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Abstract. Molecular dynamics (MD) has become an important tool in
the study of molecules/atoms interaction. In the classical MD, the motion
of the atoms is described by the Newton equations, the quantum effects
being either neglected or incorporated implicitly in the potential function.
In this paper we study the application of MD in the formation of thin
films, by an appropriate choice of interacting potentials of Tersof type. The
numerical integration is performed by a (parallel) version of the Stormer—
Verlet scheme using a particle-in-cell method and nearest neighbor concept.
Higher order methods based on composition are also considered.

1. Introduction

Molecular dynamics is a modern computational technique used in condensed
matter physics, materials science, chemistry, and other fields, consisting of following
the temporal evolution of a system of N particles, interacting with each other by
means of a certain law. In classical molecular dynamics, the evolution is based on the
Newton’s equations of motion and the forces are obtained as gradients of a certain
potential which is function of all the particle coordinates.

The MD simulation of coating processes must give both insights into the dy-
namics of the absorption and growth procedures at the surface layer, and information
about the structure of the developing crystal layers. In the first case, one is thus
interested in the short time dynamics of the atomic reciprocal effects, while in the
second case in the temporal average values of the atomic positions and on variables
that depend on it.
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2. Modeling and simulation by molecular dynamics

In molecular dynamics, the behavior of a system of N particles is modeled
by Newton’s equations of motion

m; vi = — V;V(ry,...,rn), (1)
rp = vi, 1<i<N,

where r;, v;, and m; stand for the position vector, the velocity vector, and the mass
of the i-th particle, and V (ry,...,rn) refers to the potential energy of the system as
a function of the position vectors of all particles. The negative gradient —VV =
—(g;:, g;;_, g—Z_)T corresponds to the force F; acting on the i-th particle.

We note that (1) represents a Hamiltonian system with respect to the Hamil-

tonian

N
H(rlv TN, VI, ey VN) = % Z mg Vz? + V(rla ey rN) (2)
i=1
which describes the total energy of the system.

The physics of the system is completely determined by the function V' which
comprises all exterior and interatomar potentials.

For the particular coating processes, suitable choices are Brenner- and Tersoff-
type potentials (cf., e.g., [6, 7]) which are of the form

1 1
V=73 YV = 3 > felry) [ fr(ri) + biifalry) ] (3)
i#j i#j
Here, rj :=|r;—1; |, 1 <i#j <N, and fc(-) is a cut-off function
1, r<R-D
fo(r) = I —1sin(35%) , R-D<r<R+D |, (4)
([ R+D<r

whereas fa(), fr(-) denote attractive and repulsive potentials, respectively,
fa(R) = —Aexp(—=M17r) , fr(R) := Bexp(— Ay7). (5)

Moreover, the bond-order parameter b;; is chosen as a monotonically decreasing func-
tion of the number of neighbors of the atoms i and j according to the bond-order-
concept which states that the more neighbors an atom has, the weaker the bond to
each neighbor:

by = (1 + g™ &) o, (6)
Here, &;; is the effective coordination number given by
Gi = Y fo(rin) 9(0ik) exp (A (rij — rix)?) (7)
ki,
2 2
90 = 1+ = :

@ @+ (h—cos6)?’
where 6,5, represents the bond angle formed by the bond between atom 7 and atom
7 and the bond between atom j and atom k.
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Note that the weighting factor exp (A3(r;; — ri)?) takes into account the
relative distance between different neighbors: a weaker bond (longer distance ;)
will be considerably more weakened by a stronger bond (shorter distance r;;) than
vice versa. Furthermore, the function g, depending on the bond angle, is another
weighting factor which is chosen such that it stabilizes the crystallographic structure
with regard to shear forces.

Note that the weighting factors do not occur in the classical Tersoff potentials
but have been introduced to improve the quality of the model for the specific BN-
system under consideration.

The parameters A, B,c,d, h,m, 3, and \;,1 <i < 3, in (5),(6),(7) are fitted
both by using experimentally obtained data such as elasticity modules and lattice
specific constants as well as with regard to structural energies (e.g., surface and defect
energies) and interatomar forces computed by means of ab-initio quantum mechanical
calculations.

Ab-initio methods consider every atom as a many particle system consisting
of the atomic nucleus and the surrounding electrons. The many particle system
is then solved by self consistent pseudopotential calculations based on the density
functional theory. However, such computations require an enormous amount of work
and therefore, they have been carried out for less particles than are used in the
molecular dynamics approach.

For the numerical integration of the Hamiltonian system (1), symplectic inte-
grators are well suited due to conservation of energy [1]. In fact, a backward analysis
[2] shows that the total energy is well preserved for exponentially long time horizons
T = At exp (C/2At):

H(r; (kAt),...,rn (KAL), vi (KAL), ..., vy (kKAL) =
= HE1(0), . tn(0), v (0), o va(0) + O((ADY) , kAE<T,

where At is the time stepsize and p refers to the order of consistency of the integrator.
We have used a standard symplectic integrator of order p = 2, commonly
used in molecular dynamics, namely the Stormer—Verlet scheme

1
ri(t + At) — 2r;(t) +r;(t — At) = At —TF;(1) (8)
m;
which is in fact the most natural discretization of the Newton’s equations m;r; = F;.

The two-term recursion (1.8) can now be easily modified to the classical
formulation of the Stérmer—Verlet schema in molecular dynamics.

2mi

Thereby, a time loop of the Stormer—Verlet algorithm implementation looks
as shown in Figure 1.
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Initial condition (r;(t), v;(t))

!

Compute interatomic forces F;(t) le—

!

Compute new positions

2
ri(t+ A =1 (8) + v (DAL + L EDTF, ()

!

Compute interatomic forces F; (¢t + At)

!

Compute new speeds
vi(t+ At) =vi(t) + 5 2L (F;(t) + Fi(t + At))

'

Update time ¢t :=t + At

FiGUrRe 1. Time loop of the Stérmer—Verlet algorithm

The Stormer—Verlet method admits an interesting one-step formulation,
which is usefull for numerical computations. Introducing the velocity approximation
at the midpoint

At At 1
Vz'(t + 7) = Vi(t) + TEFl(t)
we get
At At 1
(t+5) = il + 5 ) (10)
At
I‘i(t+At) = ri(t) +Atvi(t+ 7)?
At At 1
vilt+At) = wvi(t+ 7) + TEFi(t + At),
which is an explicit one-step numerical method
Y ¢ (ri(1), vi(t)) — (ri(t + Ab), vi(t + At)) (11)

It is interesting to notice that for the implementation of the Stormer—Verlet
method, the one-step formulation (1.10) is numerically more stable than the two-term
recursion (1.8).
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A specific feature, to be dealt with in the following section, is that we have
implemented the Verlet algorithm in a parallel setting.

3. Cell-Partition Method

The simulation volume is divided into (” cells ), congruent subsections filling
all the space, in such a way that all neighbours j of a particle ¢ within a distance r;; <
r. are in the same subsection as i or in one of the directly neighbouring subsections. In
this way one can limit the computation of reciprocal forces to particles that are in the
same and neighbouring subsections. In addition, cubic subsections of edge length r,
can be usually used, the adjustment for the simulation of solids with crystal structure
can require other geometry. Figure 2 shows the partitioning for the two-dimensional
case.
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FIGURE 2. of the simulation space (2D)

Neighbour lists

From Figure 2 is evident that particles with a distance 7;; > r. can still be in
neighbouring subsections, for which the reciprocal forces were then unnecessarily com-
puted using the Cell Partitioning method alone. Therefore, additionally neighbour
lists are provided, in which for each particle all next neighbours are seized. For the
efficient looking for of the neighbours a appropriately Cell Partitioning procedure
is used. To make worthwhile the production of the neighbour lists, we must use the
same list over several time steps, i.e. we may extend the neighbourhood seize radius
not only to neighbours with in a distance r;; < r., but must increase it introducing
a safety distance 05 (see figure 3). The neighbour lists are valid only during a period
0s/2Vpmaz, for a maximum particle speed vy,,,, because two particles can reduce their
maximal distance with the speed of 2v,,4,), 1.6. it must be recalculated again after
[0s/20maz At] time steps.
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F1Gure 3. Range of the next neighbours (2D)

4. Composition Methods

An interesting procedure for constructing integration methods of higher order
is by composition of simple methods. The aim is to increase the order of a simple
underlying method, while preserving its desirable properties as symplecticity, sym-
metry and straightforward implementation. In the following we will use the ideas
in [3] and [4], in obtaining a method of order 4 based by the composition of three
Stormer—Verlet methods, mainly

sV sV sV
(I)Z)tm = (I)alAt ° (I)azAt ° q)agAt (12)
As the Stormer—Verlet method is of order 2, this means ®3} satisfies (com-
ponentwise)

@3} (wo) = ®X* (wo) + C(wo)(At)® + O((At)"), (13)

where ®57!(wg) denotes the exact flux of the problem. Consequently,

QR = ‘Pﬂ/m o ‘Pﬁfm o ‘Pﬁgvm (14)
= O anar(Wo) + (&F + ad + a3) C(wo)(A1)® + O((AH)*Y).

S0, by imposing

a;t+ay+az = 1 (15)
o +as+ay = 0,
the method ®4;" has at least order 3. As the Stormer—Verlet method is symmetric,
ie. @3V = (@ﬁ‘gt)_l, the composition method will be symmetric if
a = ag. (16)
But the order of a symmetric method is always an even number (see [5]), so

the method must have at least order 4. Solving the system (15)—(16), we obtain a
solution
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a1 = 1.3512072 (17)
ay = —1.7024145
as; = 1.3512072.

The implementation of this method is straightforward. Once a Stéermer—
Verlat (SV) routine is implemented, the composition method consists of calling this
routine three times, with different time steps given using the scaling parameters given
by (17). This means the method takes two positive intermediate steps 1.3512072 x At
and one negative intermediate step —1.17024145 x At, as it can be seen from Figure
4.

Initial condition (r;(t), v;(t))
1
Apply SV with time-step 1.3512072 x At —
¥
Update time ¢t := ¢t + 1.3512072 X At
¥
Apply SV with time-step —1.17024145 x At
¥
Update time ¢t := ¢t — 1.17024145 x At
¥
Apply SV with time-step 1.3512072 X At
i
Update time ¢t := ¢t + 1.3512072 X At
|

FIGURE 4. Implementation of the composition method
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