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Wilson’s numerical renormalization group method for the calculation of dynamic properties of impurity
models is generalized to investigate the effective impurity model of the dynamical mean-field theory at finite
temperatures. We calculate the spectral function and self-energy for the Hubbard model on a Bethe lattice with
infinite coordination number directly on the real-frequency axis and investigate the phase diagram for the
Mott-Hubbard metal-insulator transition. While far<T ~0.02W (W: bandwidth we find hysteresis with
first-order transitions both ai .; (defining the insulator to metal transitipand atU, (defining the metal to
insulator transitiop at T>T, there is a smooth crossover from metalliclike to insulatinglike solutions.
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[. INTRODUCTION non-crossing approximation appear to give a complete pic-
ture of the solution.

During the past decade, the development and application The most widely used nonperturbative method in this con-
of the dynamical mean-field theoDMFT) has led to a textis the quantum Monte Carlo approachThe advantages
considerable increase in our understanding of strongly correaf this method are its flexibilitya wide range of physical
lated electron systems. The DMFT has originally been deproblems can be studied with only relatively minor changes
rived from the limit of infinite spatial dimensionalitor,  in the programand the possibility of obtaining a “numeri-
equivalently, infinite lattice connectivityof lattice fermion ~ cally exact” solution of G(7), the single-particle Green
models, such as the Hubbard moddh this limit, the self- function on the imaginary time axis. The main disadvantage
energy becomes purely localyhich is a consequence of the Of the quantum Monte Carlo method is the drastic increase of
required scaling of the hopping matrix elemeantt*/\d, cpmputation time upon either increasing the Coulomb repul-
with t* fixed andd the lattice dimension. sion U or decreasing the temperatufe Furthermore, the

It has been realized in the work of Jarfedind Georges analytic conti'nuation of the Qata on the imaginary time or
and Kotliaf that such a local self-energy can be calculateaﬂeq.uency. axis to _the real axis represents a difficult and_ nu-
from a much simpler, but nevertheless highly nontrivialme.rlcally |II-cond|t_|oned problem(see Ref. 8 f_or the appli-
model: the single-impurity Anderson modéSIAM).5 The cation of the maximum-entropy method to this problem

. Another nonperturbative method applicable here is the
self—gner_gy O.f the SIAM is local because_ the C_:oulc_)mb Cor'exact-diagonalization technigusee, e.g., Refs. 6,9,10n
relation in this model only acts on the impurity site. The

; ) this method, the continuous conduction band of the effective
d|ffer_ence.betw_een the SIAM :_:md t.he lattice mode_l undergiam is approximated by a discrete set of statapproxi-
cons!Qera(lstlon is then built in via a self—conS|stencymate|y 8-12 statesThe value ofU does not impose a prob-
condition” In this way, the DMFT became a powerful tool |em here as the impuritgtogether with the conduction elec-
for the investigation of various lattice models such as theron statekis diagonalized exactly. The main disadvantage
Hubbard model and the periodic Anderson modet a re-  of the exact diagonalization technique is its inability to re-
view see Ref. § The success of this approach, however,solve low-energy features such as a narrow-quasiparticle
depends on the availability of reliable methods for the calcuresonance at the Fermi level.
lation of the self-energy of an effective SIAM. Perturbative  The above-mentioned restrictions concerning the value
methods, such as the iterated perturbation tHeoryhe non- of U and T, or the low-energy resolution, do not
crossing approximatiohhave been shown to give qualita- apply to the numerical renormalization groufNRG)
tively correct results for a variety of physical problems. Themethod'*? that has only been used recently to investigate
numerical implementation of these methods allows one tdattice models within the DMF¥3~1" The NRG as well has
solve the impurity model with a minimum of computational its drawbacks, which will be discussed in Sec. Il of this
effort (typically a few seconds on a workstatjoso that the paper; nevertheless one would expect the NRG method to be
relevant parameter space of the model can be scanned veay ideal tool to calculate the self-energy of the effective
quickly. Anderson model in the DMFT, simply because it has proven
However, most of the phenomena of interest in stronglyto be very successful in the investigation of the physics of
correlated systems are inherently nonperturbative, so thdhe standard SIAM. For example, the NRG method is able to
none of the parameters in the Hamiltonian can be regarded assolve, both in static and dynamic properties, the exponen-
a small perturbation. In general we therefore have to applyially small Kondo scale for large values bf (which can be
nonperturbative methods, even in cases where perturbatiseen neither in quantum Monte Carlo nor in exact diagonal-
approaches such as the iterated perturbation theory or theation). One can also study in detail the scaling spectrum of
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the quasiparticle peak'°and the temperature dependence ofare A=1.5, . . . ,2). Theconduction band states in each in-
transport propertié&?! of the SIAM. terval are then replaced bysinglestate. While this approxi-

Applications of the NRG within the DMFT include the mation by a discrete set of states involves some coarse grain-
investigation of the Mott transitiolt1° the problem of ing at higher energies, it captures arbitrarily small energies
charge ordering in the extended Hubbard mdfleind the near the Fermi level.
formation of the heavy-fermion liquid in the periodic Ander-  In a second step, this discrete model is mapped on a semi-
son model’ In all these investigations, the temperature wasinfinite chain form via a tridiagonalization proceduttr
restricted toT=0. details, see Refs. 11,12 and section 4.2 in Ref. Z®e

In this paper, we present a study of a strongly correlateddamiltonian of the semi-infinite chain has the following
lattice model within the DMFT by applying the NRG method form:
atfinite temperature$®?!In particular, we address a problem
that has been the topic of an intense debate over the last
couple of years: the details of the Mott transition from a
paramagnetic metal to a paramagnetic insulator in the half-
filled Hubbard modef:*>2#-2¢ -

The paper is organized as follows: the NRG method is + Z ta(ChoCht 10T Cht 16Cno)- (€)
introduced in Sec. Il, with particular emphasis on the calcu- o:n=0

lation of finite-temperature dynamics. In Sec. lIl, the previ-Thjs form is valid for a general symmetric conduction-band

ous results for the Mott transition in the Hubbard mOde'der‘isity of states. The impurity now Coupies oniy to a Singie

(within DMFT) are discussed. The results from the NRG forermionic degree of freedortthe ci)), with a hybridization

the finite-temperature Mott transition are then presented i/ pye to the logarithmic discretization, the hopping matrix
Sec. IV. The paper is concluded with a summary in Sec. Velements decrease as<A "2 This means that, in going
along the chain, the parameters in the Hamiltonian evolve
Il. THE NUMERICAL RENORMALIZATION GROUP from high energieggiven by D and U) to arbitrarily low
METHOD AT FINITE TEMPERATURES energies (given by DA~"?). The renormalization-group
transformation is now set up in the following way.
We start with the solution of the isolated impurity, i.e.,
The basic ideas of the NRG method were developed bwith the knowledge of all eigenstates, eigenenergies, and
Wilson for the investigation of the Kondo modélKrishna-  matrix elements. The first step of the renormalization-group
murthy, Wilkins, and Wilsolf later applied the NRG to a transformation is to add the first conduction electron site, set

H=2 el f,+ U fTf,+ 2 V(flco,+cl,f,)

A. General concepts

related model, the SIAM with the Hamiltonian up the Hamiltonian matrices for the enlarged Hilbert space,
and obtain the new eigenstates, eigenenergies, and matrix

H= 1 Ut fTe + ol ¢ elemgnts by dlagonall_zmg these matrices. This procedure is

; Etlolo™HITITTN %:’ Ekko ke then iterated. An obvious problem occurs after only a few

steps of the iteration. The Hilbert space grows dgwith N
t + the size of the clustgrwhich makes it impossible to keep all
- % V(oCiot Colo)- @) the states in the calculation. Wilson therefore devised a very
simple truncation procedure in which only those states with
In the modeX(1), (!, denote annihilatioricreation operators  the lowest energie@typically a few hundreflare kept. This
for band states with spie- and energys,, f{" those for  truncation scheme is very successful but relies on the fact
impurity states with spiro and energye;. The Coulomb that the hopping matrix elements are falling off exponen-
interaction for two electrons at the impurity site is given by tially. High-energy states therefore do not change the very
U and both subsystems are coupled via a hybridiza¥don  low-frequency behavior and can be neglected. This proce-
The hybridization function dure gives for each cluster a set of eigenenergies and matrix
elements from which a number of physical properties can be
% derived.

2

Alw)=2,

k W— &k
is usually assumed to be constant between the band edges 8. Finite iempera_ture dyriamlcs .
(_D and D, but will acquire some frequency dependence in . .Hel’e we want to discuss in .deta." the calculation of the
the effective Anderson model within the DMRThe neces- finitetemperature spectral function
sary changes in the NRG procedure due to the nonconstant
A(w) were discussed in Refs. 14)27

The first step to set up the renormalization-group transfor-
mation is a logarithmic discretization of the conduction
band: the continuous conduction band is divided into infi-With
nitely many intervals[&,,1,&,] and [ —&,,—&,+1] with
gn:-DA._” and n=0,1,2_. ... Here, A IS the NRG dIS- GO.(Z):i detei2t<[fg(t),f3]+>- (5)
cretization parametdtypical values used in the calculations 0

Ag(w)=—%lmGg(w+i5+), (4)
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From the iterative diagonalization described above, one can E E
easily calculate the spectral functions for each cluster of size
Nvia® | i

1
Ag(@)= 7= 2 [l flm)[2olw—(EN—Ep)]

X (e~ FEm+ e~ FEn). 6) I

Here{|n)\} and{|m)y} are sets of eigenstates of the Hamil-
tonian for the cluster of siz&l, E) andE}\ are the corre- -
sponding eigenenergies, aAg the grand-canonical partition ¥
function (the spin indexs will be dropped in the followiny T
As the length of the cluster is successively increased, and 0- — 0-
A, n(w) is calculated in each step, E§) defines a whole set FIG. 1. The spectrum of many-body excitations measured with
of spectral functions. These data are combined to give spegespect to the ground-state eneffy=0, and the possible transi-
tral functions as shown, e.g., in Fig. 3 in the following way. tions contributing to a single-particle spectral functi¢a). For T

Let us first describe the procedure for calculating The =0, only transitions between the ground state and excited states are
=0 spectral functiof®*° The diagonalization of the clusters possible;(b) for T>0, transitions between excited states are pos-
N=0,1,2 ... yields the excitation spectrum,,= Eﬁ_ Ean sible as well. The dotted line indicates the cutoff in the spectrum
on a set of decreasing energy scalgs> w,>w,>- - (wy  9ue to the truncation of states.

is the smallest scale in the truncated Hamiltonkdg, i.e., o o
wy=ty and for a flat band one hasy~DA~(N"17?), Ex- This is not a problem for the finite temperature spectral

citationsw< wy, are not described within clustét: They are densitie_s presented' in this paper. The reason, as we shall see
obtained accurately in subsequent iterations from larger clud2€low, is that the width of the Kondo resonance in the effec-
ters. Similarly, excitationsu> wy are outside the energy V€ impurity model is always very much larger than the
window for clusterN (whose width is limited on the high- temperatures of interestypically by a factor of 10 larger
energy side by the truncation of the spectjuinformation The abovg scheme becomes mcreasmgly accurate as the tem-
on these excitations is contained in previous iterations foP€rature is lowered, eventually connecting continuously the

some smaller clusteN’ <N. It is therefore possible to use finite and zero temperature spectral densitie3 as0. _
Eq. (6) for eachN=0,1, . .. tocalculate theT=0 spectral There are several ways to put together the discrete infor-

density at an appropriate set of decreasing frequencies fopation from the clusters in order to arrive at continuous
each cluster. These frequencies are chosen tob@w,  CUrVes for spectral densities. One appr&&@_hreplacgs the
within the energy window of the cluster under considerationfUnctions in Eq.(6) by appropriate broadening functiofsee
(whose width, in units ofwy, typically lies in the range =d-(7—8]and evaluates the spectral densities at the charac-
6—10 for A =1.5-2.0). teristic frequencies defined above. It is also possible to first
At finite temperature, the above procedure is modified a§omb|ne information on the @screte spectra from successive
follows. For a given temperatufg which we identify with clusters N andN+2, to avoid even/odql effe(?tand then
Tw~wy for someM, one evaluates the spectral density in Proaden the spectid. Below, we describe this latter ap-
Eq. (6) at the same characteristic frequencies 2wy as proach,_whlch we used to obtain most results in this paper. A
those used for th&=0 calculation, down to a minimum fre-  COMpParson between the two approaches gave only minor

quency corresponding ®@~T=T,,. Compared to th& =0 differences in the results for the spectral function.

calculation, many more excitations will contribute at firiite The starting p_omt is the set of pe?ks _obtalned for a
as shown in Fig. 1. Whem=2wy becomes comparable to small cluster of siz&l where the truncation is not yet effec-
or smaller than the temperature of interd@st T, , it is clear tive [see Fig. 2a)]. The spectral distribution for the cluster of

that excitations will start to contribute to the spectral densit ength (N+2) is shown in Fig. #). The minimal frequency

at frequencyw that are not contained in clustsk It is still a;,)\ﬂezar_lng '2 thedspectrur_n for lthf) cluiter of;ng (2)’d
possible to calculate the spectral density at frequeneies “min Is reduced approximately by a factor COT,ET_G

= 2wy such that—Ty<w<=+Ty, by using the cluster of t© the frequgncyu%n, while the maximal freque'ncy)max is
sizeM corresponding to the temperature. This is achieved by?oW determined by the number of states retained after trun-

broadening thes functions in the spectrum of clustbt with ~ cation. From the two seth+23‘ peaks, we keep those peaks

broadening functions of widti (see below This gives a that are in the intervelwyn® , wpy,] and abovew).Z. The
very good estimate of the leading contribution to the spectrapeaks in the overlapping regigy,, whs’] are taken from
density for all frequenciefw|<T. It recovers, for example, both the previous clusters and one of lendth 2, and are
the known Fermi-liquid relations for transport quantities of added with a weighting function that is, for simplicity, just a
the Anderson modéP?! Due to the limited resolution, pro- linear function with values from 0 to 1 for arguments be-
portional toT,,, the above scheme will, however, tend to tween wly;,, and N2 (for the previous clusteysand with
broaden the spectral densities too much at higher temperaalues from 1 to Qfor the cluster of lengtiN+2) 3! The

tures. resulting set o peaks is shown in Fig.(2) and can then be
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a Let us now comment on the choice of temperatures used
uptoN in the calculations reported in this paper. It is clear from the
above discussion that the temperatures are chosen to lie
within the excitation spectrum of the clustérfor which the
i NRG iteration is terminated. Keeping the position Bf
| within the excitation spectrum constant, one has to reduce
Tw by a factorA when the largest cluster is of lengiv
+2. This defines a discrete set of temperaturbs
N+2 =TyAN"M72 for which we perform the NRG calculations.
‘ For a variety of applications within the DMFT, one would
5 | ! certainly prefer to vary the temperaturentinuously(to find,
: : : e.g., the critical temperatures for a phase transiti®uch a
ﬂ continuous variation is difficult within NRG. It is certainly
c | | V4 possible to achieve a large variation in temperature by a
up to N+2 modest variation il and using a fixed length of the cluster
i i (due to the exponential dependencélgfon A). The results
. I| . ‘I | || ||||||||’| |I ‘ | | ‘ obtained in this way would, however, contain different sys-
0 o2 N oN+2 tematic errors, as the accuracy of the NRG is enhanced upon
e e reducingA. One should therefore try to correct this de-
FIG. 2. Superposition of thé peaks in the spectral density of pendence, e.g., by extrapolating the resultsAte1. We
all clusters up to lengtN [see(a)] with the § peaks of the cluster of have not attempted to correct for the dependence and in-
lengthN+ 2 [see(b)]. This procedure gives the spectral information stead worked with a fixed = 1.64 and different cluster sizes

contained in all clusters up to lengti+2 [see(c)]. The spikes  (the number of states retained after truncation is 600, not
indicate the weight of theé functions in the spectral density, and counting degeneracigs

the lines in(a) and (b) correspond to the weighting function as

b
|

described in the text. Thé peaks in the intervdlwpn?, o] and
for o> wr“,‘];f appearing ir(c) are identical to those appearing(m® Ill. THE MOTT-HUBBARD METAL-INSULATOR
and (b), respectively, as indicated by the arrows. TRANSITION

; 22 32
used to further iterate this procedufwith the cluster of f Let us now turnt'Fo thetl\/llct)tt metal-msulat(t)_r t_rans||ﬁt6ﬁ Thi

lengthN+4, and so o)y up to the cluster of lengtM de- rom a paramagnetic metal to a paramagnetic insulator. This
fined by T=Ty . transition is found in various transition metal oxides, such as

V,0; doped with CP® The mechanism driving the Mott

The resulting spectrum is still discrete. To visualize thet ition is believed to be the local Coulomb Isio
distribution of spectral weight it is convenient to broaden theransition 1s believed to be the jocal Loulomb repulsion

6 peaks using appropriate broadening functions. For the re?gltwe(?rlhele::troni_ on t?}e Slgm? Iatgce_sge, aIthgut?h lthtf[a. de-
sults shown in this paper we used a Lorentzian ails of the transition snouid aiso be influenced by latlice

degrees of freedom. The simplest model to investigate the
1 b correlation driven metal-insulator transition is the one-band
S ) =5 ————s, (7)  Hubbard modéf-%°
T (w—wy)“+b

with width b=0.6T for w,<4T and a Gaussian on a loga- _ ot T to ot A
rithmic scale H ”EU tl](CiUCJU+ Cjo-cla')dl_UEi CiTCITCiLCILa
(10

wherec!

e b4 (In w—1In w,)?

n
Slo—wn)— bw ﬁexg{ - b2 1 ' (8) i» (Ci,) denote creatiofannihilatior) operators for a

" fermion on sitei and thet;; are the hopping matrix elements
with width b=0.3 for w,>4T. between sité andj.%” Despite its simple structure, the solu-

So far, we have not made any reference to the applicatiotion of this model turns out to be an extremely difficult

of the NRG to the effective Anderson model in the DMFT. many-body problem. The situation is particularly compli-
The necessary steps are described in Ref. 14 for the case @dted near the metal-insulator transition whéteand the

T=0 and can be used for finite temperatures equally well. Irbandwidth are roughly of the same order such that perturba-

particular, the expression of the self-energy via tive schemesin U or t) are not applicable.
The existence of a metal-insulator transition in the para-
S (@)=U Folw) © magnetic phasé of the half-filled Hubbard model has been
7 Gy(w)’ known since the early work of HubbafdThe details of the

. _ _ " transition, however, remained unclear, except in the particu-
with the correlation functiofF ,(w)=((f,ff;,fI}), holds  |ar case of dimensiod=1, where the transition occurs at
for bothT=0 andT>0 [for a discussion of the advantage of U=0".22*°Even in the opposite limit of infinite dimensions,
using Eq.(9) for the calculation off (w), see Ref. 14 where a numerically exact solution of the Hubbard model is
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in principle possible, a general consensus concerning the de-  UM=108

tails of the transition scenario has not been reached so far. L UW=110 =
Neglecting the transition to an antiferromagnetic phase or O —— uw=11s s
suppressing it by frustratichfwo coexisting solutions are sl UW=1.20 , = ]
found in DMFT at very low temperatures, one insulating and ‘ 00,005 10 15 20
one metallic®® The coexistence region vanishes above a E Y N
critical temperatureT.. Below T, the transition is of first § '
order, even in the absence of a coupling to lattice degrees of 04 |
freedom. The scenario of a first-order transition was first
proposed in Refs. 41 and 42, within calculations based on the 02
iterated perturbation theory and exact diagonalization. It was
later confirmed by the NRG foF =0'® and quantum Monte 0.0

-15 .10 -05 00 05 10 15 20
o/W

Carlo calculations fofT>0 2443 Criticism of this scenario
can be found in Refs. 25 and 44—46.

The results from the NRG for th&=0 metal-insulator FIG. 3. Spectral function for the half-filled Hubbard model for
transition can be summarized as folloffsr details see Ref. various values ofJ at T=0.0278V>T, (in the crossover region
15). On approaching the transition from the metallic side, aThe crossover from the metal to the insulator occurs via a gradual
typical three-peak structure appears in the spectral functiorsuppression of the quasiparticle peaksat 0. The inset shows the
with upper and lower Hubbard bands @t~*=U/2 and a U dependence oh(w=0), in particular, the rapid decrease fdr
quasiparticle peak ab=0. The width of the quasiparticle ~1.1W.
peak vanishes forU—U.,, leaving behind two well-
separated Hubbard peaksee Fig. 2 in Ref. 15 Although  Vvalues ofU and vanishes only in the limit) —o [or for T
the NRG is not able to resolve a small spectral weight be—0, provided that)>U (T=0)].
tween the Hubbard peaks, the results indicate that the gap The U dependence oh(w=0) is shown in Fig. 4g) for
opens discontinuouslysee also Ref. 6 On decreasindJ, different temperatures. As discussed in Sec. Il, the tempera-
the transition from the insulator to the metal occurs at dures are chosen ag,=T;XA™, with T,=0.0168V and
lower critical valueU,,, where the gap vanishes. Concern-m=0,1,2,3, A\ =1.64 is used for all results shown in this
ing the numerical value dfl .,,~1.47W (W: bandwidth, ex-  paper; the number of states retained after truncation is 600,
cellent agreement with the result from the projective self-not counting degeneracjes he derivative ofA(w=0) with

consistent methdd® is found. respect taJ,
The extension of the NRG t&d>0 will now be used to
determine the full shape of the hysteresis region nonpertur- , IA(w=0U)
batively. The calculations are done for a Bethe lattice with Alw=0)=——r—", (11)

infinite coordination number, i.e., a semi-elliptic free density
of states. We do not expect qualitatively different results foris plotted in Fig. 4b). The U value where|A’(w=0)|

more realistic lattice structures, such as the hypercubic latticeeaches its maximum defines a characteristic interaction
(see, e.g., the NRG results for=0 in Ref. 15.

1.5
IV. RESULTS a
A. Spectral function for T>T, z 10T
* - T/N=0.0168
Figure 3 shows the spectral functigh(w) for various 23 - Imfgg%g
values ofU at T=0.0276N. This is above the temperature of 05 1 77 riweo.0741
the critical point(which we estimate a$.~0.02W), so that %
there is no real transition but a crossover from a metalliclike 0.0 ' : AN
to an insulatinglike solution. As already found in Refs. 6,23,
the crossover region is nevertheless very narrow, with a very > 100 | i b
rapid suppression of the quasiparticle peak. This is seen also 2
in the NRG results(Fig. 3 when U is increased fromJ f%
=1.05V to U=1.20N. The spectral weight of the quasipar- T 507
ticle peak is gradually redistributed and shifted to the upper
(lower) edge of the lowefuppey Hubbard band. An addi- 0.0 e
tional structurewithin the Hubbard bands, as reported in 0.0 04 08 12 1.6

Refs. 6 and 23 is not found and would be very difficult to see

due to the limited resolution of the NRG at higher frequen- G, 4. (a): The U dependence oA(w=0) for different tem-

cles. _ . peratures; the data far=0.0168V<T, show a very small hyster-
The inset of Fig. 3 shows the dependence of the value esis, not visible on this scale. The other three sets of data are for

of the spectral function at zero frequengyfw=0). The  T>T,. (b): The derivative ofA(w=0,U) with respect tdJ for the
spectral density at the Fermi level is finite even for largesame temperatures as (i@.
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strengthU* for the crossover from metalliclike to insulating-
like behavior in the regio >T,; for the definition ofU; ,

for T<T., see below. Furthermore, the widthU of the
crossover region can be defined as the width at half height of
the peak inA’(w=0).

Upon lowering the temperature, the widthU rapidly
decreases and vanishes at the critical temperdtyresince
A'(w=0) diverges afl . (this feature has already been dis-
cussed in Ref. 48 A precise value foll ; cannot be given as
we are presently not able to vary the temperature within
NRG continuously. The critical temperature is estimated as
T.~0.02WV, as a very small hysteresis is still present Tor
=0.0168V (on the scale of Fig. 4J. and U, cannot be
distinguished -2.0 . .

The U* as defined above slowly decreases upon increas- ~08 -04 (g,'&, 04 08
ing the temperature. This is not at variance with the opposite
trend observed in Refs. 6, 7, and 88 Ref. 23, the slope FIG. 5. Imaginary parta) and real partb) of the self-energy for
of U* changes sign atT~0.25W) and depends on the same temperatur&{0.0276V) andU values as in Fig. 3. The
the definition of U*. Taking U* as, e.g., the value of slope of R& (w) changes sign at the sartkvalue for which the
where A(w=0) has dropped to 1% of its value at=0  Peak atw=0 appears in Inx (o).
would result in anincreaseof U* upon increasing the tem-

ImZ(0)yW

ReZ(w)/W

perature. rapidly increasing scattering rate at=0 for increasingU.
The two-peak structure gradually evolves into a structure
B. Breakdown of Fermi liquid vs metal-insulator transition with a well-pronounced peak at=0 characteristic for an

We now discuss the question of how to define a usefu|Sulating solutior{a vanishingA(w=0) would correspond
d to a & function in ImX(w)]. Note that for U=1.15V

criterion for the metal-insulator transition at finite tempera- )
b he value of In®(w=0) is much larger than th&? term

tures. At zero temperature a suitable criterion is the vanisht .
ing, with increasingU, of the quasiparticle weight observed forT—0. Hence, the mechanism for the strong

scattering at w=0 is not a quasiparticle interaction

1 but is caused by the bare local Coulomb repulsion, which
Z= TReS (o) . (120 destroys the Fermi-liquid behavior fdy=1.15V. For U
1—- — 7 =1.189V there is still a narrow dip in I (w) at w=0
Jw ©0=0 corresponding to the remnant of a quasiparticle peak seen in
Fig. 3.

The physical meaning & is clear for the paramagnetic state For U=1.08V and U=1.10W, the corresponding real

at T=0, where the system is either a Fermi liquidr U o1 of5'(4,) shows the typical Fermi-liquid behavior with a
<U,) or an insulatoffor U>U_). The vanishing o¥ there- negative slope ab=0. Upon further increasing tHe, how-

fore marks the metal-insulator transition &&=0, as dis- ever, the slope of RE(w) changes sign right at the value

cussed, e.g., in Refs. 6 and 15. This criterion, however, can;hare the peak ab=0 appears in InX (): this is obvious

not be taken over siraightiorwardly to finjtg temperatureS .,y - he Kramers-Kronig transformation that connects
since forT>0 the breakdown of the Fermi-liquid state and real and imaginary part. Note that the wl/behavior

the appearance of the insulating state do not coincide. Al- o . .
; ; ; . n Re for larger frequencies is not visible on this
though this point has been noted before in the literatsee, Iscale (o) 9 qu I ! visi :

e.g., Refs. 49 and 23the vanishing oZ has been used as From the full-frequency dependence Bfw) on the real

(ci)t?e?]cigteerc;n zfgr tl?er?ccllérrsn%e t()fdtr;ﬁ T?ﬁal'('jnsﬁur:ﬁ‘itorzzté?n'axis one can easily perform the analytic continuatioR (a)
sitio €l. 25. 1t should be noted that the detinitio for any value ofz in the upper complex plane:

used in the finite-temperature quantum Monte Carlo calcula-
tions of Ref. 23 is different from Eq.(12) since
JRe3(w)ldw|,—o was approximated by I8 (iwg)/wg, 1 Im3(w)
with wg the first Matsubara frequency. 2(z)=— —j do'———. (13

To elucidate this point, it is instructive to discuss the be- 7 Zmo
havior of the self-energy in the crossover region from the
metalliclike to the insulatinglike solution. The real and In particular forz=iw andw real, Eq.(13) gives the real and
imaginary part ofY(w) are shown in Fig. 5, for the same imaginary parts of the self-energy on the imaginary fre-
temperature and) values as in Fig. 3. FOU=1.05V and quency axiqthe analytic continuation from the imaginary to
U=1.10W the imaginary part shows the characteristic structhe real frequency axis, however, is much more delicate, see,
ture of the self-energy for a Fermi liquishith the w? depen-  e.g., Ref. 8. The result for I (i ») is shown in Fig. 6, for
dence for small frequencies and the falling off at higher fre-the same parameters as in Figs. 3 and 5. The circles indicate
quencies that leads to a two-peak structuteut with a  the value of In® (i w,) for the Matsubara frequencies
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FIG. 6. Imaginary part of the self-energy, By on the imagi- 00 == . \J . N
nary frequency axis for the same parameters as in Figs. 3 and 5. The 15 -10 -05 00 0.5 1.0 15
values of Im3 for the Matsubara frequencies are indicated by the o/W
circles. The inset focuses on the change of sign of the slope in ) ) )
Im3(iw) for values ofU=1.1W up to U=1.1A (from top to FIG. 7. Spectral function fof =0.0103 W;(a): increasingU
bottom). (b): decreasingJ; the transitions at) ,~1.2IW and U ~1.14V
are characterized by a significant redistribution of spectral weight
T and a jump iNA(w=0) (see also Fig. B
op,==(2n+1), n=0,12.... (14

B

As the self-energy(2) is defined on the whole imaginary- @nd decreasing) [Fig. 7(b)]. The resuilts are shown for a
frequency axis i.e., not only for the Matsubara frequenciesVery fine mesh ofU values close tdJ,~1.2IW and U,
one can, for instance, check the trivial conditiondfiw) — ~1.14V.
=Im3(w) for o—0. In both cases, the transition is of first order, i.e., associ-
Furthermore, the slope of Il(i w) for w—0 is identical  ated with a discontinuous redistribution of spectral weight.
to the slope of the real part &f(w). As a consequence, the The hysteresis effect is further illustrated in tbedepen-
same change in the slope of the self-energy is visible in botldlence ofA(w=0) for T=0.0103V<T, (Fig. 9).
Figs. 8b) and 6. The inset of Fig. 6 illustrates this for a  \Whereas the critical values;; and U, can be easily
smaller frequency range and a narrow meshl oflues from  defined by the jump im\(w=0), the calculation of the actual
U=1.1W up toU=1.1AV (from top to bottor. thermodynamic transition requires the knowledge of the free
This behavior of the self-energy has drastic CoNSequUENCe&shergyF of both metallic and insulating solutions. The de-
for the notion of a quasiparticle weiglt in the Crossover  ormination ofF goes beyond the scope of this paper. There
regime. M t.hat the appllcanon of Efj2) to the self- . i? no way of directly calculating within the NRG approach,
energies as obtained in Figs. 5 and 6 leads to unphysm@o one has to determine the free energy via integrating over a

results for U=1.15VN. Due to the change of sign in : oo :

: . ath from a particular point in theJ, T) plane for which the
(9 ReZ(w)/ﬁg)lw:O upon increasing), theZ from Eq.(12) ?ree energyr;s knownpup to thsxact)ugl valueslbfand T
starts increasing again and even diverges at a particular Val"l'—?owever the knowled e of tHe (T) for the actual thermb—
of U for which the derivative of the self-energy is equal to ' 9 ¢

one. For larger values dfi, Z becomes negative and ap- dyn_amic transition will not alter the fact that the transition is

proaches zero from below fds—oc. Apparently, the use of ©Of first order.

Eqg. (12) does not make sense for=1.13V (Ref. 50 which

is due to the fact that the concept of quasiparticles itself

breaks down in the crossover regime. The quasiparticle

weight is therefore not an appropriate measure for the metal-

insulator transition in the whole parameter space. Note also

that in the crossover region, the weight of the remnant of the i

guasiparticle peak is not associatedzto 1
Whereas there is no unique criterion for a characteristic z

value U* for T>T,, critical values forU can nevertheless

be defined folT<T, via the value ofU at whichA(w=0)

1.5

e—o increasing U
05 k =---8& decreasing U

changes discontinuously. 0.0 . -
0.4 0.8 12 1.6
C. Spectral function for T<T, U/w
Figure 7 shows the spectral functid{w) in the hyster- FIG. 8. U dependence oA(w=0) for T=0.0103V; solid line:

esis region foil =0.0103V, both for increasindgJ [Fig. 7(a)] increasingy, dashed line: decreasing
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0.05 y y - g very large number of DMFT iterations is necessary to deter-
e mine a single value o) (A). Calculations ofU; andU,
0.04 | o—oU,NRG | for one value ofT with A=1.64 andA=2.0 at least show
S ga% the expected trend, i.e., a slight increase of thés with
0.03 | =U, OMC | decreasing\.
z =t Taking into account the unavoidable numerical errors in
= both procedures, the agreement between NRG and quantum
0.02 Monte Carlo results for the phase boundary is seen to be very
good; the agreement can even be further imprdVed.
0.01 |
0.00 . “S-g. . V. SUMMARY
1.0 1.2 1.4 1.6
Uw In this paper we presented results from the numerical

. . renormalization group method for the finite-temperature
FIG. 9. Results for the phase diagram of the Mott transitiony ot transition in the Hubbard model on a Bethe lattice
T\)/lbta;nedc fr?m(g;\;fgre?_t” ”:jeth‘)dsb: ERQ%er!t SVTZO')S qltjargtutm within dynamical mean-field theory. For the crossover region
onte. Larlo » Hied symbol, and Iterated perturbalion  +— 1 the quasiparticle peak in the spectral function gradu-
theory (IPT, solid lineg. The dashed lines fof >T, indicate the ally \/Canishgs upgn increF;lSirlg and th% imaginary pargt of
position and width of the crossover region as calculated from th%he self-enerav develons a sharb peakwatO. Associated
data of Fig. 4. The error bars in the QMC dét®t shown hergare with this is agychange %f sign 0? I%a(w) at ;u=0 As a

of the order of 2%(Ref. 26. The QMC point at(1.23,0.013 is . . . .
obtained from an extrapolation of QMC data as described in ReftONSequence, the beha_VIo_r of the quaSIpar_tl_CIe We'_ght can no
24 longer be used as a criterion for the transition at finite tem-
perature.
D. Phase diagram For T<T.~0.02V, we find two coexisting solutions in
the rangel ;o(T) <U<U,(T). The values for the critical

Let us finally discuss the phase diagram for the Mott ; S ;
. oo .~ "can be determined for arbitrarily small temperatures, in con-
metal-insulator transition in the very low-temperature region,

) . ) - trast to the quantum Monte Carlo method that is so far re-
In Fig. 9, the dashed lines fdr>T. indicate the position and stricted t0T>W/150. The criticalU y(T) and U(T) are

width of the crossover region as calculated from the NRG X S N T
. ; haracterized by a redistribution of finite spectral weight in
data of Fig. 4. The open circles and squares are the NR .
e spectral function.

results forUe(T) and Uc(T), respectively. As the NRG We therefore obtain a consistent picture for the Mott

calculations cannot, so far, be performed for arbitrary values : o .
. ep rary Valuea etal-insulator transition from a paramagnetic metal to a
of T, we cannot give a precise value for the critical point.

. . : paramagnetic insulator in the whole parameter regime. The
ngiéJFOZ(rTr):rgﬁ%lfh:)g;ﬁ’glzt?rsuéof;ge (qfvlﬁ)gé%h%?tg:ged results are in very good agreement with those from other
value for U 1(’T=0)=1 195V plotted Crl1ere. is slightly re- nonperturbative methodshe quantum Monte-Carlo method

c .

duced as compared to the originally published v T and the projective self-consistent methau their respective

—0)= 15 Thic i : ranges of applicability.
=0)=1.23V." This is due to the different value fok, the There are still several questions left for further investiga-
number of states and the broadening used here.

. . tions. A continuous variation of the temperature within the
Figure 9 also contains recent quantum Monte Carlo re

. NRG requires a better understanding of thelependence of
sults of Joo and Oudovenk(filled symbolg, as well as the : :
result from the iterated perturbation thebrnat tends to the results. The NRG also allows the calculation of a variety

. .~ of dynamic and transport properties in the whole parameter
overestimate bothi o;(T) andU,(T). The phase boundaries regime, such as dynamic susceptibility and optical conduc-

obtained from the NRG are below the values obtained fronfivity. A generalization of the NRG method to antiferromag-

the quantum Monte Carlo results. Concerning _the .NRG.VthetiC phases and the Hubbard model away from half filling is
ues, it is well known that due to the logarithmic dlscretlza-in progress

tion, the NRG tends to underestimate the effective
hybridizatior?! (hence underestimating the valueldheces-
sary to overcome the kinetic enejgyrhis effect has, e.g.,
been studied in the context of the quantum phase transition
from the local moment to the strong coupling phase in the It is a pleasure to acknowledge fruitful discussions with
soft-gap Anderson modél.For the transition in this model, N. Blimer, W. Hofstetter, A. P. Kampf, and Th. Pruschke.
the value ofU. for A=2.0 is about 5% below the extrapo- Two of us(R.B. and T.A.C). would like to thank the Isaac-
lated value forA —1; more importantly, th&J (A) is a per-  Newton Institute for Mathematical Sciences for hospitality
fectly straight line fromA =1.4 to A =3.0. where part of this work was done. We also acknowledge the
A similar A—1 extrapolation is difficult to perform for support of the Deutsche Forschungsgemeinschaft through the
the metal-insulator transition studied here, since already &onderforschungsbereich 484.
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