(12.3) present a cornerstone model
in neurophysiology. Within the same line of reasoning this model can be ge-
neralized to a mixture of different ion channels with various gating properties
[24, 25].

The dynamics of the Hodgkin-Huxley model exhibits a complex, rich behavior
which sensitively depends on the model parameters. For the squid giant axon pa-
rameters, the corresponding dynamics possesses a single fixed point and therefore
does not exhibit a spiking activity in the absence of external stimulus, Iext(t) = 0.
However, if a constant stimulus, Iext(t) = I0, is applied, the fixed point loses its
stability with increasing strength I0 upon I0 ≥ I1 ≈ 9.763 µA/cm2. For such
a super-threshold current strength, the membrane exhibits a periodic spiking
activity which reflects the presence of a stable limit cycle, see Fig. 12.1a. Upon
decreasing the driving current strength, the spiking dynamics still persists below
the threshold for excitation, i.e. also for I < I1, until the diminishing current
reaches the sub-critical value I2 ≈ 6.26 µA/cm2. Below this value, the limit cycle
loses stability and the spiking activity vanishes. In conclusion, for I2 < I0 < I1
both the stable fixed point and the stable limit cycle can indeed coexist. This
feature is thus responsible for the hysteresis behavior in the spiking behavior
versus the varying driving current strength, cf. Fig. 12.1a.

Next we focus on a periodic sinusoidal driving,

Iext(t) = A sin(Ωt) , (12.5)

with amplitude strength A and angular driving frequency Ω, see also in [26].
The corresponding dynamics becomes now even richer. In this case of periodic
driving, the firing threshold Ath becomes frequency-dependent. The correspon-
ding complexity for the phase diagram is depicted in Fig. 12.1b. In Fig. 12.1b,
the border line Ath(Ω) which separates the regime of no spiking from the regime
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Fig. 12.1. The bifurcation diagram for the emergence of spiking behavior for the
deterministic Hodgkin-Huxley model. The equilibrium voltage (fixed point) and the
minimal and maximal voltage amplitudes, respectively, of the limit cycle oscillations
are plotted in part a against the constant driving current strength. There exists a
hysteretic behavior for the range 6.26 < Iext < 9.763 µA/cm2 where the stable limit
cycle exhibiting firing events and the stable fixed point coexist. b In the regime of
periodic sinusoidal driving the situation is rather complex as well: a phase diagram
is plotted as a function of the driving frequency Ω and the corresponding threshold
amplitude Ath for firing. The solid line separates the phase with firing events (grey
region) from the phase without spike occurrences (white region) for the case when the
amplitude is correspondingly increased from zero. Upon starting from the regime with
spiking the dotted line gives the phase separation line when the transition into the
no-firing regime occurs. This reflects a typical hysteretic character

with an assured spiking behavior exhibits a hysteresis-like character. The solid
line in Fig. 12.1b marks the transition to spiking when the driving strength is
successively increased from zero driving strength. The occurrence of a minimum
in this figure is quite remarkable: It implies that the system possesses an internal
resonance frequency. This feature can be used for signal processing [20, 26].

12.3 Stochastic Version of the Hodgkin-Huxley Model

It has been suspected since the time of Hodgkin and Huxley, and known with
certainty since the first single-channel recordings of Neher, Sakmann and col-
leagues, that voltage-gated ion channels are stochastic devices [23]. An essential
drawback of the Hodgkin-Huxley model, however, is that it operates with the
average number of open channels, thereby disregarding the corresponding num-
ber fluctuations (or, the so-called channel noise [23, 21]). These fluctuations, i.e.
their strength, scale inversely proportional to the number of ion channels, see
below. Thus, the original Hodgkin-Huxley model can be valid, strictly speaking,
only within the limit of very large system size. We emphasize, however, that the
size of an excitable membrane patch within a neuron is typically finite.
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Fig. 12.2. Sketch of a membrane patch with po-
tassium (white filled circles) and sodium (black
filled circles) ion channels. The grey background
indicates the leakage caused by additional non-
voltage dependent channels. The ion channels in-
teract only globally, through the membrane vol-
tage

In a small spherical neuron about 10 µm in diameter, the membrane area is
about 300 µm2. Therefore, for a modest channel density of ρ = 30 µm−2 there
should be about N = 9000 ion channels. The ratio of the standard deviation to
the mean conductance of the whole ensemble of identical channels, which is δG =√

(1 − Po)/(PoN), where Po the stationary opening probability of a channel
(see, e.g., in [21]), scales as δG ∝ 1/

√
N with the number N of ion channels.

Therefore, the conductance fluctuations may become appreciable for a small
cell. These fluctuations can also play a functional role [21]. Besides, the spatial
distribution of channels in receptor cell membranes is highly inhomogeneous and
occurs in the form of clusters (see, e.g., an example in [27]) which are electrically
coupled through the electrically passive pieces of membrane. As a consequence,
the role of internal fluctuations cannot be a priori neglected [21]. As a matter
of fact, as shown below, they can play a key role for SR in realistically small
isolated clusters of ion channels like in Fig. 12.2.

12.3.1 Quantifying Channel Noise

The role of channel noise for the neuron firing has been first studied by Lecar and
Nossal as early as in 1971 [28]. The corresponding stochastic generalizations of
Hodgkin-Huxley model (within a kinetic model which corresponds to the above
given description) has been put forward by DeFelice et al. [29] and others; see
[21] for a review and further references therein. The main conclusion of these
previous studies is that the channel noise can be functionally important for
neuron dynamics. In particular, it has been demonstrated that channel noise
alone can give rise to a spiking activity even in the absence of any stimulus
[21, 29, 30], see also in Fig. 12.3.

To include the channel noise influence in a theoretical modeling within the
stochastic kinetic schemes [21, 29], however, necessitates extensive numerical si-
mulations [31]. To aim at a less cumbersome numerical scheme we use a short-cut
procedure that starts from (12.4) in order to derive a corresponding set of Lange-
vin equations for a stochastic generalization of the Hodgkin-Huxley equations of
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Fig. 12.3. Numerical simulation of
the stochastic Hodgkin-Huxley system
(12.1), (12.6), (12.7) with vanishing ex-
ternal stimulus. We computed several
realizations of the voltage signal for
different numbers of the ion channels:
a NNa = 6000, NK = 1800; b NNa =
600, NK = 180; and c NNa = 60,
NK = 18. Upon decreasing the system
size the influence of channel noise on the
spontaneous firing dynamics becomes
more and more pronounced. Note that
the non-stochastic Hodgkin-Huxley mo-
del does not exhibit spikes at all for the
parameters given in the text and in the
absence of external stimuli

the type put forward by Fox and Lu [32]. Following their reasoning we substitute
the equations (12.4) with the corresponding Langevin generalization:

ṁ = αm(V ) (1 −m) − βm(V ) m+ ξm(t) ,
ḣ = αh(V ) (1 − h) − βh(V ) h+ ξh(t) , (12.6)
ṅ = αn(V ) (1 − n) − βn(V ) n+ ξn(t) ,

with independent Gaussian white noise sources of vanishing mean. The noise
autocorrelation functions depend on the stochastic voltage and the corresponding
total number of ion channels as follows:

〈ξm(t)ξm(t′)〉 =
2

NNa

αmβm
(αm + βm)

δ(t− t′) ,

〈ξh(t)ξh(t′)〉 =
2

NNa

αhβh
(αh + βh)

δ(t− t′) , (12.7)

〈ξn(t)ξn(t′)〉 =
2
NK

αnβn
(αn + βn)

δ(t− t′) .

In order to confine the conductances between the physically allowed values bet-
ween 0 (all channels are closed) and gmax (all channels are open) we have im-
plemented numerically the constraint of reflecting boundaries so that m(t), h(t)
and n(t) are always located between zero and one [32].

Moreover, the numbers NNa and NK depend on the actual area S of the
membrane patch. With the assumption of homogeneous ion channels densities,
ρNa = 60 µm−2 and ρK = 18 µm−2, the following scaling behavior follows:

NNa = ρNaS, NK = ρKS . (12.8)
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Upon decreasing the system size S, the fluctuations and, hence, the internal noise
increases. Consequently, with abating cell membrane patch the spiking behavior
changes dramatically, cf. Fig. 12.3.

The numerical integration is carried out by the standard Euler algorithm
with the step size ∆t ≈ 2 · 10−3 ms. The ”Numerical Recipes” routine ran2
is used for the generation of independent random numbers [33] with the Box-
Muller algorithm providing the Gaussian distributed random numbers. The total
integration time is chosen to be a multiple of the driving period TΩ = 2π/Ω, as
to ensure that the spectral line of the driving signal is centered on a computed
value of the power spectral densities. From the stochastic voltage signal V (t) we
extract a point process of spike occurrences {ti}:

u(t) :=
N∑

i=1

δ(t− ti) , (12.9)

where N is the total number of spikes occurring during the elapsed time interval.
The occurrence of a spike in the voltage signal V (t) is detected by upward-
crossing a certain detection threshold value V0. Obviously, the threshold can be
varied over a wide range with no effect on the resulting spike train dynamics.

The power spectral density of the spike train (PSDu) has been analyzed in the
absence and in the presence of periodic stimulus and noise. In order to quantify
SR, we obtain from the PSDu the spectral power of the transmitted periodic
signal, η, as the difference between the peak value of the spectral line and its
background offset located at the driving frequency Ω. The another important
measure, signal-to-noise ratio (SNR), is then given by the ratio of the spectral
power of signal to the background offset (in the units of spectral resolution of
signals).

12.3.2 Stochastic Resonance

First, we focus our attention on SR in absence of external noise, see Fig. 12.4a
and Fig. 12.5a. Here, we discover the novel effect of genuine intrinsic stocha-
stic resonance, where the response of the system to the sub-threshold external
stimulus is optimized solely due to internal, ubiquitous noise. For the given pa-
rameters, SR in the spectral amplification of signal occurs at S ≈ 10 µm2 and in
the signal-to-noise ratio at a different value S ≈ 32 µm2. Starting from S ≈ 10
µm2, growing internal noise monotonically deteriorates the amplitude of system
response at the signal frequency. Moreover, upon reaching S ≈ 32 µm2 it de-
teriorates the quality of signal transduction which is measured by SNR. In this
respect, it is worth mentioning that SNR also measures in effect the rate of
information transfer [34], but for small-amplitude signals only [35].

Under such circumstances, one would predict that the addition of an external
noise (which corresponds to the conventional situation in biological SR studies)
cannot improve η and SNR further, i.e. conventional SR will not be exhibited.
In order to verify this prediction, we contaminated the periodic stimulus (12.5)
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Fig. 12.4. The spectral amplification η of an external sinusoidal stimulus with am-
plitude A = 1.0 µA/cm2 and angular frequency Ω = 0.3 ms−1 for different observation
areas: a no external noise is applied; b SNR versus the external noise for the system
sizes indicated by the arrows in Fig. 12.5a: S = 8 µm2, solid line through the diamonds;
S = 16 µm2, long dashed line connecting the circles; S = 32 µm2, short dashed line
through the triangles; S = 64 µm2, dotted line connecting the squares. The situation
with no internal noise (i.e., formally S → ∞) is depicted by the dotted line connecting
the filled dots
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Fig. 12.5. The signal-to-noise ratio (SNR) for the same parameters as in Fig. 12.4

by the addition of Gaussian white noise ζ(t). The latter one possesses the auto-
correlation function

〈ζ(t)ζ(t′)〉 = 2Dext δ(t− t′) , (12.10)

and the noise strength Dext. The corresponding results, depicted in Fig. 12.4b
and Fig. 12.5b, fully confirm the above prediction. Conventional stochastic re-
sonance therefore occurs only for large membrane patches beyond optimal sizes
and reaches saturation in the limit S → ∞ (limit of the deterministic Hodgkin-
Huxley model). Thus, the observed biological SR [10, 11] is rooted in the collec-
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Fig. 12.6. The signal-to-noise ratio (SNR) for a sub-threshold external stimulus
with amplitude A = 1.0 µA/cm2 and different angular frequencies: a SNR versus the
observation area for Ω = 0.3 ms−1 (dotted line through the triangles), Ω = 0.4 ms−1

(solid line connecting the squares), and Ω = 0.5 ms−1 (dashed line through the circles);
b SNR versus the driving frequency for two areas (S = 8 µm2, dotted line; S = 32 µm2,
solid line), depicted by vertical lines in Fig. 12.6a. The curves exhibit clear maxima and,
therefore, a combination of the stochastic resonance with the conventional frequency
resonance takes place

tive properties of large ion channels arrays, where ion channels are globally
coupled via the common membrane potential V (t).

In addition, by changing the driving frequency we rediscover the effect of
combined stochastic resonance and conventional resonance [20, 26], cf. Fig. 12.6.
In other words, SNR becomes optimized not only versus the patch size, but
also versus the driving frequency. Moreover, due to the noisy character of ga-
ting variables, the mean frequency of a corresponding random limit cycle in the
stochastic Hodgkin-Huxley model (12.1),(12.6),(12.7) depends on the membrane
patch area. Thus, the maxima of SNR are located for various system sizes at
different driving frequencies. This effect may be used for frequency tuning in the
biological signal transduction.

12.4 Conclusions

In conclusion, we have investigated the stochastic resonance in a noisy gene-
ralization of the Hodgkin-Huxley model. The spontaneous fluctuations of the
membrane conductivity due to the individual ion channel dynamics has syste-
matically been taken into account. We have shown that the excitable membrane
patches exhibit a spontaneous spiking activity due to the omnipresent internal
noise.

The main result of this study refers to the phenomenon of intrinsic SR. Here,
the channel noise alone gives rise to SR behavior, cf. Fig. 12.4a and Fig. 12.5a
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(see also [31]). Moreover, such intrinsic SR becomes optimized versus the dri-
ving angular frequency, cf. Fig. 12.6. Conventional SR versus the external noise
intensity also takes place, but for sufficiently large membrane patches, where the
internal noise strength alone is not yet at its optimal value. We thus conclude
that the observed biological SR likely is rooted in the collective properties of
globally coupled ion channel assemblies.

The authors gratefully acknowledge support for this work by the Deutsche
Forschungsgemeischaft, SFB 486 Manipulation of matter on the nanoscale, pro-
ject A10.
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