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Finite-temperature numerical renormalization group study of the Mott transition
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Wilson’s numerical renormalization group method for the calculation of dynamic properties of impurity
models is generalized to investigate the effective impurity model of the dynamical mean-field theory at finite
temperatures. We calculate the spectral function and self-energy for the Hubbard model on a Bethe lattice with
infinite coordination number directly on the real-frequency axis and investigate the phase diagram for the
Mott-Hubbard metal-insulator transition. While forT,Tc'0.02W (W: bandwidth! we find hysteresis with
first-order transitions both atUc1 ~defining the insulator to metal transition! and atUc2 ~defining the metal to
insulator transition!, at T.Tc there is a smooth crossover from metalliclike to insulatinglike solutions.
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I. INTRODUCTION

During the past decade, the development and applica
of the dynamical mean-field theory~DMFT! has led to a
considerable increase in our understanding of strongly co
lated electron systems. The DMFT has originally been
rived from the limit of infinite spatial dimensionality~or,
equivalently, infinite lattice connectivity! of lattice fermion
models, such as the Hubbard model.1 In this limit, the self-
energy becomes purely local,2 which is a consequence of th
required scaling of the hopping matrix elementt5t* /Ad,
with t* fixed andd the lattice dimension.

It has been realized in the work of Jarrell3 and Georges
and Kotliar4 that such a local self-energy can be calcula
from a much simpler, but nevertheless highly nontriv
model: the single-impurity Anderson model~SIAM!.5 The
self-energy of the SIAM is local because the Coulomb c
relation in this model only acts on the impurity site. Th
difference between the SIAM and the lattice model un
consideration is then built in via a self-consisten
condition.6 In this way, the DMFT became a powerful too
for the investigation of various lattice models such as
Hubbard model and the periodic Anderson model~for a re-
view see Ref. 6!. The success of this approach, howev
depends on the availability of reliable methods for the cal
lation of the self-energy of an effective SIAM. Perturbati
methods, such as the iterated perturbation theory6 or the non-
crossing approximation,7 have been shown to give qualita
tively correct results for a variety of physical problems. T
numerical implementation of these methods allows one
solve the impurity model with a minimum of computation
effort ~typically a few seconds on a workstation! so that the
relevant parameter space of the model can be scanned
quickly.

However, most of the phenomena of interest in stron
correlated systems are inherently nonperturbative, so
none of the parameters in the Hamiltonian can be regarde
a small perturbation. In general we therefore have to ap
nonperturbative methods, even in cases where perturba
approaches such as the iterated perturbation theory or
0163-1829/2001/64~4!/045103~9!/$20.00 64 0451
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non-crossing approximation appear to give a complete
ture of the solution.

The most widely used nonperturbative method in this c
text is the quantum Monte Carlo approach.3,6 The advantages
of this method are its flexibility~a wide range of physica
problems can be studied with only relatively minor chang
in the program! and the possibility of obtaining a ‘‘numeri
cally exact’’ solution of G(t), the single-particle Green
function on the imaginary time axis. The main disadvanta
of the quantum Monte Carlo method is the drastic increas
computation time upon either increasing the Coulomb rep
sion U or decreasing the temperatureT. Furthermore, the
analytic continuation of the data on the imaginary time
frequency axis to the real axis represents a difficult and
merically ill-conditioned problem~see Ref. 8 for the appli-
cation of the maximum-entropy method to this problem!.

Another nonperturbative method applicable here is
exact-diagonalization technique~see, e.g., Refs. 6,9,10!. In
this method, the continuous conduction band of the effec
SIAM is approximated by a discrete set of states~approxi-
mately 8–12 states!. The value ofU does not impose a prob
lem here as the impurity~together with the conduction elec
tron states! is diagonalized exactly. The main disadvanta
of the exact diagonalization technique is its inability to r
solve low-energy features such as a narrow-quasipar
resonance at the Fermi level.

The above-mentioned restrictions concerning the va
of U and T, or the low-energy resolution, do no
apply to the numerical renormalization group~NRG!
method11,12 that has only been used recently to investig
lattice models within the DMFT.13–17 The NRG as well has
its drawbacks, which will be discussed in Sec. II of th
paper; nevertheless one would expect the NRG method t
an ideal tool to calculate the self-energy of the effect
Anderson model in the DMFT, simply because it has prov
to be very successful in the investigation of the physics
the standard SIAM. For example, the NRG method is able
resolve, both in static and dynamic properties, the expon
tially small Kondo scale for large values ofU ~which can be
seen neither in quantum Monte Carlo nor in exact diagon
ization!. One can also study in detail the scaling spectrum
©2001 The American Physical Society03-1
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the quasiparticle peak18,19and the temperature dependence
transport properties20,21 of the SIAM.

Applications of the NRG within the DMFT include th
investigation of the Mott transition,13–15 the problem of
charge ordering in the extended Hubbard model,16 and the
formation of the heavy-fermion liquid in the periodic Ande
son model.17 In all these investigations, the temperature w
restricted toT50.

In this paper, we present a study of a strongly correla
lattice model within the DMFT by applying the NRG metho
at finite temperatures.20,21In particular, we address a proble
that has been the topic of an intense debate over the
couple of years: the details of the Mott transition from
paramagnetic metal to a paramagnetic insulator in the h
filled Hubbard model.6,15,22–26

The paper is organized as follows: the NRG method
introduced in Sec. II, with particular emphasis on the cal
lation of finite-temperature dynamics. In Sec. III, the pre
ous results for the Mott transition in the Hubbard mod
~within DMFT! are discussed. The results from the NRG
the finite-temperature Mott transition are then presented
Sec. IV. The paper is concluded with a summary in Sec.

II. THE NUMERICAL RENORMALIZATION GROUP
METHOD AT FINITE TEMPERATURES

A. General concepts

The basic ideas of the NRG method were developed
Wilson for the investigation of the Kondo model.11 Krishna-
murthy, Wilkins, and Wilson12 later applied the NRG to a
related model, the SIAM with the Hamiltonian

H5(
s

« f f s
† f s1U f ↑

†f ↑ f ↓
†f ↓1(

ks
«kcks

† cks

1(
ks

V~ f s
†cks1cks

† f s!. ~1!

In the model~1!, cks
(†) denote annihilation~creation! operators

for band states with spins and energy«k , f s
(†) those for

impurity states with spins and energy« f . The Coulomb
interaction for two electrons at the impurity site is given
U and both subsystems are coupled via a hybridizationV.

The hybridization function

D~v!5(
k

V2

v2«k
, ~2!

is usually assumed to be constant between the band e
~-D and D!, but will acquire some frequency dependence
the effective Anderson model within the DMFT~the neces-
sary changes in the NRG procedure due to the noncons
D(v) were discussed in Refs. 14,27!.

The first step to set up the renormalization-group trans
mation is a logarithmic discretization of the conducti
band: the continuous conduction band is divided into in
nitely many intervals@jn11 ,jn# and @2jn ,2jn11# with
jn5DL2n and n50,1,2, . . . ,̀ . Here,L is the NRG dis-
cretization parameter~typical values used in the calculation
04510
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are L51.5, . . . ,2). Theconduction band states in each i
terval are then replaced by asinglestate. While this approxi-
mation by a discrete set of states involves some coarse g
ing at higher energies, it captures arbitrarily small energ
near the Fermi level.

In a second step, this discrete model is mapped on a s
infinite chain form via a tridiagonalization procedure~for
details, see Refs. 11,12 and section 4.2 in Ref. 28!. The
Hamiltonian of the semi-infinite chain has the followin
form:

H5(
s

« f f s
† f s1U f ↑

†f ↑ f ↓
†f ↓1(

s
V~ f s

†c0s1c0s
† f s!

1 (
s,n50

`

tn~cns
† cn11s1cn11s

† cns!. ~3!

This form is valid for a general symmetric conduction-ba
density of states. The impurity now couples only to a sin
fermionic degree of freedom~the c0s

(†)!, with a hybridization
V. Due to the logarithmic discretization, the hopping mat
elements decrease astn}L2n/2. This means that, in going
along the chain, the parameters in the Hamiltonian evo
from high energies~given by D and U) to arbitrarily low
energies ~given by DL2n/2). The renormalization-group
transformation is now set up in the following way.

We start with the solution of the isolated impurity, i.e
with the knowledge of all eigenstates, eigenenergies,
matrix elements. The first step of the renormalization-gro
transformation is to add the first conduction electron site,
up the Hamiltonian matrices for the enlarged Hilbert spa
and obtain the new eigenstates, eigenenergies, and m
elements by diagonalizing these matrices. This procedur
then iterated. An obvious problem occurs after only a f
steps of the iteration. The Hilbert space grows as 4N ~with N
the size of the cluster!, which makes it impossible to keep a
the states in the calculation. Wilson therefore devised a v
simple truncation procedure in which only those states w
the lowest energies~typically a few hundred! are kept. This
truncation scheme is very successful but relies on the
that the hopping matrix elements are falling off expone
tially. High-energy states therefore do not change the v
low-frequency behavior and can be neglected. This pro
dure gives for each cluster a set of eigenenergies and m
elements from which a number of physical properties can
derived.

B. Finite-temperature dynamics

Here we want to discuss in detail the calculation of t
finite-temperature spectral function

As~v!52
1

p
Im Gs~v1 id1!, ~4!

with

Gs~z!5 i E
0

`

dt eizt^@ f s~ t !, f s
† #1&. ~5!
3-2
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From the iterative diagonalization described above, one
easily calculate the spectral functions for each cluster of
N via29

AsN~v!5
1

ZN
(
nm

u N^nu f s
† um&Nu2d@v2~En

N2Em
N!#

3~e2bEm
N
1e2bEn

N
!. ~6!

Here$un&N% and$um&N% are sets of eigenstates of the Ham
tonian for the cluster of sizeN, En

N and Em
N are the corre-

sponding eigenenergies, andZN the grand-canonical partition
function ~the spin indexs will be dropped in the following!.
As the length of the cluster is successively increased,
AsN(v) is calculated in each step, Eq.~6! defines a whole se
of spectral functions. These data are combined to give s
tral functions as shown, e.g., in Fig. 3 in the following wa

Let us first describe the procedure for calculating theT
50 spectral function.20,30The diagonalization of the cluster
N50,1,2, . . . yields the excitation spectrumvnm5En

N2Em
N

on a set of decreasing energy scalesv0.v1.v2.••• (vN
is the smallest scale in the truncated HamiltonianHN , i.e.,
vN5tN and for a flat band one hasvN;DL2(N21)/2). Ex-
citationsv!vN are not described within clusterN. They are
obtained accurately in subsequent iterations from larger c
ters. Similarly, excitationsv@vN are outside the energ
window for clusterN ~whose width is limited on the high
energy side by the truncation of the spectrum!. Information
on these excitations is contained in previous iterations
some smaller clusterN8,N. It is therefore possible to us
Eq. ~6! for eachN50,1, . . . tocalculate theT50 spectral
density at an appropriate set of decreasing frequencies
each cluster. These frequencies are chosen to bev'2vN
within the energy window of the cluster under considerat
~whose width, in units ofvN , typically lies in the range
6–10 forL51.522.0!.

At finite temperature, the above procedure is modified
follows. For a given temperatureT, which we identify with
TM'vM for someM, one evaluates the spectral density
Eq. ~6! at the same characteristic frequenciesv52vN as
those used for theT50 calculation, down to a minimum fre-
quency corresponding tov'T5TM . Compared to theT50
calculation, many more excitations will contribute at finiteT,
as shown in Fig. 1. Whenv52vN becomes comparable t
or smaller than the temperature of interest,T5TM , it is clear
that excitations will start to contribute to the spectral dens
at frequencyv that are not contained in clusterN. It is still
possible to calculate the spectral density at frequenciev
52vN such that2TM<v<1TM by using the cluster of
sizeM corresponding to the temperature. This is achieved
broadening thed functions in the spectrum of clusterM with
broadening functions of widthT ~see below!. This gives a
very good estimate of the leading contribution to the spec
density for all frequenciesuvu<T. It recovers, for example
the known Fermi-liquid relations for transport quantities
the Anderson model.20,21 Due to the limited resolution, pro
portional to TM , the above scheme will, however, tend
broaden the spectral densities too much at higher temp
tures.
04510
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This is not a problem for the finite temperature spect
densities presented in this paper. The reason, as we sha
below, is that the width of the Kondo resonance in the eff
tive impurity model is always very much larger than th
temperatures of interest~typically by a factor of 10 larger!.
The above scheme becomes increasingly accurate as the
perature is lowered, eventually connecting continuously
finite and zero temperature spectral densities asT→0.

There are several ways to put together the discrete in
mation from the clusters in order to arrive at continuo
curves for spectral densities. One approach20,21replaces thed
functions in Eq.~6! by appropriate broadening functions@see
Eq. ~7–8!# and evaluates the spectral densities at the cha
teristic frequencies defined above. It is also possible to fi
combine information on the discrete spectra from succes
clusters (N and N12, to avoid even/odd effects! and then
broaden the spectra.14 Below, we describe this latter ap
proach, which we used to obtain most results in this pape
comparison between the two approaches gave only m
differences in the results for the spectral function.

The starting point is the set ofd peaks obtained for a
small cluster of sizeN where the truncation is not yet effec
tive @see Fig. 2~a!#. The spectral distribution for the cluster o
length (N12) is shown in Fig. 2~b!. The minimal frequency
appearing in the spectrum for the cluster of length (N12),
vmin

N12 , is reduced approximately by a factor ofL compared
to the frequencyvmin

N , while the maximal frequencyvmax
N12 is

now determined by the number of states retained after tr
cation. From the two sets ofd peaks, we keep those peak
that are in the interval@vmin

N12 ,vmin
N # and abovevmax

N12 . The
peaks in the overlapping region@vmin

N ,vmax
N12# are taken from

both the previous clusters and one of lengthN12, and are
added with a weighting function that is, for simplicity, just
linear function with values from 0 to 1 for arguments b
tween vmin

N and vmax
N12 ~for the previous clusters! and with

values from 1 to 0~for the cluster of lengthN12).31 The
resulting set ofd peaks is shown in Fig. 2~c! and can then be

FIG. 1. The spectrum of many-body excitations measured w
respect to the ground-state energyEg50, and the possible transi
tions contributing to a single-particle spectral function.~a! For T
50, only transitions between the ground state and excited state
possible;~b! for T.0, transitions between excited states are p
sible as well. The dotted line indicates the cutoff in the spectr
due to the truncation of states.
3-3
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R. BULLA, T. A. COSTI, AND D. VOLLHARDT PHYSICAL REVIEW B 64 045103
used to further iterate this procedure~with the cluster of
length N14, and so on!, up to the cluster of lengthM de-
fined byT5TM .

The resulting spectrum is still discrete. To visualize t
distribution of spectral weight it is convenient to broaden
d peaks using appropriate broadening functions. For the
sults shown in this paper we used a Lorentzian

d~v2vn!→ 1

2p

b

~v2vn!21b2
, ~7!

with width b50.6T for vn,4T and a Gaussian on a loga
rithmic scale

d~v2vn!→ e2b2/4

bvnAp
expF2

~ ln v2 ln vn!2

b2 G , ~8!

with width b50.3 for vn.4T.
So far, we have not made any reference to the applica

of the NRG to the effective Anderson model in the DMF
The necessary steps are described in Ref. 14 for the ca
T50 and can be used for finite temperatures equally well
particular, the expression of the self-energy via

Ss~v!5U
Fs~v!

Gs~v!
, ~9!

with the correlation functionFs(v)5^^ f s f s̄
†

f s̄ , f s
†&&v holds

for bothT50 andT.0 @for a discussion of the advantage
using Eq.~9! for the calculation ofS(v), see Ref. 14#.

FIG. 2. Superposition of thed peaks in the spectral density o
all clusters up to lengthN @see~a!# with thed peaks of the cluster o
lengthN12 @see~b!#. This procedure gives the spectral informatio
contained in all clusters up to lengthN12 @see~c!#. The spikes
indicate the weight of thed functions in the spectral density, an
the lines in ~a! and ~b! correspond to the weighting function a
described in the text. Thed peaks in the interval@vmin

N12 ,vmin
N # and

for v.vmax
N12 appearing in~c! are identical to those appearing in~a!

and ~b!, respectively, as indicated by the arrows.
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Let us now comment on the choice of temperatures u
in the calculations reported in this paper. It is clear from t
above discussion that the temperatures are chosen to
within the excitation spectrum of the clusterM for which the
NRG iteration is terminated. Keeping the position ofTM
within the excitation spectrum constant, one has to red
TM by a factorL when the largest cluster is of lengthM
12. This defines a discrete set of temperaturesTN
5TML (N2M )/2 for which we perform the NRG calculations

For a variety of applications within the DMFT, one wou
certainly prefer to vary the temperaturecontinuously~to find,
e.g., the critical temperatures for a phase transition!. Such a
continuous variation is difficult within NRG. It is certainly
possible to achieve a large variation in temperature b
modest variation inL and using a fixed length of the cluste
~due to the exponential dependence ofTM on L). The results
obtained in this way would, however, contain different sy
tematic errors, as the accuracy of the NRG is enhanced u
reducingL. One should therefore try to correct thisL de-
pendence, e.g., by extrapolating the results toL51. We
have not attempted to correct for theL dependence and in
stead worked with a fixedL51.64 and different cluster size
~the number of states retained after truncation is 600,
counting degeneracies!.

III. THE MOTT-HUBBARD METAL-INSULATOR
TRANSITION

Let us now turn to the Mott metal-insulator transition22,32

from a paramagnetic metal to a paramagnetic insulator. T
transition is found in various transition metal oxides, such
V2O3 doped with Cr.33 The mechanism driving the Mot
transition is believed to be the local Coulomb repulsionU
between electrons on the same lattice site, although the
tails of the transition should also be influenced by latt
degrees of freedom. The simplest model to investigate
correlation driven metal-insulator transition is the one-ba
Hubbard model34–36

H52(
i j s

t i j ~cis
† cj s1cj s

† cis!1U(
i

ci↑
† ci↑ci↓

† ci↓ ,

~10!

wherecis
† (cis) denote creation~annihilation! operators for a

fermion on sitei and thet i j are the hopping matrix element
between sitei and j.37 Despite its simple structure, the solu
tion of this model turns out to be an extremely difficu
many-body problem. The situation is particularly comp
cated near the metal-insulator transition whereU and the
bandwidth are roughly of the same order such that pertu
tive schemes~in U or t) are not applicable.

The existence of a metal-insulator transition in the pa
magnetic phase38 of the half-filled Hubbard model has bee
known since the early work of Hubbard.34 The details of the
transition, however, remained unclear, except in the part
lar case of dimensiond51, where the transition occurs a
U501.22,39Even in the opposite limit of infinite dimensions
where a numerically exact solution of the Hubbard mode
3-4
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in principle possible, a general consensus concerning the
tails of the transition scenario has not been reached so f

Neglecting the transition to an antiferromagnetic phase
suppressing it by frustration,6 two coexisting solutions are
found in DMFT at very low temperatures, one insulating a
one metallic.40 The coexistence region vanishes above
critical temperature,Tc . Below Tc , the transition is of first
order, even in the absence of a coupling to lattice degree
freedom. The scenario of a first-order transition was fi
proposed in Refs. 41 and 42, within calculations based on
iterated perturbation theory and exact diagonalization. It w
later confirmed by the NRG forT5015 and quantum Monte
Carlo calculations forT.0.24,43 Criticism of this scenario
can be found in Refs. 25 and 44–46.

The results from the NRG for theT50 metal-insulator
transition can be summarized as follows~for details see Ref.
15!. On approaching the transition from the metallic side
typical three-peak structure appears in the spectral funct
with upper and lower Hubbard bands atv'6U/2 and a
quasiparticle peak atv50. The width of the quasiparticle
peak vanishes forU→Uc2, leaving behind two well-
separated Hubbard peaks~see Fig. 2 in Ref. 15!. Although
the NRG is not able to resolve a small spectral weight
tween the Hubbard peaks, the results indicate that the
opens discontinuously~see also Ref. 6!. On decreasingU,
the transition from the insulator to the metal occurs a
lower critical valueUc1, where the gap vanishes. Concer
ing the numerical value ofUc2'1.47W (W: bandwidth!, ex-
cellent agreement with the result from the projective se
consistent method47,6 is found.

The extension of the NRG toT.0 will now be used to
determine the full shape of the hysteresis region nonper
batively. The calculations are done for a Bethe lattice w
infinite coordination number, i.e., a semi-elliptic free dens
of states. We do not expect qualitatively different results
more realistic lattice structures, such as the hypercubic la
~see, e.g., the NRG results forT50 in Ref. 15!.

IV. RESULTS

A. Spectral function for TÌTc

Figure 3 shows the spectral functionA(v) for various
values ofU at T50.0276W. This is above the temperature o
the critical point~which we estimate asTc'0.02W), so that
there is no real transition but a crossover from a metallicl
to an insulatinglike solution. As already found in Refs. 6,2
the crossover region is nevertheless very narrow, with a v
rapid suppression of the quasiparticle peak. This is seen
in the NRG results~Fig. 3! when U is increased fromU
51.05W to U51.20W. The spectral weight of the quasipa
ticle peak is gradually redistributed and shifted to the up
~lower! edge of the lower~upper! Hubbard band. An addi-
tional structurewithin the Hubbard bands, as reported
Refs. 6 and 23 is not found and would be very difficult to s
due to the limited resolution of the NRG at higher freque
cies.

The inset of Fig. 3 shows theU dependence of the valu
of the spectral function at zero frequencyA(v50). The
spectral density at the Fermi level is finite even for lar
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values ofU and vanishes only in the limitU→` @or for T
→0, provided thatU.Uc2(T50)#.

The U dependence ofA(v50) is shown in Fig. 4~a! for
different temperatures. As discussed in Sec. II, the temp
tures are chosen asTm5T13Lm, with T150.0168W and
m50,1,2,3, (L51.64 is used for all results shown in th
paper; the number of states retained after truncation is 6
not counting degeneracies!. The derivative ofA(v50) with
respect toU,

A8~v50![
]A~v50,U !

]U
, ~11!

is plotted in Fig. 4~b!. The U value whereuA8(v50)u
reaches its maximum defines a characteristic interac

FIG. 3. Spectral function for the half-filled Hubbard model f
various values ofU at T50.0276W.Tc ~in the crossover region!.
The crossover from the metal to the insulator occurs via a grad
suppression of the quasiparticle peak atv50. The inset shows the
U dependence ofA(v50), in particular, the rapid decrease forU
'1.1W.

FIG. 4. ~a!: The U dependence ofA(v50) for different tem-
peratures; the data forT50.0168W,Tc show a very small hyster-
esis, not visible on this scale. The other three sets of data are
T.Tc . ~b!: The derivative ofA(v50,U) with respect toU for the
same temperatures as in~a!.
3-5
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R. BULLA, T. A. COSTI, AND D. VOLLHARDT PHYSICAL REVIEW B 64 045103
strengthU* for the crossover from metalliclike to insulating
like behavior in the regionT.Tc ; for the definition ofUc1,2
for T,Tc , see below. Furthermore, the widthDU of the
crossover region can be defined as the width at half heigh
the peak inA8(v50).

Upon lowering the temperature, the widthDU rapidly
decreases and vanishes at the critical temperatureTc , since
A8(v50) diverges atTc ~this feature has already been di
cussed in Ref. 48!. A precise value forTc cannot be given as
we are presently not able to vary the temperature wit
NRG continuously. The critical temperature is estimated
Tc'0.02W, as a very small hysteresis is still present forT
50.0168W ~on the scale of Fig. 4,Uc1 and Uc2 cannot be
distinguished!.

The U* as defined above slowly decreases upon incre
ing the temperature. This is not at variance with the oppo
trend observed in Refs. 6, 7, and 23~in Ref. 23, the slope
of U* changes sign atT'0.25W! and depends on
the definition ofU* . Taking U* as, e.g., the value ofU
where A(v50) has dropped to 1% of its value atU50
would result in anincreaseof U* upon increasing the tem
perature.

B. Breakdown of Fermi liquid vs metal-insulator transition

We now discuss the question of how to define a use
criterion for the metal-insulator transition at finite tempe
tures. At zero temperature a suitable criterion is the van
ing, with increasingU, of the quasiparticle weight

Z5
1

12
] ReS~v!

]v U
v50

. ~12!

The physical meaning ofZ is clear for the paramagnetic sta
at T50, where the system is either a Fermi liquid~for U
,Uc) or an insulator~for U.Uc). The vanishing ofZ there-
fore marks the metal-insulator transition atT50, as dis-
cussed, e.g., in Refs. 6 and 15. This criterion, however, c
not be taken over straightforwardly to finite temperatur
since forT.0 the breakdown of the Fermi-liquid state an
the appearance of the insulating state do not coincide.
though this point has been noted before in the literature~see,
e.g., Refs. 49 and 23!, the vanishing ofZ has been used a
~one! criterion for the occurrence of the metal-insulator tra
sition in Ref. 23. It should be noted that the definition ofZ
used in the finite-temperature quantum Monte Carlo calc
tions of Ref. 23 is different from Eq.~12! since
] ReS(v)/]vuv50 was approximated by ImS( iv0)/v0,
with v0 the first Matsubara frequency.

To elucidate this point, it is instructive to discuss the b
havior of the self-energy in the crossover region from
metalliclike to the insulatinglike solution. The real an
imaginary part ofS(v) are shown in Fig. 5, for the sam
temperature andU values as in Fig. 3. ForU51.05W and
U51.10W the imaginary part shows the characteristic str
ture of the self-energy for a Fermi liquid~with thev2 depen-
dence for small frequencies and the falling off at higher f
quencies that leads to a two-peak structure!, but with a
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rapidly increasing scattering rate atv50 for increasingU.
The two-peak structure gradually evolves into a struct
with a well-pronounced peak atv50 characteristic for an
insulating solution@a vanishingA(v50) would correspond
to a d function in ImS(v)#. Note that for U>1.15W
the value of ImS(v50) is much larger than theT2 term
observed forT→0. Hence, the mechanism for the stron
scattering at v50 is not a quasiparticle interaction
but is caused by the bare local Coulomb repulsion, wh
destroys the Fermi-liquid behavior forU>1.15W. For U
51.15W there is still a narrow dip in ImS(v) at v50
corresponding to the remnant of a quasiparticle peak see
Fig. 3.

For U51.05W and U51.10W, the corresponding rea
part ofS(v) shows the typical Fermi-liquid behavior with
negative slope atv50. Upon further increasing theU, how-
ever, the slope of ReS(v) changes sign right at theU value
where the peak atv50 appears in ImS(v); this is obvious
from the Kramers-Kronig transformation that connec
real and imaginary part. Note that the 1/v behavior
in ReS(v) for larger frequencies is not visible on th
scale.

From the full-frequency dependence ofS(v) on the real
axis one can easily perform the analytic continuation toS(z)
for any value ofz in the upper complex plane:

S~z!52
1

pE dv8
Im S~v8!

z2v8
. ~13!

In particular forz5 iv andv real, Eq.~13! gives the real and
imaginary parts of the self-energy on the imaginary f
quency axis~the analytic continuation from the imaginary t
the real frequency axis, however, is much more delicate,
e.g., Ref. 8!. The result for ImS( iv) is shown in Fig. 6, for
the same parameters as in Figs. 3 and 5. The circles ind
the value of ImS( ivn) for the Matsubara frequencies

FIG. 5. Imaginary part~a! and real part~b! of the self-energy for
the same temperature (T50.0276W) andU values as in Fig. 3. The
slope of ReS(v) changes sign at the sameU value for which the
peak atv50 appears in ImS(v).
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vn5
p

b
~2n11!, n50,1,2, . . . . ~14!

As the self-energyS(z) is defined on the whole imaginary
frequency axis i.e., not only for the Matsubara frequenc
one can, for instance, check the trivial condition ImS( iv)
5Im S(v) for v→0.

Furthermore, the slope of ImS( iv) for v→0 is identical
to the slope of the real part ofS(v). As a consequence, th
same change in the slope of the self-energy is visible in b
Figs. 5~b! and 6. The inset of Fig. 6 illustrates this for
smaller frequency range and a narrow mesh ofU values from
U51.1W up to U51.17W ~from top to bottom!.

This behavior of the self-energy has drastic consequen
for the notion of a quasiparticle weightZ in the crossover
regime. We see that the application of Eq.~12! to the self-
energies as obtained in Figs. 5 and 6 leads to unphys
results for U>1.15W. Due to the change of sign in
(] ReS(v)/]v)uv50 upon increasingU, theZ from Eq.~12!
starts increasing again and even diverges at a particular v
of U for which the derivative of the self-energy is equal
one. For larger values ofU, Z becomes negative and ap
proaches zero from below forU→`. Apparently, the use o
Eq. ~12! does not make sense forU>1.15W ~Ref. 50! which
is due to the fact that the concept of quasiparticles its
breaks down in the crossover regime. The quasipart
weight is therefore not an appropriate measure for the me
insulator transition in the whole parameter space. Note a
that in the crossover region, the weight of the remnant of
quasiparticle peak is not associated toZ.

Whereas there is no unique criterion for a characteri
value U* for T.Tc , critical values forU can nevertheless
be defined forT,Tc via the value ofU at whichA(v50)
changes discontinuously.

C. Spectral function for TËTc

Figure 7 shows the spectral functionA(v) in the hyster-
esis region forT50.0103W, both for increasingU @Fig. 7~a!#

FIG. 6. Imaginary part of the self-energy, ImS, on the imagi-
nary frequency axis for the same parameters as in Figs. 3 and 5
values of ImS for the Matsubara frequencies are indicated by
circles. The inset focuses on the change of sign of the slop
Im S( iv) for values ofU51.1W up to U51.17W ~from top to
bottom!.
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and decreasingU @Fig. 7~b!#. The results are shown for
very fine mesh ofU values close toUc2'1.21W and Uc1

'1.14W.
In both cases, the transition is of first order, i.e., asso

ated with a discontinuous redistribution of spectral weig
The hysteresis effect is further illustrated in theU depen-
dence ofA(v50) for T50.0103W,Tc ~Fig. 8!.

Whereas the critical valuesUc1 and Uc2 can be easily
defined by the jump inA(v50), the calculation of the actua
thermodynamic transition requires the knowledge of the f
energyF of both metallic and insulating solutions. The d
termination ofF goes beyond the scope of this paper. The
is no way of directly calculatingF within the NRG approach,
so one has to determine the free energy via integrating ov
path from a particular point in the (U,T) plane for which the
free energy is known, up to the actual values ofU and T.
However, the knowledge of theUc(T) for the actual thermo-
dynamic transition will not alter the fact that the transition
of first order.

he
e
in

FIG. 7. Spectral function forT50.0103 W; ~a!: increasingU
~b!: decreasingU; the transitions atUc2'1.21W and Uc1'1.14W
are characterized by a significant redistribution of spectral we
and a jump inA(v50) ~see also Fig. 8!.

FIG. 8. U dependence ofA(v50) for T50.0103W; solid line:
increasingU, dashed line: decreasingU.
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D. Phase diagram

Let us finally discuss the phase diagram for the M
metal-insulator transition in the very low-temperature regi
In Fig. 9, the dashed lines forT.Tc indicate the position and
width of the crossover region as calculated from the NR
data of Fig. 4. The open circles and squares are the N
results forUc1(T) and Uc2(T), respectively. As the NRG
calculations cannot, so far, be performed for arbitrary val
of T, we cannot give a precise value for the critical poi
The Uc2(T) nicely extrapolates to the previously obtain
value forT50;15 the same is true forUc1(T). Note that the
value for Uc1(T50)51.195W plotted here is slightly re-
duced as compared to the originally published valueUc1(T
50)51.25W.15 This is due to the different value forL, the
number of states and the broadening used here.

Figure 9 also contains recent quantum Monte Carlo
sults of Joo and Oudovenko26 ~filled symbols!, as well as the
result from the iterated perturbation theory6 that tends to
overestimate bothUc1(T) andUc2(T). The phase boundarie
obtained from the NRG are below the values obtained fr
the quantum Monte Carlo results. Concerning the NRG v
ues, it is well known that due to the logarithmic discretiz
tion, the NRG tends to underestimate the effect
hybridization51 ~hence underestimating the value ofU neces-
sary to overcome the kinetic energy!. This effect has, e.g.
been studied in the context of the quantum phase trans
from the local moment to the strong coupling phase in
soft-gap Anderson model.19 For the transition in this model
the value ofUc for L52.0 is about 5% below the extrapo
lated value forL→1; more importantly, theUc(L) is a per-
fectly straight line fromL51.4 toL53.0.

A similar L→1 extrapolation is difficult to perform for
the metal-insulator transition studied here, since alread

FIG. 9. Results for the phase diagram of the Mott transit
obtained from different methods: NRG~open symbols!, quantum
Monte Carlo ~QMC, filled symbols!, and iterated perturbation
theory ~IPT, solid lines!. The dashed lines forT.Tc indicate the
position and width of the crossover region as calculated from
data of Fig. 4. The error bars in the QMC data~not shown here! are
of the order of 2%~Ref. 26!. The QMC point at~1.23,0.013! is
obtained from an extrapolation of QMC data as described in R
24.
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very large number of DMFT iterations is necessary to de
mine a single value ofUc(L). Calculations ofUc1 andUc2
for one value ofT with L51.64 andL52.0 at least show
the expected trend, i.e., a slight increase of theUc’s with
decreasingL.

Taking into account the unavoidable numerical errors
both procedures, the agreement between NRG and quan
Monte Carlo results for the phase boundary is seen to be
good; the agreement can even be further improved.43

V. SUMMARY

In this paper we presented results from the numer
renormalization group method for the finite-temperatu
Mott transition in the Hubbard model on a Bethe latti
within dynamical mean-field theory. For the crossover reg
T.Tc , the quasiparticle peak in the spectral function grad
ally vanishes upon increasingU and the imaginary part o
the self-energy develops a sharp peak atv50. Associated
with this is a change of sign of ReS(v) at v50. As a
consequence, the behavior of the quasiparticle weight ca
longer be used as a criterion for the transition at finite te
perature.

For T,Tc'0.02W, we find two coexisting solutions in
the rangeUc1(T),U,Uc2(T). The values for the criticalU
can be determined for arbitrarily small temperatures, in c
trast to the quantum Monte Carlo method that is so far
stricted toT.W/150. The criticalUc1(T) and Uc2(T) are
characterized by a redistribution of finite spectral weight
the spectral function.

We therefore obtain a consistent picture for the M
metal-insulator transition from a paramagnetic metal to
paramagnetic insulator in the whole parameter regime.
results are in very good agreement with those from ot
nonperturbative methods~the quantum Monte-Carlo metho
and the projective self-consistent method! in their respective
ranges of applicability.

There are still several questions left for further investig
tions. A continuous variation of the temperature within t
NRG requires a better understanding of theL dependence of
the results. The NRG also allows the calculation of a vari
of dynamic and transport properties in the whole parame
regime, such as dynamic susceptibility and optical cond
tivity. A generalization of the NRG method to antiferroma
netic phases and the Hubbard model away from half filling
in progress.
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43N. Blümer, P. G. J. van Dongen, and D. Vollhardt~unpublished!.
44S. Kehrein, Phys. Rev. Lett.81, 3912~1998!.
45D. E. Logan and P. Nozie`res, Philos. Trans. R. Soc. London, Se

A 356, 249 ~1998!.
46P. Nozières, Eur. Phys. J. B6, 447 ~1998!.
47G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, and D. S. Fishe

Phys. Rev. Lett.74, 2082~1995!.
48G. Kotliar, E. Lange, and M. J. Rozenberg, Phys. Rev. Lett.84,

5180 ~2000!.
49M. J. Rozenberg, G. Kotliar, H. Kajueter, G. A. Thomas, D.

Rapkine, J. M. Honig, and P. Metcalf, Phys. Rev. Lett.75, 105
~1995!.

50This value ofU, valid for T50.0276, depends on temperature
51C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B54, 15 614

~1996!.
3-9


