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Abstract

Industrial robots are very flexible machines that can perform almost any task – depend-
ing on the tools attached and the program they run. Nowadays industrial robots are
mostly programmed using proprietary programming languages provided by the robots’
manufacturers. These languages are mostly based on very old programming languages
and lack support for modern concepts such as object-oriented design; and programs can
rarely be reused. To reduce the cost of robot programming, improving reusability is a key
instrument. This can be achieved e.g. by using an object-oriented design process. However,
standard off-the-shelf programming languages cannot fulfill the hard real-time requirements
of robotics applications and robot control.
This thesis introduces a data-flow graph based interface that allows the specification of
real-time critical tasks, the Real-time Primitives Interface (RPI). Larger robot applications
can be split up into independent parts that inherently require real-time safety (such as
single motions, or synchronized tool actions). Each such part can be expressed using
the RPI and executed with all timing guarantees. The tasks themselves can be specified
and joined using an object-oriented interface. To achieve guaranteed transitions from one
or more tasks to another set of tasks, synchronization rules are introduced. A reference
implementation, the SoftRobot RCC has been created to execute robot programs specified
using RPI. To convert programs specified using the object-oriented Robotics API framework,
an automatic mapping algorithm from Java-based applications to data-flow-based real-time
tasks is presented.
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Chapter 1

Introduction

The application of robots in manufacturing processes has been increasing ever since
the first industrial robot was put into service in a production plant of General Motors
in 1961 [50]. The first patent for an industrial robot was filed by George Devol on a
programmed article transfer [32] already in 1954 and was granted in 1961. Together with
Joseph Engelberger, Devol founded the company Unimation, Inc. which then produced
the Unimate robots. These robots were hydraulically actuated and employed mostly for
spot-welding tasks in the automotive industry [93].
In 1973, the IRB-6 industrial robot was introduced, which was controlled by a micro-
computer and driven electrically. It not only allowed simple point-to-point motions, but
also more complex path motions were possible which allowed the robot to be used for
seam welding [50]. Today, industrial robots are utilized in a broad variety of industries in
ever growing numbers. The World Robotics Report 2014 [64] lists a number of 178,132
new industrial robots in the year 2013, with a total of over 1.3 million devices in use
worldwide. The total number of robots in use is expected to rise to almost 2.0 million in
2017. The automotive industry is still the largest branch utilizing robots, however other
branches are investing more and more into automating their production as well.
One key benefit of industrial robots is their high precision and repeatability. Standard
KUKA robots for example have a repeatability of ±0.1 mm, i.e. a position once pro-
grammed will always be reached within this threshold during every further run of the
program. For example to meet safety requirements of some products such as cars or
airplanes, it is imperative that all welding seams are produced exactly as defined during
the product design. The use of robots greatly helps achieving these quality requirements
in an extremely fast way. Industrial robots also can manipulate objects safely which are
way too heavy for human workers. The largest robots currently can lift over 1 t (KUKA
KR 1000 1300 titan PA: 1.3 t, FANUC M2000iA/1200: 1.2 t). A third scenario for the

1



1. Introduction

utilization of robots are dangerous environments. Some processes such as laser welding
cannot be safely operated by humans. Another area that is likely to see large growth for
the application of robots is the decommissioning of nuclear power plants.
According to Hägele et al. [50, Section 42.4], the way of programming industrial robots
has changed over time. Early robots were programmed with only joint-space motions.
Some systems (in particular painting robots) supported manual guiding for teaching all
necessary positions. This was possible by back-driving the actuator, which also could
be rather lightweight due to low precision requirements. Furthermore, the mechanical
structures were created without singularities, thus allowing the arm easily to follow
external motions. Later with the requirement of path motions (i.e. motions in operation
space such as linear or circular paths) it was necessary to include an inverse kinematics
function in the robot controller to calculate the required joint angles or positions for
trajectories specified in Cartesian space. These inverse kinematics calculations need to be
performed at very high frequencies, thus the mechanical structure of robots was adjusted
to allow for fast inverse kinematics calculations. This introduced singularities in the
workspace, and back-driving the manipulator close to those singularities no longer was
possible. However, with the inverse kinematics function, it was now possible to move
the robot in Cartesian space using a joystick (so-called “jogging”); and also input data
retrieved from CAD designs could be included in the robot programs. Altogether, robot
programs changed from repeating joint position tasks closer to “standard” computer
programs [50].
Each robot manufacturer started developing its own programming language, often bor-
rowing concepts from one of the popular general purpose programming languages at the
time the development started. ABB robots for example are programmed using rapid
[102], FANUC robots using Karel, Stäubli robots using VAL3 [121], and KUKA robots
with KRL [77]. All these languages have in common that they are tailored to the needs of
robotics applications. All languages have special commands for motions, and usually it is
possible to blend one motion into another by simply marking a motion as blend-able. This
also requires a specific execution semantic, as motion commands can no longer simply be
executed one after another. In order to allow for motion blending, it is inevitable to know
and plan the next motion prior to finishing the current one. Another common feature
not available with standard programming languages is the ability of executing programs
backwards or jumping to arbitrary motion commands, e.g. to correct positions which are
slightly misplaced during the testing phase. The languages of the different manufacturers
are incompatible to each other, thus switching manufacturers is very difficult; and new
employees often have to learn a new programming language, even if they have prior
experience with industrial robots of another manufacturer.

1.1. Motivation

The domain of software engineering has made great progress during the past decades.
Standardized processes such as the Unified Process (UP) [68] or modeling technologies

2



1.1. Motivation

such as the Unified Modeling Language (UML, standardized as ISO/IEC 19505) [58, 94]
aim at increasing the quality of software. With good documentation and a well chosen
design, the software development can be faster, and also errors are likely to be found earlier
during the development process, thus reducing the cost. Object-oriented software design
is a very common practice today to model software according to real-world “objects”.
This helps at understanding the software design and also at creating small, independent
and exchangeable software parts. These parts ideally later can be changed, e.g. to
correct errors without the need to change the whole system. Furthermore, independent
components also can be reused in other projects, thus saving development time and cost.
In order to further reduce programming errors, many modern programming languages
relieve the developer from manual memory management, which has been a constant cause
of program bugs (e.g. memory leaks, buffer overflows). “Managed” languages such as Java
or C# therefore use an automatic memory management system which employs a garbage
collector which detects and frees unused memory. The increase of software development
efficiency for industrial applications is said to be at least 20% compared to C or C++,
and over 50% compared to traditional PLC1 programming languages [97]. Managed
languages also employ a Virtual Machine (VM) for program execution. This adds an
abstraction layer between the operating system (and hardware), and the application.
Virtual machines aim at portability of the programs, i.e. an application compiled once
can be executed on systems with different hardware specifications, processor types and
operating systems.
Upper levels of industrial automation systems (ERP2, SCADA3/MES4) are already often
implemented today using managed, object-oriented programming languages, particularly
popular is the Java language [97]. Advantages of these languages are the broad availability
of libraries for communication, access to database systems or graphical user interfaces.
Furthermore, standardized approaches to distributed systems already exist and can be
used.
Unfortunately the developers of industrial robot programs cannot profit from these advan-
tages so far. The sources of traditional robot programming languages often predate many
of the more recent advances. Unlike modern programming languages and environments
which are mostly developed either by companies that are specialized in programming
languages, or large communities, the robot programming languages have to be maintained
by the robot manufacturers themselves. The need for proprietary programming languages
has arisen from both the need for special (blendable) motion commands and the need for
a real-time safe execution of robot programs (i.e. each program step always takes exactly
the same time).
The managed languages are not suitable for direct control of industrial robots for several
reasons. The automatic memory management, in particular the garbage collection,

1Programmable Logic Controller
2Enterprise Resource Planning
3Supervisory Control and Data Acquisition
4Manufacturing Execution System
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1. Introduction

introduces indeterminism for execution times which are not acceptable for direct hardware
control. Furthermore, the standard virtual machines usually prevent applications from
direct hardware access, which can be necessary for communication with hardware devices
such as an actuator or a sensor.
Of course it would be possible for the robot manufacturers to create new, object-oriented
programming languages to benefit from at least some of the advantages. However, this
would once again just be a new, proprietary and hard-to-maintain programming language,
and benefits from using a standardized and widely used (thus well known) programming
languages cannot be attained.
The main goal of the SoftRobot project was to create a new programming framework
for industrial robots, which is based on top of an unmodified modern object-oriented
programming language with automatic memory management. Java and C# have been
chosen as languages for the reference implementation, although the concepts created
during the project are independent of the actual language. All real-time requirements
for industrial robots, including special concepts such as motion blending or force-based
manipulation tasks are supported.
To solve the issues imposed by using an unmodified standard language for applications,
the gap between real-time hardware control and non real-time applications must be
bridged. The Real-time Primitive Interface (RPI) has been created as a generic and
extensible interface for the specification of hard real-time safe tasks. The Robotics API
provides an object-oriented framework for robotics applications. All programs using
the Robotics API can create real-time critical tasks that are automatically translated
into primitive nets, the description language for tasks offered by RPI. As a reference
implementation for RPI, the SoftRobot RCC has been created which provides real-time
safe hardware access for a broad variety of hardware devices.

1.2. Main contributions

The main contributions of this thesis are the Real-time Primitives Interface (RPI) in-
cluding the specification language of primitive nets, the synchronization mechanism
for multiple primitive nets and the automatic mapping algorithm from object-oriented
task models to executable, real-time safe primitive nets. A reference implementa-
tion for the execution environment for RPI and for the mapping algorithm has been
created. Altogether, these results now allow to embed real-time critical robotics
applications in an object-oriented language. The design of the object-oriented
programming interface and the modeling of robotics applications has not been in the
focus of this work and has been done previously by A. Angerer [1].
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1.2. Main contributions

Real-time Primitives Interface

Prior to this work, robotics applications in the industrial domain were programmed
using proprietary programming languages, which were executed real-time safe as a whole,
requiring specialized programming languages and execution environments. During this
work it has been shown that it is possible to partition typical applications into parts
which require real-time safe execution and other non real-time parts where execution on
best-effort base is sufficient.
Based on these findings, the Real-time Primitives Interface (RPI) has been developed.
RPI is based on a data-flow language and allows the specification of arbitrary tasks as
so-called primitive nets which must be executed real-time safely. Primitive nets consist of
primitives which are connected using links. Primitives provide the most basic calculation
functions that are required. RPI is intended to be automatically generated by the robotics
application which can run on any operating system using any programming language
without specific real-time requirements. Although RPI is based on a data-flow language,
it has been designed to meet specific requirements of the robotics domain by including a
life-cycle model and building blocks for application-to-net and inter-net communication.
With RPI it is possible to create multi-robot applications, where robots can be both
controlled completely independent, but also with hard real-time synchronization. Appli-
cations can switch between both modes at any time. Multiple robots can also be used to
perform tasks cooperatively.
Besides controlling actuators, it is also possible to include sensors in robotics applications.
Sensors can be used to influence the planned trajectory for an actuator, but also the
overall program flow can be controlled by sensor events. Since sensor events can be
handled real-time safely, it is possible to guarantee time limits for effects of such events.

Synchronization of multiple independent real-time tasks

Primitive nets provide means to specify atomic real-time tasks. Such tasks cannot be
modified or extended once they are started. As previously stated, robotics applications
can be partitioned into small, real-time critical parts. However, also the transitions
between these parts sometimes should be done with timing guarantees, either to increase
the production cycle time or to allow tasks to switch while an actuator is still moving.
Switching purely with means of the non real-time robotics application is not sufficient in
these cases. The synchronization mechanism of the Real-time Primitives Interface allows
multiple independent real-time tasks to be synchronized with guaranteed transition times.
This mechanism allows to start or stop multiple tasks synchronously and ensures that
these transitions are only performed if all timing guarantees can be fulfilled.
It is now possible to blend multiple motions into each other without having to specify the
whole chain of motions at once. Compliant motions apply force to a work-piece and thus
the actuator must never be out of active control. With the synchronization mechanism it
is possible to switch to a new task while ensuring continuous control of all actuators.
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Real-time safe reference implementation for RPI

A reference implementation of RPI including the synchronization mechanism has been
created, the SoftRobot RCC. It includes a set of primitives which provide basic calculation
functionality, access to sensors and actuators as well as communication with the robotics
application. Real-time device drivers are available for a broad variety of industrial robots,
ranging from standard industrial robots such as a KUKA KR-16, a Stäubli TX-90L to
the novel 7-DOF5 KUKA lightweight robot. Driver support is also provided for periphery
devices such as fieldbus couplers (providing digital and analog input and output ports),
laser distance sensors or force/torque sensors. Besides industrial robots, also experimental
systems such as the KUKA youBot or even flying quadrotors can be controlled with the
SoftRobot RCC. The reference implementation has been designed and developed using
object-oriented technologies. Its modularity and easy extensibility allows to integrate
new hardware devices with very little effort. Drivers supporting hardware can be loaded
and unloaded at runtime, without the need to reset the overall application.

Automatic mapping of object-oriented task descriptions to real-time tasks

To facilitate the programming of industrial robots, the Robotics API has been created,
which provides an object-oriented programming model. A mapping algorithm automati-
cally transforms all real-time critical tasks of robotics applications written in Java or C#
into primitive nets which can be executed real-time safely on the SoftRobot RCC. The
mapping algorithm supports multi-robot applications, and reactions to sensor events can
be flexibly defined with both real-time safe reactions as well as non real-time interaction
with the application. Several basic motion types are supported such as point-to-point
motions in joint-space or linear motions in Cartesian space. Multiple motions can be
blended into each other, based on the synchronization mechanism of the RPI.
Using the results presented in this work it is now possible to use managed, object-oriented
programming languages also for the programming of industrial robots – without losing
real-time safety, if required. The flexible, object-oriented interface to real-time tasks
offered by the Robotics API allows for an easy integration of further advanced technologies,
such as service oriented architectures for cell level control [54]. A current research project
applies the hard real-time reactions to sensor events provided by the SoftRobot RCC to
enable an industrial robot to work together with a human worker safely (cf. Section 12.2).

1.3. Structure of this work

Chapter 2 introduces important concepts of the industrial robotics domain. A short
introduction to traditional robot programming concepts is given using the KUKA Robot
Language (KRL) as an example.

5degrees of freedom
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1.3. Structure of this work

The real-time requirements of industrial robot applications are evaluated in Chapter 3. A
set of typical applications in the industrial domain is analyzed and the current solutions
for real-time safe program execution are explained.
The results of the analysis of real-time requirements led to the creation of the SoftRobot
architecture, which separates robotics applications into a novel real-time hardware control
part (the SoftRobot RCC), and a non real-time, object-oriented programming framework,
the Robotics API. The architecture is explained in Chapter 4, and also the requirements
that must be fulfilled by the new architecture in order to provide an improvement over
current systems is specified.
The Real-time Primitives Interface (RPI) provides the interface between robotics applica-
tions and the real-time execution core. The components and the life-cycle of primitive
nets, the main task specification in RPI, are introduced in Chapter 5 and further ex-
plained using a set of examples. Each primitive net specifies a single task which must
be executed real-time safely, and each net must be specified completely before it can
be started. Multiple such tasks can be combined using synchronization rules, which are
introduced in Chapter 6. This allows the overall program flow to reside within the non
real-time application, primitive nets are only created and started when necessary.
The SoftRobot RCC is a real-time execution environment for primitive nets. Chapter 7
presents the software architecture of the SoftRobot RCC and lists a set of basic primitives
which are sufficient for the execution of most robotics applications. The communication
interface between the RCC and applications is also described. Finally, the debugging
interface for developers is presented. Chapter 8 explains the execution mechanism for
multiple primitive nets which are combined using synchronization rules. Special attention
is paid to the resource efficient thread allocation algorithm. The real-time device drivers
that are required for real hardware control are introduced in Chapter 9.
Robot applications are not intended to be written directly as primitive nets, but rather
using the object-oriented Robotics API. Chapter 10 introduces the basic concepts of the
Robotics API and describes the automatic mapping mechanism. Using this mechanism,
real-time tasks modeled in the application using the object-oriented framework can be
automatically transformed into primitive nets which then can be executed real-time safely
on a RCC.
Several applications are evaluated in Chapter 11 to demonstrate the usefulness of the
concepts introduced in this work. Performance measurements are presented, alongside
with an example demonstrating the real-time performance of the architecture for syn-
chronizing two robots of different manufacturers. Finally, the effort necessary to extend
the SoftRobot RCC to new hardware devices is analyzed based on the integration of a
new manipulator.
This thesis is concluded in Chapter 12 with a short summary and an outlook to possible
future extensions.
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Chapter 2

Basics

In this chapter, some basic concepts of (industrial) robots and robotics applications are
introduced. Readers who are already familiar with the industrial robotics domain may
skip this chapter. The first section introduces the basic components of robotics hardware.
One of the main features of every industrial robot is its ability to move to any position
within its working space, thus the following section introduces the most common types
of motions and combinations thereof. Finally a short overview of (software) programs
and applications for industrial robots is given.

2.1. Robotics hardware

According to the ISO 8373:2012 [67] norm, an industrial robot is defined as an
“automatically controlled, reprogrammable, multipurpose manipulator, pro-
grammable in three or more axes, which can be either fixed in place or mobile
for use in industrial automation applications” [67, Section 2.9].

and consists of
• “the manipulator, including actuators”
• “the controller, including teach pendant and any communication interface (hardware

and software).” [67, Section 2.9]
The manipulator is a “machine in which the mechanism usually consists of a series of
segments, jointed or sliding relative to one another, for the purpose of grasping and/or
moving objects (pieces or tools) usually in several degrees of freedom” [67, Section 2.1].
There are several different types of industrial robots available, differing in the type and
number of joints and therefore in their ability to manipulate the environment. Prismatic
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2. Basics

Figure 2.1.: KUKA KR-16, a typical industrial robot with six revolute joints.

(sliding) joints are mainly used in portal systems to cover a large cuboid working space.
Typical industrial manipulators (articulated arms) are built with a series of 4 to 6 revolute
joints.
An object can be positioned and oriented with six degrees-of-freedom (DOF), three
translational and three rotational DOF. A manipulator which should be able to manipulate
objects in 3D-space needs to possess at least six DOF (joints) which must properly be
distributed along the mechanical structure [108, p. 4]. Manipulators with less DOF
are limited in their ability to position or orientate the object, but however can still be
sufficient for many tasks. A common task e.g. is palletizing goods which only need the
three translational DOF and one rotational DOF (rotating around the vertical axis).
Palletizing robots are commonly made with only four rotational joints or three prismatic
joints and one rotational joint. Manipulators with more than six DOF are redundant, i.e.
there is an unlimited number of poses to reach a given position and orientation. In the
context of this work, the terms “robot” or “manipulator” denote an articulated arm with
six revolute joints, unless stated differently.
Figure 2.1 shows a typical six DOF articulated arm as it is used for most industrial
robotics applications. The manipulator is mounted with its base to the ground or ceiling
and provides a mount flange to attach the end-effector (e.g. a gripper, welding torch,
etc.) which actually manipulates the working-pieces. The mounting flange is defined in
the ISO 9409-1 [66] norm. The flange is attached to the wrist of the robot, which is made
up by the last three joints. In many systems the axes of the last three joints intersect in
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2.2. Robot kinematics

Figure 2.2.: KUKA KRC-4 robot controller with KUKA KCP teach pendant

a single point and form a so-called spherical wrist, which allows highest dexterity [108,
p. 10]. The first three joints (“base joints”) are used to position the wrist, while the last
three joints determine the orientation of the end-effector.
According to ISO 8373, an industrial robot consists not only of the manipulator itself
but also of a robot controller including a teach pendant. Figure 2.2 shows such a typical
robot controller, here an example manufactured by KUKA. The robot controller contains
a programmable motion controller which is responsible for planning and executing all
motions of the manipulator. Often, an industrial computer with special software is used
for this purpose. Furthermore, power electronics such as the power supply and variable
frequency drive (VFD) modules to interface with the manipulator’s motors are included
in the controller case. The teach pendant is used to program the industrial robot “online”,
i.e. to move the robot manually and save the positions in a program for later automated
execution.

2.2. Robot kinematics

The pose of an end-effector can be completely defined using the position and orientation
of the end-effector with respect to a reference coordinate system. For many applications, a
“world” coordinate system is defined as a global reference, and the position and orientation
of each robot in a working cell then are subsequently defined with respect to the world
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coordinate system. Each robot has its own robot-base coordinate system, thus the
position and orientation of the robot is defined by describing the translation and rotation
between the world coordinate system and the robot base coordinate system.
In general, to describe the position of a coordinate system O′ with respect to a reference
coordinate system O, a vector is used. In Cartesian space (i.e. 3D-space), a vector v ∈ R3

~v =

xy
z


is used to describe the position of the coordinate system O′ as

~O′ = ~O + x· ~ex + y· ~ey + z· ~ez

with ~ex, ~ey and ~ez being the unit vectors of coordinate system O.
The orientation of the coordinate system O′ can be described in relation to O by defining
the unit vectors ~e′x, ~e′y and ~e′z of O′ in coordinate system O. For coordinate system
transformations, the unit vectors can be combined into a single rotation matrix. Using
homogeneous coordinates [108, p. 56], it is possible to describe the whole transformation
from O to O′ using a single matrix:(

~e′x
~e′y

~e′z ~v

0 0 0 1

)

In the robotics domain, rather than using transformation matrices, it is more common
to describe the orientation of a coordinate system using Euler angles. Those describe
three consecutive rotations around axes of the base coordinate system. Depending on
the order of rotations applied, different result are reached, therefore it is necessary to
agree upon a common convention. For this work, the following convention is used:

1. Rotation around X-axis of reference coordinate system with angle C
2. Rotation around Y-axis of reference coordinate system with angle B
3. Rotation around Z-axis of reference coordinate system with angle A

The same convention is used by KUKA and often described in literature as Roll-Pitch-
Yaw (RPY) angles [108, p. 51]. Intuitively the same rotation can also be reached by
first rotating the coordinate system around its Z-axis with angle A, then around its
(new) Y-axis with angle B and finally around its (new) X-axis with angle C. Using
this convention, it is possible to precisely describe the position of the coordinate system
O′ with respect to coordinate system O with only three values for position and further
three values for orientation. One orientation can be expressed with at least two sets of
Euler angles, one for B ∈

]
−π

2 ,
π
2
[
and the second for B ∈

]
π
2 ,

3 ·π
2

[
. For B = π

2 and
B = 3 ·π

2 the rotations A and C have the same rotation axis, thus only the sum of A
and C is relevant for the overall rotation. This is called a representation singularity, and
an infinite amount of value-pairs for A and C can be given.
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2.3. Robot motions

The direct kinematics function maps joint coordinates into Cartesian coordinates. For an
open-chain manipulator (i.e. a manipulator that has n+ 1 links connected with n joints,
where each joint provides a single DOF [108, p. 60]), the direct kinematics function is
rather easy to calculate. According to the Denavit-Hartenberg (DH) convention [108, p. 61]
a coordinate system is placed in each joint and finally on the flange. The transformation
from a coordinate system CSn to the following coordinate system CSn+1 is defined by
four distinct parameters, the so-called DH-parameters d, a, α and ϑ. For revolute joints,
the parameter ϑ, and for prismatic joints the parameter d contains the position of the
joint. Using the four DH-parameters, it is possible to create a transformation matrix to
describe the transformation from one coordinate system to the following one. By chaining
all transformations from CS0 to CSn the direct kinematics functions can be expressed.
For each distinct set of joint values, the direct kinematics function yields a single solution
in Cartesian space (although when Euler angles are used, different representations of this
single solution are possible).
The inverse kinematics function maps a position and orientation in Cartesian coordinates
to a set of joint angles. Unlike the direct kinematics function, the inverse kinematic is not
easy to determine for an open-chain manipulator. Different approaches exist for solving
the inverse kinematics function. A numerical solver (e.g. employed by KDL [112]) can
be used to approximate the inverse kinematics function. For the actuators described
in this work, a geometrical approach has been used. The inverse kinematics function
is created by describing geometrical dependencies of joints and the position. The main
disadvantage of the geometrical solution (besides the effort to find the dependencies) is
that a solution found can only be applied to other robots with a very similar structure
(i.e. with the same orientation of a joint in respect to its neighboring joints). The main
advantage however is, that once the overall function has been determined, solutions for
a Cartesian position can be calculated very fast. For typical industrial robots with a
spherical wrist, the inverse kinematics function yields up to 8 solutions. If at least two
joint-axes are identical, infinite solutions for the inverse kinematics exist since only the
sum of both joint angles is relevant. This situation is called a “singularity” or “singular
pose”.

2.3. Robot motions

Moving the manipulator (and therefore, the end-effector attached to the flange) to
different positions is a key functionality of most programs. For a robot to move from
one position to another position, a trajectory must be planned. As with every physical
object having inertia, a robot cannot simply move with some velocity but rather has to
be accelerated and later decelerated before stopping.
In general, two types of robot trajectories are possible:

• Joint space trajectories
• Operation space trajectories
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Figure 2.3.: Trapeze velocity profile of single joint point-to-point motion

For joint space trajectories, each joint is moved from the start position to the destination
position with a defined velocity or acceleration profile. The movement of each joint
may be synchronized to start and stop at the same time as the other joints. Motions in
joint space are the fastest motions possible because each joint only moves the minimum
required distance. In some robot programming languages (e.g. the KUKA robot language
KRL) these motions are called “point-to-point” or “PTP”. In general, this type of motion
is used when a fast repositioning of the robot is required and the path of the end-effector
does not matter. In most robot programming languages, a programmed motion starts
at the current position, and only the destination must be explicitly programmed. For
joint space motions, it is possible to use joint coordinates (i.e. the destination angle for
each joint) as well as Cartesian coordinates. In the latter case, the inverse kinematics
function is used to determine the destination joint angles. Because the inverse kinematics
functions is not unique, it is necessary to specify additional meta-data to select the
proper solution. KUKA e.g. uses two bit-arrays “status” and “turn” for this purpose,
which describe i.a. whether a joint is turned in positive or negative direction. If Cartesian
coordinates are used, the destination position must not be in a singular pose, otherwise
the inverse kinematics is undefined.

For operation space trajectories, the path of the end-effector is planned with a certain
velocity and/or acceleration profile, and the motions of the single joints are inferred by
applying the inverse kinematics functions for many points along the trajectory. Operation
space trajectories are used if the path of the end-effector is relevant to the application,
e.g. if a welding torch has to follow the seam. Common trajectories in operation space
are linear and circular paths. More recently also paths defined by splines are possible.
A spline is defined by a multitude of support points and polynomial functions that
interconnect all points. For many applications it is also desired to keep a constant
velocity of the end-effector during the motion, e.g. to provide high quality welding seams.

Figure 2.3 shows a velocity-time diagram for a point-to-point motion of a single joint
with a trapezoidal velocity profile. The motion can be split into three phases: 1. constant
acceleration, 2. constant velocity and 3. constant deceleration. For very short motions,
it is possible that phase 2 is missing, if the joint cannot reach full velocity before the
deceleration phase has to start. A trapezoidal velocity profile is a simplified variant of
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velocity profiles used by commercial robot controllers. The abrupt transition from constant
acceleration to constant velocity causes unlimited jerk (second derivation of the velocity),
which induces considerable stress into the mechanics of the manipulator. To limit the
jerk, it is possible to apply a trapezoidal profile to the acceleration and deceleration and
thus split the motion into 7 phases (increasing acceleration with constant jerk, constant
acceleration, decreasing acceleration, constant velocity, increasing deceleration, constant
deceleration and finally decreasing deceleration). This motion profile is commonly referred
to as “Double S” or “bell” profile [9, Section 3.4].
Simultaneous point-to-point motions of multiple joints can be synchronized in three
different ways:

Asynchronous: All joint motions are started synchronously, however no further synchro-
nization among the different joints is performed. Each joint will use maximum
velocity and acceleration to reach its individual destination.

Synchronous: The start and stop times of all joints are synchronized, i.e. some joints
will be slowed down to reach their destination within the same time as the slowest
joint. This does not slow down the overall motion process, but as not all joints
need to apply full velocity, wear and tear of the mechanics is reduced.

Fully-Synchronous: Not only the start and stop of the overall motion is synchronized,
but also the times of transition from acceleration to constant velocity and from
constant velocity to deceleration. This further reduces wear and tear, because the
high jerk when switching from acceleration to constant velocity only occurs twice
during a motion, and not twice for each joint. However, because the length of the
acceleration phase has to be adjusted, it is possible that this motion profile leads
to slightly slower movements.

For hardware motion control, the trajectory is split up into small interpolation steps of
usually between 1 ms and 20 ms. For each interpolation step, the position, velocity and
acceleration is calculated and fed into a closed-loop controller, which then performs the
micro-interpolation (i.e. the interpolation between the calculated steps).
Point-to-point motions in joint space can be directly interpolated and set-points generated
for closed-loop control. For motions in operation space, set-points must first be calculated
in operation space and then transformed into joint space by applying the inverse kinematics
function for each interpolation step. Trajectories in operation space cannot traverse
singularities of the manipulator, because the inverse kinematics function does not yield
valid results in these positions. Furthermore, small motions in close proximity of a
singular pose yield large joint movements, thus even close passing of a singular pose can
lead to joint velocities which exceed the maximum allowed velocity.
Besides motions based on pre-calculated trajectories, also motions influenced by sensor
readings are possible. Manipulation and assembly tasks are becoming more and more
important in robotics [18]. Those tasks often contain uncertainty about the work piece
(e.g. the peg-in-hole problem), thus compliant motions are used. Those motions eliminate
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some uncertainty by maintaining contact between the workpiece, tool and other parts of
the environment with the robot adjusting its trajectory to follow the (unknown) form of
the work-piece based on (force) sensor values.

2.4. External motion control

Some hardware devices allow “external” motion control, i.e. the desired trajectory is
not planned and executed by the hard- and software supplied by the manufacturer, but
rather by a system provided by the customer. For electrical drives (and thus also for
industrial robots), external control can be performed on several different levels:

• Power/Torque: The external system can directly control the power applied to
the drive. The current consumed by an electric drive is roughly proportional to the
created torque.

• Velocity: The external system supplies the desired velocity of the drive.
• Position: The desired (angular) position is provided by the external motion

controller.
While the first option allows for very low level of access, the latter options require further
logic integrated into the device, since the drives internally always need to be controlled by
applying power. In the context of this work, position control in particular is of interest.
For cyclic position control, new position set-points must be provided by the external
motion controller in strict time intervals, and the hardware device attempts to reach the
given position within one time interval. Therefore the set-points need to be reachable
within one interval, and the velocity of the trajectory must be steady. Otherwise, the
hardware device will not be able to follow the trajectory due to the inertia of the system.
For good results, the acceleration of the trajectory should also be steady.
For larger systems such as industrial robots, a simple closed loop controller for converting
position set-points into velocity and further into torque set-points is not sufficient, but
attention has to be paid to the dynamics of the system. For instance much more torque
is required to move a robot joint upwards against gravity instead of downwards, thus the
power applied to the drive depends not only on the requested velocity, but also on the
current position, the direction of the motion and also the current payload of the robot.
Most industrial robots that allow for external motion control internally compensate for all
these effects. Thus it is sufficient for the external motion controller to supply a trajectory
without taking dynamic effects into account.

2.5. Motion blending

A commonly used feature in industrial robotics is the so-called “motion blending”. Often
some auxiliary points on a robot trajectory are only programmed because the direct
connection of two points is impossible due to obstacles in the working space. Stopping
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Figure 2.4.: Solid: Trajectory of two linear motions from A to C and C to E; Dashed:
Trajectory with motion blending enabled (adapted from [125])

the robot at each of these auxiliary points is neither necessary nor desirable, because
decelerating and accelerating wastes lots of time and energy. Also wear and tear of the
robot system is reduced by using motion blending instead of a sequence of self-contained
motions. With motion blending, the programmed trajectory will be left before the
auxiliary point is reached and blended into the trajectory of the following motion, i.e. the
programmed auxiliary point is never actually reached. Figure 2.4 shows an exemplary
trajectory. Two subsequent linear motions in Cartesian space have been programmed,
the first from point A to point C, and the second from point C to point E. Without
motion blending, the robot will move along the solid trajectory, stopping shortly at
point C (changing direction of movement in a single point without stopping is physically
impossible). With motion blending enabled, the robot will leave the trajectory from A to
C at some point B and follow the dashed trajectory which enters the trajectory from C
to E at some point D. The position of the points B and D may be configurable, the closer
these points are to point C the more the robot has to decelerate to be able to blend both
motions. Most robot programming languages allow the developer to specify a maximum
distance that points B and D may be away from point C.

The example depicted in Fig. 2.4 shows motion blending between two linear motions in
Cartesian space. The KUKA robot controller e.g. also supports blending between all
possible types of motions, in particular it is possible to blend a joint space point-to-point
motion into a Cartesian space linear motion and vice versa. Motion blending can be
applied to an unlimited number of subsequent motions, creating a single long, continuous
motion of the manipulator, consisting of several independently programmed segments.

2.6. Robot programs and applications

This section introduces common robot programming techniques currently used with
examples from the KUKA robot language (KRL). Listing 2.1 shows an exemplary
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1 DEF example()
2 DECL INT i
3 DECL POS cpos
4 DECL AXIS jpos
5
6 FOR i=1 TO 6
7 $VEL_AXIS[i]=60
8 ENDFOR
9
10 jpos = {AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}
11 PTP jpos
12
13 IF $IN[1] == TRUE THEN
14 cpos = {POS: X 300,Y -100,Z 1500,A 0,B 90,C 0}
15 ELSE
16 cpos = {POS: X 250,Y -200,Z 1300,A 0,B 90,C 0}
17 ENDIF
18
19 INTERRUPT DECL 3 WHEN $IN[2]==FALSE DO BRAKE
20 INTERRUPT ON 3
21
22 TRIGGER WHEN DISTANCE=10 DELAY=20 DO $OUT[2]=TRUE
23 LIN cpos
24 LIN {POS: X 250,Y -100,Z 1400, A 0,B 90,C 0} C_DIS
25 PTP jpos
26
27 INTERRUPT OFF 3
28 END

Listing 2.1: Example KRL program with function example(), taken from [90]

KRL program which demonstrates some of the most commonly used features for robot
programming. Complete references of the KRL language can be found in [76, 77].
The KRL programming language is an imperative language that is interpreted at run-time.
It supports the common features of imperative programming language such as branches
(IF ... THEN ... ELSE) and loops (FOR ... ENDFOR), but also adds some robotics-specific
functions, predominantly motion commands such as PTP for point-to-point motions or LIN
for linear motions in Cartesian space. Variables are statically typed and must be declared
first in any function or procedure. Mixing variable declarations and other commands
is not allowed. Types include standard types such as integer or floating point numbers,
but also structured types for representation of positions in Cartesian space (POS) or
joint space (AXIS). User-defined structures are also possible. Variables can be defined in
different scopes. Variables defined within a procedure (e.g. Listing 2.1 lines 2 – 4) are only
accessible within the same procedure. Each KRL program is accompanied by a so-called
“DAT file” which contains further variables which are accessible from all functions within
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a single KRL program. Those variables are used amongst others for storing taught
frames. It is possible to add other variables which are required program-wide, and values
written to those variables are remanent (i.e. the last value is stored between program
runs). Besides variables local to single functions or programs, also system-wide, so-called
“global” variables are available. Those variables are usually prefixed with a $-sign and are
used to access system functionality such as maximum velocities. In line 7 of Listing 2.1
the velocity of each joint in all subsequent joint-space motions is reduced to max. 60%.

Motion commands The KRL language has special commands for robot motions: PTP
for point-to-point motions in joint space, LIN for linear motions and CIRC for circular
motions in Cartesian space. Releases of the KUKA software system within the last few
years also support spline motions (SPL), even combined with linear SLIN or circular SCIRC
segments.
Each motion command requires a parameter containing the destination position for the
motion; the current position is always used as the starting position. The destination
position can either be specified using joint values (type AXIS, e.g. line 10) or Cartesian
coordinates (type POS, e.g. line 14). If Cartesian coordinates are used, the global variables
$BASE and $TOOL are used for specification of the reference coordinate system and the
tool coordinate system. Both types of coordinate specification can be used for joint
space and Cartesian space motions. If Cartesian coordinates are used for joint space
motions, additional attributes “status” and “turn” must be included to specify which
inverse kinematics solution is to be used. Motions in operation space ignore status and
turn attributes because from any given starting pose only a single solution of the inverse
kinematics solution is reachable within each interpolation step.
Motion blending can be activated by using the keyword C_PTP for point-to-point motions
or one of the keywords C_DIS, C_VEL or C_ORI for operation space motions (cf. line 24).
Blending allows the robot controller to start with the following motion command before
the motion with the blending keyword has finished. Motion blending is not possible if
any command between the two motion commands prevents the controller from planning
the blended motion in time. Examples for such commands are I/O operations or very
time consuming calculations.

Tool commands Industrial robot arms often have tools attached to their flange to
manipulate working pieces. Common tools include grippers, welding torches, drills or
screwdrivers. Most of these tools have in common that they need some control, e.g.
they need to be turned on or off depending on the position of the manipulator, thus it
is common to trigger tool actions by the robot program at appropriate positions. The
communication of the robot controller with the tool is often realized using a fieldbus,
such as ProfiBus [119], ProfiNet [38], DeviceNet [11] or EtherCAT [69]. Every device
connected to the bus is able to read and write binary data from and to other devices.
The KUKA controller maps this data to global variables which can be accessed in a
KRL program. The global array $IN represents so-called “digital input” values, i.e. 1-bit
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information received from the fieldbus, and $OUT represents “digital output” values, i.e.
1-bit data written to the fieldbus. Digital I/O is used e.g. for commanding a gripper to
open or close, or to turn a welding torch on and off. Besides single bit data, it is also
possible to transmit numerical values using multiple bits. In KRL, these values are called
“analog” and can be accessed using the $ANIN and $ANOUT variables. Directly accessing
I/O using the global variables between two motion commands prevents blending of those
motions, because the robot controller has to wait until the first motion has finished before
I/O is performed. More details about commands that prevent motion blending can be
found in Section 3.5.1.

Parallel programs Neither the KRL language nor the KRC controller itself support
parallel robot programs. Only a single robot program may be active at a single point
in time, although the submit interpreter always executes a second KRL program in the
background. This program may contain monitoring tasks, but cannot actively control
the manipulator. Furthermore, no guarantees about execution times or cycle times can
be given, as the submit interpreter runs with lower priority than the main KRL program.
Using TRIGGER or INTERRUPT it is possible to synchronize (small) sub-functions with the
main program execution. Whenever such a sub-function is triggered, the main program
is interrupted and the sub-function executed. If the sub-function is executed fast enough
(i.e. before the motions already planned from the main program are completed), the robot
motion will not be affected. Triggers can be used e.g. to synchronize tool commands with
the programmed motion. It is possible to start such an action with a given delay after a
motion has started or before it is completed. For motions in operation space, it is also
possible to define triggers based on the distance traveled since the start of the motion.
In line 22 of Listing 2.1, the digital output number 2 is activated 20 ms after 10 mm of
the motion to point cpos (line 23) have been completed.
While triggers are commonly used to synchronize tool commands to motion progress,
interrupts are more generic and can be defined on any logical condition, e.g. on the value
of a digital input. The condition is evaluated cyclically and once it becomes true, the
main program is interrupted and the specified action executed. Such an action can be
a sub-function, which may also contain motion commands. Before such a command
can be used however, the robot must be stopped using the BRAKE or BRAKE_F commands.
The first command stops using a standard deceleration ramp (i.e. the robot continues
to move on the programmed trajectory), while the latter command brings the robot to
standstill as fast as possible, but allows it to leave the programmed trajectory. In line 19
of Listing 2.1 an interrupt with priority 3 is defined on the condition of digital input
number 2 becoming false. The action is to brake the robot and terminate. In line 20,
the interrupt is activated, and finally deactivated again on line 27. The priority is taken
into account if multiple interrupts become active at the same time. In this case, only the
interrupt with the highest priority will be executed.
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Chapter 3

Real-time requirements in robotics
applications

Industrial robots are expected to deliver very precise and highly repeatable results. One
key building block to achieve those requirements is the use of hard real-time systems.
The following sections go into detail about what real-time systems are, and why they are
required for robotics applications. Furthermore, the implications of real-time systems on
software development are discussed, and solutions currently in use are presented.

3.1. Real-time: Definition

In order to be able to specify the real-time requirements of robotics applications, first a
definition of a real-time system must be given. Biyabani et al. [13, p. 152] define hard
real-time systems as follows:

“Hard real-time systems are those systems in which the correctness of the
system depends on both the logical result of the computation as well as the
time at which such a result is produced. In many hard real-time systems it is
crucial for the tasks in the system to meet their specified deadlines, otherwise
the tasks are worthless, or worse, cause catastrophic results. This strictness
in meeting deadlines makes scheduling an important issue in the correctness
and reliability of the system.”

Not all real-time systems must fail necessarily catastrophically if a deadline is missed,
thus it is possible to distinguish between two levels of real-time requirements. Buttazzo
[26, p. 8] defines those two system classes as follows:

21



3. Real-time requirements in robotics applications

“Depending on the consequences that may occur because of a missed deadline,
real-time tasks are usually distinguished in two classes, hard and soft:

• A real-time task is said to be hard if missing its deadline may cause
catastrophic consequences on the environment under control.

• A real-time task is said to be soft if meeting its deadline is desirable
for performance reasons, but missing its deadline does not cause serious
damage to the environment and does not jeopardize correct system
behavior.”

Robotics applications can require both categories of real-time systems. The following
section investigates different levels of robotics applications and the real-time requirements
of those levels.
For each hard real-time task, the worst case execution time (WCET) can be specified,
which must be below the required deadline of the system in order to provide useful results.
The execution of a task may actually take less time than the WCET (e.g. depending
on the user input), but it must be guaranteed not to exceed the WCET under any
circumstances.
In the remainder of this work, an algorithm, program, etc. is called real-time safe, if it
can be executed with a deterministic run-time, i.e. a WCET can be specified.
It should also be noted that a real-time system is not to be confused with a “fast” system.
As long as a system is able to achieve its task reliably within the given deadline, it is a
real-time system. If another system is performing the same task at twice the speed most
of the time, it may still not be a real-time system if it is possible that the deadline is
missed eventually.

3.2. Necessity of real-time in robotics applications

Programs for industrial robots often consist of a series of robot motion and tool commands.
Those commands form the overall process of the robot application, and abstract from low
level control of the robot and its tools. In order to achieve good performance, multiple
levels of hardware control can be found. The first level is the motion control level. At
this level, every single motion of the robot is planned and executed. On top of this layer
is the application layer, which controls the overall course of events of the program, i.e.
the coordination of single motions and their combination with tool actions as well as the
interaction with external systems (e.g. using a fieldbus). Motion control in the first layer
is usually done by software created by the robot manufacturer, while applications are
developed by the end-users of the robot system.
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3.2.1. Motion control level

Industrial robots are often controlled with nested closed loop controllers [108, Section 8.3].
The hardware interface usually offers the ability to regulate the power consumed by the
servomotor driving a single joint, which is roughly proportional to the torque applied by
the motor. On top of this power or torque control, velocity and position controllers can
be applied as cascading controllers. Velocity controllers try to achieve a given velocity
of a joint by controlling the torque applied. Position controllers try to reach a given
position by controlling the velocity of a joint. To support velocity and position control,
most robot joints are equipped with encoders which can measure the current position
of the joint. Using this position information (and the derived velocity), a closed loop
controller can be constructed.
If such a low-level robot controller is to be implemented as part of the robot control
software (in contrast to being embedded into the robot hardware), a hard real-time
system is required for good quality results. The measured values must be retrieved and
new set-points calculated regularly. Large jitter in calculating the new set-points would
lead to imprecise motions. For a velocity controller, the target velocity will not be reached
exactly if the last commanded torque is applied too long or too short. Identically for a
position controller, the target position will not be reached exactly if the robot is moving
too long or too short with a previously set velocity.
In order for a robot arm to move to a destination point in a certain way (e.g. on the
fastest way, on a straight line, etc.), a trajectory must be planned. This trajectory is
then split up into small motion interpolation steps, which are usually between 1 ms and
12 ms long. A new set point in joint space is calculated for each interpolation step. These
position set-points are then fed into the aforementioned position controller. The new set
points must be provided at exact identical intervals, otherwise the velocity of the motion
is not steady, leading to a very jerky movement of the joint. This means very high wear
and tear of the mechanics and can seriously damage the robot hardware.

Conclusion Controllers for robot hardware (based on torque, velocity or position control)
implemented in a software robot controller absolutely require hard real-time. Missing
deadlines always leads to either not reaching a given target exactly (which in turn impacts
the robot’s overall accuracy and reliability) or to jerky, wearing robot motions, potentially
even causing damage. The execution of a trajectory must also be performed within a
real-time system to guarantee a precise execution of the trajectory. Thus, for every single
motion of a robot, hard real-time is required.

3.2.2. Application level

If an application for a robot purely consists of a sequence of motions, real-time is only
required for each motion command on its own (cf. motion control level). Using such a
simple sequence of motions, the robot comes to standstill after each motion, and some

23



3. Real-time requirements in robotics applications

non-deterministic delay at this point will not lead to a failure of the system (however,
performance will be degraded since less workpieces can be processed per time). Real-world
applications usually are far more complicated, and also require tool actions to be executed
at given points in time or at a given position of the trajectory. For example, a welding
torch must always be turned on and off precisely at the beginning and the end of the
welding seam. Failure in the timing of tool actions can lead to massive damage, e.g. an
incorrect welding seam negatively influences the quality of the products.
Many applications use the concept of motion blending (cf. Section 2.5) to speed up transfer
motions around obstacles in the workspace. Blending one motion into another inherently
requires a hard real-time controller just like any single motion does (two motions blended
into each other can be considered a single, continuous motion). Most robot systems
even allow motion blending to be used for an arbitrary number of points, achieving a
continuous motion among all those points. Motion blending requires knowledge about
future motions, i.e. it is not sufficient to process one motion command after each other,
but the motion that is blended into must also be planned before the point where the
trajectories diverge is reached (point B in Fig. 2.4 on Page 17). Although hard real-time
is required to execute a blended motion, soft real-time is sufficient for the overall program
execution. If the successive motion is not planned in time for motion blending, the
preceding motion can be simply completed as if no motion blending was requested, albeit
with reduced performance. Robotics applications should not depend on successful motion
blending, in particular for debugging purposes it is common practice to disable motion
blending temporarily in order to fine-tune previously taught (auxiliary) positions.

Conclusion Some parts of robot applications also require hard real-time for execution.
Tool actions generally need to be synchronized with robot motions, and the synchroniza-
tion must be guaranteed to achieve high quality products and to avoid damage to both
the workpiece and the tools. For the overall program flow, soft real-time is desirable to
achieve high performance and low cycle times. However, missing deadlines here generally
only raises cycle times but does not directly cause damage.
Overall, only tool actions inevitably require hard real-time. In most other cases, soft
real-time is sufficient. In Section 3.4 some currently used applications and technologies
are analyzed to further determine the grade of hard real-time required in typical robotics
applications.

3.3. Implications of real-time on software

The requirement of real-time has several impacts on the software development for such
systems. Both the underlying operating system as well as the application software must
support real-time. Special care must be taken during the development of applications to
avoid non-deterministic behavior.
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3.3.1. Operating system support

General purpose operating systems such as Microsoft Windows or Linux do not provide
hard real-time capabilities. The process scheduling facilities of such operating systems
aim at providing good performance for the whole system, thus providing computing time
to all processes. Any process may be interrupted at any time (schedulers usually are
preemptive), thus no guarantees for deadlines are possible.
Special real-time operating systems such as VxWorks, QNX and Linux with Xenomai or
RTAI extensions provide explicit support for hard real-time applications. Processes with
real-time requirements are scheduled strictly conforming to their priority, even allowing
high priority processes to stall the system in general. It is also possible to delay the
handling of hardware interrupts in order not to interrupt important real-time tasks.

3.3.2. Development of real-time applications

Programming of real-time systems can be done using different programming languages.
Very common is the use of the C and C++ programming languages due to their close
proximity to hardware. Often the operating system provides libraries that provide
an application programming interface (API) which must be used to achieve real-time
capabilities. The Linux extensions Xenomai and RTAI allow the use of all standard Linux
functions (so-called “syscalls”), however a program is no longer real-time safe when these
functions are used.
An application programmer must take care of a couple of special characteristics of the
program when developing for real-time systems:

• Separation of real-time and non real-time code. Often, not all parts and/or threads
of an application require hard real-time. A clean separation of both aspects should
be done, because switching from hard real-time to non real-time mode breaks any
timing guarantees.

• Memory allocation cannot be done real-time safe. If additional memory is required,
the operating system must assign a new hardware memory location to the application
which breaks real-time. Thus all required memory must be allocated before a section
of the program is entered where hard real-time is required. Memory must also
not be freed while being in such a section, thus after all real-time tasks have been
completed, a clean-up phase is required.
If the Linux operating system is used, it should be noted that allocating memory
using malloc or new is not sufficient, because memory allocation is only performed
on first real memory access. Thus each memory page freshly allocated should
actually be written to first, before real-time operations are started.

• Access to hard disks is not possible due to unpredictable delays e.g. in positioning
the heads and rotating the platters. Thus logging etc. must be done purely in
pre-allocated memory.
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• Xenomai and RTAI allow the use of arbitrary Linux syscalls. However, each call
effects a switch of the thread from real-time to non real-time mode and back. While
the thread is in non real-time mode, no timing guarantees can be given.

Overall, programming applications for real-time systems requires more effort, and errors
can easily occur. Those errors need not necessarily be easy to find, because breaking
real-time need not immediately have any effect on the application. If the application is
tested with little load on the system, deadlines might by achieved even without real-time
support. Only when high load occurs are deadlines missed.
Modern object-oriented programming languages such as Java or C# are not suitable for
programming real-time systems out of the box. Those languages offer automatic memory
management (using a garbage collector) which does not allow manual management of
resources, as required for real-time systems. Especially the garbage collector, which can
run at any time, stopping all threads of the application, will break real-time. However,
for the Java programming language there is a real-time implementation available (AICAS
JamaicaVM1) which also supports real-time garbage collection [109].

3.4. Real-time in industrial robotics

In order to determine the degree of hard real-time that is required by today’s robotics
applications, the KUKA Robot Language (KRL) is examined. Furthermore a set of
technology extensions available for industrial robots is examined in relation to the real-
time requirements of programs written using those extensions. This evaluation is done
based on products of the companies KUKA Roboter GmbH and MRK Systeme GmbH,
both project partners in the SoftRobot project (cf. Chapter 4). The set of analyzed
software packages has been determined in close cooperation with both companies, using
their expertise in robotics applications.

3.4.1. KUKA Robot Language (KRL)

KUKA robots come with a proprietary programming language, the KUKA Robot Lan-
guage (KRL) [76, 77]. This programming language allows the developer to specify
robot programs on a rather high level, i.e. issuing motion commands, tool commands,
synchronizing motions and tool actions etc.

Motion commands

KRL programs support four different types of motions: Point-to-point, linear, circular
and spline motions. For more details on KRL syntax please refer to Section 2.6. Each
motion itself requires real-time for motion control (cf. Section 3.2.1). However, if two

1http://www.aicas.com/
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motion commands are simply put one after the other, the robot moves to the first given
point, stops and starts moving to the next given point. Between these motions (i.e. while
the robot does not move), no hard real-time is required.
Using motion blending, subsequent motions can be blended into each other. Because
the robot never stops, continuous motion control is required, thus hard real-time here is
also required between two motions. KRL allows blended motions to be included in loops,
thus even infinite motions where the robot never stops are possible in theory (but rather
seldom required in practice).

Controlling I/O

Tool commands are usually issued by setting values to digital or analog outputs, and
reading values from digital or analog inputs. Those inputs and outputs are usually
connected to a fieldbus, which connects the robot to other devices such as a gripper
control, a welding control or a programmable logic controller (PLC). Outputs and inputs
can be used like normal variables and read/written anywhere in a KRL program, although
accessing I/O using these variables blocks motion blending. Setting outputs during a
motion is also possible using special trigger commands which execute the output operation
at a certain point in space or time of the motion.

Result KRL programs provide hard real-time whenever required, e.g. when a tool
command, or more general, any I/O communication, needs to be synchronized with a
moving manipulator. The developer of robotics applications in KRL is completely relieved
from all programming difficulties or issues related to real-time software development.
KRL programs are always interpreted real-time safe. Motion blending is performed
deterministically, i.e. it either succeeds for every or no run of a certain program.

3.4.2. GripperTech

The GripperTech technology package [79] provides support for standard electrical or
pneumatic grippers. These grippers are connected to the robot controller with several
digital input and output channels, which can be controlled by reading and writing digital
input and output signals. Some grippers need a constant value on an output to remain
open or closed, whereas some other grippers only require a short pulse to trigger a
gripping action. Using digital input signals, the current state of the gripper can be
verified, and allows the program to be stopped if the gripping process has failed.
The gripping actions themselves do not necessarily require real-time. Reading/writing
digital inputs/outputs is not time critical, as long as the robot does not move while the
gripping motion is performed. If a pulse signal is required with a strict timing restriction,
a real-time system will be needed to control the signal pulse.
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If the gripping action needs to be performed while the robot is in motion, e.g. at a certain
distance from a programmed point or after a certain amount of time has elapsed after the
motion has started, real-time is required to guarantee a precise execution of the program.

Result As long as the robotic application does not require the gripper to be used while
the robot is in motion, the application itself does not need to be run with real-time
constraints. If synchronous gripping while moving is desired, real-time is required for
synchronization.

3.4.3. SpotTech

The SpotTech technology package [79] is designed to facilitate the development of spot-
welding applications. The package is installed in combination with GripperTech, because
welding guns for spot welding share some characteristics with grippers. The SpotTech
package provides two new programming interfaces (so-called “inline forms”) which support
moving to a welding spot, closing the welding gun and activating the welding systems
(inline form SPOT) and retracting from the welding point again (inline form RETRACT).
The SPOT command moves the robot to a given destination point. The welding gun is
closed during the motion such that it completes the closing movement at exactly the same
time the robot stops at the destination point. Afterwards, the welding controller (often a
programmable logic controller, PLC) is instructed to start welding. The completion of the
welding process is determined by evaluating the responses from the welding controller.
The RETRACT opens the welding gun (either completely or to an intermediate pre-closed
position) and starts a movement to an intermediate position. The following SPOT command
continues the started motion and also takes into account whether the welding gun has
been opened completely or just to the pre-closed position. When the gun has not been
opened completely, much less time is needed for the gun to close, thus the closing
command must be issued later for the following welding spot.

Result All commands included in this technology package require hard real-time, because
the opening and closing commands must be issued to the welding gun at the proper
time. Issuing the closing command too early would lead to the welding gun being closed
before the robot has come to a stop, leading to damage on both the welding gun and
the workpiece. Closing the welding gun too late leads to longer cycle times or even bad
quality welding spots, if the failure of closing is not properly recognized.

3.4.4. BendTech

The BendTech technology package [78] provides a graphical programming interface for
applications for bending and folding steel sheets. A typical work flow is to pick up a steel
sheet from a pallet with a vacuum gripper and verify whether a single sheet has been
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picked up (steel sheets tend to stick together). Because the supply pallets are not always
exactly placed at the same location, the steel sheet must be centered at the gripper.
This is usually done by dropping the sheet into a special appliance, where it falls into a
defined position, and picking it up again afterwards. The robot then inserts the steel
sheet into the press, stopping when contact buttons detect the proper position of the
sheet. Because the steel sheet is only inserted into the press with one side, the robot still
has to hold up the sheet. The robot application then triggers the press to start, and the
piston moves down and forms the steel sheet. The robot has to move synchronously with
the piston to continue supporting the now upwards moving sheet. After the press has
finished bending, the steel sheet is extracted and delivered for further processing.
When inserting the steel sheet, the contact push buttons must be monitored and the
motion immediately stopped when contact is detected. This must be done with real-time
guarantees, otherwise damage might occur if the inserting movement is stopped too late.
While the steel sheet is bent by the press, the robot has to follow the motion of the
piston synchronously. This can only be done by processing current position values of the
piston and generating new robot position set-points within a real-time system. If the
delay between the measured piston position and the generated robot position is too large
or fluctuates, the robot will not be able to follow the sheet properly.

Result The first part of such a program until the steel sheet is inserted into the press is
mainly a program with gripping actions and thus has the same real-time requirements as
identified for gripping or spot-welding applications (cf. Section 3.4.2). The second part
however requires real-time synchronization with the piston for the whole bending process
in order to follow the sheet properly.

3.4.5. Robot Sensor Interface

The Robot Sensor Interface (RSI) technology package [82] allows to influence the position
of the robot by external sensors. For some applications, it is necessary to adjust the
programmed robot trajectories with data gathered by sensor systems. For example, it is
possible that the exact location of a welding seam differs slightly due to manufacturing
tolerances in previous production steps.
With the Robot Sensor Interface, it is possible to overlay a motion programmed with
KRL with external data. Usually, the external data provides relative correction values
which are immediately applied to the running program. It is also possible to provide
absolute position data, thus controlling the robot completely externally without a KRL
program providing motions. External data can be supplied for example over a network
connection.

Results All functions offered by this package require hard real-time. All external sensor
information must be immediately processed and merged into the running program.

29



3. Real-time requirements in robotics applications

3.4.6. LaserTech

The LaserTech technology package [80] provides a programming interface for laser cutting
and welding processes. For precise welding seams or cuts, the laser beam must be turned
on and off synchronously with the robot being at the proper position. Furthermore, it
can be necessary to adjust the laser power depending on the current speed of the robot.

Result The laser must be controlled synchronously with robot motions, which requires
hard real-time.

3.5. Current solutions for real-time requirements in industrial
robotics

As could be seen in the previous sections, industrial robotics applications inherently
possess real-time aspects. Thus all robot manufacturers provide means of specifying
real-time robot programs. Usually real-time safety is ensured by using proprietary
domain specific languages which can be interpreted real-time safe and executed under a
real-time operating system. The following sections provide an overview of the real-time
implementations for some robot systems. The real-time capabilities of several more
research projects are discussed in Section 4.3.

3.5.1. KUKA Robot Language

As it can be seen exemplary in Section 3.4, robotics applications developed with the KUKA
Robot Language (KRL) can perform different tasks which require real-time programming,
including motion blending. The KUKA Robot Controller (KRC) consists of an industrial
PC (standard x86 hardware) which is connected to the motor controllers via a fieldbus
(EtherCAT is used in case of the KRC-4 controller). The robotics application as well
as motion planning and execution is performed on the PC, which therefore runs two
operation systems: VxWorks [128] for all real-time critical tasks and Microsoft Windows
XPe (for KSS 8.2) [76] or Windows 7 (for KSS 8.3) [77] for displaying the graphical user
interface (non real-time). KRL programs are developed using an integrated editor running
on the Windows part of the controller. For execution, KRL programs are transmitted to
the real-time part of the controller and thus can be interpreted with real-time guarantees.
Once a KRL program has been started, it will be executed completely within the VxWorks
part of the system; the Windows-based user interface only shows diagnostic information
such as highlighting the currently active motion command.
Using an interpreter running on a real-time operation system is already sufficient for
the real-time requirements in motion control (cf. Section 3.2.1), as every single motion
command can reliably and deterministically produce the set-points required by the
hardware controllers. Some real-time requirements on application level however cannot
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yet be fulfilled, such as motion blending. To perform motion blending, it is necessary
to process at least one motion ahead of the motion that is currently performed by the
manipulator in order to plan the proper blending trajectory.
The KRL interpreter utilizes the so-called “advance run” to calculate trajectories for
motion blending. While the main program counter points to the motion currently
executed, the advance program counter already points up to 5 motions ahead. All
commands are completely processed during the advance run, i.e. all motions are planned
and all other non-motion commands (e.g. calculations) are executed. Changing the
value of (local) variables during the advance run is possible because previous motions
have already been completely planned and thus are not affected by changing variable
values. Furthermore, KRL programs are always single-threaded, thus no other threads
can be influenced. Not all KRL commands can be processed during the advance run.
All commands directly influencing the environment such as I/O commands must be
synchronized with the main program run, otherwise tool actions etc. would be triggered
several motion commands too early. Pure writing commands (e.g. setting outputs) can be
delayed until the main program counter has reached the command. Reading commands
(e.g. retrieval of sensor values) however always need to be processed during the main run.
Hence the KRL interpreter automatically stops the advance run whenever a command is
found that must be processed during the main run, effectively disabling motion blending
at this point.
KRL programs are always single-threaded; multiple threads are not possible. Triggers
and interrupts allow tool commands (writing I/O) to be synchronized with motions or
other events, and even complete sub-functions can be started. Motion commands are
valid within such a sub-function if the robot is previously braked. Executing such a
sub-function interrupts the main run of the program. Thus if the sub-function performs
extremely time consuming calculations but does not interact with the actuator directly,
all motions already planned during the advance run will be executed and the robot
stopped afterwards. After a sub-function has been executed, it is possible to continue
execution of the program or to abort the function where the interrupt was triggered.
Besides the currently active KRL program, there is also the so-called “submit interpreter”
which always runs in the background. The submit interpreter executes a KRL program
and is intended for background tasks such as monitoring user safety devices. It can be
used as a replacement for a programmable logic controller in small environments. The
submit interpreter shares resources with the main KRL program and is lower prioritized;
it must not be used for time critical tasks. Furthermore, no commands that actively
control the actuator (such as motion commands) are allowed.
The KRL language does not support programming multiple robots with a single program.
It is possible to attach up to six external axes (e.g. a linear unit or a turn-and-tilt table),
but no second articulated arm. Multi-robot applications are possible using the RoboTeam
[81] option package which links multiple KUKA controllers. However, each robot still
needs its own KRL program and synchronization is established by setting appropriate
labels in each program.
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The real-time safe execution of KRL programs is ensured by transmitting the source code
of the program developed using the graphical editor to the VxWorks real-time operating-
system for execution. KRL is a domain specific language which has been designed with
real-time aspects in mind, thus it is possible to interpret all commands real-time safe.
The language restricts the end user from creating indeterministic programs.

3.5.2. Stäubli VAL3

Stäubli industrial robots are equipped with the VAL3 [121] programming language.
Similar to KUKA controllers, the Stäubli CS8C controller also uses the VxWorks real-
time operating system on standard x86 hardware. However, Stäubli does not utilize
two different operating systems for real-time motion control and non real-time user
interaction, but rather uses a text-based user interface on their teach pendant (MCP)
which is directly controlled from the VxWorks environment.
Motion commands in VAL3 (movej for point-to-point, movel for linear and movec for
circular motions) are always non-blocking, i.e. control flow immediately returns to the
next line in the program after the motion itself has been queued. The motion queue
is processed asynchronously of the robot program and only synchronized upon explicit
request using e.g. the waitEndMove command. It is also possible to interact with the
motion queue from a program in form of stopping and resuming motion execution and
by emptying the motion queue. The motion queue concept is comparable to the advance
run of KUKA’s KRL language and also allows for motion blending, however the VAL3
motion queue can also be manipulated by the program.
It is possible to execute several tasks (programs) simultaneously on a Stäubli robot
controller. All tasks are executed with the same processor, thus the tasks are interleaved.
It is possible to create asynchronous tasks which are executed as fast as possible, as well as
synchronous tasks which are executed repeatedly with a fixed cycle time. Synchronization
of tasks is explicitly done by the programmer using traditional methods such as a mutex.
Real-time safety of VAL3 programs is achieved similar to KRL programs by limiting the
language to functions which can be deterministically interpreted. By allowing the end
user to create multiple threads and synchronizing those threads, it is possible to create
programs where motion blending cannot be guaranteed (e.g. if a task is blocked before
the following motion command has been enqueued). Single motions however will always
be executed atomically and thus deterministically.

3.5.3. OROCOS

The Open Robot Control Software (OROCOS) [21, 23, 24] project provides a C++
framework for the development of real-time robotics applications. It aims at being a
modular and flexible framework that supports all sorts of robotics devices and computer
platforms (i.e. processor architectures and operating systems). The main components of
the Orocos project are:
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• Real-time Toolkit (RTT) [113]: Component framework for real-time robotics ap-
plications. The RTT framework creates an abstraction layer of the operating
system (currently Linux RTAI and Xenomai extensions are supported for real-time
applications, and standard Linux and Windows for non real-time applications). It
provides an object-oriented interface for threads, mutexes, etc. upon which robotics
applications can rely. The component framework supports basic communication
mechanisms for inter-component communication with real-time guarantees. Com-
ponents can even be transparently distributed across multiple systems, in this
case inter-component communication is performed using CORBA2 [124] (without
real-time).

• Orocos Component Library (OCL): Support tools for RTT, such as for setting up
or monitoring RTT based applications.

• Kinematics and Dynamics Library (KDL) [112]: KDL provides libraries to support
many generic concepts such as vectors, frames, rotation-matrices which are required
for kinematics and dynamics calculations in robotics applications. Attention was
paid to ensure real-time safety of all algorithms.

Orocos allows developers to create applications with a rather high level of abstraction
from hardware and operating system specifics. Applications developed with the RTT
can be tested on non real-time operating systems and later executed on real-time Linux
systems without changes to the code.
Unlike KRL or VAL3, Orocos is aimed at providing support for generic real-time robotics
applications with complete control of all aspects such as motion planning, motion
interpolation, dynamics calculations etc. Orocos does not impose a specific architecture
on the system, but rather aims at providing a real-time core which is suitable for different
architectures [24]. Orocos does not provide any hardware device drivers to interact with
industrial robots directly (although some device drivers have been developed for robots
in the lab at KU Leuven), but eases the development of such drivers by providing an
appropriate framework.
Real-time safety of applications developed using the Orocos framework is achieved by
using a programming language (C++) which can generate deterministic code and execute
it under a real-time operating system. It is completely up to the developer to ensure that
all algorithms are real-time safe, i.e. that memory management is performed at the right
times and that no other actions are performed which introduce indeterminism (such as
I/O). Unlike programming with KRL or VAL3, using the Orocos framework does not
prevent the developer in any way to create indeterministic code, however allows direct
interaction with hardware devices for experts.

2Common Object Request Broker Architecture
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3.6. Conclusion

All analyzed applications and technology packages show, that a certain amount of hard
real-time is required for robotics applications. Every motion for itself requires a real-time
motion controller, and generally tool actions also need to be synchronized to robot
commands with real-time guarantees. Most of the time, these synchronization conditions
specify that a certain tool action must happen at a certain position of the robot’s path,
or after a certain amount of time has passed since starting a motion. However, there
are also cases where tool actions need to be synchronized to the whole robot motion (cf.
LaserTech), or the robot motion needs to be synchronized to external tools (cf. BendTech,
Robot Sensor Interface).
More importantly, it could also be seen that between two distinct robot motions, it is
usually acceptable if small delays occur, although these delays can reduce the cycle time.
With motion blending, no gap occurs between two motions, thus all motions connected
with motion blending must be considered as a single real-time critical motion.
The real-time requirements for most robotics applications can be summed up as follows:

• Each single motion requires real-time safe motion interpolation.
• It must be possible to synchronize tool actions with robot motions with precise

timing guarantees.
• Between multiple motions short breaks are usually tolerable.
• Motion blending combines several otherwise independent motions into a single

continuous motion. However rarely failing to perform motion blending usually is
tolerable.

It can be concluded that the overall program flow of robotics applications generally does
not need to be executed real-time safely, but rather a best-effort approach is sufficient.
This allows to partition robotics applications into a non real-time general program flow
that coordinates short real-time critical tasks. It is necessary however, that the developer
can flexibly define which parts of the applications need to be executed real-time safely,
e.g. for synchronizing tool actions or reactions to sensor events.
Generally the developers of robotics applications should not need to care about writing real-
time safe code. The programming languages supplied by commercial robot manufacturers
hide all issues related to real-time from the developer. This is very important to facilitate
the development of applications and to reduce the likeliness of erroneous programs.
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Chapter 4

The SoftRobot architecture

The joint research project “SoftRobot” was conducted by the Institute for Software
& Systems Engineering at Augsburg University (ISSE)1, KUKA Laboratories GmbH
(KUKA)2 (the research department of the robot manufacturer KUKA located in Augsburg)
and the system integrator MRK Systeme GmbH (MRK)3. It ran from October 2007
until March 2012. The project was funded by the European Union and the Bavarian
government.
The project aimed at creating a new programming paradigm for industrial robotics by in-
troducing modern programming languages into the domain of industrial robotics. Thereby
all special requirements of the robotics domain, especially hard real-time requirements,
need to be met.

4.1. Goals

Industrial robots today are usually programmed using proprietary programming lan-
guages supplied by the robot manufacturer. There is no common language used by
all robot manufacturers (unlike e.g. IEC 61131-3 [59] which defines common languages
for programmable logic controllers (PLCs)), but each manufacturer provides its own
language.
Besides the need for developers to learn a new programming language for each different
robot system, this approach also has some other drawbacks. The programming languages
must be maintained by the robotics companies, while general purpose languages are

1http://www.isse.de/
2http://www.kuka-labs.com/
3http://www.mrk-systeme.de
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4. The SoftRobot architecture

usually maintained either by companies specialized in programming languages, or by
large communities. This often leads to the robot programming languages not supporting
modern features (e.g. object orientation) and having a very limited set of instructions.
During the SoftRobot project, a new programming platform should be developed which
allows to program industrial robots using a modern, object-oriented programming lan-
guage. This provides several advantages: Modern methods of software engineering can
be applied, it is possible to create a (object-) model of the application which helps
understanding the system, good community support is available for most modern object-
oriented programming languages and many developers are already confident using these
languages. Furthermore, a programming language with automatic memory management
should be used to reduce the likeliness of programming errors further.
At the beginning of the development of the SoftRobot platform, several key requirements
for the SoftRobot platform have been identified. Those requirements have also been
discussed in [3] and in [125, 126].

1. Usability: The current proprietary robot programming languages (e.g. KUKA KRL)
offer a high grade of abstraction for the developer. Using only a few keywords, it is
possible to write programs for robots and interact with tools attached to the robot.
The developers do not need to care about real-time issues at all when using these
languages. When using the new SoftRobot architecture, the same user experience
should be available, i.e. small programs should also be easy to write. Additional
features introduced by SoftRobot which are not possible with the current languages
should not complicate small and easy programs.

2. Multi robot systems: The SoftRobot platform should support applications consisting
of multiple robot systems. Programming those robots should be possible using a
single program or multiple programs.

3. Sensor support: New applications will require more support for external sensors
(e.g. a camera, a force-torque sensor). Those sensors should be easy to integrate
into robotics applications.

4. Extensibility: It should be possible to extend an existing application based on the
SoftRobot platform to use another type of robot, or multiple robots without the
need to completely rewrite the application. Furthermore, it should also be possible
to extend the SoftRobot platform itself, e.g. by supporting new kinds of robotic
devices (e.g. mobile manipulators, flying robots).

5. Special industrial robotics concepts: Special requirements of industrial robotics
should be catered for. These requirements are for example motion blending (cf.
Section 2.5) and force manipulation with compliant motions (cf. Section 2.3).

In order to fulfill the requirements, the new SoftRobot platform must support the
execution of real-time safe programs (in particular for requirements 3 and 5, and for
the synchronization of multiple systems as of requirement 2). However, in order to
fulfill requirement 1, the end-user should not be required to develop the application

36



4.2. Architecture

Figure 4.1.: The SoftRobot architecture (adapted from [125])

code itself in a real-time safe manner, with all implications to memory management,
avoidance of I/O, etc. (cf. Section 3.3.2). Since programming languages with automatic
memory management generally do not provide real-time safe program execution, a new
architecture had to be developed.

4.2. Architecture

In order to fulfill all requirements and goals specified in Section 4.1, a three tier architecture
has been chosen for the SoftRobot platform. Figure 4.1 depicts the overall architecture.
This architecture has first been introduced in [55]. Splitting the system into different
layers with some providing hard real-time while others do not was driven by the finding
that robotics applications usually only require hard real-time for small tasks, while the
overall program flow does not (cf. Section 3.6).

The lowest layer, the Robot Control Core (RCC), communicates directly with the hardware
(e.g. robots, sensors) and must be implemented using a programming language and
operating system which both support real-time execution, e.g. C++ and Linux/Xenomai.
On top of the RCC, the Robotics API provides support for application developers to
create robotics applications using a large class library for robot control. The Robotics API
does not need to support real-time execution by running under a real-time operating
system, but must provide concepts to specify real-time tasks for execution on the RCC.
The class library can be implemented using any modern, object-oriented programming
language, e.g. Java or C#. The Robotics API communicates with the RCC using the
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Real-Time Primitives Interface (RPI). The Robotics API can be used directly by robotics
applications or by other systems further facilitating robot programming, such as domain
specific languages (DSL) for highly specialized applications.
By splitting the architecture up into a real-time safe and a non real-time part, it is
now possible to use object-oriented programming languages with automatic memory
management and still provide hard real-time support when necessary.

4.2.1. Robot Control Core

The Robot Control Core (RCC) is the lowest layer of the SoftRobot architecture and
communicates directly with all hardware. It is the only part of the SoftRobot system
that must be developed real-time safe and must be executed using a real-time operating
system. The RCC requires a real-time driver for every type of hardware (i.e. every type
of robot, sensor, etc.) that is to be supported. Many hardware device drivers require
new set-points or provide new measurements at a high frequency (usually up to 1 kHz).
The RCC is responsible for deterministically providing or consuming these values.
Besides hardware device drivers, the RCC also must provide real-time safe implemen-
tations of some basic calculation primitives which can be used by robotics applications
to describe algorithms. These primitives can provide very basic functionality such as
addition or multiplication of numbers, but also more complex operations e.g. working
on vectors or matrices. All aspects of a robotics application which are required to be
real-time safe must be described using only the basic calculation primitives provided by
the RCC. By using these flexibly combinable and real-time safe primitives for providing
new functionality, neither the robotics application itself nor the Robotics API needs to
be real-time safe.
Within the SoftRobot project, a reference implementation of the RCC has been developed,
the SoftRobot RCC. This reference implementation is described in detail in Chapter 7.

4.2.2. Real-time Primitives Interface

The Real-time Primitives Interface (RPI) defines the protocol that allows robotics
applications to communicate with the RCC, in particular for the specification of real-time
tasks. This protocol defines two different aspects that are needed for robotics applications:

• Real-time primitive nets: Real-time primitive nets define tasks for the RCC which
must be run with hard real-time guarantees. The tasks are described using a
data-flow language which is cyclically evaluated. An in-detail description of the
language is provided in Chapter 5. The language has been designed for automatic
generation by the application. The Robotics API provides a mapping algorithm
that generates the required real-time primitive nets from the application code (cf.
Section 10.2).
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• Synchronization of primitive nets: While real-time primitive nets provide hard real-
time capabilities, it is sometimes sufficient to provide only soft real-time. Motion
blending is one example where a best-effort approach can be acceptable. If blending
one motion into another fails, the robot comes to a short stop but the application
will still provide useful results, however with reduced performance.
Primitive nets need to be specified in one piece, i.e. no changes to the primitive net
are possible once the execution has started (otherwise the net would be no longer
real-time safe). It is possible to specify blended motions within a single primitive
net in order to gain guaranteed motion blending, however for large sequences of
motions this also leads to huge primitive nets.
Using the synchronization features of the Real-time primitives interface, it is
possible to request the immediate and synchronous start and stop of primitive nets
once a specified event occurs. The acceptance of such a synchronization rule can
only be done on a best-effort base, however it can be guaranteed that once the
synchronization rule has been accepted, starting and stopping of the given primitive
nets will be strictly synchronous. The synchronization mechanism for multiple
primitive nets is described in detail in Chapter 6.

The Real-time Primitives Interface was first introduced in [127] and later refined in [125,
126].

4.2.3. Robotics API

The Robotics API provides a huge class library which can be used for developing
robotics applications using a modern, object-oriented programming language. During
the SoftRobot project, the Robotics API has been implemented using Oracle Java [70].
Using IKVM.NET [65], an automatic transformation of all Java classes to .NET classes
is possible, thus the implemented Robotics API can also be used with any .NET based
language (e.g. C#, VB.NET or F#).
The Robotics API provides support for all kinds of actuators and sensors which are
supported by hardware device drivers of the RCC, as well as generic task functionality
such as different types of motions for robot arms. Furthermore, the Robotics API provides
modeling techniques for the environment of the robotics application, e.g. by providing a
world model using frames (a point in space including orientation) and transformations
between frames.
The Robotics API can be split up into two parts, the Command Layer and the Activity
Layer. The command layer describes robot tasks on a very abstract level, i.e. a command
is formed by an action and an actuator. An action defines what should be done (e.g. a
point-to-point (PTP) motion), while an actuator represents any kind of device that is
capable of executing that action. Action themselves do not provide information how their
task must be executed, as this may be highly dependent on the type of actuator that
is used. At run-time, commands are mapped to primitive nets which are executed by
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an RCC. The information of how to execute an action is retrieved during this mapping
process. More details about this automatic mapping process are described in Section 10.2.
The command layer also provides a complex event mechanism that allows to execute
further arbitrary commands in real-time on the occurrence of an event (which can be
described by using arbitrary sensor information such as the current position of the robot
or an external camera system).
Although it is possible to create arbitrarily complex robotics applications using only
the command layer, this is not a very convenient way to do so. The activity layer adds
convenience functionality to provide an easy-to-use programming interface for common
tasks.
The concepts of the Robotics API have been first introduced in [4] and have been refined
in [3].

4.2.4. Applications

Robotics applications can be developed on different levels of the Robotics API, and with
different target users. Classic applications controlling a single robot and the attached
periphery are likely to be developed using the Java programming language on top of
the activity layer, thus using prepared robot motion instructions and code structures
comparable to existing proprietary robot programming languages such as KRL. Using
the same programming interface, it is also possible to develop multi-robot applications,
including real-time synchronization of the robots.
If the functionality provided by the activity layer is not sufficient, it is also possible to
develop an application based directly on the command layer of the Robotics API. This
is e.g. required for system integrators who wish to integrate a new piece of hardware.
Programming on that layer offers the full flexibility and real-time guarantees that are
available with the SoftRobot platform, but less convenience functionality is provided,
thus the command layer is harder to use than the activity layer.
However, not all end users need to interact with the Robotics API or even any classic
programming language at all. For special applications it is possible to create a Domain
Specific Language (DSL) on top of the Robotics API, which focuses only on the special
domain it is intended for. Such a DSL can be e.g. a graphical programming language, or
an application of programming by demonstration, i.e. recording and replaying motions
executed by a human. Building a DSL on top of the Robotics API is a great improvement
to proprietary programming languages, mainly because of the availability of a broad
variety of tools and already existing solutions e.g. for DSL generation or human-machine-
interfaces (HMI), which are usually not available for specialized robot programming
languages.
For the control of a complete production environment, a service-oriented architecture
(SOA) can be a solution that is easier to develop, maintain, and extend in comparison to
classic systems controlled by a programmable logic controller (PLC). Studies showed that
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the use of the Java programming language can lead to dramatic increases in efficiency
compared to the traditional IEC-61131-3 programming languages commonly used for
PLCs [97]. Methods for the development of service-oriented systems based on the
Robotics API have been created by Hoffmann et al. [56, 57].

4.3. Related work

For a long period of time, robot programming has been done using dedicated robot
programming languages (e.g. commercial languages: KUKA KRL [77], Stäubli VAL3
[121]; research projects: WAVE [95] and AML [118]). Research recently has been mainly
concentrating on experimental and mobile robotics, as the industrial robotics domain
has even been thought of as a solved problem [50, p. 983]. However, advantages of using
a general purpose programming language for the robotics domain have been identified
earlier. For non object-oriented programming languages, RCCL [52] for the C and
PasRo [14] for the Pascal programming language are examples. With object-oriented
programming languages becoming more and more popular, there have also been attempts
to integrate those languages into the robotics domain. ZERO++ [96], MRROC++ [130],
RIPE [87], the Robotics Platform [85] and SIMOO-RT [5] are some examples. A more
in-depth analysis of some of these projects is provided in Sections 5.6 and 6.5.
Integrating current off-the-shelf industrial robots in advanced applications such as pro-
gramming by demonstration using speech recognition (cf. [98]) or creating an object-
oriented model for a specific task such as plastic injection molding (cf. [47]) can be a
tedious task. The SoftRobot architecture significantly reduces the effort required for
such tasks by providing a ready-to-use object-oriented interface which is independent of
the actual robot that is used. The integration of additional technologies such as speech
recognition is much easier if a widely used programming language is available also for
the robot program.
Many robotics systems are created with three interacting tiers. This has been denoted
as a 3T architecture by Bonasso et al. [15]. Applications are separated in this paper
into “a dynamically reprogrammable set of reactive skills coordinated by a skill manager”
as the bottom layer, “a sequencer that activates and deactivates sets of skills” as the
middle layer and “a deliberative planner that reasons in depth about goals, resources
and timing constraints” as the top layer. Simmons et al. [110] denotes the three layers
from bottom to top as “behavior”, “executive” and “planning” layers. The SoftRobot
architecture follows a comparable separation of concerns. The lowest layer, the behavioral
layer is provided by the RCC which performs direct hardware control. The RCC can
be reconfigured dynamically by providing new primitive nets. The executive layer is
provided by the Robotics API which is able to combine the basic primitives offered by
the RCC into primitive nets for the desired task. The planning layer is represented by
robotics applications using the Robotics API. Robotics applications can decide what tasks
to perform, at which time to do so and e.g. which robots to use (if multiple actuators are
available).
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Component based software engineering has gained popularity in the recent years in the
robotics domain, in particular for mobile or service robots. It aims at creating reusable
components that can be composed to new applications while requiring only small amounts
of new code to be written (cf.[19, 20]). The Orocos framework [21] provides a C++
based component framework which can be used to create real-time safe components.
The MiRPA project [42, 44] created a real-time capable middleware that even allows
to distribute components across different systems without losing real-time safety. For
component based software design of robotics applications, a separation of concerns into
five different areas (the “5Cs”) has been proposed as best-practice [22, 99, 123]. The five
concerns are: communication, computation, coordination, configuration and composition.
The ROS project [101] gained much popularity in the robotics research domain in recent
years, particularly by providing good tool support and a large component library which
provides reusable components for many common tasks. Initially, the ROS project provided
support for service robots, in particular the PR-2 robot from Willow Garage. Real-time
aspects did not play an important role at the beginning, although it is possible to integrate
Orocos to create single real-time safe components. The ROS-Industrial project tries to
extend the ROS framework to support industrial applications.
The SoftRobot project took a different approach by providing an object-oriented program-
ming interface for application developers, and hiding the real-time aspects in lower layers
as much as possible. The development of the object-oriented programming interface in the
SoftRobot project was driven by the belief that standard industrial robotics applications
with a rather linear workflow can be programmed best using “traditional” programming
languages with an explicit interface rather than by composing components. Internally,
the SoftRobot project also employs components which can be flexibly rearranged for
new applications, in particular in the Real-time Primitives Interface with the primitives.
Unlike most component based systems however, RPI enforces a strictly synchronous
execution of all components within a single primitive net.
Despite providing an explicit programming interface, the Robotics API can also be used
to create new programming paradigms which are more suitable for applications in certain
fields. For instance, the Factory 2020 example used for the final project presentation (cf.
Section 11.2.1) has been programmed using a service-oriented platform and coordinated
using state charts with State Chart XML (SCXML) [114].
The iTaSC (instantaneous task specification and control) approach [31] aims at creating
a novel robot programming paradigm for complex robotics tasks including sensor-based
manipulation with geometric uncertainties. Tasks are specified by describing constraints
for a “virtual kinematic chain” between frames on objects (such as the robot or the work-
piece) and distinct features on these objects. Using automated solvers and optimization
algorithms, the trajectories for the robot (or for multiple robots) can be determined.
The constraint based programming approach seems promising for certain complex tasks.
Section 5.6.4 describes a possible integration scenario of the iTaSC task specification and
constraint solving functionality into primitive nets.
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Chapter 5

Real-time Primitive Nets

The Real-time Primitives Interface (RPI) describes a small but very generic interface
for the specification of real-time safe tasks. In the SoftRobot project, RPI is used for
the communication of the non real-time Robotics API and the real-time Robot Control
Core (RCC). In the context of this work, the term robotics application denotes any
program that is based on RPI, unless stated explicitly otherwise. Robotics applications
can be built using the Robotics API, however RPI is a generic interface that can also
be used by any other framework. RPI was first introduced in [127] and later refined
in [125, 126]. Using RPI, it is now possible for robotics applications to run without a
real-time safe operating system while still being able to create real-time safe tasks. The
tasks are specified by a flexible combination of basic building blocks. Seamless, real-time
safe transitions between such tasks are possible using the synchronization mechanism
explained in Chapter 6.

5.1. Introduction

The Real-time Primitives Interface (RPI) has been inspired by the data-flow language
Lustre [51], used in the commercial tool SCADE [104]. Although some concepts are
shared with other data-flow languages, RPI is tailored to the needs of the robotics domain.
For example the concept of Fragments has been introduced which behave much like
nodes in Lustre, but additionally also serve as performance improvement by activating or
deactivating large parts of the data-flow graph as required.
The main concept of RPI is the primitive net. A primitive net describes a task which
must be executed real-time safe. Before the execution of such a primitive net can start, it
must be completely specified, i.e. no further changes are possible (with the exception of
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Figure 5.1.: UML concept diagram of the Real-time Primitives Interface

processing of sensor values within the primitive net). The robotics application generates
one primitive net for all tasks that need to be synchronized and creates another primitive
net if two actions do not need to be strictly synchronized. Because robotics application in
general need not to be real-time safe, a delay between the submissions of two subsequent
primitive nets is acceptable. Therefore, with the exception of multiple synchronized
primitive nets (cf. Chapter 6), all robots and other systems must be in a safe state once
the execution of the primitive net has finished. For robots a safe state usually means
that the robot is neither moving, nor applying force to the environment.

RPI is designed to be generated by the robotics application. It is not intended to be
human readable or writable, although with some experience, it is possible to design small
primitive nets by hand. However, real-world primitive nets tend to grow large, partially
due to the fine granularity of building blocks provided by the SoftRobot RCC.

5.2. Components

The Real-time Primitives Interface consists of only a few basic components, which are
sufficient to build large real-time safe tasks. The basic concepts are displayed in Fig. 5.1.
Primitive nets consist of basic building blocks, so-called primitives which can be connected
by links to transfer data from one primitive to another primitive. The configuration of
primitives is done by parameters. The execution of primitive nets is performed cyclically,
i.e. every primitive contained in a primitive net is executed once in each execution cycle.
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5.2.1. Primitives

Primitives form the basic building blocks of primitive nets. Primitives can have input
and output ports, and can be configured using parameters. Primitives are neither required
to have input ports nor output ports, even primitives with no ports at all are valid. In
each execution cycle, all values from the input ports are read, and new values for the
output ports must be provided. Primitives can perform arbitrary calculations during
execution, however all operations must be real-time safe such that every primitive can
guarantee a worst case execution time (WCET).
Primitives can perform very basic operations such as logical operators (AND, OR, etc.),
mathematical functions (add, subtract, multiply, etc.), but also more complex operations
such as calculating trajectories. Hardware devices are also represented as primitives.
Sensors are primitives with only output ports, whereas actuators are primitives with only
input ports (with the exception of error and diagnosis outputs).
Input and output ports are strictly typed, and only ports with matching types can be
connected. Types can be basic types such as integer or double types, but also more
complex types are possible. Complex types could be for example Cartesian coordinates,
consisting of (double) values for the X, Y and Z direction. Furthermore, it is also possible
to use a special null value to indicate that no valid value is available.
A primitive can be instantiated multiple times within the same primitive net. Multiple
instances of a primitive that control the same hardware device are allowed, however only
one such instance may be active during any given execution cycle. Activation of such
primitives can be either done using fragments (cf. Section 5.2.3) or a dedicated activation
input port. The implementation of primitives must contain code to detect situations
where two instances try to control the same hardware within a single execution cycle and
emit an appropriate error code.
Parameters can be used to configure primitives. Parameters are typed like ports and
behave very similar to input ports, with the exception that the value of a parameter does
not change during the execution. Unlike input port values, parameter values are already
available when the primitive is initialized. During initialization phase, no real-time
constraints must be obeyed. Primitives may require certain configuration information
during initialization e.g. to allocate the right amount of memory.
Primitives may have an internal state which is preserved between two execution cycles.
This can be used for example to follow a trajectory in order to provide new set-points in
each execution cycle. Primitives must not preserve information between two different
primitive nets. If information preservation is required, this should be done by means of the
robotics application. If several instances of the same primitive are configured identically
(i.e. their input ports are connected to the same sources and they have the same set
of parameters), those instances must be free of side-effects within a single execution
cycle. This implies that all instances provide the same output values within the same
execution cycle. This behavior is exploited by the mapping process of the Robotics API
to eliminate redundant parts of a primitive net automatically (cf. Section 10.2.7).
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5.2.2. Links

Links are used to connect ports of two primitives. Only ports of the same data type can
be connected. If a conversion of data types is required, special conversion primitives
must be inserted. Each input port can be connected to exactly one output port, however
an output port may be connected to several input ports. It is not necessary for all ports
to be connected, however primitives may require input ports to be connected. Actuator
primitives for example need their set-point input port to be connected, otherwise the
primitives cannot perform their tasks.
The output value of a primitive is always transmitted to the input port of the following
primitive before the execution of that following primitive is started. This design allows for
a fast propagation of values through the primitive net, e.g. values received from sensors
can be processed and delivered to actuators within a single execution cycle.
Links may not form unguarded cycles in a primitive net. A primitive net contains an
unguarded cycle, if it is possible to reach a primitive again by purely navigating links
from output to input port without coming across a Pre primitive. Such cycles would
imply that the input for a primitive instantaneously depends on the result of this very
same primitive. Although there might be a unique fixpoint to solve such a situation, this
is not necessarily the case (e.g. connecting the result of an addition primitive to one of
its inputs could create an unsolvable equation such as x = x+ 2). For the same reason,
Lustre does not allow equations where a variable instantaneously depends on itself [27,
Section 4.1]. Guarded cycles within a primitive net contain at least one Pre primitive.
This special primitive reads the value from its input ports, and only delivers the value
to its output port in the next execution cycle. The output port provides null during
the first execution cycle. The Pre primitive works similar as the pre operator in the
Lustre language [51]. Only guarded cycles are valid in primitive nets. To determine the
execution order for all primitives, the primitive net is topologically sorted (Pre primitives
are treated in a special way, cf. Section 5.3.1). Unguarded cycles are detected during this
step.

5.2.3. Fragments

Using primitives and links, it is possible to create flat primitive nets. The semantics
requires all primitives to be executed once in each execution cycle, however, not always
all primitives have a task to do all the time. For example, some parts of a primitive net
can be required for error handling. In this case it is sufficient to detect once that no error
has occurred, and not every single primitive required for error handling has to detect this
situation individually. Fragments provide means of a hierarchical structure in primitive
nets that also allows to activate and deactivate complete branches globally.
Fragments group primitives and behave like primitives themselves, i.e. they can be used in
primitive nets like every other primitive. Fragments also have input and output ports, but
no parameters. The input ports of a fragment are connected to input ports of primitives
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contained in the fragment, and output ports of primitives are connected to output ports
of the fragment. Because fragments can be considered as primitives, fragments can also
be nested.
Every fragment has an additional Boolean input port for activation besides the input
ports required for the contained primitives. If this port receives a false value, the contents
of the fragment are not executed. This can be used for example to disable the execution
of an error handling fragment while no error has occurred. The same effect could be
obtained by connecting an active input port to each single primitive, however this would
require many more links and also much more computation time during runtime.
Because fragments can completely disable the execution of the contained primitives, no
primitive may expect to be executed in every execution cycle. Because some primitives
may need the current time, the runtime environment has to provide the current cycle
counter and the cycle period to every primitive.
The primitive net itself is also a fragment. This root fragment must not have any input
ports, but is required to have exactly one output port for signaling the desire of the
primitive net to terminate (cf. Section 5.3.3).

5.3. Runtime

The Real-time Primitives Interface has been designed for the needs of robotics applications.
Not only the static structure of the data-flow language and the execution semantics for
each execution cycle is defined, but also the overall lifecycle of a primitive net. This
section describes the execution of a single primitive net, and Chapter 6 describes the
synchronization of multiple primitive nets.

5.3.1. Basics

The execution of primitive nets is performed cyclically. Every primitive instance is
executed once in each execution cycle, with the exception of primitives contained in
inactive fragments. Before the execution of the primitive net starts, all primitives are
topologically sorted according to the links. By sorting the primitives, it can be guaranteed
that all primitives connected to input ports of other primitives will already have been
executed and thus always current values are present at the input ports. This also enables
fast value propagation. New sensor values can be completely processed and delivered to
actuators within only a single execution cycle.
Unguarded cycles (i.e. cycles not containing a Pre primitive) within a primitive net are
not allowed. If cycles are required (e.g. for closed-loop control), Pre primitives can be
used to delay the propagation of values to the next execution cycle (cf. pre-operator in
Lustre). Figure 5.2a depicts a primitive net with a guarded cycle. Topological sorting
of this net without modification of the Pre primitive would be impossible, thus the Pre
primitive is split up into two parts before the primitive net is topologically sorted. The
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(a) Primitive net with a guarded cycle containing a Pre primitive

(b) The Pre primitive is split in two parts prior to the topological sorting of
the primitive net

Figure 5.2.: Splitting of a Pre primitive for topological sorting

resulting net is shown in Fig. 5.2b. The input ports of the original Pre primitive and their
connections are taken over by part two of the split Pre primitive, while the output ports
and connections are taken by part one. Both parts are connected internally (displayed as
a dashed arrow), but this connection is not considered during the sorting process, thus
the cycle is resolved. Part one of the primitive will always be sorted for execution prior
to part two and thus can deliver the value received by part two and stored in memory
during the previous execution cycle. During the first execution cycle, a null value is
delivered by part one.

5.3.2. Execution phases

Each execution cycle of a primitive net is split up into three phases:

1. Read sensor values

2. Execute each primitive and propagate values throughout the primitive net

3. Write new set-points to all actuators

During the first phase, all primitives that are related to sensors must acquire current
sensor values from the underlying hardware devices. After sensor data acquisition has
been completed, all primitives (including the sensor primitives again) are executed. The
order has been determined earlier by topologically sorting all primitives with respect to
the connecting links. During this phase, all calculations are performed, i.e. sensor values
processed and new set-points generated. In the final third phase, all primitives related to
actuators must distribute the new set-points to their hardware devices.

Three separate phases have been designed to guarantee that all sensor values are read
simultaneously (and not depending on the location of the sensor primitive within the
primitive net) and actuators also provided simultaneously with new set-points. The
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Figure 5.3.: Lifecycle of a primitive net

phases one and two may be interrupted at any time since no modification to any hardware
device has been made. Phase three must always be executed atomically in order to
guarantee a consistent system state, i.e. either all actuators or no actuator have been
provided new set-points.

Phase two is usually the most time consuming phase since all complex calculations need
to be performed during this phase. For the synchronization mechanism (cf. Chapter 6)
it is important that it is possible to interrupt any primitive net before phase three has
started to allow for a fast transition to a successive primitive net, even after an execution
cycle for the prior primitive net has already been started.

5.3.3. Lifecycle

During its lifetime, a primitive net can have several states, which are also depicted in
Fig. 5.3:

• Loading: The primitive net has been submitted to the execution environment and
is currently being loaded and initialized.
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• Rejected The primitive net could not be loaded by the execution environment.
There are different reasons for primitive nets being rejected:

– The transmitted primitive net is syntactically invalid, i.e. not formed according
to Fig. 5.1.

– At least one primitive is not available in the given execution environment.
– At least one primitive could not be initialized, e.g. due to invalid parameters,

unconnected but required input ports or lack of memory.
– The primitive net contains unguarded cycles.

• Ready: Loading of the primitive net is finished, the net is ready to be started.
• Scheduled: The primitive net is currently scheduled for the immediate execution

once the condition of a synchronization rule becomes true. See Chapter 6 for more
details on the synchronization of multiple primitive nets.

• Running: The primitive net is currently running.
• Canceling: The primitive net has been requested to terminate, however the

primitive net has not yet terminated.
• Terminated: The primitive net’s execution has stopped.

The real-time synchronization of multiple robotics devices is implicitly achieved by placing
the trajectory generation for all devices in the same primitive net and thus simultaneously
generating set-points for all actuators. Because in every execution cycle all primitives
are executed, trajectories for multiple devices will be synchronized throughout the whole
life-time of the primitive net.
Primitive nets are not designed to be hand-crafted. As introduced in Section 4.2, RPI
serves as an interface between the non real-time safe robotics application and the hard
real-time execution environment. Section 10.2 explains the so-called “mapping” process
which is used by the Robotics API to transfer Java-based programs automatically into
primitive nets.
The robotics application must serialize and transmit the generated primitive net to
the execution environment. The Robot Control Core immediately starts to load the
primitive net, which enters the state Loading. During the loading phase, all primitives
are instantiated and initialized. Code executed at this time does not need to be real-time
safe, i.e. the primitives may perform all necessary initialization steps such as memory
allocation. Values of parameters are already available to the primitives, however it is not
yet possible to read input ports. If the initialization succeeds, the primitive net enters
the state Ready, otherwise it is Rejected.
A primitive net ready for execution can either be started directly, or scheduled for later
execution. Scheduling allows a primitive net to be started immediately after a logical
condition becomes true, e.g. after one or more other primitive nets are ready to handover
to the next primitive net. Synchronization of primitive nets is described in detail in
Chapter 6. Once the primitive net has been started or the synchronization condition
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becomes true, it enters the Running state. During this phase, the primitive net is executed
cyclically with fixed intervals. Primitives may only perform real-time safe operations
now. At each execution cycle, actuator primitives must be provided with new set-points
which can be used for direct hardware control.
Whenever a primitive net has performed its task, it must signal its desire to terminate
to the execution environment in order to stop the cyclic execution, and to allow further
primitive nets to control the hardware. The root fragment of the primitive net has a
discrete termination output port. Once this port is set to true, the execution environment
will stop the cyclic execution after the current cycle, and the primitive net enters the
Terminated state.
Besides the ability to detect the termination desire of a running primitive net, the
execution environment must also provide external means for interrupting a primitive
net. For example, it can be necessary to react to user input by stopping the current task
and starting another task. The execution environment must provide a Cancel operation.
After calling this operation, the primitive net enters the Canceling state, and the output
port of a dedicated cancel primitive becomes true. It is up to the primitive net to decide
whether to terminate prematurely or continue running as usual. The primitive net should
try to reach a safe state as fast as possible (i.e. no robot is moving, no force is applied
to the environment, etc.). However if this is not possible, the primitive net will not be
forced to terminate. A second operation, the abort operation will cause the selected
primitive net to be aborted unconditionally, without any chance of cleaning up. This may
leave the system in an undefined and potentially dangerous state and is only designed
for debugging purposes (e.g. if an ill-designed primitive net refuses to terminate).

5.3.4. Worst Case Execution Time

It is possible to calculate a Worst-Case Execution Time (WCET) for a primitive net.
Each primitive has a WCET for its most complicated operation during Running state,
and the WCET for the whole primitive net is the sum of all primitives’ WCET (plus
some overhead for transmitting the values from output to input ports). However, this
WCET is not always meaningful, because usually not all primitives will actually perform
difficult operations at the same time. In particular with fragments, it is common that
only parts of a primitive net are actually running.
If the WCET of the primitive net is smaller than the cycle time, it is obvious that all
primitives can be successfully executed once in each cycle. If, however, the WCET is larger
than the cycle time, this does not imply that the primitive net cannot be successfully
executed. As already stated, not all primitives are active at the same time or need the
WCET, thus the average execution time is much lower. The determinism provided by the
real-time operating system still guarantees that a primitive net that has been executed
properly once will also be executed properly later. Robotics applications usually perform
(almost) identical tasks repeatedly, which can be tested after the development. If the
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task is successful during testing, it will also be done properly later on as long as the
environment does not change.

5.3.5. Communication

Primitive nets need a bidirectional communication to the robotics application and also to
other running primitive nets. Communicating status values to the robotics application is
necessary to provide the user with feedback of the currently running task. The structure
of a primitive net is immutable once it has reached state Ready. In some cases however it
is desirable to influence the behavior during runtime, e.g. to reduce the overall program
velocity for testing new applications. Therefore, a communication channel from the
robotics application to the primitive net is required.
To facilitate these communication requirements, communication primitives are used. One
set of primitives allows to feed values into the primitive net and thus acts similar to other
sensor primitives. The value received over the communication channel is read during
phase one of the primitive net execution cycle and does not change during this cycle, even
if new values are received asynchronously. Another set of primitives transmits values
received during the net execution cycle to the robotics application during phase 3 of the
net execution cycle.
Communication using these primitives is not real-time safe. Hence, a primitive net must
always be designed so that the reliability and repeatability is not hampered. Changing
the overall velocity for example does not influence a program, as long as all parts of the
primitive net are changed at the same time. Since the new velocity is provided using
a sensor primitive, the new value will propagate throughout the whole primitive net
immediately (just like all other values do).
It is possible to connect sensors to the primitive net using the communication primitives,
e.g. if a device driver is available for the operating system under which the robotics
application is running. However care must be taken that this connection is not real-time
safe, and reactions to sensor events cannot be guaranteed. If such guarantees are required,
a real-time safe device driver must be implemented in the RCC.
Besides communication between a primitive net and the robotics application, communi-
cation primitives can also be used for inter net communication. These communication
primitives can be completely real-time safe, i.e. values written in phase three of the first
primitive net will be available during phase one of the second primitive net. Values are
only updated during phase one, thus the (asynchronous) change of a communication
value during phase two or three will only be noticed in the next execution cycle.

5.4. Examples

The following examples demonstrate the key concepts of the Real-time Primitives Interface.
Figure 5.4 shows the notation used for all examples. Primitives are denoted by rectangles
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Figure 5.4.: A single primitive with ports and parameters

Figure 5.5.: Primitive net showing basic principles of the Real-time Primitives Inter-
face

with rounded borders, showing the type of primitive as text. Links are shown as arrows
pointing towards the input port of a primitive. Ports are not explicitly modeled; the
name and type of a port is written near the link and the primitive. Input ports are
always shown on the left side, and output ports always on the right side of a primitive.
The inner rectangle shows parameters for the primitive.

Fragments are depicted using the same structure, however the inner rectangle is omitted.
As fragments behave similar to primitives, they can also be modeled like primitives.
However, the inner rectangle is omitted as fragments do not have parameters.

The primitives used in the following examples are designed to support the examples
and are not necessarily available in the SoftRobot RCC reference implementation. A
list of basic primitives available in the SoftRobot RCC can be found in Section 7.3.
The Real-time Primitive Interface itself does not mandate any particular primitive;
also the granularity of primitives (fine grained primitives with only basic arithmetic
operations versus primitives containing a whole trajectory planner) is to be chosen by
the implementation. Section 5.5 provides an overview of the granularity chosen for the
SoftRobot project.

5.4.1. Basic concepts

Figure 5.5 shows a conceptual, fictive example for a very simple motion, constructed with
three primitives. Primitive nets should not hard code the cycle time, because different
execution environments may have different cycle times. The Clock primitive can be
configured for a given number of increments per seconds and always writes the current
increment counter (started from activation of the primitive) to its output port. For
example, if increments per second is set to 1, the output will be the current run-time of
the net in seconds.

The (fictive) TrajectoryPlanner primitive takes the current time as input and calculates
a set-point in joint space for the given time. The TrajectoryPlanner primitive internally
has algorithms to calculate the desired motion type (point-to-point, linear, . . . ), and in
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case of path motions also the possibility to calculate the inverse kinematics for the robot,
i.e. to transform Cartesian set-points into joint-space set-points.
The resulting array of joint set-points is written to the Robot primitive, which uses the
set-points for direct hardware control. These set-points may be either directly transferred
to the hardware, or used internally e.g. in a closed loop control to calculate velocity
set-points in case the hardware does not support position control.

5.4.2. One DOF point-to-point motion

The following example concentrates on a point-to-point motion for a single degree-of-
freedom (DOF), e.g. a single robot joint. This type of motion is planned in joint-space
and thus it is independent on the type of joint. It can be used for both prismatic as well
as revolute joints. The point-to-point motion in this example is divided into three phases.
In the first phase, the robot joint is accelerated constantly. Once the desired velocity
has been reached, the joint continues moving with constant velocity. At some point, the
joint must start decelerating in order to stop at the desired final position. Figure 2.3 on
Page 14 shows the velocity/time diagram for such a motion. A major drawback of such a
simple motion profile is the immediate switch from full acceleration to no acceleration
(during constant velocity), which leads to an infinite jerk and applies a large stress to
the mechanics. In real robotics applications, a more complicated motion profile is used,
limiting the jerk. However, for this example, demonstrating the basics of the Real-time
Primitives Interface, this motion is sufficient.
The example in Section 5.4.1 uses three primitives for motion control, with a high level
of logic integrated into each primitive. For higher flexibility, the Robotics API uses a
much finer granularity of primitives to generate the desired functionality (cf. Section 5.5).
Figure 5.6 demonstrates a more realistic example of a primitive net generated by the
Robotics API. Some port names are omitted for better readability. For each phase of the
motion, one fragment is used to calculate the trajectory. The Clock primitive delivers the
current time in seconds since the start of the primitive net to each of the motion fragments
and to the DoubleGreater primitives, which compare the current time to the times tA and
tC which denote the end of the acceleration phase and the end of the constant velocity
phase, respectively. The DoubleGreater primitive emits a true signal on its output port
if the value on input port inFirst is greater than the value of input port inSecond. If
a comparison with a constant value is desired, one input port can be substituted by a
parameter. The output ports are connected with the inActive input ports of the three
fragments to turn the execution of each fragment on and off at the appropriate times. To
enable the Acceleration fragment, the result of the first DoubleGreater has to be negated.
All motion fragments calculate a set-point for the current time and provide it on their
outPosition output port. The details of such a fragment are explained later. The
DoubleConditional primitives use the Boolean data-flow provided at their inCond input
to decide whether to forward the data received on the inA input (if inCond is false), or
the inB input (otherwise). By cascading the Conditional primitives, the output of the
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Figure 5.6.: Primitive net showing a real-life point-to-point motion. Three fragments
are used.

Acceleration fragment is used until the time tA has been reached. Between tA and tC the
output of the ConstantVelocity fragment is used. After tC the output of the Deceleration
fragment is forwarded to the RobotJoint primitive which is responsible for hardware
control. The RobotJoint primitive takes a value of type double, which represents the
joint position in radians.

The Acceleration fragment calculates the current position s(t) with the following equation

s(t) =
1
2

at2 + v0t + s0 (5.1)

where t is the current time (w.r.t. to the start of the acceleration phase), a the acceleration,
s0 the start position and v0 the velocity at start.

Figure 5.7 shows the Acceleration fragment in detail. The names of input and output
ports are largely omitted for better readability. The fragment has an input port inTime
and an output port outPosition. DoubleValue primitives are used to inject constant
values (like a, s0, v0) into the primitive net. DoubleAdd and DoubleMultiply primitives
are used for adding or multiplying two double values read from their input ports. The
time at input port inTime will be the current time of the primitive net (tcur). If the
Acceleration fragment is not the first motion of the primitive net, tstart provides the time
the acceleration should start so that t used within the Acceleration fragment is relative
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Figure 5.7.: Contents of the Acceleration fragment

to the start of the acceleration. After all calculations have been performed, the result
value is written to the outPosition output port.

The Acceleration fragment already is quite complex, as it consists of 12 rather small
primitives. However, primitive nets are not intended to be handcrafted, but rather to be
generated by the Robotics API. The combination of primitives can easily be generated
by recursively parsing either a mathematical formula, or a Java-code representation of
the formula. The ConstantVelocity and Deceleration fragments are of comparable size.

By embedding the acceleration, constant velocity and deceleration parts into fragments,
it is possible to activate and deactivate large parts of the primitive net. At no time more
than one of the three fragments will be active.

5.4.3. Point-to-point motion for a six DOF robot

The example in Section 5.4.2 only considers a single joint for the point-to-point motion.
This kind of motion planning is already sufficient, for example, for a single linear axis,
however most industrial robots consist of six or more joints which need to be synchronized
during a motion.

For point-to-point motions several types of synchronization exist (cf. Section 2.3). The
Real-time Primitives Interface achieves synchronization of tasks implicitly by its cyclic
execution behavior. For an asynchronous point-to-point motion for a six-DOF robot, it
is sufficient to insert the fragments and primitives from Fig. 5.6 six times into a single
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Figure 5.8.: Primitive net showing a linear motion.

primitive net. Because all parts of the primitive net will be run once per execution cycle,
all joints will start moving simultaneously. A synchronized or fully synchronized motion
can be achieved by providing proper values for a, v0, tA and tC . These values can be
calculated completely within the robotics application. This easily allows to generate
primitive nets for a synchronized motion with an arbitrary number of joints without the
need to modify the real-time execution environment. The use of robot hardware control
primitives which only control a single joint (e.g. the RobotJoint primitive) also helps for
an easy generation of multi-joint primitive nets.

5.4.4. Linear motion

A linear motion is a motion in operation space, i.e. the desired trajectory is specified in
Cartesian space in contrast to point-to-point motions, where the trajectory is defined in
joint space.

Figure 5.8 shows a primitive net for a linear motion in Cartesian space. At first glance,
the primitive net looks similar to the 1-DOF point-to-point motion example in Fig. 5.6.
The trajectory of a linear motion also consists of an acceleration phase, a phase with
constant velocity and a deceleration phase. The difference is, that for point-to-point
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motions, all set-points are calculated as joint positions, whereas in this example all
set-points are calculated in Cartesian space. Therefore the data-type Frame is used.
A frame consists of a vector describing the position and another vector describing the
rotation in relation to a base coordinate system.
After the three fragments have calculated the trajectory, and the FrameConditional prim-
itives have selected the proper values from each fragment, the set-points are transmitted
to the InverseKinematics primitive. This primitive calculates the joint positions for
the given Cartesian position (cf. Section 2.2). Therefore it must know exactly which
robot should be used, because the inverse kinematics function is highly depending on
the robot hardware. Furthermore, the current joint-position is required, because the
inverse kinematics function for a 6-DOF robot yields multiple (usually eight) results for
the same Cartesian position. Those results represent different configurations of the robot
(e.g. elbow up or down). For a linear motion, it is not possible to switch between two
such configurations within a single execution cycle, thus the InverseKinematics fragment
can choose the configuration closest to the current joint positions. The current positions
are read from the Monitor primitive, and the resulting joint positions are once again
transmitted to the RobotJoint primitives (one for each joint).
Linear motions are always calculated for the whole robot, and not for a single joint. A
linear motion in Cartesian space can only be accomplished by a synchronized motion of
all joints of the robot.

5.4.5. Synchronized robot motions

For some tasks, not only the movement of multiple joints of a single robot needs to be
synchronized, but also the motions of multiple robots. The Real-time Primitives Interface
has been developed with this use-case in mind. One example could be the handling of a
large, heavy workpiece which cannot be lifted by a single robot. Especially with large
workpieces, simply employing a larger and stronger robot may be no option, because
the workpiece should be supported at multiple points. For such use-cases, multiple
synchronized robots can be used. All robots need to move exactly synchronous, such
that all their tools keep their position with respect to each other.
Typically, path motions need to be synchronized. The Robotics API solves this task by
geometrically coupling all robots. The trajectory for one robot will be explicitly planned
(using a primitive net similar to Fig. 5.8), while all other robots will keep their tool at
the same relation to the main robot’s tool.
Figure 5.9 shows a simplified primitive net for a synchronized linear motion for two robots.
The TrajectoryPlanner fragment generates the desired trajectory for the main robot (e.g.
using the primitive net from the example in Section 5.4.4). The upper InverseKinematics
primitive converts the Cartesian set-points into joint-space set-points (the technically
required Monitor primitives have been omitted for a cleaner diagram). For the second
robot, the trajectory set-points are converted by the FrameTransform primitive which
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Figure 5.9.: Primitive net showing a synchronized linear motion.

adds the offset for the flange of the second robot to the trajectory. The offset is specified
using the FrameValue primitive. After the offset has been added, the inverse kinematics
function is used as with the first robot. This example assumes that both robots share a
common coordinate system and that the InverseKinematics primitives know the offset of
both robots’ bases. In real-life primitive nets generated by the Robotics API, each robot
will have its own root coordinate system in which the InverseKinematics primitives work.
All further transformations necessary for integration in a common world root coordinate
system will be calculated by the Robotics API, and appropriate frame transformation
primitives will automatically be included.

The synchronization of both robots is implicitly achieved because trajectory planning
and execution is combined into a single primitive net and the trajectory planning is
geometrically coupled. An alternative solution is to create two independent primitive
nets and to start both simultaneously using the synchronization interface (cf. Chapter 6).
In this case only the start of both primitive nets is synchronized, but the deterministic
execution of the real-time operating system ensures that both nets are executed with the
same speed, i.e. both perform the same number of execution cycles in the same time.

5.4.6. Reaction to events

A primitive net needs to notify the execution environment of its desire to terminate
by setting a Boolean output port of the root fragment to true. After the execution
environment has read true on this port, no further execution cycle will be started for the
primitive net, the current cycle however will be completed with all phases.

The request for termination is only one example for an event that can occur during
the execution of a primitive net. For many tasks it is necessary to react to events such
as passing a certain path position or after a given time since the start of the motion
has passed. Such events are very common for the control of tools like grippers, welding
torches, etc. Reaction to these events must occur within a defined time frame, i.e. they
must be handled real-time safe. Events are triggered in primitive nets by providing a
Boolean output port (which indicates the occurrence of the event) that is connected
to the activation input port of the fragment containing the event-handling code. The
event handling concept of the Robotics API (cf. Section 10.1.1) builds upon states
being represented by Boolean output ports of primitives. Several sensor values can be
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aggregated and compared to create a single event using appropriate calculation primitives.
The event handling fragment will be executed within the same net execution cycle that
the event has been detected, thus real-time safe event handling is guaranteed.

5.5. Required primitives and granularity

It is not possible to specify a fixed set of basic primitives which are necessary to solve all
robotics related tasks. Special hardware will always require special primitives to make
them work. However, it is still desirable to have a small set of basic primitives which can
be combined into a large variety of programs. It should seldom be required to develop
new primitives.
Using high level primitives such as the TrajectoryPlanner in the example in Section 5.4.1
leads to an easy to understand primitive net, however the primitive is hard to reuse.
Even if the TrajectoryPlanner module was highly configurable, it would still be necessary
to develop a new version whenever a new motion type is required.
One aim of the SoftRobot project was to put as much logic as possible into the high
level programming language, so that changes to the (C++) Robot Control Core are as
minimal as possible. Using primitives with very complex functionality does not help
to achieve this aim. The reference implementation of the Robot Control Core created
during the SoftRobot project (cf. Chapter 7) uses very basic primitives such as add,
multiply or equality for numerical data types (integer and double), and AND or OR for
Boolean data types. Besides those primitive data types, also more complex, robotics
specific data types are used. For Cartesian positions, the Frame data type is used, which
combines six double values (three for the position, and three for the orientation). The
basic primitives and data types of the SoftRobot Robot Control Core are described in
detail in Section 7.2.
Using such basic primitives, almost all algorithms can be created by a combination of
those primitives. A major drawback of this approach however, is that the primitive nets
tend to grow very large (thousand primitives for blended motions are not uncommon).
Using the concept of fragments (cf. Section 5.2.3), the run-time performance is acceptable,
but the generating, loading and parsing of primitive nets still takes significant time. To
counter these problems, some very commonly used functions have been implemented
as native primitives. For example, for event handling, it is often necessary to detect a
raising edge in a Boolean data-flow to trigger the start of an event handler. The detection
of a raising edge can be accomplished with several basic primitives including some Pre
primitives to preserve the state of the last execution cycle. However, this detection is so
commonly used that the replacement by a single primitive saves a considerable amount
of primitives in a net. Besides the reduced number of primitives, also the time required
to execute the single (complex) primitive is slightly smaller than executing multiple
primitives.
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5.6. Related work

Several research projects have been using general purpose programming languages for
industrial robotics applications. Because many projects propose a multi-tiered architecture
(cf. Section 4.3) which separates between hardware control and the overall program logic
(which often is split up into a planning and a behavior control part), an interface is
required which allows the planned tasks to be executed. In the SoftRobot architecture,
the Real-time Primitives Interface (RPI) allows a flexible real-time task specification and
separates between the real-time safe robot control core, and non real-time safe robotics
applications.
The following sections provide an overview of a selected range of related work for the
Real-time Primitives interface. At first in Section 5.6.1 some projects which provide an
integration of robotics applications in standard general purpose programming languages
are presented. Special attention is paid to the integration of real-time aspects in these
projects. Section 5.6.2 compares RPI to other projects and systems based on a data-flow
language. Section 5.6.3 analyzes the cyclic execution nature of RPI in comparison to other
projects, and Section 5.6.4 provides a structural overview of the real-time components in
other projects for motion control. Furthermore, a possible integration scenario for the
iTaSC project is drafted. Finally, in Section 5.6.5, a summary is provided.

5.6.1. Integration of robotics applications in general purpose programming
languages

Hayward et al. [52] started the RCCL (Robot Control C Library) project to provide a
robot programming framework using the C language to run on a UNIX operating system.
RCCL based programs are split into two layers: a real-time safe trajectory control layer
(typically running with 50 Hz frequency) and the non real-time safe planning layer, in
which the user’s C program is executed. Using library functions, it is possible to specify
robot motions which are issued to a motion queue. This queue is shared between both
layers using shared memory technology. The motion queue also supports kinematics
and inverse kinematics calculations, and motion goals may depend on sensor values, e.g.
the motion goal can be a moving conveyor which is followed by the robot until another
motion command or a stop command is submitted to the motion queue. Lloyd et al.
[84] extended RCCL to support multiple robots and controllers with multiple processors.
Synchronization can be performed either by geometrically linking one robot to the other
(i.e. one robot is instructed to follow the motions of the other with a fixed geometrical
link, e.g. to share the load between both robots), or by delaying the start of further
motions until one or more robots have completed their tasks. The SoftRobot architecture
also separates between a real-time safe execution layer (the RCC) and a non real-time
safe planning layer (the Robotics API); the main difference to RCCL is the design of the
interface between both layers. RCCL provides a set of commands that can be issued to
the trajectory control layer using the motion queue. These commands describe rather
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complex, monolithic tasks such as a motion, i.e. the definition of how a motion must be
executed is made in the lowest layer. Custom extensions are possible, but need to be
implemented low-level in a real-time safe way and included in the RCCL runtime system.
RPI in contrast offers a set of very fine grained primitives which allow the specification of
how a motion must be executed (and many more commands) within the planning layer,
thus offering a much greater flexibility. Extensions to support new types of motions etc.
can be purely done within the planning layer, without the need to modify the real-time
safe RCC.
The Multi-Robot Research-Oriented Controller (MRROC++) [130, 131] is a C++ frame-
work for robotics applications, supporting the operation of multiple robots simultaneously.
It is an object-oriented extension of the previous MRROC project [129]. It has been
implemented using the QNX operating system for real-time execution on x86 hardware.
The framework defines three main components: effectors (robots, tools, etc.), receptors
(sensors) and the control subsystem. The Master Process (MP) controls the overall task
by communicating with multiple Effector Control Processes (ECP, one for each effector).
Each ECP is responsible for the execution of the task submitted by the MP for a single
effector. If multiple effectors need to be synchronized, the ECP simply forward data
received by the MP, which itself is then responsible for synchronizing all ECP. Hardware
control is performed by the Effector Driver Processes (EDP) and Virtual Sensor Processes
(VSP). VSP provide (aggregated and processed) sensor data retrieved from hardware
sensors, while EDP accept set-points for positions the effector should reach. EDP and
VSP are completely task-independent, while ECP and MP are hardware-independent to
ensure best reusability of the components. Robot programs are developed by creating
new ECP and MP components directly using C++ templates and classes provided by
MRROC++. Communication between the different processes is performed using buffers.
The concepts of MRROC++ can partly also be found in RPI. Devices such as actuators
and sensors can have specific device drivers (cf. Chapter 9, equivalent to EDP and VSP)
which expose their functionality using primitives and are completely task-independent.
The task itself is dynamically created as primitive nets, and thus the task itself does
not need to be implemented real-time safe (unlike MP and ECP), which allows to use
languages such as Java or C# which are more comfortable, but inherently not capable of
real-time safe program execution.
The Generic Robotic and Motion Control API presented by Burchard et al. [25] is
based on the Robot Independent Programming Language (RIPL) [87]. RIPL is a C++
framework that provides an object hierarchy to represent typical robotics entities, and
polymorphism is used to create hardware specific implementations for devices, which can
then be used in task specific application code. Real-time safe operation is possible if the
relevant C++ code parts are executed on a real-time operating system, the examples in
[87] use the VxWorks operating system. Distributed systems are also possible, even with
real-time safe communication, if appropriate communication channels are available and
manually implemented in the control code. The Generic Robotics and Motion Control
API uses the object-oriented interface provided by RIPL and allows remote access to
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objects using CORBA. Distribution on this layer is no longer real-time safe. Using
RIPL, all real-time safe code must be manually implemented in C++, in contrast to
the automated generation of primitive nets. RPI allows for multiple robots, sensors etc.
purely by creating non real-time application code. The real-time safe aggregation of
sensor values and distribution of commands to the robots is done based on the primitive
net.

5.6.2. Data-flow programming languages

The Real-time Primitives Interface is partially built on Lustre [27, 51], which is a
synchronous data-flow programming language. Lustre uses a declarative set of equations
to define the system, i.e. variables (e.g. from inputs or other equations) can be combined
using arithmetic (e.g. +, − ), relational (=, ≥) or conditional (if then else) operators.
Only a few basic types are directly supported by Lustre (Boolean, integer, real and
tuples), while more custom data-types can be defined in the host language to which
the Lustre program is compiled (e.g. C). Lustre allows the definition of “nodes”, which
contain equations to describe their output data in relation to the input data, and which
can be used transparently in other Lustre equations (like a function call). The execution
of Lustre programs is done cyclically, i.e. the values of all variables are determined in
each cycle. Equations, where a variable depends on its own value, are only allowed if
the pre operator is used so that the value of the last cycle is used. A complete set of
equations can be transformed into an acyclic data-flow graph (with exemption of cycles
containing the pre operator). RPI uses the same execution semantics as Lustre, however
does not use the equational syntax, but rather a direct representation of the resulting
data-flow graph. In order to provide maximum flexibility, RPI does not have any built-in
operators, but rather relies on primitives for all operations. Primitives can be compared
to nodes in Lustre, and in fact all built-in operators in Lustre (used in infix notation)
could also be expressed by calls of nodes (in prefix notation), e.g. X = A + B could also
be written as X = ADD(A, B) with a node ADD.
The notion of time differs slightly between Lustre and RPI. While both languages perform
a cyclic execution, the basic unit of one step in RPI always refers to a fixed (but user-
definable) timespan, while in Lustre a step is not bound to a physical time. Besides
the basic clock, Lustre also allows the definition of slower clocks. Steps of these clocks
occur simultaneously to the steps of the basic clock, but not necessarily at every step,
and can be defined using the when operator, depending on a Boolean data-flow which
defines whether a step is active or not. This concept can be compared to fragments in
RPI, whose activation can also be controlled using a Boolean data-flow.
The commercially available development environment “SCADE Suite” [104] allows the
creation of data-flow based programs which are closely related to Lustre or the very similar
Esterel language [8]. SCADE is commonly used to create safety related applications,
because it is possible to verify the correctness of the designed program, and because
certified compilers (e.g. fulfilling DO-178B [33] for aviation software) exist.
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Although the Real-time Primitives Interface builds upon classic data-flow languages,
it offers some distinct features for robotics applications. A key concept of RPI is the
dynamical generation of new primitive nets, i.e. applications are not specified by hand-
crafting one large data-flow graph, but rather by the combination of multiple short-lived
primitive nets. This allows the control flow to remain in the robotics application, which
therefore can flexibly react to events and adjust the generation of all subsequent tasks.
These short-lived tasks and in particular the automatic generation of the primitive nets
render the results of verification on the level of a single net rather useless. However, the
execution on a real-time operating system still provides determinism, i.e. a task executed
successfully once will also be successful each further time.
The overall execution semantics of primitive nets is identical to Lustre, however RPI adds
some robotics specifics such as the sensor reading and actuator writing phases for each
execution cycle. These phases allow for synchronized access to hardware and furthermore
allow primitive nets to be interrupted even after an execution cycle has been started
(this is required for fast transitions using the synchronization mechanism, cf. Chapter 6).
The life-cycle of primitive nets is another robotics specific extension to data-flow graphs.
Primitive nets can be parameterized after they have been loaded (and before they are
started), which allows to design primitive nets (and the generating process) independent
of the actually used hardware. The life-cycle model also allows to cancel primitive nets,
which is necessary as a way to stop the execution. Due to the inertia of moving robots,
a controlling primitive net may not simply be terminated, but rather there must be
means to request a graceful termination to give the primitive the chance to execute
operation-specific clean-up logic in order to avoid any dangerous state of the actuator.

5.6.3. Cyclic execution in real-time environments

The cyclic execution semantics of RPI is very closely related to the execution semantics
of the IEC-61131-3 [59] languages for programmable logic controllers (PLC), which are
widely used in production plants. The norm defines a set of five manufacturer independent
languages, although not all manufacturers support all languages and some add proprietary
languages. The five defined languages are

• Instruction List (IL): Textual, very closely related to assembler programming.
• Ladder Diagram (LD): Graphical programming language, comparable to circuit

diagrams of relay logic hardware.
• Structured Text (ST): Text based programming, resembles Pascal.
• Sequential Function Chart (SFC): Graphical programming language consisting

of states and transitions. While a state is active, tasks contained in the state (e.g.
a further LD diagram or I/O operations) are executed. Transitions between states
are guarded by logical conditions. If a transition is taken, the state the transition
exits is deactivated and the state the transition enters is activated.
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• Function block diagram (FBD): Graphical programming language consisting
of function blocks (FB), which read data from input ports and write data to output
ports. The input ports of FB can be connected to output ports of other FB, however
no cycles can be formed.

The structure of function block diagrams closely resembles other data-flow graphs such
as a Lustre program or a primitive net. PLC programs can directly manipulate memory
locations, which can either represent hardware items (such as input and output ports
connected to the PLC) or internal variables. In FBD programs, memory is usually read
on the left side of the diagram, processed with several function blocks and the results
finally written to memory on the right side. Using internal variables, cycles in the diagram
are implicitly possible, as values written to memory can be read in the next cycle. An
explicit syntax such as the pre operator does not exist. In contrast, RPI does not have
an inherent concept of variables or memory, however it is possible to define primitives
which act identically.
The PLC main program is executed cyclically, i.e. all graphs are completely evaluated in
every cycle, and results written to memory. The cycle times can be configured. Before
the start of a new cycle, the calculated results are propagated to all hardware devices,
and current values are read from devices and provided to the PLC program. Besides the
main program, it is also possible to define programs which are executed on the occurrence
of events such as errors, hardware faults or timers which interrupt all lower priority
programs. Real multi-threading is usually not supported. The RPI in contrast allows the
execution of any number of primitive nets in parallel. If not enough physical CPUs are
available, the operating system is responsible for scheduling and interleaving all running
primitive nets, but in no case is a running primitive net interrupted because of the start
of a new primitive net. Event-based interaction is also possible using the synchronization
mechanism (cf. Chapter 6), including a seamless transition from one task to another (e.g.
robots can be taken over by successive tasks even in full motion). RPI does not use the
implicit memory-location based addressing of devices, but rather uses primitives with an
explicit interface for all hardware access, which eases understanding a program.

5.6.4. Real-time component structure

Stewart et al. [116] present an approach to robot controlling using “port based objects”
(PBO), which is based on their “Chimera II” real-time operating system [115]. All those
objects are independent processes and interact with each other by communicating through
input and output ports, which are connected between different PBOs. Examples for such
objects are (inverse) kinematics, trajectory generation or interpolation objects, although
other granularities are also possible. Each PBO is dynamically reconfigurable at run-time,
thus it is possible to adapt the system to changing requirements or even to support
dynamically reconfigurable robot systems. RPI primitives also have input and output
ports for communication, but differ in some aspects. The execution of primitive nets
is strictly synchronous, which is necessary to support the synchronization of multiple
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Software pattern corresponding SoftRobot component or concept
Scanner Control logic included in hardware drivers (cf. Chapter 9),

access through sensor and actuator primitivesActuator
Controller
Generator Flexible and extensible definition using the RPI data-flow

graph and basic primitivesObserver
Heartbeat Strict periodic execution of primitive nets
Command interpreter RCC parses and creates commands specified using primitive

nets
Execution engine Net execution and communication parts of the RCCReporter

Table 5.1.: Comparison of software patterns described by Bruyninckx et al. [24] and
the SoftRobot architecture

actuators. Therefore only one process is used for each primitive net. Distribution to
multiple processors can be achieved by synchronizing primitive nets with others, using the
synchronization mechanism (cf. Chapter 6). Dynamic reconfigurability is not necessary
in RPI due to the rather short-lived primitive nets and the capability to create new
primitive nets with an adapted configuration. This allows the application to react more
flexibly because not only some configuration items, but the whole primitive net structure
can be changed if necessary. Real-time safe, seamless transitions (i.e. continuous control)
are still possible using the synchronization mechanism.
Bruyninckx et al. [24] describe a software pattern for a generic motion control core, and
a real-time implementation for the Orocos platform [21]. According to the proposed
pattern, several distinct components are required to create such a generic system. Scanner
components are responsible for retrieving signals from sensors, actuator components
can command set-points to hardware devices, and generators create trajectories. The
set-points created by the generators and sensor data are further processed using observer
components. The results can be further processed by controller components which can
apply control laws to deliver hardware-specific set-points. A heartbeat creates events
that trigger the execution of the other components, based on external events or time.
Finally, the activation and configuration of all components is handled by an execution
engine, which is supplied with commands (programs) from a non-real time command
interpreter. A reporter component is responsible for communicating data to the outside,
e.g. for displaying status data to the user. All components described in the pattern can
also be found in the Real-time Primitives Interface. Table 5.1 provides an overview how
the proposed components map to parts of RPI. It should be noted that RPI does not
use only monolithic components as the proposed Orocos implementation does; but in
particular the generator and observer parts (e.g. the trajectory generator) are created as
required by combining multiple primitives. This increases the overall flexibility of the
system and allows for easy adaption to new tasks.
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To allow for programming applications by the specification of constraints for the robot in
either joint or Cartesian space, the integration of the iTaSC [31] approach seems very
interesting. The computation for an iTaSC application according to [123] consists of
several layers of “functional entities”, with the outer layer providing access to sensors or
actuators, the middle layer describes the environment of the robot and other objects, while
the innermost layer provides the actual task. Each layer consists of several functional
entities (sub-layers are again functional entities) which are connected to each other. The
structure of this approach could also be provided using a primitive net. Sensors and
actuators are already available as primitives. For all other functional entities, either
specific primitives have to be created (e.g. for the constraint solver), or existing primitives
used to form the desired function. The “virtual kinematic chain” could be expressed
using the existing geometric primitives (frames, frame transformations, etc.) and the
world model of the Robotics API plus the automatic mapping of geometric relations
to primitive net fragments. The iTaSC project offers a domain specific language [122]
which could be employed to parameterize the (rather complex) primitives. Generally,
only a single task should be expressed with a single primitive net, switching between
tasks can be done by means of the robotics application or using synchronization rules
(cf. Chapter 6) if real-time switching is required. Functional entities can communicate
bidirectionally in the iTaSC system, while primitives can only have a unidirectional
connection to other primitives in a primitive net (otherwise illegal unguarded cycles
occur). For many tasks however it seems sufficient to transmit data in one direction
without delay (in the direction from sensors to calculation to actuators), and to feedback
data with a delay of a single execution cycle (by forming guarded cycles in the primitive
net).

5.6.5. Summary

Many single aspects of the Real-time Primitive Interface have already been covered in
other (research) projects, however none has (to the author’s knowledge) achieved the
same level of flexibility for the specification of robotics tasks. In particular the specific
life-cycle of primitive nets and the highly dynamic creation process allows to integrate
real-time tasks into non real-time applications while still allowing the application to
control the overall program flow.
The fine granularity of primitives provides a great flexibility which allows the specification
of new control algorithms etc. most of the time without the need to modify the real-time
execution environment. Even, if modifications are necessary (e.g. for the integration
of a new hardware driver), the existing fine-grained primitives can be largely reused.
Furthermore, not can only a set of predefined motion commands be run, but arbitrarily
complex tasks can be created using multiple robot systems and a real-time event mecha-
nism to react to sensor data. The data-flow graph concept is a well-known technology for
real-time systems and has been adjusted to meet the requirements of RPI, such as the
robotics specific life-cycle and an easy automated generation of primitive nets. Cyclic,
synchronous execution is also well known from data-flow based systems, however it is
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also already predominant in industry automation systems based on programmable logic
controllers. It guarantees for a fast propagation of sensor values and a synchronized
control of actuators. The synchronization mechanism explained in the next chapter
allows for real-time safe transitions between multiple real-time tasks with continuous
control of all hardware devices, but without the need of all tasks being created at the
same time or from within a real-time safe system.
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Chapter 6

Synchronization of multiple
real-time primitive nets

In the previous chapter, real-time primitive nets have been introduced. Such a primitive
net encapsulates a task which must be executed by a robotics controller with strict timing
guarantees. Primitive nets can be seen as atomic tasks, once they have been loaded and
started on a Robot Control Core (RCC), their structure cannot be changed anymore, and
their behavior is only modifiable using a limited, non real-time communication protocol
which can inject values into primitives of a running net (cf. Section 5.3.5).
One of the key requirements for the design of every primitive net is that, once the
primitive net voluntarily terminates (i.e. it sets the termination output port to true),
no actuator may be left in an unsafe state, i.e. moving, applying force etc. With this
guarantee, it is possible to split large robotics applications into smaller pieces of real-time
critical tasks which can be executed sequentially, and controlled by an application using
a non real-time capable programming language (cf. Section 3.6). Although almost all
applications can be designed using this mechanism, the performance might not be optimal
if the system has to come to a complete stop after each single task. Motion blending (cf.
Section 2.5) tries to avoid exactly such unnecessary stops. It is possible to implement
motion blending by simply including both (or all subsequent) motions into a single
primitive net. However this approach is severely limited as a primitive net has to be
constructed completely before it can be executed, thus always only a fixed number of
motions can be included. Furthermore, the resulting primitive net grows huge.
Manipulation and assembly tasks are getting more and more important for robotics
applications [18]. To challenge the uncertainties present in these tasks, often compliant
motions are used, because the contact of two workpieces constrains the motions and thus
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reduces the uncertainty. Compliant motions however require the actuators to apply a
defined force or torque upon a workpiece. Whenever a primitive net terminates itself, it
must not leave any actuator in any potentially unsafe condition without control, i.e. no
actuator must apply force. Thus all compliant motions would have to be encapsulated
into a single primitive net, and reaction to external events can only happen if they are
already known during creation of the primitive net.
To accommodate the requirement of being able to seamlessly switch from one primitive
net to another one, the concept of synchronization rules has been introduced into the
real-time primitives interface. This allows a primitive net to terminate in an unsafe
condition, if it can be guaranteed that one or more successive primitive nets will take
over controlling all devices.
Depending on the problem to solve, different levels of coordination and synchronization
complexity is required. For the motion blending use-case with a single robot, it is sufficient
to prematurely terminate a running primitive net (the first motion) and subsequently
start a new primitive net with real-time guarantees (which performs the motion blending
and the second motion).
More complex synchronization can be required for example for compliant motions,
especially if multiple actuators are involved. If two robots are working together (controlled
by a single primitive net), they can enter a maintaining phase after finishing their work
in which they may still apply a controlled force. If both robots are needed for separate
use afterward, it is necessary that the maintaining primitive net is terminated, and two
successive primitive nets are started.
A previous version of the synchronization mechanism described in this section was first
published in [125, 126].

6.1. Synchronization rules

Synchronization rules are used to exactly specify the conditions for the synchronization
of multiple primitive nets. The synchronization happens implicitly by stopping and
starting the appropriate primitive nets at the same time. This time is expressed using the
synchronization condition, a propositional logical formula which depends on a combination
of Boolean variables which each primitive net can provide. A primitive net expresses
its ability to be taken over by an appropriate successor using these variables. Primitive
nets can provide any number of such variables to support different scenarios. If the
synchronization condition evaluates to true, the synchronization rule is activated. Such a
synchronization rule σ can be expressed as a 4-tuple

σ = (C,ω, ψ, α) (6.1)

with
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∧ f i t
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(b) or

a ¬ a
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(c) not

Table 6.1.: Truth table for three-value logic with the operators and (∧), or (∨) and
not (¬).

• C: synchronization condition which activates the synchronization rule.
• ω: set of primitive nets which must be unconditionally stopped.
• ψ: set of primitive nets which must be canceled.
• α: set of primitive nets which must be started at exactly the same time for

synchronization.

The sets ω, ψ and α have to be disjoint. The synchronization condition C uses a three-
value logic, i.e. the values true, false and indeterminate are possible. Special primitives
are used in the primitive net to provide the named Boolean variables. The indeterminate
value is required for several reasons. Synchronization conditions can contain variables
from primitive nets which have not yet been started (i.e. nothing can be said about the
state of these nets) or have already terminated (cf. Section 6.2 for more details about
this case). Furthermore, if the primitive providing the named variable is contained in an
inactive fragment (cf. Section 5.2.3), no current value is available. All these situations
are expressed using the indeterminate value. These variables can be combined in the
synchronization condition using logical and (∧), or (∨) and not (¬) operators. Table 6.1
lists truth tables for these operators applied to three-value logic. Variables from multiple
primitive nets can be used in a single condition. Although in many cases the primitive
nets whose variables are used are included in ω or ψ, this is not a necessity. For example,
a primitive net which monitors for errors may activate a synchronization rule which
aborts or cancels primitive nets on the occurrence of a certain error, but remains running
to continue monitoring other errors.
In each execution cycle of any given primitive net, all synchronization conditions that
contain a variable from this primitive net must be evaluated. If such a condition becomes
true, the synchronization rule is activated. An activated synchronization rule can be
executed if certain preconditions are met:

• All primitive nets contained in α are ready for execution, i.e. they are in state
Ready or Scheduled according to Fig. 5.3 (Page 49).

• All necessary resources (i.e. hardware devices) for starting the nets in α are available
(cf. Section 6.2).
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If an activated synchronization rule cannot be executed due to unmet preconditions,
this is considered an error and the synchronization rule is permanently discarded. At
this time, no primitive net has been influenced in any way. All primitive nets in ω will
continue running, and nets in ψ have not been canceled. Because no primitive net may
rely on being taken over, active hardware control is never lost and thus this specific error
cannot lead to a potentially dangerous situation with uncontrolled devices.
When a synchronization rule is executed, all primitive nets in ω are unconditionally
terminated and those contained in α are started simultaneously and thus synchronization
is achieved. When primitive nets are terminated, it must be ensured that they are not
currently in phase three (cf. 5.3.2) where actuators have been partly provided new set
points. Prematurely interrupting a running execution cycle is possible during phases one
and two since the primitive net has not yet caused any change to the system. Primitive
nets contained in ψ are signaled with a cancel event, but no guarantees can be given
about when these primitive nets terminate (they may even not terminate at all if they
do not support canceling). It is guaranteed that no primitive net contained in ω will be
running once a synchronization rule is executed. It should be noted that this guarantee
can also be fulfilled if a certain primitive net has never been started or has already
terminated.
Synchronization rules where no primitive net in either ω or ψ is running are valid, however
at least one primitive net contained in the synchronization condition C must be running
in order to trigger a synchronization rule. If all primitive nets providing variables for C
terminate, it is sufficient to evaluate the condition one last time. If the condition is not
true this time, it can never become true. After termination, synchronization variables
can only change their value to indeterminate, which can never cause the condition to
become true (cf. Table 6.1). Synchronization rules with only terminated primitive nets
providing the synchronization condition can be discarded after the final evaluation of C.

6.2. Resources

Most robotics devices can only be actively controlled by a single source, e.g. there cannot
be two applications controlling a single joint of an articulated robot simultaneously. To
ensure that two primitive nets never try to control the same device simultaneously, the
concept of resources has been introduced in the Real-time Primitives Interface. Primitives
controlling hardware devices need to specify which resources they need. The RCC has to
ensure that at no time two primitive nets are executed which access the same resource.
Within a single primitive net, multiple primitives can use the same resource, however the
primitive implementation must detect and prevent multiple primitives controlling the
same device or – if applicable – merge the different control data.
Resources are locked on a per-net base instead of a per-application base. Although
locking resources based on applications can be easier, it hinders the development of
larger multi-robot systems which are not controlled by a single application. Modern
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large-scale applications can be created using a service-oriented architecture (SOA) [56,
57] which profits from being able to control robotics devices from a multitude of different
applications and services. Having to lock and unlock resources manually would load an
additional burden onto the developer.
Whenever a primitive net is started, all resources required by primitives within the net
are locked. If any resource cannot be locked, the start of the net is aborted. Once a
primitive net terminates, all resources are released. When synchronization rules are used,
resources from primitive nets in ω (terminated nets) can be reused by primitive nets
contained in α (started nets), if the primitive net’s in ω are still running at the time the
synchronization rule is executed. Resources from canceled nets (ψ) are highly unlikely to
be available because canceling usually takes a couple of execution cycles.
If a primitive net contained in ω has already terminated at the time the synchronization
rule is executed (synchronization rules can still become active as long as at least one
primitive net contained in the synchronization condition C is still running), it cannot be
guaranteed that all previously held resources are still available. The moment a primitive
net terminates, all resources are freed unless they are immediately reused by a started
primitive net during the execution of a synchronization rule, thus these resources can be
used by any primitive net. The reuse of resources is also used to determine the state of
the Boolean variables of a primitive net which are used in synchronization rules after it
has terminated. As long as no resource that has been in use is acquired by any other
primitive net, the last values of the variables are kept alive. As long as no resource is
used again, it can be safely assumed that the state of the system is still identical to
the state at the time the primitive net terminated. Therefore, the same conditions (e.g.
the positions of actuators) can be assumed as if the primitive net is still running. The
moment the first resource is acquired by another net, all Boolean variables are set to
indeterminate. Thus no synchronization rule assuming a certain system state by reading
those variables will be executed.
Resources are not kept locked on the termination of a primitive net for any potential
successor, thus it can happen that an activated synchronization rule cannot actually be
executed due to missing resources. This is mainly caused by erroneous applications or
multiple applications running (accidentally) concurrently. Resources cannot be locked
“pro-actively” because synchronization rules may be specified even after the affected
primitive nets already have terminated.

6.3. Example: motion blending

To demonstrate the concept of synchronization rules, motion blending is demonstrated
on the level of primitive nets in this section. The same setup as in Section 2.5 is used,
Fig. 6.1 repeats the general setup.
The direct path from point A to E is blocked due to an obstacle. To avoid the obstacle,
the robot has to be programmed using an auxiliary point C. If two separate motions are
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Figure 6.1.: Motion blending (adapted from [125])

Figure 6.2.: Primitive net for linear motion from point A to C with named Boolean
variables for completion of 70% and 100% of the trajectory

used (which result in two independent primitive nets on the RCC), the robot would drive
from point A to C and then stop, before it continues to point E. This stop is neither
necessary nor desirable. It is acceptable, if the robot leaves the programmed trajectory
at some point B and re-enters the trajectory again on point D. As previously described,
it is still desirable to split both motion parts into different primitive nets and use a
synchronization rule for real-time switching of the motion primitive nets.

A total of three primitive nets is required for this task. The first primitive net PA contains
the motion from point A to point C, while the second primitive net PB is capable of
taking over the moving robot at point B. If for some reasons PB is not ready for execution
when the robot passes point B (e.g. due to the non real-time behavior of the controlling
application), PA will continue to point C as originally specified and stop the robot. A
third primitive net PC will then continue the motion from point C to E (without motion
blending)

Figure 6.2 demonstrates the overall architecture of primitive net PA. A fragment is
responsible for planning and executing the whole motion from A to C (an example for
such a fragment can be seen in Fig. 5.8 on Page 57). It has an output port which delivers
the current percentage of the motion completed (for Cartesian motions, this could also
be the distance traveled). This port is connected to two comparison primitives. One

74



6.3. Example: motion blending

compares the grade of completion for equality with 70% and, if the trajectory has reached
exactly 70%1, sets the Boolean variable named “Blend” to true using a special primitive
connected to the result port. This port is only set to true during one execution cycle of
the primitive net. If the net has not been taken over, this variable will be set to false
again.
The percentage finished output port is also compared to 100% using another primitive.
Once the whole motion has been completed, the Boolean variable named “Finished” is
set to true, as well as the outTerminate output port of the root fragment. The RCC will
then terminate the execution of PA.
The synchronization rules for PB and PC can be specified and transmitted to the RCC
any time after PA has been loaded. For motion blending, the synchronization rule looks
as follows:

(PA.Blend, {PA} , ∅, {PB}) (6.2)

If the Boolean variable “Blend” is set to true in primitive net PA, this net is terminated
and primitive net PB is started. PB can rely on the actuator being at point B (within a
very small ε that can be ignored due to the inertia of the system) and moving with a
known speed, thus it can immediately start issuing a trajectory to blend over to point D
and finally move to point E without ever stopping the robot. If the synchronization rule
(6.2) is specified after the robot has already passed point B, this rule will never become
active. In this case, another synchronization rule is required for continuing the motion
after the robot has stopped at point C:

(PA.Finished, {PA} , ∅, {PC}) (6.3)

This synchronization rule will start primitive net PC after PA has signaled that the
motion has finished. This synchronization rule will work well both with being specified
while PA is still running, as well as after PA has already terminated. In the first case, the
synchronization rule will actively terminate PA, while in the latter case the primitive net
will terminate itself using the outTerminate output port of the root fragment. Even if some
time has passed between PA terminating itself and the specification of synchronization
rule (6.3), the primitive net PC can still rely on the robot being motionless at point C.
If some other primitive net had moved the robot since PA terminated, the resources
protecting the robot would have been transferred to this net and thus the Boolean variable
“Finished” would have been set to indeterminate.
Motion blending with the synchronization mechanism is performed on a best-effort base.
If the robotics application loads the successive primitive net fast enough and specifies the
appropriate synchronization rule, motion blending will be performed. If, for some reason,
the application does not finish these tasks before point B is traversed, motion blending

1Technically this equality check needs to allow a small range ε around 70% such that this event is not
missed due to the discrete, cyclic execution of the primitive net
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will be ignored. Because the application is not real-time safe, this may occasionally
happen. Under no circumstances however will the actuator be out of active control.

6.4. Example: maintaining force

A second example for the use of synchronization rules is the peg-in-hole problem. For
this problem, the workpiece, a cylindrical peg, has to be inserted into a round hole. Since
the position of the hole is not known precisely enough, the robot cannot simply move to
the right position and insert the peg. A common solution is to use compliant motions, i.e.
to move the workpiece repeatedly until it comes into contact with the environment. To
avoid damage, the contact force must be controlled and thus limited to acceptable values.
Once contact has been established, the measured forces have to be evaluated to decide
on the next step to take. It would be possible to encode the whole peg-in-hole problem
into a single primitive net, however this has a major drawback. Every time the workpiece
comes into contact with the environment, several reactions are possible depending on the
measured forces and torques. In a single primitive net, reaction to all cases must already
be included, and reactions that follow the chosen reaction etc. until the peg has been
inserted. This leads to a giant primitive net, and the main application meanwhile does
not control the program flow.
Using synchronization rules, it is possible to create a primitive net which only performs
two tasks: Move the workpiece into the desired position and, after contact, maintain a
specified contact force. It should be noted that this primitive net must not terminate once
contact has been established, since this would leave the actuator out of active control
while it applies force to the environment. As soon as contact has been made, a new
primitive net containing the reaction can be created by the application and transmitted
to the RCC. The new primitive net must be able to take over the robot at the current
position while applying force. Using the synchronization rule it is guaranteed that the
transition from the first to the second primitive net will be without any interruption. If
there is an estimation (e.g. using heuristics) which reaction will be required, the second
primitive net can also be created and loaded on the RCC before contact is made. This
saves the time required to start the reaction if the estimation was right. If it turns
out that in fact another reaction is required, the previously specified synchronization
rule simply is not activated, and a third primitive net can be loaded to handle the new
situation.

6.5. Related work

The current commercially available robot controllers allow switching from one motion
command to the next either by interpreting the code ahead of time (e.g. KUKA KRL,
cf. Section 3.5.1) or filling a motion queue (e.g. Stäubli VAL3, cf. Section 3.5.2). Both
approaches provide deterministic execution for command switching based on the fact that
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the overall program is run real-time safe, however also limits the power of the programming
languages (since all commands must be executable real-time safely). Synchronization
rules for primitive nets are also executed deterministically, however since the control
application is not real-time safe, it is possible that the synchronization rule itself is not
available deterministically. Thus switching from one motion command to the next is
done on a best-effort base, however still with the guarantee that no actuator will be left
out of active control. Synchronization rules offer the advantage of achieving almost the
same determinism without the limitations of the proprietary, real-time safe programming
languages.
Software for embedded systems is often decomposed into several periodic tasks and
conditions to switch between the tasks. The Giotto language introduced by Henzinger
et al. [53] calls a set of periodic tasks that are active modes and defines mode switches for
changing the set of active tasks. A mode has input and output ports for communication
with other modes. A mode switch is triggered if the so-called exit-condition, a logical
condition defined on mode ports, becomes true. Giotto guarantees that mode switches
will occur real-time safe. Mechatronic UML [6] defines a process for model-driven design
of mechatronic applications. One key concept is the Real-Time Statechart which is
an extension of UPPAAL timed automata [7]. States represent situations in which a
system can be, and transitions allow to switch between states. Before transitions can
take place, guards (described as logical conditions) must become true. This common
concept of guards has been adopted for synchronization rules for primitive nets. Giotto
and Mechatronic UML both allow to switch back and forth between modes or states
respectively. Although synchronization rules build upon guards, another approach to
task specification is used. Both Giotto and Mechatronic UML are intended for an “offline”
system design, i.e. the application is designed by the full specification of all states,
transitions etc. and later executed. The Real-Time Primitives Interface in contrast has
been designed for real-time tasks to be generated ad-hoc, and the overall program flow
control must remain with the main application all the time. Therefore it is not necessary
to allow switching back and forth using synchronization rules, but rather new rules and
nets can be added as required. This allows the application to react flexibly and – to a
certain degree – even to unforeseen events.
Finkemeyer et al. [41] introduce the adaptive selection matrix for robotics applications
which allows to switch instantaneously between different open and closed loop controllers
withinmanipulation primitives [43]. The adaptive selection matrix allows to independently
switch controllers for each degree-of-freedom (DOF) of the system (usually six Cartesian
DOF) depending on current sensor readings to form a hybrid move. This allows, for
example, to use one distance-based controller for a robot to approach a work-piece and
immediately switch to a compliant motion upon contact with the work-piece. Switching
control mode must occur immediately (i.e. within one control cycle) in order not to
exceed the maximum force upon contact. Switching to different control modes upon
sensor events can be achieved with primitive nets using synchronization rules. Section 6.4
explains an example for a hybrid move. If different controllers are required for the different
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degrees-of-freedom, one primitive net for each DOF can be used. The results calculated in
each independent primitive net can be transmitted to a further primitive using inter-net
communication primitives (cf. Section 5.3.5). This net can further process the data and
control the actuator on joint level. Synchronization rules provide the advantage that
arbitrary primitive nets can be used and not only a predefined set of possible control
laws. This also allows to re-use existing implementations and also to integrate hybrid
moves seamlessly into other tasks which are necessary in a manipulation scenario such as
standard transfer motions.
The ORCCAD architecture introduced by Borrelly et al. [16] partitions robotics applica-
tions into two separate concepts: robot tasks and robot procedures. A robot task contains
a control law for an actuator which must be evaluated continuously, e.g. the control of a
robot motion. Robot tasks can be parametrized, but their goals cannot be changed during
run-time. Before a robot task can be started, specified pre-conditions need to be met, and
the task is stopped once the specified post-conditions are met2. During the execution of a
robot task, events can be received or emitted. The overall program logic is specified using
robot procedures which provide a sequence of robot tasks to execute, and information how
to handle events raised in the robot tasks. Events can be handled e.g. by stopping one
robot task and starting a new one; thus event-based transitions between robot tasks are
possible. Robot procedures are programmed using the MAESTRO language [29]. ORC-
CAD provides complete tooling for the development of applications and can automatically
generate Esterel code for robot tasks and robot procedures which can be used to formally
verify properties of the system (e.g. only one robot task controls an actuator at every
single point in time). The whole program is compiled into C/C++ code and executed on
a real-time operating system. The synchronization rules introduced in this chapter also
allow to create event-based robotics applications by switching between different sets of
primitive nets for real-time control. Synchronization rules however can be created on
demand and in particular the generation of synchronization rules does not need to be done
on a real-time operating system. Using a high-level programming language such as Java
offers much more possibilities in comparison to a rather limited domain-specific language
such as MAESTRO. Several aspects which can be (manually) verified in ORCCAD are
automatically checked by the runtime environment in the SoftRobot architecture, e.g.
the resource concept (cf. Section 6.2) automatically prevents multiple primitive nets
from accessing the same actuator due to a misspecified synchronization rule. Although
these checks are done at run-time, it is still guaranteed that all actuators remain under
control, because such errors are detected before any modification is made to the system.
The deterministic execution of primitive nets guarantees high repeatability, therefore
testing applications whether they perform the desired task properly yields a high degree
of reliability even without verification.
The Task Control Architecture (TCA) introduced by Simmons [111] is a message based
framework for robotics applications that decomposes large applications into multiple

2The definition of post-conditions by Borrelly et al. does not match the typical definition used in
computer science but rather describes the condition which triggers the termination of the robot task.

78



6.6. Conclusion

smaller tasks which are arranged in a task tree. A task can be further decomposed by
adding children to a task node in the tree. Children on the same level of the tree represent
tasks that may be run either in parallel or sequential, if additional constraints are specified.
Even if two tasks are marked as sequential, the second task will already be prepared
while the first one is executed, however the planning can also be delayed using a further
constraint. Special monitor tasks can be used to detect failed tasks. If such a task failure
is detected, control can be switched to another task to react to the new situation, however
planning of this task is delayed. Like with RPI, resources are used to prevent multiple
tasks from being executed in parallel which use the same hardware device. The Task
Description Language (TDL) [110] builds upon these mechanisms and provides a C++
extension for the specification of the tasks themselves, and also for the constraints leading
to the proper sequence of tasks. Primitive nets and synchronization rules do not use any
hierarchical structure to describe the sequence of tasks. In fact synchronization rules are
only intended to enable the real-time transition from one set of tasks to another. The
logic to decide upon such transitions remains within the high-level robotics application
and can be expressed by means of the programming language. Constructs of standard
programming languages allow for much more flexibility in the sequencing of tasks than a
strictly hierarchical tree notation does. A specific fault handling is neither required on
the level of primitive nets nor on the level of synchronization rules. Failure handling can
be performed within the robotics application (cf. [1, Section 6.6]) and is automatically
mapped to the appropriate primitives, links and synchronization rules.

6.6. Conclusion

The Primitive nets introduced in Chapter 5 provide a flexible and extensible system to
execute real-time safe tasks and are based on well-known data-flow language concepts.
Using fine-grained primitives, arbitrary tasks ranging from implementing control laws to
trajectory planning or synchronizing tool actions can be specified. Extensions such as
fragments allow for performance optimization while the specific life-cycle caters for the
specifics of robotics applications.
Encoding large tasks within a single data-flow based program however also has some
drawbacks. Since the program must be completely specified prior to starting it in order
to fulfill all real-time requirements, the main application cannot remain in control of the
program flow. Long sequences of tasks (e.g. several motions blended into each other)
do not always need hard real-time, i.e. a short break between two tasks is tolerable if it
can be ensured that no dangerous situations arise (i.e. actuators out of active control
while moving or applying force to the environment). Synchronization rules allow multiple
independent tasks (i.e. primitive nets) to execute sequentially including handing over
actuators in (potentially) dangerous situations. Using synchronization rules, control will
only be handed over if it can be guaranteed that the successors are ready for taking over,
otherwise a fallback strategy continuing control will be applied. This allows the overall
program control to remain within the non real-time application. Usually all successive
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primitive nets will be created and loaded in time, allowing for a smooth and continuous
program execution. If, however, for any reason the application is not able to provide the
successive tasks fast enough, the system will either be brought to a safe condition, or
control is maintained until the application catches up and supplies appropriate successive
commands.
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Chapter 7

The Robot Control Core: an
execution environment for real-time
primitive nets

The SoftRobot RCC is the reference implementation of the Robot Control Core (RCC)
layer and was developed during the SoftRobot project. It implements the Real-time
Primitives Interface (RPI) and thus is able to execute programs which have been written
using the Robotics API. The SoftRobot RCC contains a set of basic primitives which
are sufficient for a large number of robotics applications, in particular in the industrial
robotics domain. The SoftRobot RCC also provides device drivers for a variety of robotics
hardware which has been available at the University of Augsburg. The SoftRobot RCC
is designed to be flexible and easy to extend, thus it is possible to add further primitives
if required, as well as creating hardware device drivers for new hardware support.
The SoftRobot RCC is intended to run using a real-time operating system to provide
reliable and constant execution times. Real-time capabilities are achieved on the Linux
operating system, using the hard real-time extensions RTAI [10, 34] or Xenomai [48].
Furthermore, it is also possible to run the SoftRobot RCC with a standard operating
system for development or simulation purposes, when no hard real-time for hardware
control is required. A (non real-time) port to the popular Microsoft Windows operating
system is also available.
To conform with hard real-time requirements, the system has been developed using
the C++ programming language [117]. This language is commonly used for real-time
applications and provides direct access to the computer hardware, in particular to the
memory. Native C++ does not provide any automatism for memory management, thus
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the developer has to take care of all memory allocations, usages and de-allocations, which
enables the developer to guarantee that certain parts of a program will never perform
any non real-time conform operation (such as memory management).
Besides the necessity to use a rather low-level hardware centric programming language
for the real-time critical parts, the SoftRobot project is aimed at placing as much logic
as possible into the higher levels of the architecture (cf. Section 4.1). Using this strategy,
the benefits from modern object-oriented programming languages can be used optimally,
and errors related to memory management can be reduced as much as possible without
losing real-time capabilities.

7.1. Software architecture

The SoftRobot RCC consists of several independent components, which are linked by the
central Registry component. Components of the SoftRobot RCC are for example:

• Primitive net execution environment
• (Hardware specific) primitives
• Communication infrastructure
• Hardware device drivers

Figure 7.1 shows an overview of the SoftRobot RCC architecture. Some basic functionality
is implemented directly in the RCC Core package, while most device specific functionality
is provided by run-time loadable extension libraries.
Robotics applications communicate with the SoftRobot RCC using the HTTP protocol
[40]. Therefore, the RCC contains a built-in web server component. The web server
provides standard web pages which can be viewed using a common web browser (for more
details see Section 7.6.2) and a special communication protocol for robotics applications,
DirectIO (see also Section 7.6.3), which uses the WebSocket technology [39].
The web server communicates with the central Registry component which manages all
available primitives, devices and the currently active primitive nets. The Registry serves
as a facade (cf. facade pattern [45]) for the components communicating with robotics
applications. Using the Registry, it is possible to load new primitive nets, start those
nets and monitor their execution. It is also possible to load extension libraries and to
start new device drivers. During initial start-up, the Registry is responsible for loading
all necessary extension libraries and the initial creation of all necessary devices which
have been specified using configuration files.
The RCC Core implementation does not contain any device specific implementation, and
also only generic primitives are contained. Run-time loadable extension libraries are used
for all device specific extensions. Using extension libraries, it is only necessary to load
the devices and primitives which are necessary for a given application. Furthermore, new
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Figure 7.1.: Architecture overview

hardware can be integrated more easily and no changes have to be made to the core
system.

Extension libraries can provide implementations for primitives, devices and also for custom
web pages which are delivered using the built-in web server. When providing new devices,
the extension library often also contains hardware specific drivers for communication
with the hardware device. However, it is also possible that several devices are controlled
by the same driver implementation, e.g. all hardware devices using the same fieldbus can
use the same driver for accessing this fieldbus.

7.2. Primitives implementation

Figure 7.2 shows the relevant classes for the implementation of primitives. A primitive is
derived from the abstract class Primitive. The template class Parameter is used for static
parameters. RPI ports are created using the template classes InputPort and OutputPort.
The template parameter must be bound to a valid data type, which can either be a
primitive data type (such as int, double) or a custom, complex data type, while the
latter option has some restrictions to comply with the real-time requirements of the
system (e.g. arrays, cf. Section 7.3.3).
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«use»

Figure 7.2.: UML class diagram of primitives

Class Primitive

All primitives must provide a constructor to create an instance of the primitive. Within
this constructor, all parameters and ports must be registered using their names to provide
a name-based access to ports and parameters. This is required since the instantiation of a
primitive net is done based on a textual representation transmitted to the Robot Control
Core over a network connection (cf. Section 7.6). During the run of the constructor,
neither parameters nor ports may be accessed to retrieve data.

The abstract method configure() must be implemented by all primitives. This method
will be called during the loading phase of a primitive net. All parameters will already be
available so that the primitive can use the parameter values specified by the robotics
application (e.g. the name of the robot which should be controlled). Data from input
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ports is not yet available, and output ports may not be written to. This method is
called before the real-time execution of the primitive net starts, i.e. all tasks which could
break real-time (in particular memory allocation) must be performed in this method
or in the primitive’s constructor. The primitive may return false in this method if any
initialization process fails. In this case, the initialization of the whole primitive net is
aborted, and the net enters the state Rejected.
The method update() is called cyclically during the real-time execution of a primitive net.
The implementation must be done with real-time aspects in mind, i.e. no operations which
may break hard real-time may be performed. This includes any kind of memory allocation,
disk I/O or calls to standard operations system functions (“syscalls”). Parameters and
ports can be fully accessed in the update() method. Data read from input ports is
guaranteed to be current, because the update() method for all other primitive instances
connected to input ports will already have been completed. Every primitive should write
values to all output ports in the update() method. The SoftRobot RCC implementation
automatically sets an output port to null if no value has been written within the update()
method.
Primitives responsible for sensors and actuators are treated in a special way, since sensors
are always read in phase 1 of the primitive net execution cycle, and actuators must be
provided with new set-points in phase 3 (cf. Section 5.3.2). A primitive must overwrite
the isSensor() method to return true to mark it as being responsible for a sensor. Its
updateSensor() method will then be called immediately after the start of an execution
cycle, so that all sensor primitives will be called approximately at the same time.
Primitives controlling actuators likewise must overwrite the isActuator() method to
return true. Their updateActuator() method will be called after all primitives’ update()
methods have been called. Actuator control should be performed in this method. Besides
providing all actuators with new set-point values approximately at the same time, this
also provides better support for error handling. If a problem occurs during the execution
of the primitive net which requires the net to be aborted, either none or all actuators
will have been provided with new values.
Primitives should not access ports in the updateSensor() or updateActuator() method.
For sensors, no valid data will be available at input ports because updateSensor() is
called before any update() method is called. Analogously, data written to output ports
in actuators will never be read by the primitive net. Sensor/Actuator primitives may
however also use the update() method to access ports, which will be called just with like
any other primitive.

Class Parameter

The class Parameter provides access to static parameter values for primitives, which do
not change during the life of a primitive net. The class is provided as template and must
be bound to a specific data type. This can be e.g. a primitive data type such as int or
double, but also a complex custom data type (e.g. KDL::Frame for representation of a

85



7. The Robot Control Core: an execution environment for real-time primitive nets

coordinate system in 3D space). Each parameter in a primitive has a unique name. The
value of the parameter can be set and retrieved directly using the set(...) and get()
methods. Parameters also can carry a human readable description text which is used in
automatically generated web pages to provide some documentation of the interface of a
primitive.
The value of a parameter will be specified together with the overall structure of the
primitive net in a textual representation. The class Parameter uses a helper class TypeKit
to convert from a string to a concrete data type and vice versa. An appropriate type kit
must be registered for every data type which is used in a parameter. TypeKits for int,
bool and double are available with the SoftRobot RCC core library.

Class Port

The class Port with its two subclasses InputPort and OutputPort is responsible for the
real-time communication between two primitives. Just like parameters, ports are also
named and can carry a descriptive text. Furthermore, ports carry an age attribute to
store the count of the execution cycle when the port has been written to the last time.
Using this attribute, it is possible to detect whether the data provided is current or
outdated. Ports are also typed and must be bound to a concrete data type.
A new value should be set to an OutputPort in each execution cycle of the primitive net
in the update() method of the primitive. The method set(value) updates the internal
value of the output port and also updates the age of the port to represent the current
execution cycle. Because primitive data types in C++ do not support an explicit null
value, there is also the method setNull() which forces an output port to become null.
Input ports can be read using several methods, which differ in their handling of null
values. All get methods will return the current value of an input port, if it is not null.
Because primitive data types in C++ cannot represent a null value, all methods will
always return a valid value. The primitive implementation must explicitly call the method
isNull() to check whether an input port has valid data or not. If an input port is null,
the get(...) methods will either return the default value of the data type or the supplied
default value. The getNoNull(...) method will return the last value that has been set
to the port, or the default value of the data type if the connected output port has never
been set. An InputPort does not need to be connected to any output port. The use of
the get(...) methods on unconnected input ports behaves as if the post would carry a
null value. The getNoNull(...) function will always return the default value in this case.
During the loading phase of a primitive net, an input port is connected to an output
port using its connectWith(...) method. Output ports are not connected, only input
ports are connected to output ports. It is possible to check whether an input port has
been connected with its isConnected() method. This can be used by a primitive in its
configure() method to fail configuration if a required input port is not connected. The
output port creates an instance of the specified data type. Therefore, the given data
type must provide a publicly accessible, parameter-less constructor. If a complex data
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type requires memory allocation, instances must perform allocation in their constructor,
or the primitive must perform all necessary initialization tasks during its configure()
method. For performance reasons, data is only written to the output port, while all
input ports only hold a pointer to the data stored in the output port, so that no data
is unnecessarily copied. However, input ports may never change the data they receive
from an output port, as there may be other input ports connected which still require the
original value. The use of pointers for linking input and output ports is also the reason
why there is no dedicated class required for the RPI concept of links.
When a new simple value for an output port is set, the value is copied into the memory
that has been previously allocated for the output port and to which the connected input
ports point. Complex data-types must provide an appropriate copy-constructor and
assignment operator to prevent deep copies of the content when assigning the results of
the get(...) methods of an input port to a local variable. For more details please refer
to Section 7.3.3 which describes the required mechanisms exemplary for arrays.

Class Fragment

Fragments are a special variant of primitives which can themselves contain primitive
nets. Hence, the class Fragment is derived from the class Primitive. The update() and
configure() methods of fragments are implemented to recursively call the corresponding
methods for all primitives contained in the fragment. The update() methods of the
contained primitives are called according to the topological order of the primitives.
Failures in the configuration of primitives result in failure of the configuration of the
fragment. The construction of a fragment is done by calling the method build(). Every
fragment carries a named input port inActive for activation. Each time the update()
method of the fragment is called, the value of this port is evaluated. Only if it is true,
the update() methods of the contained primitives are called. Besides this named input
port, a fragment can have additional input and output ports which are connected to
primitives inside the fragment. More details about creating primitive nets and fragments
can be found in Section 7.4.

7.3. Basic primitives provided by the SoftRobot RCC

The SoftRobot RCC provides a set of basic primitives which are required for running
applications. Only basic primitives are embedded into the SoftRobot RCC; many
primitives are provided by additional extension libraries, which can be added and
removed at run-time. Some of these extensions are hardware specific, while others serve
general purpose functions. More details about the extension loading mechanism can be
found in Section 9.5.
The following sections describe the most important basic primitives, beginning with
core functionality to control the execution of primitive nets and continuing with basic
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functionality to create data-flow graphs. The set of primitives presented here has proven to
be sufficient for most basic algorithms, however device specific primitives are additionally
required for hardware control. Section 9.2 introduces some further basic primitives for
hardware interaction.

7.3.1. Core functions

Only one primitive is required for controlling the execution of primitive nets.

Cancel

Input ports none
Output ports outCancel: Boolean
Parameters none

The Cancel primitive emits a false value on its single output port by default. If the
execution environment requests the primitive net to cancel (cf. Section 5.3.3), a true value
is emitted. Multiple instances of this primitive may be used within a single primitive net,
which will always have an identical value on their output port.

7.3.2. Primitives for general data-flow

The following primitives are used to create the general data-flow graph, i.e. to inject
constant values, check for null or store and access a history of previous values. All
primitives are available for different data types. The general primitives are available for
Boolean, Integer and Double values. To facilitate the development, C++ templates have
been used. In the following descriptions, the letter “T” has been used to specify the
generic data type. For example, the Core::TValue primitive is available at run-time as
Core::BooleanValue, Core::IntValue and Core::DoubleValue.

Core::TValue

Input ports none
Output ports outValue: T
Parameters value: T

The TValue primitives are intended for injecting constant values into a primitive net.
Using this primitive, it is possible to supply a constant value to any other primitive with
matching port type.
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Core::TIsNull

Input ports inValue: T
Output ports outValue: Boolean
Parameters none

The TIsNull primitives check whether the input port inValue received a valid value, or is
null. The input can be null either because the connected primitive explicitly specified
a null value, or because the primitive did not provide any data at all (e.g. because the
primitive is contained in a deactivated fragment). If a null value is detected, the output
port outValue is true, otherwise it is false.

Core::TSetNull

Input ports inValue: T
inNull: Boolean

Output ports outValue: T
Parameters none

The TSetNull primitives allow to inject a null value into a data-flow. If the input port
inNull is false, the data from input port inValue is directly forwarded to outValue. Null
values are also forwarded. If inNull is true, a null value is set on outValue independent
of inValue.

Core::TAtTime

Input ports inValue: T
inAge: double

Output ports outValue: T
Parameters age: double

maxAge: double

The TAtTime primitive provides a history of a data-flow in the primitive net. Each
execution cycle, the current value present at inValue input port is saved. Using the inAge
input port or the age parameter, it is possible to select a time in history for which the
saved value should be written to the outValue output port. The age parameter is only
used when the input port inAge is not connected.
The maxAge property allows to specify how long values should be archived. Because
the primitive is used under real-time constraints and memory can only be allocated at
startup, it is not possible to change the length of the history once the primitive has been
instantiated.
The age and maximum age is specified in seconds. The primitive automatically calculates
the right number of execution steps for the given times. The time of an execution cycle
is considered from the ideal time of its start of execution (included) to the start of the
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next execution cycle (excluded). Times are considered ideal, i.e. jitter from the real-time
operating system is not taken into account.
If a null value is read in inValue, it will be replicated to outValue when the appropriate
time is requested. If age specifies a time before the start of the primitive net, also a null
value is written to outValue.

Core::TSnapshot

Input ports inValue: T
inSnapshot: Boolean

Output ports outValue: T
Parameters value: T

The TSnapshot primitives allows to freeze the value in a data-flow at a certain time.
When the input port inSnapshot is true, the value read from inValue is saved and written
to outValue. The value is preserved as long as inSnapshot is not set to true again (i.e. a
raising edge is detected). The value from property value is used as an initial value, if no
snapshot has been taken so far. Null values are preserved, i.e. if there is a null value at
the time of the snapshot, the null value will also be written to the output port.

Core::TPre

Input ports inValue: T
Output ports outValue: T
Parameters none

The TPre primitives delay the data-flow for exactly one cycle. Every cycle in a primitive
net must contain at least one TPre primitive, otherwise the primitive net cannot be
executed (cf. Section 5.2.2). During the first execution cycle, the output port outValue
provides a null value, in all subsequent execution cycles the value provided to inValue
during the last cycle is available, including potential null values.

Core::TConditional

Input ports inTrue: T
inFalse: T
inCondition: Boolean

Output ports outValue: T
Parameters true: T

false: T

The TConditional primitive selects the value of inTrue or inFalse and writes it to outValue
depending on the value of inCondition. Null values are preserved. The parameters true
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and false are used if the inTrue or inFalse input ports are unconnected. This serves as a
shortcut if a static value is required, and thus saves the use of a TValue primitive.

7.3.3. Array type data-flows

The Real-time Primitives Interface does not only support primitive data types such as
Boolean or integer, but also more complex data types. RPI provides a set of primitives
to handle arrays of primitive data types, which are commonly used e.g. for transmitting
values for all joints of an articulated arm together.
Array data-flows can be produced and consumed by custom primitives (e.g. device specific
primitives), or by using the following basic primitives. Many primitives handling arrays
have a property which specifies the size of the array. Because no memory may be allocated
during real-time operation of the system, the size of all arrays must be known at the
time the primitive net is loaded.
The complex data-type for arrays is internally based on the shared_array type provided
by the Boost library [30]. The default semantics in C++ is to create a copy every time an
object is assigned to a new variable, used as a function parameter, etc. The shared_array
type is internally implemented to share the real data memory between all copies that are
created due to the copy semantic of C++. Assigning the results of the get(...) methods
to a local variable when reading an input port thus automatically creates a copy of the
array object, the contents of the array however are shared with the output port (and all
other connected input ports). Therefore the contents of the array must not be modified
after having been read from an input port.
The Array data type is specified as Array<T> in the style of C++ templates (which are
in fact used in the implementation of the SoftRobot RCC) in the following descriptions.

Core::TArray

Input ports none
Output ports outArray: Array<T>
Parameters size: integer

The TArray primitive creates a new, empty array data-flow with the size given as
parameter. The created array will have all values initialized with the default value of the
data type T (e.g. false for Boolean, 0 for integer, etc.). The TArray primitive can be used,
if a primitive requires an array data type for input, but no other primitive generates an
appropriate array, i.e. the array must be created manually.
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Core::TArrayGet

Input ports inArray: Array<T>
Output ports outValue: T
Parameters index: integer

The TArrayGet primitive extracts a single value from an array. The array must be
provided at input port inArray, and the desired index using parameter index. The output
port outValue contains the item of the array. If the index is out of bounds, a null value
is written to outValue.
The TArrayGet primitive does not need to know the size of the array, because it can
access the already allocated memory of the originating output port.

Core::TArraySet

Input ports inArray: Array<T>
inValue: T

Output ports outArray: Array<T>
Parameters index: integer

size: integer

The TArraySet primitive allows to set one item in an array to a new value. The array to
change is read from input port inArray and the modified array is written to output port
outArray. Using properties, the index and size of the array are specified. The new value
is read from input port inValue.
The size of the array must be known at the initialization of the primitive net, because
in order to set a value in an array, the array itself must be copied. Input ports only
provide a pointer to the memory of the output port. Because the array provided by the
previous primitive may be required unaltered at another primitive (output ports may
be connected to any number of input ports), the modification of an array may only be
performed on a copy.

Core::TArraySlice

Input ports inArray: Array<T>
Output ports outArray: Array<T>
Parameters from: integer

size: integer

The TArraySlice primitive extracts a part of an array. A new array with the size given as
parameter is created. It is filled with the data from the input array (inArray), starting
with index from. The input array must have a size of at least from + size.
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7.3.4. Comparing values in a primitive net

Besides the aforementioned basic primitives, there is also a set of primitives which
is only defined for data types which are comparable. The SoftRobot RCC contains
implementations for the following primitives for the data types integer and double.

Core::TEquals

Input ports inFirst: T
inSecond: T

Output ports outValue: Boolean
Parameters first: T

second: T
epsilon: T

The TEquals primitive allows to check on values for equality. The values can be specified
either using the input ports inFirst and inSecond, or alternatively using the parameters
first and second. The parameters are only used, if the input ports are not connected.
Because analog values cannot be represented exactly using a digital system, it is possible
that two values differ slightly although they are considered equal. Using the parameter
epsilon, a limit for deviation of two values which should still be considered equal can be
given.
Special values such as “not a number” (NaN) are handled according to the IEEE 754 [63]
standard. NaN never equals any value including itself. Null values are handled analog to
NaN, i.e. null values are also considered unequal to any value.

Core::TGreater

Input ports inFirst: T
inSecond: T

Output ports outValue: Boolean
Parameters first: T

second: T

The TGreater primitive works almost identically to the TEquals primitive with the
exception, that no epsilon parameter is required. The result value true is returned, if the
first value is greater than the second. There is no TSmaller primitive as it is sufficient to
swap the operands for this purpose.
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7.3.5. Arithmetic operations in primitive nets

For data types which support basic arithmetic operations, some primitives are provided
for addition, multiplication and division. The following primitives are implemented for
integer and double data types in the SoftRobot RCC.

Core::TAdd

Input ports inFirst: T
inSecond: T

Output ports outValue: T
Parameters first: T

second: T

The summands of the TAdd primitive can be specified either by using the input ports
inFirst and inSecond, or using the parameters first and second. The output port outValue
contains the sum of both summands.
Specifying NaN (not a number) or null as one or both summands will result in a NaN
value. There is no subtraction primitive, because subtraction can also be achieved by
adding the negative value (which can be achieved by multiplication with −1, if necessary).

Core::TMultiply

Input ports inFirst: T
inSecond: T

Output ports outValue: T
Parameters first: T

second: T

The TMultiply primitive has the same signature as TAdd and returns the product of
both specified values. NaN values are handled according to the IEEE 754 standard, i.e.
specifying a NaN value results in a NaN value.

Core::TDivide

Input ports inFirst: T
inSecond: T

Output ports outValue: T
Parameters first: T

second: T

The TDivide primitive also has the same signature as TAdd. Values are handled according
to the IEEE standard, e.g. a division by zero results in a NaN value.
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Figure 7.3.: UML class diagram representing the abstract syntax tree of a primitive
net

7.4. Primitive net creation

Before a primitive net can be executed, it must be transmitted from the robotics
application to the SoftRobot RCC, where it should be executed. For receiving the
primitive net, the integrated web server is used. Therefore, the primitive net must be
encoded as text. There are two ways of encoding available, a human readable XML
format and a more compact and therefore faster custom language. Both interfaces are
described in detail in Section 7.6. After the primitive net has been received, the text is
parsed into a special data structure which represents the abstract syntax tree (AST) of
the primitive net specification. Beginning from this AST, in the next step all primitives
are instantiated and their ports connected. If the configuration of all primitives succeeds,
the primitive net is now ready for execution. The following sections describe the abstract
syntax tree and the instantiation of new primitives in more detail.

7.4.1. Abstract syntax tree of primitive nets

Figure 7.3 shows a UML class diagram of the abstract syntax tree which is generated
during parsing of the primitive net specification. All attributes are of type String, because
no conversion of types is done during the parsing process.

Primitives are represented by class RPI Primitive. The attribute type specifies, which
type of primitive should be created (e.g. DoubleValue, BooleanAnd, . . . ). The attribute
name is a unique identifier of this concrete primitive instance and is later used for the
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creation of links between primitives. Parameters of primitives are parsed into instances
of the class RPI Parameter, which contains two attributes, one for the name of the
parameter and one for the value. The type of a parameter does not need to be specified
in the AST, because it is internally known by the primitive implementation.
Communication ports are represented by objects of the class RPI Port. Ports have an
attribute name as unique identifier of the port and two attributes fromPrimitive and
fromPort to describe the link. The attribute debug allows to enable debugging features
for the given port (cf. Section 7.7). For primitives, all available input and output ports
are known based on the type of the primitive. Therefore, it is sufficient to specify only
one direction of a link between two ports. It has been chosen to specify input ports for
primitives in the AST, because unlike output ports, input ports can only be connected
to a single port. Fragments, however, do not have any predefined interface, thus it is
necessary to specify both input and output ports of a fragment.
For output ports on fragments, the attributes fromPrimitive and fromPort refer to
primitives which are contained in the considered fragment. Creating this “virtual” link
allows data from output ports of primitives contained in a fragment to be available
outside the fragment. For input ports, the attributes fromPrimitive and fromPort refer
to other primitives or fragments contained on the same level (i.e. an input port cannot be
connected directly to an output port of a primitive that is contained in a sub-fragment –
an output port of that sub-fragment must be used instead). Furthermore, they can also
refer to input ports which have been defined in the fragment they are directly contained
in. This is necessary to provide data from the outside of a fragment to the inside. To
connect to the containing fragment, the name of this fragment must be used as attribute
fromPrimitive.
Finally, the class RPI Fragment represents fragments, which have an attribute name as
unique identifier. The whole primitive net specification consists of one single fragment,
the root fragment, which contains all further primitives and sub-fragments.

7.4.2. Instantiation of primitives

Figure 7.4 shows a UML class diagram to demonstrate the instantiation of primitives
with the primitive DoubleValue as an example. Primitives are instantiated by using
the factory pattern [45]. Usually, primitives are implemented within extension modules,
which are not necessarily built together with the main executable. It is desirable to use
the C++ operators new and delete only for classes which have been generated by the
same compiler, in case the memory layout of private elements in classes differs between
two different compilers, thus factories provided by the extension libraries are used. For
more details please refer to Section 9.5.
The class Fragment is responsible for instantiating all primitives and connecting the
appropriate ports. The class Net initially creates the root fragment, stores the abstract
syntax tree (AST) of the primitive net (cf. Section 7.6) in the root fragment and calls its
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«Instantiate»

«use»

«bind»

Figure 7.4.: Creation of primitive instances with example primitive “DoubleValue”

build() method. The first step of the build() method is to create instances of Fragment
for all sub-fragments that are required and recursively calling build() on these fragments.
After all sub-fragments have been created, instances of all primitives directly contained
in the current fragment are created.

To create a primitive instance, the method getPrimitiveFactory(type) is called on the
singleton class PrimitiveFactories. During the loading phase of an extension library, an
instance of a factory for every primitive in the library is created and registered with Prim-
itiveFactories. If no appropriate factory is found, the net is rejected due to an unavailable
primitive. Otherwise, a reference to the desired factory is returned. All factories must
implement the PrimitiveFactory interface, which has the method createInstance(name)
to create a new instance of a primitive, and destroyInstance(primitive) to remove a
given instance. Using these factories, the fragment can create instances of all primitives.

In the next step, all ports must be connected according to the specification provided by
the robotics application. The fragment iterates over all sub-fragments and primitives in
the AST and tries to create links according to the inPorts lists of the AST. To create
a link, the concrete instances of primitives are looked up using their name as a unique
identifier. It is checked by both the source and the destination primitive that the specified
ports exist and that their port types match. If any error occurs, the primitive net is
rejected. If a connection from a primitive’s input port is made to the fragment itself, the
specified port name and input port of the primitive is recorded in the fragment, but no
connection is yet established.
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After all input ports have been connected, output ports for the fragment are generated.
Similar to connections from an input port to the surrounding fragment, output ports
of fragments are only stored in a list attached to the fragment, but not yet directly
connected. The real connections will be established once the surrounding layer has its
ports connected. If ports of a fragment need to be connected (either due to connecting
its input ports or another primitive wants to connect to an output port), the port names
are looked up in the list and the connection is created directly between the participating
primitives. In the implementation, input and output ports of fragments are purely
virtual and replaced by direct connections of primitives on different layers, thus achieving
maximum performance. Having an explicit notation of ports on fragments however
ensures encapsulation and reusability of fragments.
After all ports inside the fragment have been connected, the primitives (and sub-fragments)
can now be sorted topologically according to the links among them. Pre primitives and
links connected to them are left out from the sorting, because they are allowed to form
cycles and always delay the data transmission to the next execution cycle. If there is a
cycle without a Pre primitive, the sorting fails and the primitive net is rejected with a
list of all primitives that were part of the cycle. An ordered list of all primitives is saved.
As the next step, all primitives need their parameters to be set to the specified values. The
conversion of the value provided as a string to the concrete data type of the parameter is
performed by the TypeKit which must be provided for every parameter. If a parameter
is specified which does not exist on the given primitive, or the specified value cannot be
successfully converted to the required data type, the creation of the primitive net fails.
As the last step, the configure() method is called for every primitive in the primitive net.
The primitives must now perform all non real-time initializations, and check whether
all parameters are set correctly and all necessary input ports are connected. If no error
occurred, the primitive net is now ready for execution and its state is changed to Ready.
At this time, all memory resources already need to be allocated to the net. However,
hardware resources will not yet be allocated as there may be other primitive nets which
still are using these resources.

7.5. Primitive net execution

Figure 7.5 shows a UML class diagram of the execution environment for primitive nets.
After the robotics application has specified a primitive net to load, an instance of class
Net is created by the Registry and the root fragment is built (cf. Section 7.4.2). A
primitive net can be associated with a Session, which serves as a grouping container for
different primitive nets which have been created by the same robotics application and
can be used for debugging purposes (e.g. to remove all remains of a crashed robotics
application).
Each primitive net has a state which is one of the states introduced in Section 5.3.3,
Fig. 5.3. For technical reasons, one more state has been added: Unloading. This state is
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Figure 7.5.: UML class diagram for the primitive net execution environment

entered once the Registry has been asked to completely unload a primitive net. Primitive
nets with state Unloading are hidden from applications, however they might still need
some time to clean up resources before they can be completely removed from the execution
environment.

The class Net does not provide means for real-time execution itself, but utilizes the class
NetExecutor. This class is derived from the TaskContext class which is provided by the
Orocos Real-Time Toolkit (RTT) [21] which abstracts from all threading and real-time
related concerns of the underlying operation system. Instances of the class NetExecutor
can run more than one primitive net during their lifetime. If a primitive net is initially
started, a new NetExecutor is also created. If another primitive net is scheduled for
immediate execution after another primitive net, the existing NetExecutor can be reused.
This allows for a smooth transition from one primitive net to another without losing a
single execution cycle or having different cycle times.

The NetExecutor class uses the TaskContext to create a new thread on the real-time
operation system which is executed cyclically at the given frequency. The priority of the
thread is determined by the attribute isRealtime. Primitive nets which do not require
hard real-time are started with a lower priority. The TaskContext calls its updateHook()
method in each execution cycle, which is overridden in the NetExecutor class. The
NetExecutor subsequently calls the update() method in the currently associated Net.
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The execution of a primitive net happens in four stages:
1. All real-time sensor values are retrieved by calling the updateSensor() method of

all sensor primitives.
2. The main calculation of the primitive net is triggered by calling the update()

method of the root fragment. Each fragment contains a topologically ordered list
of the primitives (and fragments) it contains and calls their update() method in
the appropriate order. This allows every fragment to receive current values at its
input ports and to populate its output ports with newly calculated values.

3. All newly calculated set-points for actuators are transmitted to the drivers by
calling the updateActuator() method of all actuator primitives.

4. The value of the outTerminate output port of the root fragment is checked. If it is
true, the execution of the primitive net is terminated. The associated NetExecutor
is also stopped and the operating system thread removed, if the NetExecutor is not
required for further primitive nets (for more details please refer to Chapter 8).

If a primitive net is canceled, the Cancel primitive will emit the value true on its output
port. It is up to the design of the primitive net to terminate gracefully by eventually
setting the outTerminate ouput port of the root fragment to true. If no Cancel primitive
is included in the primitive net, nothing will happen. Aborting a primitive net prevents
the NetExecutor from starting a new execution cycle; a currently running cycle will still
be completed.
Lustre programs are ultimately compiled into a host language (such as C), which is then
again compiled into machine code. For the SoftRobot RCC reference implementation we
have opted not to use a compiler based approach, but rather to interpret primitive nets.
Although interpreting has some performance drawbacks, it also offers certain advantages:

• Compiling a primitive net takes some time, which adds up to the delay between the
time when the robot application has issued a primitive net, and when it is ready
for execution. In particular with the synchronization mechanism (cf. Chapter 6)
this delay could prevent successful blending from one primitive net into the other.

• The main components, the primitives, themselves are already compiled C++ code.
Thus the interpreter is only responsible for calling a sequence of methods to execute
all primitives in the right order. Data transmission is performed by shared access
to the same memory for input and output ports, thus no overhead is created here.

7.6. Communication interface

Robotics applications need to communicate with the Robot Control core to load and start
primitive nets, to issue synchronization rules for multiple synchronized primitive nets and
to receive status information about running primitive nets. It must also be possible for
running primitive nets to transfer data bidirectionally between the application and the
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Figure 7.6.: Example primitive net used for demonstrating the transmission of primi-
tive nets

primitive net. Such data includes status information (e.g. a certain point on a trajectory
has been reached) which can be displayed by the application to the user, but also some
forms of external control of the primitive net such as a global override value which enables
the user to slow down the overall execution velocity for development purposes. Because
neither the application nor the communication channel is real-time safe, primitive nets
are designed always to reach a safe state even if the communication channel is interrupted
or delayed.

Special primitives, the NetComm primitives, are available to transmit data between a
primitive net and the robotics application. For the communication protocol, two different
variants are available with the SoftRobot RCC. The first variant uses plain HTTP with
XML files (and XSLT files for better human readability) for all communication aspects.
One drawback of using plain HTTP however, is that all information must be requested
from the RCC by polling. Furthermore, encoding everything as an XML document can
cause considerable overhead. To mitigate these issues, a special protocol called “DirectIO”
was developed, which can either be used over a plain TCP socket or alternatively tunneled
over HTTP using the WebSocket technology [39].

Figure 7.6 shows an exemplary primitive net which will be used for demonstrating
the transmission of primitive nets from the Robotics API to the RCC using both
communication protocols. The root fragment contains one BooleanValue primitive
having the value true, one BooleanNetcommOut primitive (with the parameter key set to
“val” and default value false) and one sub-fragment. This sub-fragment again contains
two primitives, another BooleanValue (with value false) and a BooleanAnd primitive.
Furthermore, the fragment has a named input port inPort0 and a named output port
outPort0. Both the activation input port of the sub-fragment and the named input
port inPort0 are connected to the BooleanValue primitive outside the fragment. Inside
the sub-fragment, the BooleanAnd primitive is connected to the second BooleanValue
primitive and to a named input port inPort0. Its result is written to a named output
port outPort0. The communication primitive receives its data from the port outPort0
from the sub-fragment, as well does the named output port outTerminate of the root
fragment. The value of this named port controls the termination of the primitive net.
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Executing this primitive net will result in an infinitely running primitive net. The
BooleanAnd primitive will receive one true and one false signal and thus emit false. This
value is transmitted to the robotics application via the BooleanNetcommOut primitive,
but also written to the outTerminate output port. As long as this value does not receive
a true value, the primitive net continues running.

7.6.1. Communication primitives

For communication of a robotics application with a currently running primitive net, two
special classes of communication primitives have been introduced.

TNetcommIn

Input ports none
Output ports outValue: T

outLastUpdated: nsecs
Parameters Key: string

Value: T

TNetcommIn primitives are used for inserting data into a running primitive net. Using
one of the communication channels between the robotics application and the Robot
Control Core, it is possible to update the value of the primitive, which can be retrieved
within the primitive net using the output port outValue. The output port outLastUpdated
carries a time-stamp of the last update from the robotics application. To address a
TNetcommIn primitive, the parameter Key is used as a unique identifier. Using the
parameter Value, it is possible to set a default value which is available on outValue from
the start of the primitive net, even if no update has been performed by the robotics
application yet. If no default value is set, the default value of the data type is used.
TNetcommIn primitives are available for all common data types. Primitive data types
include Boolean, integer or double. Complex data types such as arrays or custom defined
data structures are also possible. Because transmission is performed using a string
representation, bidirectional conversion of the data type and a string must be possible.
TypeKits are used for that purpose just like with parameters.

TNetcommOut

Input ports inValue: T
Output ports none
Parameters Key: string

Value: T

The TNetcommOut primitive works in the opposite direction as TNetcommIn primitives
to retrieve values from a running primitive net. Using parameter Key as a unique
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identifier, it is possible to retrieve the last value that has been received on input port
inValue in the robotics application. If no new value is available (e.g. the TNetcommOut
primitive was in an inactive fragment), the last recorded value is still available together
with a time-stamp to recognize old values. If no value has ever been set, the value from
parameter Value is used.

TInterNetcommIn/Out

Input ports none
Output ports outValue: T
Parameters Key: string

Value: T
RCC: string
Net: string

Input ports inValue: T
Output ports none
Parameters Key: string

Value: T
RCC: string
Net: string

The TInterNetcommIn and TInterNetcommOut primitives are intended for communi-
cation across multiple primitive nets. A TInterNetcommOut primitive writes data to
a TNetcommIn primitive in another primitive net, and TInterNetcommIn reads the
value from a TNetcommOut primitive respectively. Using the parameter Net, the remote
primitive net can be addressed, and Key is used to find the appropriate primitive. The
parameter RCC is currently unused and is intended for a future extension to support
real-time communication across multiple RCCs.
The values of all input communication primitives are only updated during phase 1, and
output communication primitive write their values during phase 3 of the primitive net
execution. This guarantees that the values read within a primitive net remain consistent
during the execution cycle. The communication between multiple primitive nets running
on a single RCC is real-time safe, i.e. values written in one primitive net (during phase
3) will be available on the next start of an execution cycle of the other primitive net.

7.6.2. Plain HTTP communication

The SoftRobot RCC provides a HTTP/1.1 [40] compatible web server, which is based
on mongoose.1 The web server mainly provides XML data instead of HTML web pages,
because the main user of the web server is the robotics application, not the human user.
XML is intended to be machine readable, whereas HTML is more intended for human
readable web pages. For convenience, XSLT files [28, 73] are provided which enable an
XSLT capable web browser to render plain XML files as human readable HTML web
pages. Data transmission from the application to the RCC is done using HTTP-POST
requests. All connections originate from the robotics application and data transmissions
only occur upon request. Polling is required to receive updated values.

1Available from: https://code.google.com/p/mongoose/, the MIT licensed version has been used in the
SoftRobot RCC.
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Figure 7.7.: Architecture of web server

Architecture of web server

Figure 7.7 shows a UML class diagram with the main components of the integrated web
server. The singleton class HTTPServer coordinates all HTTP requests and dispatches
them to the right handler. For some basic functionality, web handlers are already
delivered with the SoftRobot RCC. Examples for such handlers are to provide lists of all
available primitives, or of the currently running primitive net. Additional web pages can
be provided by extension libraries by registering new web handlers during their loading
phase.

To create a web handler, the interface HTTPHandler must be implemented, and an
instance of the created class must be registered with HTTPServer. To register a web
handler, the desired URI (uniform resource identifier) must be provided to the method
addHandler(...). The URI can be a static string (e.g. /devices/sampleDevice/), but can
also contain wildcards (e.g. /devices/sampleDevice/*). The first URI will only match
to requests to the exact address. Wildcards can be replaced by any string, including
the empty string, but at most to the next path delimiter “/”. Multiple wildcards are
possible, even in the middle of the URI (e.g. /devices/robot/*/joint/* would match to
/devices/robot/robot1/joint/0).

When a HTTP request arrives at the web server, a look up for the right handler is
performed and the handler’s handleRequest(...) method is called. The parameter path
of this method call provides a list of the requested path parts (separated using the
path delimiter “/”). The handler can use these path parts to retrieve values which
have been used for the wildcard-parts of the URI. The parameter method informs
the handler whether a HTTP GET or HTTP POST request has been made. Many
handlers provide information on GET requests, while actually performing actions only on
POST requests. Each HTTP request can contain additional data appended to the URI,
separated by a question mark (e.g. uri?key1=value1&key2=value2). The key/value-pairs
of the request is provided using the parameter getData. For POST requests, additional
data can be transmitted in the request independent of the URI. These key/value-pairs
are available in the parameter postData. For GET requests, this parameter is empty.
The handleRequest(...) method must return a string, which is directly transmitted to
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1 <rpinet>
2 <fragment id="frag">
3 <primitive id="bv_false" type="Core::BooleanValue">
4 <parameter name="Value" value="false"/>
5 </primitive>
6 <primitive id="b_and" type="Core::BooleanAnd">
7 <parameter name="First" value="true"/>
8 <parameter name="Second" value="true"/>
9 <port name="inFirst" fromprimitive="bv_false" fromport="outValue"/>
10 <port name="inSecond" fromprimitive="frag" fromport="inPort0"/>
11 </primitive>
12 <inport name="inActive" fromprimitive="bv_true" fromport="outValue"/>
13 <inport name="inPort0" fromprimitive="bv_true" fromport="outValue"/>
14 <outport name="outPort0" fromprimitive="b_and" fromport="outValue"/>
15 </fragment>
16 <primitive id="bv_true" type="Core::BooleanValue">
17 <parameter name="Value" value="true"/>
18 </primitive>
19 <primitive id="ncout" type="Core::BooleanNetcommOut">
20 <parameter name="Key" value="val"/>
21 <parameter name="Value" value="false"/>
22 <port name="inActive" fromprimitive="bv_true" fromport="outValue"/>
23 <port name="inValue" fromprimitive="frag" fromport="outPort0"/>
24 </primitive>
25 <outport name="outTerminate" fromprimitive="frag" fromport="outPort0"/>
26 </rpinet>

Listing 7.1: XML representation of a primitive net including a fragment

the HTTP client. The format of this response is completely up to the actual handler.
Usually, XML data is returned, however some extension libraries may also opt to create
HTML pages directly (e.g. for debugging purposes).

Primitive net creation

For the creation of new primitive nets, a special web handler exists at the URI /nets/.
This handler expects an XML formatted description of a primitive net as POST parameter,
which is then parsed and forwarded to the Registry. The full XML schema definition
(XSD) for primitive nets can be found in Appendix A.1.
Listing 7.1 shows the XML representation of the primitive net introduced in Fig. 7.6.
The root fragment is implicitly created using the root tag of the XML document. Inside
this tag, further primitives and fragments can be nested. All primitives and fragments
need to have a unique identifier, specified with attribute id. This identifier is used to
connect ports from one primitive to another, or to named ports on fragments (e.g. the
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1 <?xml version="1.0" encoding="UTF-8"?><?xml-stylesheet type="text/xsl" href="/xsl/net.
xsl" ?>

2 <net name="rpinet0" status="RUNNING" desc="">
3 <data key="outval">false</data>
4 </net>

Listing 7.2: Status data for primitive net

ports inPort0 and outPort0 ). The SoftRobot RCC uses the RapidXml [71] project as
DOM parser [86] to create the abstract syntax tree of the primitive net (cf. Section 7.4.1).

Live communication

When a primitive net is loaded, the RCC assigns a unique name to the primitive net.
Using the URI /nets/netname/, it is possible to retrieve status data from the net. The
XML telegram listed in Listing 7.2 is returned for instance after the primitive net drafted
in Listing 7.1 has been started.
Line 1 contains the XML header and a reference to a XSLT file for rendering the output
on a web browser. The root tag net in line 2 contains all relevant data for the primitive
net, such as the name, the current status and optionally a human-readable description.
Using data tags (e.g. in line 3), the values of all communication primitives are transmitted.
For NetcommOut primitives, the given key has prefix “out”, for NetcommIn primitives,
the key is prefixed with “in”. In order to provide new values for NetcommIn primitives, a
POST request to the URI must be done with all desired key/value pairs in the POST
data.
Live data will only be provided by the RCC upon request. Once the RCC receives a
request for net status, all relevant data is gathered. Because the real-time safe execution
of the primitive net must not be disturbed, no global locking is performed to retrieve
the communication data. Therefore, it might happen that the values presented on
the status page may actually come from different execution cycles. There is also no
guarantee that the robotics applications will notice all values that have ever been written
to a communication primitive. If the value is overwritten too soon, and the robotics
application did not request a net status meanwhile, the value will be lost. Therefore,
robotics applications must not rely on being able to receive short peaks on data values
from primitive nets. If knowledge about such short peaks is required, the detection must
be done within the primitive net.

7.6.3. DirectIO

Communication using plain HTTP as described in the previous section has some major
drawbacks. The representation of primitive nets using XML is rather easy to understand,
however it causes a lot of overhead for the XML tags, XML attribute names, etc.
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Furthermore, polling for live communication data is not very efficient, especially if it
is unknown whether new data is available or not. To conquer these problems, a new
protocol called “DirectIO” has been introduced, which is tailored to the communication
needs of robotics applications and the RCC. DirectIO supports the loading of new
primitive nets using a special domain specific language (DSL), as well as transmitting live
communication data. For live data communication, the RCC notifies the application of
new data. Besides these advantages, the DirectIO protocol also has some disadvantages.
The DirectIO communication protocol cannot be extended as easily as adding a new
handler for new extensions. Furthermore, debugging is much harder. With plain HTTP,
a standard web browser can be used to interact with the RCC.
DirectIO is designed to be used over a TCP socket. It can be implemented using its
own TCP connection, or by tunneling over HTTP using WebSockets. Tunneling over
WebSockets has several advantages: Only one port must be known (and configured)
for connecting to the RCC, and web-applications using JavaScript can easily access
WebSockets as well. The SoftRobot RCC implements WebSockets. A connection to the
DirectIO interface can be made by connecting to the URI /DirectIO/. In the following
sections, the robotics application is referred to as client, because applications initiate the
connection to the RCC.

Protocol definition

The DirectIO protocol uses two forms of communication. At first, all communication
happens synchronously, i.e. the client sends a command to the RCC, which is immediately
responded to. However, there are some commands which enable asynchronous data
transfer, i.e. the RCC may transmit data packages at any time. All statements contain a
tag which can be chosen freely by the client. All responses from the RCC to the topic
addressed by the initial command (including asynchronous transmissions) will carry the
same tag. This allows the client to distinguish among different asynchronous responses.
A DirectIO statement consists of the tag, the command to execute and optionally
parameters for the command. A parameter can either be a literal (a string, an integer
or a floating-point value), a list of parameters (including the empty list) or a list of
key-value pairs with further parameters as values. A slightly simplified syntax-diagram
(not all non-terminals are included) of the DirectIO language follows. The full grammar
in Extended-Backus-Naur form can be found in Appendix A.2.

〈statement〉 ::=-- 〈tag〉 ‘=’ 〈command〉 ‘(’ �
� � ‘,’ �� 〈parameter〉 � �

� ‘)’ -�
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〈parameter〉 ::=-- � 〈literal〉

� ‘[’ �� ‘,’ �� 〈parameter〉 �� �� ‘]’ �
� ‘{’ �� ‘,’ �� 〈key〉 ‘:’ 〈parameter〉 �� �� ‘}’ �

� -�

〈literal〉 ::=-- � 〈integer〉� 〈float〉 �� ‘"’ 〈string〉 ‘"’ �
� -�

After the communication link has been established, a handshake must be performed to
ensure that the RCC and the client use the same protocol version:

< id1=ver("2.0")
> id1=ok("handshake␣ok")

In this example, < denotes a command sent by the client, and > a command sent by
the RCC. In line 1, the client uses tag id1 with command ver to announce that it is
compatible with version 2.0 of the DirectIO protocol. In line 2, the RCC responds using
the same tag and an ok command. Following this conversation, the full DirectIO protocol
may be used.

DirectIO commands

The following commands are available using DirectIO and can be sent from the application
to the RCC:

nse Creates a new session with given name. Returns the ID of the newly created session.

ase Aborts a given session. All primitive nets within the session are aborted and the
session is destroyed.

nene Creates a new net, takes a (optional) session ID and the primitive net encoded in
DirectIO format as parameters. Additional, optional parameters specify the cycle time
of the primitive net and whether it is a real-time critical net. If those parameters are
omitted, the default cycle time is used and the primitive net is considered as real-time
critical.

nest, neca, neab, neun Starts, cancels, aborts or unloads a primitive net. The primitive
net ID must be given as the parameter.
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nesc Specifies a synchronization rule for sets of primitives (for more details see Sec-
tions 6.1 and 8.1).

gne Requests the current state of a primitive net. Arguments are the primitive net
name and a refresh timeout. After submitting the gne command, the RCC will send the
current state of the primitive net along with the current values of all communication
primitives. If the state of the primitive net changes, the client will be notified immediately.
If a value of a communication primitive changes, the client will be notified, unless there
has been a notification already within the refresh time. If a value changes more often
than the given refresh time, value changes will be lost. The status of the net will be
sent from the RCC as an argument of command ns; the values of the communication
primitives as an argument of command nc.

snc Sends new communication values to the RCC. Multiple communication primitives
for multiple primitive nets can be transmitted within a single command. Key/value lists
are employed to address the proper communication primitives.

gse Requests updates for all primitive nets within a session. After issuing this command,
the status of all primitive nets is transmitted to the robotics application. After this initial
transmission, only changes in primitive nets’ states will be transmitted using command
st.

gde Requests information for available devices on the RCC. An initial list of all devices
will be transmitted, and further device state changes will be transmitted asynchronously.
For more details on devices and device interfaces please refer to Chapter 9.

DirectIO responses

Responses from the RCC to the client use the same syntax as DirectIO commands sent by
the client. The RCC always uses the same tag for replying to a command. All commands
are immediately acknowledged with either an ok message or an err message. Both
messages can contain further parameters which either indicate additional information
about the successful command (e.g. the name of the newly created session) or an error
message if a command did not succeed.
Besides the ok and errmessages, the following asynchronous messages are also transmitted
once activated:

Primitive net updates Updates for primitive nets are requested using the gne command.
The RCC asynchronously transmits updates to the primitive net’s state using ns messages
and updates to the value of communication primitives using the nc message. Every status
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change of the primitive net will be reported to the client, however changes to values of
communication primitives will only be reported once within the given refresh time.
After the gne command has been received, the current net status and a complete list of all
communication primitives are initially transmitted before the command is acknowledged.

Device information Updates for available devices are requested using the gde command.
If a new device is available, a da message is transmitted to the client. This message
contains the type, all implemented device interfaces and an optional map of configuration
parameters for each device interface (cf. Section 9.2). If multiple devices are available
at the same time, all devices are transmitted in a single da message to the client. If a
device is removed from the RCC, a dr message is sent to the client. If a device changes
its state (e.g. from safe-operational to operational), a ds message is sent to the client.
After the gde command has been received, one da and one ds message containing all
currently available devices and their states are initially transmitted to the client. Examples
for these messages are shown in Section 9.3.

Primitive net creation

For the transmission of primitive nets, a domain specific language (DSL) has been
developed which can be transmitted using DirectIO (as string literal). The language
for primitive net creation has not been embedded into the main DirectIO protocol in
order to allow the net creation language also to be used with the plain HTTP protocol.
A slightly simplified syntax-diagram (omitting non-terminals for character definitions)
follows; the complete grammar can be found in Appendix A.3.

〈Fragment〉 ::=-- ‘{’ �� ‘,’ �� 〈FragmentPart〉 �� �� ‘}’ -�

〈FragmentPart〉 ::=-- 〈Identifier〉 ‘=’ 〈Primitive〉 �� ‘.’ 〈PortIdentifier〉 �� -�

〈Primitive〉 ::=-- �〈Identifier〉 �‘(’ �
� � ‘,’ �� 〈Parameter〉 � �

� ‘)’

� �
�

� 〈Fragment〉 ‘(’ �
� � ‘,’ �� 〈Parameter〉 � �

� ‘)’ �
� -�

〈Parameter〉 ::=-- 〈Identifier〉 ‘=’ � 〈string〉� 〈Primitive〉 ‘.’ 〈PortIdentifier〉 �� -�

Fragments, including the root fragment, are enclosed by curly braces. Therefore, all
DirectIO net descriptions start with { and end with }. Within a fragment, Primitives
can be specified as follows:
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bv_true=Core::BooleanValue(Value=’true’)

This creates a Core::BooleanValue primitive and assigns the unique identifier bv_true
to it. Between parentheses following the primitive type, all parameters can be specified
in a key=’value’ syntax. For port connections, the syntax key=fromprimitive.fromport
can be used, where fromprimitive is the unique identifier of the source primitive and
fromport the output port name.
Fragments are created almost identically:

frag={...}(...)

Between the curly braces, all primitives and sub-fragments can be created. Furthermore,
named output ports can be created by writing portname=primitive.outport. Between
the round braces, input ports of the fragment can be connected just like with primitives.
Primitives may refer to named input ports of the fragment by using the keyword parent
as the source primitive name.
As an extension, it is also possible to use anonymous primitives. Primitives with only a
single output port are often also connected to only a single successive primitive. In this
case, there is no need for assigning an identifier to this primitive.

b_and=Core::BooleanAnd(inFirst=Core::BooleanValue(Value=’false’).outValue,...)

creates a primitive of type Core::BooleanAnd with the identifier b_and. The input port
inFirst is connected to an anonymous primitive of type Core::BooleanValue. Because this
primitive is used nowhere else, assigning an identifier and later referring to this identifier
can be saved. In particular the TValue primitives are commonly used this way. By using
anonymous primitives, some data overhead which otherwise would need to be transferred
is saved.
The whole primitive net depicted in Fig. 7.6 is shown in Listing 7.3 using the DirectIO
net representation. Please note that all indenting has only be done for presentation,
the whole primitive net is transmitted without any spaces or line breaks on the wire.
In line 1, the root fragment starts. In line 2, the sub-fragment named frag is started.
Line 3 adds the primitive b_and, whose ports and parameters are set in lines 4 and 5.
An anonymous primitive has been used for input port inFirst, and a named input port
of the parent fragment for inSecond. Line 6 defines the named output port outPort0 for
the sub-fragment and connects it to primitive b_and. In line 7 the input ports of the
sub-fragment are connected to the appropriate output port. Lines 8 to 13 create the
other two primitives of the root fragment, and line 14 connects the outTerminate output
port of the root fragment. Line 15 finally closes the root fragment.
The order of primitives and fragments within the DirectIO net description is not relevant.
It is possible to connect to output ports of primitives which are defined later in the
description. The SoftRobot RCC uses a parser which has been created by the Coco/R
[89] parser generator. The results of this parser are used to create a data structure in the
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1 {
2 frag={
3 b_and=Core::BooleanAnd(
4 inFirstCore::BooleanValue(Value=’false’).outValue,
5 inSecond=parent.inPort0,First=’true’,Second=’true’),
6 outPort0=b_and.outValue
7 }(inActive=bv_true.outValue,inPort0=bv_true.outValue),
8 bv_true=Core::BooleanValue(Value=’true’),
9 ncout=Core::BooleanNetcommOut(
10 inActive=bv_true.outValue,
11 inValue=frag.outPort0,
12 Key=’val’,
13 Value=’false’),
14 outTerminate=frag.outPort0
15 }

Listing 7.3: DirectIO representation of primitive net

format of the AST (cf. Section 7.4.1). Names for anonymous primitives are generated
randomly as needed.

Example

Listing 7.4 shows an exemplary communication trace between a robotics application and
the SoftRobot RCC. Commands sent from the robotics application are marked with <
while responses from the RCC are marked with >.
Lines 1 and 2 are the protocol handshake. In line 3, a new primitive net is created. This
primitive net contains two Boolean communication primitives (one for each communication
direction) which are directly connected. The termination output is also connected to the
inbound communication primitive (which has a default value of false). The primitive net
is not assigned to a session (second parameter 0) and has the description “Demo-Net”.
Line 4 acknowledges the creation of the primitive net and returns the identifier rpinet0
for the new primitive net. In line 5, the robotics application registers a listener to all
events belonging to rpinet0. This is responded with the net state READY in line 6 and
furthermore acknowledged in line 7. The communication values are not transmitted
because the primitive net is not yet running. In line 8, the application requests the
primitive net to be started. This command is acknowledged in line 10. Line 9 uses
the identifier of the gne command to notify the application about a status change of
the primitive net, and in line 11 the value of the communication primitive k2 is sent.
Interleaving of direct responses to commands and asynchronous events with different
tags can happen. The application must use the identifier to assign responses properly. In
line 12, the value of the communication primitive with key k1 is updated. The command
is acknowledged in line 13. Lines 14 and 15 are results of this change in value. Due
to the direct connection of both communication primitives, the value of the outwards
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1 < a=ver("2.0")
2 > a=ok("handshake ok")
3 < b=nene("{ncin=Core::BooleanNetcommIn(Key=’k1’,Value=’false’),ncout=Core::

BooleanNetcommOut(inValue=ncin.outValue,Key=’k2’,Value=’false’),outTerminate=ncin.
outValue}",0,"Demo-Net")

4 > b=ok("rpinet0")
5 < c=gne("rpinet0",0.5)
6 > c=ns("READY")
7 > c=ok()#
8 < d=nest("rpinet0")
9 > c=ns("RUNNING")
10 > d=ok()
11 > c=nc({outk2:"false"})
12 < e=snc({rpinet0:{ink1:"true"}})
13 > e=ok()
14 > c=nc({outk2:"true"})
15 > c=ns("TERMINATED")
16 < f=neun("rpinet0")
17 > c=nc({outk2:"true"})
18 > c=ns("TERMINATED")
19 > f=ok()

Listing 7.4: Example communication trace between a robotics application and the
SoftRobot RCC

communication primitive changes (line 14), and furthermore the primitive net itself
terminates (line 15). In line 16 the final unloading of the primitive net is requested, which
is acknowledged in line 19. Lines 17 and 18 are a final status update of the primitive
net. After the primitive net has been unloaded, it cannot be accessed any more, and no
further status messages will be transmitted from the RCC.

Comparison with plain HTTP protocol

The DirectIO protocol offers a shorter syntax, reducing the amount of data transfer
necessary between the robotics application and the RCC. Furthermore, by pushing new
net communication values upon availability relieves the application from constantly
polling. The following table compares the size of a primitive net for a point-to-point
motion transmitted using the XML format on one side and the DirectIO format on the
other side:
net primitives size XML size DirectIO ratio
(a) 454 125,656 Bytes 62,376 Bytes 49.6%
(b) 344 79,000 Bytes 29,179 Bytes 36.9%

Both primitive nets have been automatically generated by the Robotics API. Primitive
net (b) has been furthermore automatically optimized (cf. Section 10.2.7). This procedure
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substituted redundant primitives with a single instance and, more importantly, renames
all primitives with short random names. With shorter names, the overhead of the XML
syntax preponderates.

7.7. Debugging

Primitive nets are intended for automatic generation, and robotics application developers
should not directly come into contact with primitive nets. The Robotics API (cf.
Chapter 10) provides a Java-based framework that performs such an automated generation
of primitive nets from a Java-based robotics application. During the development of
the Robotics API (or any other framework that generates primitive nets) or of RCC
extensions e.g. for new hardware support, it is possible that debugging must be performed
on the level of primitive nets, i.e. to diagnose wrong links between primitives. Errors in
the execution of primitive nets can occur on different stages:

1. Syntactic error in primitive net specification
2. Invalid primitive net specification
3. Configuration error for a primitive
4. Semantic error in primitive net

Syntactic errors in the primitive net specification are very rare due to the automated
generation process. The Robotics API e.g. generates the XML or DirectIO primitive net
specification from Java proxy objects, thus unless this algorithm is changed, syntactic
errors are not to be expected. The SoftRobot RCC rejects syntactically invalid primitive
nets with an error message generated by the parser.
A primitive net specification can be syntactically correct but still be invalid. This happens
if specified primitives are not available, unknown input or output ports are used or if
port types of two linked primitives do not match. A common reason for primitives not
being available is a missing (hardware) extension which would provide the appropriate
primitive. Cycles in primitive nets without a Pre primitive are also a reason for an invalid
primitive net specification.
Even if all primitives are available and properly linked, the configuration of a primitive
can still fail. For example, if the specified robot for a JointPosition primitive is not
available, this primitive’s configuration will fail. Some primitives also fail configuration if
a required input port is not connected.
Errors 1 to 3 can be detected automatically by the SoftRobot RCC, and primitive nets
containing one of those errors cannot be started (and enter state Rejected). An error
message containing the reason for rejecting the primitive net is available for debugging
purposes. Primitive nets can also contain semantic errors, i.e. they can be loaded perfectly
well and even be started, but do not perform the task they are designed for properly.
These errors cannot be detected automatically, and finding the root cause of such errors
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can be very time consuming. Therefore, the SoftRobot RCC provides some debugging
support to help find semantic errors in primitive nets.

7.7.1. Debugging live values of primitives

One important piece of information for diagnosing errors in primitive nets is the current
value of links connecting primitives. Due to low cycle times (usually under 10 ms), it is
almost impossible to read those values “live”. Using the communication primitives (cf.
Section 7.6.1), it is possible to transmit values from a running primitive net to an external
system (usually this is the robotics application which started the primitive net, but a
debugging environment could also access this data) near-live, however the communication
primitives cannot guarantee that all values are transmitted (especially if values fluctuate
very fast).
If it is desirable to have access to all values that have been sent over a link, the SoftRobot
RCC offers special debugging primitives which write all values they receive to a ring
buffer. This ring buffer can be retrieved from the RCC at any time, even after the
primitive net has terminated (until it is unloaded). Using this log, offline debugging is
possible. To facilitate the use of the debugging primitives, it is possible to specify input
ports of primitives for which a debugging log should be created. When the primitive
net is loaded, debugging primitives are automatically inserted and connected to the
same output port as the monitored input port. Debugging is specified using input ports,
because output ports are neither specified using the XML protocol nor using DirectIO.
For each input port, the size of the ring buffer can be given as the time for which the
log should be kept. Log entries older than this time are automatically overwritten with
newer data. Because the primitive net is executed with real-time guarantees even while
debugging is enabled, it is not possible to re-size the ring buffer during run-time.
The debug primitives are available for all data-types that have an appropriate TypeKit,
i.e. also complex data types can be logged. If debugging is requested for a data-type
without a TypeKit, a warning message will be logged and the net will be created without
the debugging primitive. The main functionality of the primitive net is not impacted,
only debugging is restricted.
The SoftRobot RCC has a configuration parameter which controls how debugging
primitives are created. Debugging can be disabled completely, debugging primitives can
be inserted as requested by the application (default), or all input ports can be logged
with a given ring buffer size. Creating debugging logs does impact performance of the
application. For each input port which has debugging enabled, an entry in the ring buffer
must be written in each primitive net cycle. If debugging is enabled for a very large
number of input ports in a very large primitive net, this can cause considerable overhead.
Furthermore, memory consumption can also be high if a large number of ports has to
be logged for a long period of time. All memory is allocated before the primitive net is
started and only freed once the primitive net has been completely unloaded.
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Debugging primitives are handled just like any other primitive, i.e. if an input port inside
a fragment is debugged, no values will be logged while the fragment is inactive. The
debugging primitive stores the current cycle count together with the current port value
so that phases of inactivity can be clearly seen.
The generated log can be retrieved using an HTTP request. A debugging web handler is
registered for each primitive net and returns a single file containing one row of debug
values (tabulator separated for all debug primitives in the net) per primitive net cycle.
Every row also contains the primitive net cycle counter, and the time of the primitive
net (seconds since the net’s start). For complex data types, TypeKits are used identically
to communication primitives for log file generation.

7.7.2. prIDE - a web-based debugging environment

For more debugging support, prIDE (“RPI-IDE”, an integrated development environment
for primitive nets) is a web-based tool that allows graphical design of primitive nets, as
well as accessing the debugging log of a primitive net. prIDE has been developed in
Java using the Google Web Toolkit (GWT) [49]. The GWT compiler produces a set
of HTML pages and JavaScript code which can be executed by most modern browsers
(in particular Google Chrome and Mozilla Firefox). The SoftRobot RCC can serve all
required files using the built-in web server.

Designing primitive nets

Developers can hand-craft primitive nets using prIDE. Figure 7.8 shows a screenshot of
the primitive net editor. The primitive net currently being edited is the same primitive
net as shown in Fig. 7.6. It is possible to add primitives from a list, to configure all
parameters and to connect input ports to output ports of other primitives. Primitives
are automatically ordered from left to right, according to the data-flow among them (Pre
primitives are recognized). If a primitive is selected in the editor, all parameters are
displayed and primitives which are connected with the selected primitive are highlighted.
In Fig. 7.8, the primitive ncout of type Core::BooleanNetcommOut has been selected,
and in this example its input ports are connected to both other primitives. Fragments
are displayed like normal primitives and can be entered by selecting the fragment from a
dropdown box.
After the design of the primitive net is finished, it can be transferred to the RCC using
the XML net representation (cf. Section 7.6.2), and subsequently executed. It is also
possible to retrieve the XML representation of the primitive net from prIDE, and the
XML for existing primitive nets can be parsed by prIDE and displayed in the editor.
prIDE is also connected to the running RCC and can retrieve all primitive nets that are
currently available. The RCC provides the XML representation of every primitive net
(even if it has been created using the DirectIO protocol), thus prIDE can display the
structure of every primitive net on the RCC. Primitive nets retrieved from the RCC can
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Figure 7.8.: prIDE primitive net designer

also be modified using the editor and a copy transmitted to the RCC again as a new
primitive net.

Debugging primitive nets

Besides the capability to design new primitive nets, prIDE is also able to help with
debugging existing primitive nets. As previously mentioned, existing nets can be parsed
and their structure displayed. prIDE offers a view for examining the structure of a
primitive net which is very similar to the editor, but lacks all functionality for adding or
modifying primitives and thus has more space available for displaying large primitive nets.
Many primitive nets contain large structures of primitives which form Boolean expressions
or mathematical formulas. prIDE can automatically hide those calculation primitives
from view and display a more readable infix notation for input ports of primitives which
are connected to those structures. Primitives providing constant values (TValue) are also
hidden. For example, if a primitive A is connected to a BooleanAnd primitive, which
on its part is connected to a BooleanValue primitive with value true and some other B,
prIDE will display “B.outPort && true” for A’s input port.
To hide basic primitives, prIDE contains a list of all known calculation primitives. During
the graphical rendering, all primitives contained in the list are simply suppressed. If the
user selects a non-basic primitive which has a hidden primitive connected to its input port,
a textual infix representation for the connected primitive is requested. For each primitive
a pretty printer is available, e.g. the BooleanAnd primitive pretty prints itself as “inValueA
&& inValueB”. For all primitives connected to input ports of the hidden primitive, the
same algorithm is applied recursively. If a non basic primitive is found, no pretty printer
is available and a textual representation in the form “source-primitive.output-port” is
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Figure 7.9.: prIDE plotting a debug value from a trajectory generator. A single joint
is moved from position 0 to position 1. X-axis: time, Y-axis: position

rendered. Since Pre primitives are not considered basic primitives and no unguarded
cycles may exist in a primitive net, this algorithm is bound to terminate.
prIDE is able to display values of input ports of primitives for which debugging has
been enabled. Values are continuously read from the RCC and stored in the browser’s
memory which enables the user to step through all cycles of a primitive net. Unlike
the real-time implementation of the RCC, allocating more memory is no issue within
a web application (as long as the browser has access to enough memory). Besides raw
values, prIDE can also plot a time/value graph for integer and floating point links.
Figure 7.9 shows an exemplary time/position graph for a primitive net which generates a
trajectory with constant acceleration, constant velocity and constant deceleration phases
(cf. Section 5.4.1).
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Chapter 8

Synchronized execution of multiple
real-time primitive nets

The SoftRobot RCC supports seamless switching from one set of primitive nets to another
set of different primitive nets using synchronization rules as introduced in Chapter 6.
This mechanism allows the robotics application to maintain control of the overall program
flow while transitions between small (real-time) tasks can still be performed real-time
safely.

8.1. Specification of synchronization rules

According to Section 6.1, a synchronization rule σ is defined as a 4-tuple (C,ω, ψ, α)
with the synchronization condition (C) and the sets of primitive nets to terminate (ω),
to cancel (ψ) and to start (α). The synchronization condition is a propositional logic
expression using Boolean variables which are provided by each primitive net to describe
the internal state of the net. Using the SoftRobot RCC, these variables are provided by
re-using the Boolean net communication primitive BooleanNetcommOut (cf. Section 7.6.1).
This primitive is perfectly suited as it has a Boolean input port and supports adding a
name to the value.
Before a synchronization rule can be specified, all involved primitive nets must have
been loaded on the RCC. The synchronization rule can then be specified by the robotics
application by posting the synchronization rule to the appropriate address using the
plain HTTP communication channel, or by using the nesc command (cf. Section 7.6.3)
over DirectIO. The nesc command has four parameters identical to the 4-tuple σ. The
synchronization condition is specified using a string, denoting the variables in the
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8. Synchronized execution of multiple real-time primitive nets

form netname.variablename. A combination of multiple variables is possible using the
and (&), or (|) and not (!) operators as well as parentheses where necessary. The
SoftRobot RCC uses a simple recursive descending parser generated by Coco/R [89] to
parse the synchronization condition and to create an abstract syntax tree.

8.2. Evaluation and execution of synchronization rules

The Boolean variables for the synchronization condition are provided in primitive nets
by using the Boolean communication primitives. Changing the value of such a variable
can be considered identically to propagating new set-points to hardware devices, thus
the communication primitives only update their internal data during the third phase of
the primitive net execution (cf. Sections 5.3.2 and 7.5) when all actuators are updated.
This ensures that the the Boolean variables can be read at any time and always represent
the same state as the actuators, even if the next execution cycle of the primitive net has
already been started.
Synchronization rules can only be triggered by the synchronization condition C becoming
true. Therefore it is sufficient to attach a synchronization rule to all primitive nets that
contribute at least one Boolean variable for C. Once a synchronization rule has been
received, the synchronization condition is parsed and memory references to the Boolean
variables are stored to allow for a fast evaluation of the condition. Every primitive
net evaluates all relevant synchronization conditions after it has finished phase three
(updating actuators). As long as the evaluation takes place, no other primitive net
participating in this certain synchronization condition may enter phase three to guarantee
a consistent state of the system and the synchronization condition.
If the synchronization condition evaluates to true, the RCC attempts to acquire all
resources necessary to start the primitive net in α. Resources in use by primitive nets
contained in ω are transferred to the newly started primitive nets, all other resources
are locked if they are available. If any resource cannot be successfully acquired, the
synchronization rule is discarded without any modifications to the system (i.e. no primitive
net is terminated or started). If all resources are available, all running primitive nets in
ω are terminated. If a primitive net has already entered phase one or two, the execution
of these phases will be interrupted. This is possible, because modifications to the system
may only be performed during phase 3, thus aborting a primitive net during phase 1 or 2
causes no undesired effect. All primitive nets contained in ψ are canceled (i.e. the Cancel
primitive will have a true output port in the next execution cycle) and the primitive nets
contained in α are started synchronously.
The outTerminate output port of a primitive net is checked after all synchronization
conditions that are affected by this primitive net have been evaluated, thus conditions
becoming true during the last execution cycle of a primitive net will be attended to.
After the primitive net has terminated, the values of the Boolean variables are kept in
memory to allow further evaluations of synchronization conditions triggered by other
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(still running) primitive nets. If the last active primitive net involved in a certain
synchronization condition terminates and the condition did not become active, the
corresponding synchronization rule can be discarded. After a primitive net has been
terminated, the values of the Boolean variables can only change to indeterminate if any
resource is re-used which cannot activate a synchronization rule (the change of a variable
to indeterminate can at most change the value of a synchronization condition from false
to indeterminate, but never to true, cf. Table 6.1).

8.3. Thread management for multiple synchronized primitive
nets

Each primitive net is executed by a dedicated (real-time) thread on the (real-time)
operating system, using the Orocos Real-Time Toolkit (RTT) [21] as an abstraction layer
from operation system specifics. Threads are encapsulated in the NetExecutor class.
Creating and starting new threads cannot be done real-time safe, thus for synchronization
rules it is important that an appropriate thread for each primitive net to be started
(set α) is available and ready once the synchronization rule is executed. An appropriate
thread is defined by several requirements:

1. The thread must already be running before the synchronization rule is triggered.
2. The thread must not be allocated to another primitive net which may be executed

simultaneously.
3. The thread must be able to execute a primitive net with the desired execution

cycle time (the SoftRobot RCC allows to specify the required cycle time during
the creation of a primitive net).

4. The thread must have the desired execution priority for the primitive net (the
SoftRobot RCC allows two different priorities: real-time and non-real-time, the
latter can be used e.g. for monitoring tasks).

In order to fulfill requirement number one, it can be necessary to start new threads
during the creation of the primitive net which are idle until the net is eventually started
by a synchronization rule.
The following additional requirements should be fulfilled whenever possible:

5. The thread executing a primitive net which controls a certain actuator should also
be reused if a successive primitive net controls the same actuator. Different threads
with the same frequency can be running with a slight phase-shift. Reusing the same
thread reduces the impact created by this phase-shift which could lead at most to
the delay of one cycle time while switching from one thread to another one.

6. The total number of threads should be as low as possible.
In particular to fulfill the latter two requirements, a planning of execution threads is
required (i.e. it is not possible simply to allocate a new thread for each primitive net
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that is started in a synchronization rule). During the creation of a new primitive net,
one certain thread is allocated for later execution, independent of which synchronization
rule actually starts the primitive net. To determine possible reuse of threads, hardware
resources controlled by the primitive nets are considered. Each primitive net provides a
set of resources it requires (each primitive can specify the list of resources it controls).
Because hardware resources are inherently mutually exclusive, two primitive nets sharing
at least one resource can never be executed simultaneously and thus the same thread
can safely be used for execution of both primitive nets (if all other parameters such as
execution cycle and execution priority match).
To assign threads to a new primitive net, a table of threads, assigned primitive nets and
commonly controlled resources is required. The set of commonly controlled resources is
the intersection of resources required by all primitive nets assigned to a certain thread.
This set describes the resources which allow the primitive nets to share the same thread
(i.e. prohibiting the primitive nets from running simultaneously) and therefore this set
cannot be empty.
Threads are assigned to primitive nets during the creation of the primitive net. Although
each primitive net is initially assigned to a thread, the assigned thread may change any
time prior to the start of the net, however at any time a suitable thread must be assigned.
Algorithm 8.1 lists pseudo-code for the allocation algorithm used in the SoftRobot RCC.
If the new primitive net does not require any resource, a new thread is created and not
added to the thread table. Without any resources, it is impossible to decide whether two
nets will be executed simultaneously or not.
If the new primitive net requires at least one resource, the thread table is searched
for a thread where the intersection of the primitive net’s required resources and the
commonly required resources listed in the table is not empty, and all parameters (such
as cycle time and priority) match. It is possible that more than one thread listed in the
thread table matches these conditions, e.g. if the newly created primitive net controls
multiple actuators which have been controlled independently by several primitive nets
previously. In this case, any thread can be selected (Algorithm 8.1 always selects the
first thread found). If no suitable thread is found, a new one is created and added to the
thread table. The new primitive net can be added to the assigned primitive nets, and
the commonly required resources are updated in the thread table to contain only those
resource contained in the intersection of all required resource of all assigned primitive
nets, including the new one. Using this method, the set of commonly required resources
can shrink during the creation of a new primitive net, but not become empty.
Using this algorithm, only suitable threads are selected, i.e. all primitive nets assigned to
a certain thread are never executed simultaneously due to resource conflicts. By using
the resources as a criteria for thread selection it is also ensured that the same thread will
be reused for different primitive nets controlling the same hardware device when possible.
This is generally not possible if multiple devices are first controlled independently by
multiple primitive nets and later by a single primitive net or vice versa, however even in
this case at least one thread will be reused.
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Algorithm 8.1 Allocation of a suitable thread for a new primitive net
netresources ← getNetResources(net)
if netresources = ∅ then

thread ← allocateNewThread(getThreadParameters(net))
addAssignedNet(thread, net)
return thread

else
foundThread ← null
for all thread : getThreadTable() do

if (getResources(thread) ∩ netresources 6= ∅) then
if parameterMatch(thread, net) then

foundThread ← thread
break

end if
end if

end for
if foundThread = null then

foundThread ← allocateNewThread(getThreadParameters(net))
setResources(foundThread, netresources)

end if
commonResources ← getResources(foundThread) ∩ netresources
setResources(foundThread, commonResources)
addAssignedNet(foundThread, net)
return foundThread

end if

Threads must also be managed if a primitive net terminates, or is removed without
ever having been started. Algorithm 8.2 shows pseudo-code for these cases. At first,
the primitive net must be removed from the list of assigned nets for the thread it was
previously assigned to. If the list of assigned net now becomes empty, the thread can be
stopped and removed from the thread table. Otherwise, the commonly required resources
must be updated by creating the intersection of required resources for all remaining
nets. Since the set of commonly required resources might increase due to this step, it is
possible that the sets of commonly required resources for two (or more) different threads
now have a non-empty intersection. This implies that those threads are now mutually
exclusive, and at most one can be actively executing a primitive net. All other threads
must be idle. It is now possible to move all assigned nets from the idle threads to either
the non-idle thread, or to an arbitrary thread if all threads are idle. This reduces the
amount of idling threads without potentially causing conflicts.
The described algorithm for allocating a thread to a primitive net intentionally does not
use any information about synchronization rules, not even in the special case of primitive
nets without resources. The threads are rather already assigned during the creation of a
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Algorithm 8.2 Termination of a primitive net
thread ← getThreadForNet(net)
removeAssignedNet(thread, net)
if getAssignedNets(thread) = ∅ then

delete thread
else

newresources ← infiniteSet
for all net : getAssignedNets(thread) do

newresources ← newresources ∩ getNetResources(net)
end for

end if
setResources(thread, newresources)
for all otherthread : getThreadTable() do

if getResources(otherthread) ∩ newresources 6= ∅ then
reallocateNets(otherthread, thread)
delete thread
break

end if
end for

primitive net, when no synchronization information is yet available. There are several
reasons for this decision:

• It cannot be guaranteed that a thread from a primitive net O contained in ω in a
synchronization rule is available for executing a primitive net A from α because:
– The primitive net O may already have terminated, and another (independent)

synchronization rule could have taken over the thread.
– The primitive net O has never been started, thus there is no thread to take

over.
• Synchronization rules should be independent. To circumvent the issues of the last

item, it could be possible to check that there is no synchronization rule that takes
the required thread away. However, this consideration is only true as long as no
further synchronization rule is added, i.e. for each additional synchronization rule it
would be necessary to check whether it influences any existing rule. If conflicts arise,
either the new rule would have to be rejected, or old rules re-planned. Re-planning
can be difficult, because all existing rules could be activated at any time during
the (potentially time consuming) re-planning-process.

Example

To demonstrate Algorithms 8.1 and 8.2, the following example uses five primitive nets
with different sets of required resources.
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Net Required resources
neta {robotx}
netb {roboty}
netc {robotx, roboty}
netd {robotx}
nete {roboty}
The primitive nets neta and netb each control a single robot independently. After both
primitive nets have finished their task, they should be taken over by a single successor netc
which has to control both robots simultaneously. Finally control should by distributed to
two independent primitive nets netd and nete again after netc has finished its work.
After neta has been created, the thread table contains the following information
Thread Assigned nets Common resources
TA {neta} {robotx}
Since no entry has been in the table before, no appropriate thread could be located
and a new one has been inserted, carrying all required resources from neta as common
resources. The creation of primitive net netb leads to the insertion of a second row
Thread Assigned nets Common resources
TA {neta} {robotx}
TB {netb} {roboty}
Thread TA could not be reused, since the intersection of required commands of TA and
netb is empty. Therefore a new thread TB has been started an inserted into the table.
Netc finally can use TA or TB, since both threads have one robot in common with the
net. In this example, TA has been chosen.
Thread Assigned nets Common resources
TA {neta,netc} {robotx}
TB {netb} {roboty}
Once neta terminates, it is removed from the list of assigned nets, and the common
resources are recalculated based on the intersection of all remaining assigned nets
Thread Assigned nets Common resources
TA {netc} {robotx, roboty}
TB {netb} {roboty}
It now can be seen that two threads both share the common resource roboty, which
implies that both threads are mutually exclusive. In this case only one thread can
be currently running (in this example TB). All other threads can be terminated after
relocating their tasks to the single currently active thread.
Thread Assigned nets Common resources
TB {netb, netc} {roboty}
After netb has terminated, only one primitive net is currently active.
Thread Assigned nets Common resources
TB {netc} {robotx, roboty}
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The netd can be created and assigned to TB, for nete however a new thread has to be
started.
Thread Assigned nets Common resources
TB {netc, netd} {robotx}
TC {nete} {roboty}
This example could be performed with the minimum number of threads possible, and
threads have been reused where possible. The resource roboty was controlled by TB both
within netb and netc. robotx had to switch from TA to TB during the transition from
neta to netc, however at least one robot necessarily had to switch since two threads had
to be merged into a single one.
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Chapter 9

Devices and drivers

The SoftRobot RCC reference implementation is not only capable of a real-time safe
execution of primitive nets, but can also communicate reliably with external hardware
devices such as robots, sensors or other periphery devices. The SoftRobot RCC needs
a device specific driver for each piece of hardware it should control. In the context of
this work, the term device describes a certain piece of hardware, e.g. one specific robot
arm. The term driver describes the piece of software that is required to control hardware.
For every device, a driver is required. Multiple instances of the same type of hardware
require multiple devices but may be controlled by the same driver, and a driver may also
support different types of devices which are closely related (e.g. robot arms with different
payloads but the same hardware interface). For each device a class derived from base
class Device (cf. UML class diagram in Fig. 9.1) is required. Every device must therefore
provide some functionality common to all devices.

Figure 9.1.: UML class diagram for devices
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Every device has a DeviceState which can be one of the following:
Offline The device driver has been loaded, and a device instance is available at the RCC,

but no communication with the hardware device is possible. This can occur for
example if a device is connected over a network link and the network connection
has been interrupted.

Safe operational The device is connected to the RCC and it is possible to retrieve data
from the device (e.g. the current position of a robot). It is not possible to control the
device. This state happens for example, if a robot has been successfully connected,
but an emergency stop button has been pressed.

Operational The device is online and the RCC has full control over the device. This
should be the most common state for any hardware device.

Devices can have a set of parameters which are stored as instances of class DeviceParam-
eter. Such parameters can be used for a variety of different configuration tasks. Common
configuration parameters specify the communication channel to the hardware, e.g. the
network address, an EtherCAT slave ID, a CAN id, etc. Many articulated arm robots
also have configuration parameters for their Denavit-Hartenberg parameters [108, p. 61]
for use in their kinematics functions. All parameters can be set upon creation of a device,
which is usually done either by using a configuration file on start-up of the RCC, or
during the start-up of a robotics application. Some parameters (e.g. communication
parameters) cannot be changed once a device has been created.
The isRemovable() method is used to determine whether a device instance may be
removed from the RCC. Some devices may not support proper unloading and may thus
block any attempt of removing themselves. If a driver in an extension library blocks
unloading, this will also block any attempt to unload or replace this loadable extension
once such a device has been created.
Devices can provide specific web pages which are served by the RCC’s integrated web
server (cf. Section 7.6.2). Device specific web pages usually contain hardware status
information which may be of interest to the user such as device serial numbers, motor
temperatures, etc. Drivers can provide hardware specific primitives that are required for
the operation of the devices supported by the driver.

9.1. Device usage

The usage of devices is partially identical to the use of primitives. New instances of
devices are also created using the factory pattern. Factories for all supported devices
must be registered with the central Registry once an extension library is loaded. These
factories provide support for creating and destroying instances of the device.
Extension modules can be loaded and unloaded at run-time. When such an extension is
unloaded, it must be ensured that no currently active primitive net is using any primitive
or device provided by this extension module. To prevent devices from being removed

128



9.2. Device interfaces

«Instantiate»

Figure 9.2.: Usage of devices in RCC

while they are in use, every usage of a device must be registered. To facilitate this task,
the template class DeviceInstance is provided. To access a device, an instance of the
DeviceInstance class must be bound to the appropriate type and the desired name of
the device must be specified either using the constructor or the fetchInstance() method.
This automatically looks up whether a device with the given name exists, whether it has
the right type and also locks this device from being removed. Using the getDevice()
method the device can be accessed. It is guaranteed that a device will not disappear as
long as at least one DeviceInstance of the device exists. In its destructor, DeviceInstance
unlocks the device such that the developer does not need to care about releasing used
devices.

9.2. Device interfaces

Many devices need drivers which are tailored exactly for supporting this device. For
example, it is generally not possible to control robots of two different manufacturers
with the same driver; sometimes even different robot series from the same manufacturer
need different drivers. However, all those robots still share a lot of common features.
Device interfaces have been introduced to support different hardware devices supporting a
common feature set. Using these device interfaces, no changes in the robotics application
are required to change a driver implementation in the RCC, as long as the same device
interfaces are still supported.

But not only robotics applications can profit from device interfaces. Often hardware
drivers need to rely on other hardware devices to perform their task. Many systems
are connected to the robot controller using a fieldbus, e.g. EtherCAT or CAN. There
are generic device interfaces for EtherCAT or CAN, which are independent of the used
communication hardware, thus it is possible to use the same driver with different hardware
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Figure 9.3.: Some commonly used device interfaces

interfaces. Some commonly used device interfaces are shown as a UML class diagram in
Fig. 9.3.

Robotics applications can access hardware devices independently of the underlying
driver by using primitives that are provided alongside with device interfaces. These
primitives work transparently with all hardware devices that implement the given device
interface. Device interface furthermore can also provide web pages which are attached to
every device implementing the interface. Such web pages display information about the
underlying hardware devices in a standardized form, e.g. all robot arms can display their
current joint angles with the MultiJointInterface.

ArmKinematicsInterface

The ArmKinematicsInterface provides methods for calculating the direct and inverse
kinematics function for a robot. The direct kinematics function takes a list of all joint
values for a robot (this can be both rotational as well as translational joints, depending
on the robot hardware), and returns a Frame. A frame describes both a position in space
as well as the orientation. Therefore, the values X, Y and Z are used for the position,
and Euler angles A, B and C are used for orientation. The reference coordinate system
is always the base of the robot.

The inverse kinematics function takes a position given as Frame (relative to the robot’s
base), and calculates joint values to reach the given position. Because the inverse
kinematics function usually is not unique (for a 6-DOF robot it yields up to 8 solutions),
a list of hint joints must also be given to the method. Hint joints are joint values known
to be near the desired solution, such that the inverse kinematics function can chose the
closest solution. When points are programmed into the program, hint joints can be
saved from the current position of the robot. Even if the measured point is later moved
manually, the hint joint usually will still be close enough to prevent “wrong” solutions
from being chosen.
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Input ports inJoints: Array<double>
Output ports outFrame: Frame
Parameters Robot: String

Table 9.1.: The Kin primitive

Input ports inFrame: Frame
inHintJoints: Array<double>

Output ports outJoints: Array<double>
Parameters Robot: String

Table 9.2.: The InvKin primitive

The ArmKinematicsInterface provides a web page which can be used by the robotics
application to query the kinematics function of a robot. This avoids the need for
duplicating the kinematics functions for each robot once in the RCC and once again in
the application. For applications that need real-time access to the kinematic functions,
two primitives are provided.
The Kin and InvKin primitives (cf. Tables 9.1 and 9.2) provide access to the kinematics
and inverse kinematics function for the robot specified with parameter Robot. The
implementation of the respective functions is done in the device driver implementation of
the concrete robot. Cartesian positions are represented as data type Frame, and joint
values as arrays of type double. The primitives expect arrays of appropriate size for
the given robot, i.e. a robot with 6 joints needs 6 values for inJoints and inHintJoints.
The primitives will always return a single solution for the inverse kinematics function,
because for a generic robot it is not known how may solutions are available, even an
infinite amount of solutions may be possible (e.g. for the KUKA LWR with 7 joints). If
no solution can be found (e.g. because the specified frame is outside the working area of
the robot), not-a-number (NaN) values will be returned.

MultiJointInterface

The MultiJointInterface is a generic interface to multi-joint kinematics (e.g. articulated
arms, portal systems, . . . ). Using the setJointPosition(...) method it allows to define
new set-points for the actuator. Such a set-point must be reachable by the actuator
within one execution cycle. The planning of the desired trajectory is up to the user and
not performed by the device. The driver may however perform some interpolation if
necessary for smooth hardware control. Using the checkJointPosition(...) method it is
possible to check whether any given joint position is valid. Invalid positions are usually
out of the range the joint can reach.
Using the MultiJointInterface, it is possible to query the current joint position, velocity
and acceleration of an actuator. Two different values are available: measured and com-
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Input ports none
Output ports outCmdPos: double

outMsrPos: double
outCmdVel: double
outMsrVel: double
outCmdAcc: double
outMsrAcc: double
outError: int

Parameters Robot: String

Table 9.3.: The JointMonitor primitive

Input ports inPosition: double
Output ports outErrorConcurrentAccess: Boolean

outErrorJointFailed: Boolean
outErrorIllegalPosition: Boolean
outError: int

Parameters Robot: String
Axis: int

Table 9.4.: The JointPosition primitive

manded. Measured values are based on values retrieved from sensors built in the actuator.
Commanded values reflect the values sent to the device using the setJointPosition(...)
method. Some devices may not have sensors for all values. For example, if a device only
has a sensor for the current position but not for velocity and acceleration, the device
driver must derive these values internally.
Besides joint position, there are also tool related methods in the MultiJointInterface.
Many hardware controllers need to know the mass of any attached tool in order to control
the hardware correctly. Therefore, using setToolMass(...) it is possible to define the
mass currently attached to the actuator. Using setToolCOM(...) the center of mass can
be defined, and using setToolMOI(...) the moment of inertia. All those methods also
take a joint as argument, because some robot systems support tools not only being
attached to their end-effector, but also to other parts of the kinematic chain (e.g. many
KUKA robots support an additional payload mounted on joint 3 for welding hardware).
Some other hardware might not need additional load data and thus simply ignore calls
to these methods.
There are three primitives available which use the MultiJointInterface. All primitives
have parameters for configuring the robot and joint. Control is always done on a per
joint level, i.e. each joint needs its own set of primitives for reading the current position
or for commanding a new position. The JointMonitor primitive (cf. Table 9.3) provides
information about a joint with the current position, velocity and acceleration (both
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Input ports inMass: double
inCOM: Vector
inMOI: Vector

Output ports outCompleted: Boolean
outError: int

Parameters Robot: String
Axis: int

Table 9.5.: The ToolParameters primitive

measured and commanded) and an error number in case an error has occurred with the
joint (e.g. the joint motor is unpowered). The JointPosition primitive (cf. Table 9.4)
accepts new set-points for the configured joint. Only one primitive may actively control
any specific joint of a robot. Multiple primitives with the same configuration may exist
within the same primitive net, however only one of those primitives may be supplied with
new set-points during any given primitive net execution cycle. The primitive has several
output ports for signaling errors. Boolean typed output ports are available for the most
common errors (concurrent access: more than one primitive has tried to actively control
the joint; joint failed: the joint has failed for some reason, e.g. it was not powered; illegal
position: the commanded position is outside of the valid range of joint positions) and an
integer typed output port for other errors, which may be specific to the concrete robot
driver. The ToolParameters primitive finally allows to configure the payload attached to
a robot joint using its input ports inMass, inCOM (center of mass) and inMOI (moment
of inertia). The new payload is configured with the attached robot as soon as new values
are made available to the primitive. Because switching the tool configuration takes
time for some robot systems, the primitive provides an output port for signaling the
completion of the switching process. The primitive also has an error output port which
may be device specific.

IOInterface

The IOInterface provides generic support for digital and analog inputs and outputs.
Regarding the IOInterface, digital inputs and outputs can represent a Boolean value
and analog inputs and outputs a floating point value. The mapping of these values to
a concrete hardware interface must be performed by the driver. Digital ports can be
provided for example by bus terminals which can switch a voltage supply on and off,
but could also be integrated directly into a gripping system for controlling opening and
closing requests.
The IOInterface provides methods for reading inputs as well as reading and writing
outputs. Each device may support multiple ports, thus a port number must be specified.
The numbering of ports is up to the driver, usually each type of port starts counting
from zero.
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Input ports inValue: Boolean
Output ports none
Parameters Device: String

Port: int

Table 9.6.: The IO::OutBool primitive

1 < a=gde()
2 > a=da({LbrLeft:{interfaces:{armkinematics:{},io:{},multijoint:{}},type:"kuka_lwr_fri

"},LbrRight:{interfaces:{armkinematics:{},io:{},multijoint:{}},type:"kuka_lwr_fri
"},rcc:{interfaces:{},type:"rcc"}})

3 > a=ds({LbrLeft:"off",LbrRight:"off",rcc:"op"})
4 > a=ok()

Listing 9.1: Example DirectIO communication for device status

The IOInterface provides six primitives to control digital and analog I/O. Table 9.6
exemplarily shows the IO::OutBool primitive which allows the primitive net to write to a
digital output. It has one input port which carries the value the output should be set to
and requires configuration for the device which controls the I/O hardware, and a port
number (in case the device supports more than one input or output). Primitives are
available for digital and analog inputs and outputs. Inputs can be read, outputs can be
read and written using the appropriate primitives, thus three primitives are required for
analog and three for digital I/O.

9.3. Communication with applications

Robotics applications often need information about devices available at a certain Robot
Control Core. The SoftRobot RCC provides two methods for robotics applications to
receive this information. The first method provides a web handler that lists all devices,
their state and the device interfaces they implement under the URI /devices/. Each device
and device interface may provide additional web handlers to provide more detailed, device
specific information for the application. The MultiJointInterface for example provides
the current measured and commanded joint positions, and the ArmKinematicsInterface
offers both direct and inverse kinematics calculations on a web page.
It is also possible to receive device information using the DirectIO protocol. Because this
protocol cannot be extended as easy as the web server, information on this protocol is
restricted to generic device status information such as new devices, changes in device
states and removed devices.
Listing 9.1 shows an example for requesting device status using DirectIO. The handshake
has been omitted. In line 1, the robotics application requests device information using
the gde command. In line 2, the RCC responds with the device added (da) message,
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containing a map from device name to another map containing two entries type and
interfaces. The type of the device is transmitted as string, the device interfaces the
device implements are again a map from the device interface to a map of additional
parameters. In Listing 9.1 two devices of type kuka_lwr_fri are available as “LbrLeft”
and “LbrRight”. Both implement the device interfaces armkinematics, io and multijoint
which all do not provide further details (further details would be a device interface specific
map from string to string). A third device “rcc” of type rcc does not implement any
device interfaces. This is a virtual device for configuring the RCC itself.
In line 3, the device status (ds) message reports both LbrLeft and LbrRight as offline (i.e.
the robots are not connected to the RCC) and the virtual RCC device as operational.
Line 4 finally acknowledges the gde command. Further updates of devices will be
transmitted asynchronously to the robotics application. For instance if a new device is
added, a further da message will be sent. If one of the robots connects to the RCC, another
ds message with the new state (safe-operational or operational) will be transmitted.

9.4. Hardware device drivers

Device drivers for a set of different robotics hardware have been developed and integrated
into the SoftRobot RCC. Appendix B provides an overview of hardware devices currently
supported by the SoftRobot RCC. The following sections provide in-depth descriptions
of the implementations for some of the devices.
In order to control different manipulators using different communication technologies,
some form of time compensation for different cycle times is necessary. The solutions of
the SoftRobot RCC for this problem are explained with the Stäubli TX90L robot as an
example in Section 9.4.3. Some robots offer functionalities which are well beyond the
capabilities of traditional robots, e.g. integrated force and torque sensors or impedance
controllers. Section 9.4.4 introduces the KUKA lightweight robot and the integration of
this device with all specific functionality into the SoftRobot RCC.

9.4.1. The EtherCAT fieldbus

EtherCAT is a fieldbus which was developed by Beckhoff and uses standard Ethernet
frames as defined in IEEE 802.3 Ethernet protocol [62] with 100 MBit/s bitrate for
communication. As physical media, standard copper Ethernet cables can be used. If
the distance between two nodes is more than 100 m, optical fiber cables can also be
used. The EtherCAT fieldbus is designed as a master/slave system, i.e. there is one
master and multiple slave devices connected to the bus. The master device is responsible
for managing the overall bus operations, e.g. configuring slaves or initiating process
data transmissions. The master can be equipped with standard issue network interface
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hardware, while slaves use specialized EtherCAT interface hardware (FPGA1 or ASIC2)
[100], which allows for a very fast and real-time safe communication.
An EtherCAT fieldbus is logically organized as a ring. The master transmits an Ethernet
frame which is received and forwarded by every slave and eventually is returned to the
master. Physically, a bus topology is very commonly used, although other topologies such
as a star are also possible. EtherCAT slaves usually have at least two connection ports.
If both ports are connected, frames received on one port will immediately be forwarded
to the other port. If the second port is not connected, the frame will be reflected to
the first port. Thus a frame will pass all slaves on the bus before it is sent back by the
last slave in the line and again passes all slaves until the master is reached. Because
EtherCAT uses fully bidirectional Ethernet connections (i.e. two different wire pairs are
used for transmitting and receiving data), no collisions between frames can occur.
EtherCAT slaves read and write data to Ethernet frames while they pass the device.
Frames need not be received and stored completely before the data can be processed,
because all necessary modifications of the frame are performed “on-the-fly” by the
dedicated EtherCAT slave chips. This allows for very short latencies in slaves and thus
for very short cycle times for the whole bus system. Typical cycle times can be as low as
50 µs [103].
EtherCAT slaves can have four different states: Init, Pre-Operational (Pre-Op), Safe-
Operational (Safe-Op) and Operational (Op) [35]. After being powered on, all slaves
are in state Init. After the fieldbus has been initialized by the master, all slaves enter
state Pre-Op. In this state, communication between the master and slaves is possible
using the mailbox protocol, e.g. for configuring the slaves. The mailbox protocol allows
the master to send messages to slaves and to receive their answers, however no cyclic
process data exchange is possible. One important configuration item for slaves can be
the configuration of the process image, i.e. which data (and in which layout) needs to
be transmitted cyclically between the master and the slave. Not all slaves support this
configuration; some slaves have a fixed, predefined process image (e.g. the simple digital
input and output bus terminals from Beckhoff always map their inputs and outputs to
consecutive bits in the process image). After all slaves have been configured, they enter
the state Safe-Op. In this state, cyclic exchange of process data between the master
and the slaves starts. The master may read current sensor values from slaves, however
slaves must remain in a safe state, i.e. generally they may not perform any action such
as switching outputs or moving an actuator. As last step, the master requests a state
change of all slaves to state Op. In this state, uninterrupted cyclic exchange of process
data takes place, and slaves are fully operational and controllable.
A device interface is used for the EtherCAT master implementation in the SoftRobot RCC.
The device interface provides all necessary operations to interact with an EtherCAT
bus, but abstracts from a concrete implementation. This allows for exchanging the
underlying implementation at any time without the need for modifying device drivers

1Field Programmable Gate Array
2Application-specific integrated circuit
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Figure 9.4.: UML class diagram of the EtherCAT device interface

which depend on the EtherCAT bus. The EtherCAT master is provided by a slightly
modified version of the Simple Open EtherCAT master (SOEM) [74] project, which has
been made compatible with the real-time network stack provided by the RTnet project
[75]. A real-time network stack is necessary to avoid breaking real-time guarantees
by accessing non real-time functionality of the operating system for network access.
SOEM can use any network interface card (NIC) supported by the operating system
for interfacing with the EtherCAT bus, however the use of RTnet limits the number of
real-time capable NICs.

Figure 9.4 shows a UML class diagram of the device interface for the EtherCAT bus.
The interface EtherCATMaster provides all functionality for device drivers which use the
EtherCAT fieldbus. The SoftRobot RCC EtherCAT device interface uses two concepts for
representing hardware devices connected to the fieldbus: EtherCAT devices and EtherCAT
slaves. An EtherCAT device consists of one or more EtherCAT slaves. On the hardware
level, there are only slaves connected to the bus, however some hardware devices may be
built from multiple slaves (e.g. the KUKA youBot robot arm has one EtherCAT slave
controller for each joint). Although technically every slave can be controlled completely
independent of all other slaves, synchronization of the slaves logically belonging to the
same device is desirable. Therefore the interfaces EtherCATSlave and EtherCATDevice
are designed according to the observer pattern [45], such that the driver for a single slave
as well as the driver for the whole device can be notified of important conditions of the
EtherCAT bus.

Figure 9.5 shows a UML sequence diagram for the life-cycle of an exemplary EtherCAT
device which uses a single slave on the EtherCAT bus. The life-cycle of an EtherCAT
device consists of three phases. In the first phase, the device is initialized and registers
itself with the EtherCAT master (step 1). If a device has a fixed set of controlled slaves,
instances of the slave controllers can also be created in this phase (step 2).

Whenever the EtherCAT bus is ready for startup (i.e. after starting the RCC or after
a modification has been made to the physical layout of the EtherCAT bus, e.g. by
plugging in a new device), the startupDevice() method is called for all devices (step 3).
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Figure 9.5.: UML interaction diagram with the life-cycle of an EtherCAT device
using a single slave
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Within this method, the EtherCAT devices may request a list of all slaves attached
on the bus (steps 4 and 5). This list contains the slave numbers, manufacturer and
device identifiers and possibly also a plain text name of a device. Using this information,
the device can register its slaves with the master (step 6). This way, the master can
be completely independent from any device implementation. Devices also can have
configuration information to identify the appropriate slave if multiple devices of the same
type are connected to the bus. After all devices have registered their slaves, the EtherCAT
master requests the PreOp state for all hardware slaves and notifies the respective slave
drivers when the PreOp state has been reached by calling the inPreOp() method (step 7).
During this method, slaves can perform any initialization which is necessary for their
hardware during PreOp. After all slaves have finished, the master requests state SafeOp
and again notifies all slaves (step 8).
After one process data cycle has been completed while being in the SafeOp state, all
EtherCAT slaves are requested to enter state Op. During this state, process data is
cyclically exchanged between the master and all slaves. At the beginning of each process
data cycle, all devices are notified of an upcoming exchange cycle (step 9). This allows
devices to synchronize data among all their slaves, e.g. a consistent set of set-points can
be aggregated for all joints of a robot. After all devices have been notified, all slave
instances are requested to write their current process image (step 10). To write process
data, an untyped pointer to a memory location (void*) together with the size of this
memory is provided to each slave. The layout of the process data is up to each individual
slave and must match the expectations of the used hardware components. After all
slaves have written their process data to the memory, the master transmits the data of
all slaves physically to the bus. After all hardware slaves have processed the process
data, it is returned to the master, which again calls all slave instances to extract their
process data (step 11). Again, an untyped memory pointer is used, such that every slave
implementation can implement the appropriate memory layout. Although it may seem a
little counter intuitive that the drivers must write their process image before they can
read values, however this process is mandated by the design of the EtherCAT bus which
requires all process data frames to originate from the master and be returned afterwards.
Sometimes it is necessary to shut down the EtherCAT bus. This happens for instance, if
a new device driver is registered or the physical structure of the bus is altered (one or
more devices are added or removed). All hardware slaves are brought into state PreOp,
and each device is notified by calling the shutdownDevice() method (step 12). Devices
should remove all their slaves from the master (step 13) during this method. After the
bus is ready again, the system continues again from step 3. If an EtherCAT device should
be completely removed, this can be done once the bus has been shut down (steps 14 and
15).
The EtherCAT bus provides a clock synchronization mechanism using distributed clocks.
Although the process data travels through all slaves with minimal latencies, no two
slaves will receive the process data at exactly the same time. For many applications
however it is desirable to synchronize certain events, e.g. all inputs of a machine should
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be evaluated at the same time to generate a consistent view of the current state. To
satisfy these requirements, slaves can implement a distributed clock feature to synchronize
their clocks. The first slave in the bus which supports the distributed clocks feature is
usually designated as reference clock, and all further slaves adjust their local clocks to
the reference clock. To compensate for latencies between slaves, signal propagation times
are measured during start up of the bus and incorporated into the adjustments of the
local clocks. Using these mechanisms, all clocks can be synchronized with differences
≤ 1 µs [35].
Two interrupts can be defined (SYNC0 and SYNC1) which occur synchronously for all
slaves at a defined time in relation to the process data cycle. Such an interrupt is used
e.g. to synchronize the collection of all inputs prior to the process data telegram being
processed by each slave. Those interrupts are triggered by the local clock of the respective
slave which is synchronized to all other clocks using the distributed clock mechanism.
The transmission of process data however is triggered by the master, thus the local clock
of the master must also be synchronized to the distributed clock.
The SoftRobot RCC reference implementation automatically configures the first slave
being capable of the distributed clock feature as reference clock and also synchronizes
its process data cycle time to the reference clock of the bus. This synchronization is
necessary because the Real-Time Clock (RTC) of the computer running the RCC and
the reference clock in the first EtherCAT slave may run at slightly different frequencies,
thus the generated SYNC0 and SYNC1 events and the process data transmissions would
slightly drift apart. Synchronization is possible because each process data telegram also
contains the current reference time of the EtherCAT bus (measured in ns since start
of the distributed clock). Some care must be taken because some slaves use a 32-bit
distributed clock which will already wrap after ≈ 4.3 s. The SoftRobot RCC detects such
wraps and internally uses a 64-bit clock which supports a continuous operation of the
fieldbus for ≈ 585 years.

9.4.2. Beckhoff I/O bus terminals

The company Beckhoff provides bus terminals for a broad variety of digital and analog
I/O. Very common digital variants switch or detect +24 V power, while analog variants
often work with voltages in a range of 0 V up to +10 V or with currents from 0 mA to
20 mA. The I/O bus terminals are a very basic example of devices using the EtherCAT
fieldbus.
The Beckhoff I/O device driver implements both the EtherCATDevice as well as the
EtherCATSlave interface. In the SoftRobot RCC reference implementation, one device
has exactly one slave, each bus terminal is controlled by its own instance of the device
driver. Although multiple bus terminals are connected to a single bus coupler, each bus
terminal has its own embedded slave controller and therefore shows up as an independent
slave on the bus. All specific bus terminal drivers (e.g. EL1008 for an 8 port digit input
with 24 V or EL2008 for an 8 port digital output with 24 V) inherit from the abstract
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Figure 9.6.: Stäubli TX90L robot

class AbstractBeckhoffIODevice which provides implementations which are common for
all Beckhoff bus terminals. The specific device drivers are responsible for mapping the
IOInterface to the appropriate process image. For digital I/O the process image usually
consists of one bit per input or output, e.g. the EL1008 bus terminal provides one byte
of input data (8 bit, one for each of its 8 electrical output ports) and no output data.
Analog I/O often use 12 or 16 bit wide integer representations which are mapped to their
input/output range, thus no floating point values are required.

9.4.3. Stäubli TX90L

The Stäubli TX90L robot (cf. Fig. 9.6) is a 6-DOF industrial robot from the Swiss
manufacturer Stäubli with a nominal payload of 7 kg. It is controlled by a Stäubli CS8C
controller, which supports the VAL3 programming language as well as the uniVAL drive
interface. Using the uniVAL interface, it is possible to completely integrate the robot
into a machine tool, including motion control of the robot. Traditionally, robots are often
only partly integrated into machines, because every robot needs its own programs, and
motion control of each robot is only performed by its own controller. UniVAL allows
to specify set-points for each joint of the robot at a high frequency using a real-time
fieldbus, thus motion control can be performed outside the robot controller.
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The uniVAL interface

The uniVAL interface [120] is based on the CANopen DS 402 drives profile [60, 61]
which allows several different operation modes such as cyclic position, cyclic velocity or
interpolated position. The Stäubli TX90 robot uses the cyclic position mode defined in
DS 402, which requires the external motion controller to provide new position set-points
for each joint every 2 ms or 4 ms (configurable). The uniVAL drive software internally
calculates all necessary values for directly controlling the servo motors, including the
calculations necessary for dynamics compensation (cf. Section 2.4). If the external motion
controller does not provide new set-points in time, the robot is stopped. The SoftRobot
RCC is connected to the uniVAL controller using the EtherCAT fieldbus.
The DS 402 profile was originally defined for the CANopen protocol [17], which is used on
top of the CAN fieldbus [37]. Using CoE (CANopen over EtherCAT), it is possible to use
EtherCAT as fieldbus technology with the CANopen protocol on top. CANopen uses two
special communication objects: PDOs (process data objects) for cyclic data exchange,
and SDOs (service data objects) for configuration. The object directory (OD) collects
all communication objects of a device. Each communication object has a unique 16-bit
long identifier and optionally an 8-bit long sub-index. The indexes for commonly used
communication objects are assigned by the CANopen profiles (like the DS 402 profile
for uniVAL), while other device specific communication objects have an index in the
manufacturer specific range. Manufactures of CANopen devices usually provide an EDS
(Electronic Data Sheet) file which describes the OD of the given device. The cyclic PDOs
can contain a multitude of different data which is available in the OD (although not all
objects from the OD may be mapped to PDOs). The layout of PDOs can be configured by
defining which communication objects are to be mapped in which order into the process
image. This configuration is performed by sending SDOs to dedicated communication
objects during the PreOp phase. The uniVAL controller provides a single slave on the
EtherCAT bus which has several communication objects for every joint. Usually all
six joints are mapped into PDOs simultaneously. Besides support for controlling all
joints, there are also communication objects available for digital and analog I/O. The
CS8C controller supports a small number of digital I/O to be directly connected to the
robot controller, and furthermore hardware status information is available as inputs
(e.g. the state of the emergency stop buttons or the temperature of the controller). The
SoftRobot RCC provides a driver implementation for the uniVAL protocol, including
partial support of the DS 402 profile (partial, because uniVAL does not use all features
of DS 402).

Timing of process data and real-time primitive net cycles

The Stäubli robot controller expects new set-points to be provided cyclically. Primitive
nets calculate those set-points also cyclically, however some kind of synchronization
between both is necessary. The primitive net must produce new set-points at least with
the same frequency as the robot controller expects new set-points during the process
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data cycle, otherwise sometimes no new set-points would be available (which causes the
robot controller to issue an emergency stop immediately). But it is not sufficient just
providing any new set-points in each process data cycle, the joint position values and
in particular the resulting joint velocities which are provided must also be steady (cf.
Section 2.4). In case the primitive net is executed slightly faster than the EtherCAT
process data cycle, at some point in time one value of the primitive net will be lost,
resulting in a position jump for the robot. Thus it would be desirable if the primitive
net execution would be synchronous to the process data cycle. One key feature of the
SoftRobot architecture is the simultaneous support of multiple robot systems. Those
robots are not necessarily all connected to the same EtherCAT bus (maybe they are
even connected using a completely different technology) and thus might all have slightly
different cycle frequencies. Although it might be possible to synchronize the clock of
the RCC with one of the other clocks, it might not always be possible to synchronize all
other clocks as well. Therefore, a mechanism to compensate for timing differences of the
underlying robot controller and the RCC itself is required.
In each process data cycle, the position set-point for each joint is calculated using the
following equation

j = jl︸︷︷︸
old position

+ jc − jl
tc − tl︸ ︷︷ ︸
velocity

· (t− tl)︸ ︷︷ ︸
estimated time

(9.1)

In each process data cycle, the set-point jc which has been provided by the primitive net
most recently at time tc is known, as well as the respective values from the last process
data cycle jl and tl. Using those values, the desired velocity of the primitive net can be
calculated. Using the current time t and tl it is possible to interpolate the joint position
j for the current time. In order to get good interpolation results, the primitive net must
produce new set points with at least the same frequency as the process data is calculated.
If the value of |t− tc| grows large (i.e. more than 5 to 10 times the cycle time), it must
be assumed that no primitive net is currently controlling the robot. In case the robot is
still moving, the driver must decelerate all joints and bring the robot to standstill.
The uniVAL system requires new set-points to be calculated for the next SYNC0 event
(cf. Section 9.4.1). The new set-point will be written to the fieldbus during the process
data cycle, but the robot controller will only interpret the new set-point once the SYNC0
event occurs. Thus the time t in Eq. (9.1) should not be the time of the process data
cycle, but the time of the next SYNC0 event. The EtherCAT driver provides a method
to request the estimated time of the next SYNC0 event. This time is calculated from the
time value of the distributed clock from the last process data cycle and the configuration
of the SYNC0 event.
Although the process data cycle is synchronized to the distributed clock of the EtherCAT
bus, some jitter will occur which also affects the time t of the next SYNC0 event. This
jitter also influences the estimated time in Eq. (9.1) and leads to jerky position values.
Because no sudden changes in the process data cycle times are expected, the value t can
be smoothed over time using the sliding average of the last process data cycle times.
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t̂x = t̂x−1 + 1
n

n−1∑
i=0

(
tx−i − t(x−1)−i

)
= t̂x−1 + tx − tx−n

n
(9.2)

The time t̂x is the estimated time of the current process data cycle x, which is calculated
from the estimated time of the last process data cycle t̂x−1 and the sliding average of
the last n cycle times (absolute measured times tx, tx−1, . . .). For the first n cycles, the
original cycle times must be used until a smoothed value is available. As soon as the
communication with the robot has been established and the robot has entered state Op,
set-points need to be provided continuously, even if no primitive net is currently running.
In this case, constant values are provided. Since the sliding average of the process data
cycle times can be calculated beginning with the first process data cycle, the first n
process cycles usually will pass with degraded performance before the first primitive net
is started. Tests have shown that smoothing the time over 50 process cycles yields good
results for the Stäubli TX90L robot. It should be noted that the sliding average is only
calculated for the cycle time, but not for the desired joint position. Thus new set-points
provided by primitive nets will not be delayed.

Driver architecture

The Stäubli TX90L driver implements the MultiJointInterface, the ArmKinematicsInter-
face and also the IOInterface (cf. Section 9.2). It uses the EtherCATMaster device
interface as well as the appropriate observer interfaces to interact with the EtherCAT
bus.
The UML class diagram shown in Fig. 9.7 illustrates the architecture of the Stäubli TX90L
device driver. For the sake of clarity, many methods of the interfaces and classes have
been omitted. The abstract class StaubliDevice provides all methods that are required
for Stäubli robots, in particular the setJointPosition(...) method which is used by the
JointPosition primitive in a primitive net to set the next set-point. Two implementations
of the Stäubli device are available: StaubliSimulation and StaubliEtherCAT. The first
class provides a simulated version of the Stäubli device, while the second one controls the
real hardware using the EtherCAT bus. Because both implementations inherit from the
common StaubliDevice class, both implementations are exchangeable. Thus a robotics
application can be tested using a simulation and run on the real robot without any
change in the application, only the configuration of the RCC needs to be altered. The
simulated Stäubli device has no dependencies to any EtherCAT related functionality and
thus can also be used on systems where EtherCAT is not available.
The MultiJointSimulation class provides generic support for simulating devices using the
MultiJointInterface. The concrete implementation of a robot simulation only needs to
simulate special features (e.g. sensors) of the robot, while the general simulation (i.e. the
motion of the joints) will be provided by MultiJointSimulation. Not only the simulation
of a multi-joint system is a common task, but also the cyclic calculation of position
set-points. Thus the StaubliEtherCAT device inherits from the CyclicPositionDevice
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Figure 9.7.: UML class diagram for the Stäubli TX90 device driver

class which provides an implementation of the set-point estimation algorithm described
in the previous section. The class implements the setJointPosition(...) method and
thus receives new set-points from a running primitive net. The StaubliEtherCAT class
implements the observer interfaces EtherCATDevice and EtherCATSlave for being notified
in every process data cycle. In each cycle, the method getValuesToCommand(...) is called
with the expected time of the next SYNC0 event to calculate the values which must be
written in the process image. Although CyclicPositionDevice provides values for position,
velocity and acceleration for every joint, the uniVAL interface only requires the position.

9.4.4. KUKA lightweight robot

The KUKA lightweight robot (LWR) 4/4+ [12] (cf. Fig. 9.8) was the first robot which was
supported by the SoftRobot RCC and was used as the reference robot system throughout
the SoftRobot project. The LWR offers some unique features compared to other industrial
robots:

• With a weight of only 15 kg it is able to lift up to 15 kg, although under normal
conditions the payload is limited to 7 kg.
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Figure 9.8.: KUKA lightweight robot LWR4

• The LWR has 7 joints, the additional rotatory joint has been inserted between the
second and third joint of a conventional 6-DOF industrial robot. The additional
joint allows the robot to perform motions in the null-space, i.e. the robot elbow can
move while the flange stays stationary. Due to this additional degree of freedom,
the inverse kinematics function of the LWR yields an infinite number of solutions
for any given Cartesian position.

• Each joint is equipped with a torque sensor. This allows precise measurements of
torques applied to each joint instead of estimating those values e.g. from motor
currents. Using the torque sensors, the LWR provides built-in functionality for
impedance control.

The LWR is controlled using a special version of the standard KUKA controller, the
KR C2lr controller. The controller runs a special version of the KUKA Software System
(KSS) 5.6.5 which has been extended to support the additional features of the lightweight
robot. The LWR can be programmed either by using the KUKA KRL programming
language, or by using the Fast Research Interface (FRI) [106] which allows a fast, cyclic
position control for each joint using a UDP network link.
The architecture of the LWR device driver included in the SoftRobot RCC is very
similar to the device driver of the Stäubli TX90L robot, although no support for the
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EtherCAT fieldbus is required. Like the Stäubli driver, the LWR driver also implements
the MultiJointInterface, the ArmKinematicsInterface as well as the IOInterface and thus
can be used in application identically to the Stäubli robot. Besides implementing the
interface of standard robots, the LWR device driver also provides some new primitives
which expose the unique features (e.g. the force-torque sensors and the different control
modes) of the LWR to robotics applications.

Control modes of the LWR

The KUKA lightweight robot controller supports four different control modes, which can
affect the position of the robot. At every moment in time, the robot has a “commanded
position” and a “measured position”. The commanded position is set either by running a
KRL program containing motion commands or by supplying new set-points over the FRI
connection, while the measured position is retrieved from the encoders embedded in each
joint.

• Position control: In this control mode, the robot behaves like any other industrial
robot and tries to reach the commanded position exactly. The robot tries to
compensate for external forces and applies an emergency stop if any force or torque
exceeds its capabilities. This control mode should not be used when the robot is
expected to make contact with the environment. The commanded and measured
positions are usually very close to each other.

• Joint impedance control: In this control mode, each joint reacts independently
like a spring to external forces. The robot still tries to reach the commanded
position, however this position is not necessarily reached if there are any external
forces. For each virtual spring, the stiffness and damping can be configured.

• Cartesian impedance control: This control mode is very similar to joint im-
pedance control with the difference being that the virtual spring is defined in
Cartesian space for the tool center point and not individually for each joint.

• Gravity compensation: In this control mode, the robot compensates for the
earth’s gravity, but does not apply any further force. This allows the user to
move the robot (and any attached payload) virtually without any force by directly
touching the robot.

To achieve good results for these control modes, the robot needs to have a precise model of
itself, and also needs to know some data about the attached payload, including the mass,
the center of mass and the moment of inertia of the payload. For Cartesian impedance
control, the tool center point is also important because the virtual spring is calculated
for this point.
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Fast Research Interface

The Fast Research Interface (FRI) [106] allows external motion control of the lightweight
robot using UDP packets over a network link. The configuration of the FRI connection is
done using a KRL program running on the KUKA robot controller. In this program, the
IP address and port of the external motion controller is specified, and the FRI connection
is controlled. There are three modes the FRI system can have: OFF, MONITOR and
COMMAND. Without any configuration, FRI is in state OFF. After the connection
has been opened in the KRL program, FRI enters state MONITOR. In this state, the
KUKA controller transmits UDP packets containing the current status of the robot at
a configurable interval. This interval can be as short as 1 ms. The external motion
controller must respond to each packet in a timely manner, however it is not possible to
control the LWR yet. If the KUKA controller receives enough packets with good quality
(i.e. neither missing responses nor receiving responses too late), it is possible to enter
COMMAND mode. In this mode, full control of the robot is possible.
The data packet transmitted from the robot to the external motion controller contains,
amongst others, the following data:

• The measured and commanded positions of each joint
• The measured and commanded Cartesian position of the tool center point (TCP)
• The measured absolute torque of each joint
• The estimated external torque of each joint
• The estimated external force and torque applied to the TCP
• Values read from KRL variables
• A sequence number of the packet

The external motion controller must reply to each packet with a packet containing,
amongst others, the following data:

• The commanded position of each joint
• The commanded Cartesian position of the TCP
• The stiffness and damping for each joint
• The stiffness and damping of the TCP for Cartesian impedance mode
• Additional forces or torques which should be applied
• Values which must be written to KRL variables
• The sequence number of the packet for which the response is sent

The data telegrams always contain the same set of data, although not all parameters are
relevant in every control mode. For example, in position control mode the commanded
joint stiffness or damping is ignored. During MONITOR mode, the commanded joint and
Cartesian positions must mirror the measured positions. As soon as COMMAND mode
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has been reached, those values must no longer be mirrored (slight jitter in measured
positions causes unstable behavior) but rather be filled with the desired values. The data
telegrams contain a set of values which are read from or written to variables in the KRL
program. This can be used for communication between the external motion controller
and the KRL program.
Unfortunately it is not possible to change the control mode of the robot using FRI, only
the control parameters (stiffness, damping) can be set using FRI. In order to change the
control mode itself, or to set new load data (e.g. if a workpiece has been gripped, the mass
of the workpiece must be set in order to achieve good impedance control), KRL commands
must be used. This can only be done while FRI is not in COMMAND mode. The LWR
driver uses some of the KRL variables to send all necessary new control parameters to
the KRL program, which then switches from COMMAND mode to MONITOR mode,
updates all parameters in the KUKA controller and tries to switch back to COMMAND
mode. This process takes some time (up to 10 s) and occasionally fails, requiring manual
intervention at the robot controller.
The built-in gravity compensation mode can also not be selected while using FRI.
Although it is possible to activate gravity compensation using a KRL program (and thus
it would be possible using the FRI communication link described previously), its use in
automated programs is not possible due to two reasons: First, the KUKA controller does
not allow the gravity compensation mode to be used at all when in AUTO operation
mode (i.e. the robot program is running without any interaction and without the need
of holding a dead man’s switch), which is the default operation mode when using FRI.
Second, even if one would accept using such a switch and use KUKA’s T1 or T2 operation
mode, all KRL programs are interrupted as long as gravity compensation is active,
thus deactivating gravity compensation would only be possible by manual interaction
of the user with the KUKA control panel (KCP). To mitigate these problems, Robotics
API based applications use joint impedance mode with very low stiffness and moderate
damping values instead of “real” gravity compensation. If the stiffness is set low enough,
the robot does not try to reach its commanded position, but will still react to any external
forces just like with the gravity compensation control mode.
When using joint impedance to emulate the “real” gravity compensation mode, the
controller has to ensure that the commanded position of the robot eventually reaches the
real position. With very low stiffness parameters, it is possible to move the robot away
from the currently commanded position by applying force to the robot (as it is desired
for hand-guiding the robot), without the robot trying to move back to the commanded
position. As soon as the stiffness parameters are set to higher values (or even the position
controller is activated), the robot would try to move back. Since this is not a planned
motion, but rather implied by the closed-loop controller, this motion can be extremely
fast. If the commanded and measured positions only differ for a very small distance
(smaller than approx. 5 cm) the robot simply jumps to the original destination, for larger
distances an emergency stop is triggered by the KRC’s safety controller. To prevent such
issues, the SoftRobot RCC continuously tries to maintain a small difference of commanded
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Input ports none
Output ports outMeasured: double

outEstimated: double
Parameters Robot: String

Axis: int

Table 9.7.: The TorqueMonitor primitive: measured and estimated torques at an
joint of the LWR

and measured positions during gravity compensation. However, it is not possible simply
to mirror the measured to the commanded position. The KRC’s safety controller also
monitors the commanded position for excessive speed or acceleration. When simply
mirroring the measured position, it is very easy to exceed those defined maximum values,
although the robot itself is perfectly able to follow the motion. Therefore, the SoftRobot
RCC uses an online trajectory generator (OTG) to let the commanded position follow the
measured position while limiting the velocity and acceleration of the commanded position.
Before gravity compensation mode is stopped, the RCC waits for the commanded position
to be very close to the measured position.
The process data cycle of FRI can be configured from 1 ms up to 100 ms. The KRL
program is interpreted using the standard KUKA interpolation cycle time of 12 ms.
When using data cycle times smaller than 12 ms, massive jitter with a periodic time of
12 ms can be experienced. To compensate for this jitter, the LWR driver also uses the
CyclicPositionDevice class to calculate appropriate set-points. Unlike EtherCAT, FRI
does not provide an estimation of the time the new set-point will be expected, thus the
LWR device driver can only use the point of time the telegram is generated as time t in
Eq. (9.1) (Page 143).

Support of advanced LWR features

The LWR device driver implements theMultiJointInterface to move the arm, the ArmKine-
maticsInteface for the (standard) kinematics and inverse kinematics functions and the
IOInterface for interaction with peripheral devices which are directly connected to the
KUKA KR C2lr controller via fieldbus (usually DeviceNet). Using those interfaces,
robotics applications can already interact with the LWR like with any other standard
industrial robot, however they cannot yet utilize the special features of the LWR. To
support all features of the LWR, some additional primitives are provided by the LWR
driver.
The TorqueMonitor primitive (cf. Table 9.7) reports the torque measured at a single joint,
as well as the estimated external torque which is applied to the joint. The estimated
external torque is adjusted for the effects of gravity on the robot and the configured
payload. The ForceMonitor primitive (cf. Table 9.8) reports the estimated force and
torque that is applied to the tool center point of the LWR. The force is represented as a
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Input ports none
Output ports outForce: Vector

outTorque: Vector
Parameters Robot: String

Table 9.8.: The ForceMonitor primitive: estimated forces/torques at the TCP of the
LWR

vector in the tool coordinate system, while the torque is represented as three torques
which would be applied around the coordinate axes of the tool coordinate system. Those
values are directly provided by the KUKA controller over the FRI protocol. Standard
joint values (position, velocity and acceleration) can be retrieved using the JointMonitor
primitive from the MultiJointInterface device interface (cf. Section 9.2). The payload
currently attached to the robot may be configured using the ToolParameters primitive
which is also provided by the MulitJointInterface.
To switch the LWR’s control mode, the ControlStrategy primitive is provided, which
allows the primitive net to select a new control mode. Like the ToolParameters primitive,
this primitive also provides an output port for signaling the completion of the switching
process because this may take up to 10 s. The robotics application should ensure that the
measured and commanded positions are identical within a short range before attempting
to switch the control mode. If the difference of measured and commanded position is
very large, the controller will not perform the control mode switch at all. But even if
the difference is small enough for the controller to switch, very fast robot movements
could result. For example, if the robot is currently in an impedance mode with a rather
soft spring, it will move as fast as possible to its commanded position when switched to
position control mode.
The control mode parameters can be set using the JointImpParameters and CartImpPa-
rameters primitives. Setting new controller parameters takes effect immediately, thus
those primitives do not have a completion output port. New controller parameters can
be set any time, even if the commanded and measured positions are not identical. It
should be noted however, that applying stronger stiffness values can also lead to very
fast robot movements.
The Kin and InvKin primitives provided by the ArmKinematicsInterface can also be
used with the LWR. The inverse kinematics function will solve the additional redundancy
introduced by the seventh joint by selecting a solution close to the provided hint value
for the joint. The LWR driver additionally offers its own kinematics function primitives
LWRKin and LWRInvKin which have additional support for an α value, which specifies
the angle the elbow is out of the vertical plane traditional industrial robots can move in.
This angle can be achieved using the additional 7th joint and thus is specific to the LWR.
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«Create»«Create»

Figure 9.9.: UML diagram of ExtensionLoader class

9.5. Loadable extension modules

The SoftRobot RCC allows loading and unloading extension modules during runtime.
On the one hand, this allows loading only those device drivers that are really necessary,
and on the other hand also allows replacing driver implementations without the need
of restarting the whole system. Loading and unloading modules is performed by using
the appropriate operating system functions (e.g. dlopen, dlsym and dlclose on Linux).
Extension modules are compiled as shared objects on Linux (extension .so) or dynamically
loadable libraries (extension .dll) on Windows.

As the first step for loading an extension, the extension file is opened. If the specified
file is not a valid loadable module, this step will fail. This step also fails, if dynamically
linking the module is not possible due to missing dependencies. In a next step, three
named methods are looked up: version, load and unload. Those methods must be
defined once in each loadable extension module within an extern "C" declaration in the
C++ source code in order to prevent name mangling by the C++ compiler. Extension
loading is aborted if any of the three methods is not found. At first, the parameter-less
method version is called. This method returns a 64-bit integer value which describes
the version of the RCC it was built for. If this version does not match the current RCC
version, loading is aborted. Loading an extension with non-matching version could be
potentially dangerous if any interface has changed meanwhile, because memory addresses
are generated at compile time and not verified at run time.

If the versions of the RCC and the loadable extension module match, the load method of
the extension module is called and a reference to unload is saved. The load method takes
an object of type ExtensionLoader as an argument, which provides several methods for
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the extension to register its devices, primitives and device interfaces. Figure 9.9 displays
this class and its methods with signatures. For all devices and primitives an extension
provides, factories must be created which later instantiate the devices and primitives.
The register methods of ExtensionLoader automatically generate those factories. Unlike
“normal” methods, the code for template methods in C++ will always be generated by
the same compiler which also compiles the calling program code. Therefore it is possible
to provide these convenience methods centrally for all extension modules. The generated
factories encapsulate the new and delete operators, thus they are created by the same
compiler as the primitives or devices. The register methods require the class of the
device or primitive as a template parameter, the name of the device or primitive and the
name of the extension (for centrally unloading all devices and primitives of an extension).
For devices, a list of HTTPHandler objects can be specified to provide new web server
handlers for the device (see also Section 7.6.2). If necessary, further initialization steps
can be performed by the extension module during its load method.
When an extension should be unloaded, it must be ensured that no instance of a primitive
or device exists any more. The Registry holds a reference counter for all primitive
and device instances and will only allow unloading an extension if the counters for all
primitives and devices are zero. In this case, the unload method is called with an object of
type ExtensionLoader. This object can be used to call the unregisterExtension method
which destroys all factories which have been created during the loading of the extension.
Listing 9.2 shows the loading and unloading code for the extension module for a simulated
KUKA lightweight robot. Line 1 forces the C++ compiler into plain C mode which
deactivates name mangling (otherwise the dlsym method would not be able to find the
methods). Line 3 defines the name of the extension which must be used to register
and unregister all devices and primitives. In line 5, the version method starts, which
returns the version id of the extension. The constant rcc_bin_version_id is read from
the header files of the main RCC source code, thus the version compiled into the
extension module matches the version of the RCC of which the header files have been
used. rcc_bin_version_t is a type definition for the version number (because primitive
types such as int may have different sizes on different architectures). RTT_EXPORT is
a macro definition by Orocos which is required on the Windows platform to mark
methods which should be exported in a DLL file. Line 10 defines the load method. In
lines 12 to 14, HTTPHandler instances are created. The given URIs are relative to the
device’s URI, i.e. the handlers will ultimately be registered as /devices/devicename/ and
/devices/devicename/kinematics. In line 16, the class LwrSimulation is registered as
device. Lines 19 to 22 implement the unload method which unregisters all devices (and
primitives, if registered).
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1 extern "C"
2 {
3 const std::string ext_kuka_lwr_sim = "kuka_lwr_sim";
4
5 rcc_bin_version_t RTT_EXPORT version()
6 {
7 return rcc_bin_version_id;
8 }
9
10 void RTT_EXPORT load(RPI::ExtensionLoader loader)
11 {
12 HTTPHandlerList handlers;
13 handlers.push_back(HTTPHandlerInfo("/", new LBRFRIControllerHandler()));
14 handlers.push_back(HTTPHandlerInfo("/kinematics",new LBRFRIKinematicsHandler()));
15
16 loader.registerDeviceFactory<LwrSimulation>(dev_lwr_joint_sim, ext_kuka_lwr_sim,

handlers);
17 }
18
19 void RTT_EXPORT unload(ExtensionLoader loader)
20 {
21 loader.unregisterExtension(ext_kuka_lwr_sim);
22 }
23 }

Listing 9.2: Example code for loading and unloading the extension module for a
simulated KUKA lightweight robot
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Chapter 10

Embedding RPI in the Robotics API

The Robot Control Core provides the Real-time Primitives Interface, which allows the
specification of arbitrary real-time safe tasks using a data-flow graph based language.
However, this interface is not suitable for programming robots directly by end-users,
on the contrary, it has been designed for automatic generation by a framework such
as the Robotics API. The Robotics API provides a generic application programming
interface (API) for robotics applications, as well as the so-called “mapping” algorithm
which automatically generates the required primitive nets for the application.
The Robotics API has been developed using the Java programming language, however the
concepts of the Robotics API can also be implemented using any other object-oriented
programming language. An automatic conversion for the .NET platform (in particular
for the C# programming language) can be done using IKVM.NET [65].

10.1. Robotics API architecture

The Robotics API consists of two independent layers, the Command layer and the
Activity layer. The command layer directly communicates with the Robot Control Core
(RCC) and offers a generic interface for programming arbitrary robotic devices, consisting
of a number of actuators and sensors. A real-time safe event mechanism is provided for
reactions to sensor data.
While the command layer offers a very flexible interface for any kind of robotics devices,
it lacks an easy-to-use syntax for typical applications for industrial robotics, such as it is
usually provided by the currently used proprietary robot programming languages. The
activity layer provides such an interface on top of the command layer.
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Figure 10.1.: UML class diagram of the core classes of the command layer in the
Robotics API (diagram taken from [3])

The command layer has no dependencies to the activity layer, thus it is possible to use
the Robotics API with only the command layer. The activity layer relies heavily on the
command layer and thus cannot be used alone.

The architecture of the Robotics API as well as the concepts of the command and activity
layers have been developed by A. Angerer [1]. The concepts are repeated in this work in
order to introduce the automated transformation process from commands specified in
the Robotics API to primitive nets, the so-called mapping process. The main concepts of
the Robotics API have been published in [2–4].

10.1.1. Command layer

The Robotics API command layer provides an object-oriented model for industrial
robotics applications. The most important basic concept is an Actuator that performs an
Action. Commands consist of at least one actuator and one action and can be influenced
by a Sensor, which can trigger Events. The event-handling within the command layer is
done real-time safe on the RCC, thus the triggering and timing of events is deterministic
and highly reliable.

Figure 10.1 shows the core classes of the Robotics API command layer. The following
sections describe the concepts more in detail.
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Actuator

An Actuator is any kind of controllable device. Examples are complete articulated
robots, but also single robot joints, as well as peripheral devices such as grippers, welding
equipment, etc. Concrete instances of the class Actuator describe a certain type of
hardware with all relevant properties (e.g. the number of joints, the mass, allowed
maximum velocities and accelerations), but do not contain any implementation for
hardware control. These classes serve as proxy objects for the devices implemented in
the RCC (cf. Chapter 9). Instances of these classes can be used in robotics applications
and ultimately will be mapped to primitives (or fragments) during program execution.
This mapping process is done completely automatically (cf. Section 10.2).
When used in robotics applications, actuators can be configured by applying a set
of ActuatorParameters. All actuators define a set of default parameters, such as the
maximum allowed speed of any joint. However the application developer may decide
to attach another parameter specifying a lower speed limit for a specific motion in the
program. Parameters specified explicitly in the application always override the default
values of an actuator.
Instances of the class Actuator should be stateless, i.e. they must not store any state of
the hardware they represent. Such information must always be retrieved directly from
the RCC. Multiple applications are allowed to interact simultaneously with a single RCC,
thus the state of a hardware device might have changed without the application having
noticed, which would render the application’s state outdated.

Action

An Action specifies any single action that can be performed by an actuator. Examples
for actions are robot motions, but also tool actions such as opening or closing a gripper.
Like the class Actuator, the class Action also is an abstract description of the action to
perform without any implementation details. During the mapping process, an action will
be converted into a primitive net providing all necessary input for an actuator to perform
the specified action. The mapping of an action specifying a point-to-point motion for an
articulated arm e.g. generates a primitive net which provides interpolated set-points to
the device of the according actuator.

Separation of Action and Actuator

The separation of Action and Actuator is done on purpose, because there is no finite
set of actions a certain actuator can perform. Using two separate concepts, adding new
actions to existing actuators is possible, and furthermore the same actions can also be
used for different types of actuators (e.g. a generic point-to-point motion action may
not only apply to articulated joint robots, but also to robots using linear joints or even
mobile and flying systems).

157



10. Embedding RPI in the Robotics API

Command

A Command represents any kind of operation that can be executed atomically in a
real-time context. Atomically also means that no modification of the command is possible
from the application once it has been started (although the effects of the command may
be influenced on a non real-time base, e.g. by changing the overall override speed). In the
SoftRobot platform, a Command will be ultimately transformed to a primitive net for
execution on the RCC. The Command concept is a modified variant of the “command
pattern” as specified in [45]. Several different variants of Command are available.
One type of Command is the RuntimeCommand which combines an Action and an
Actuator into an executable form. The Action specifies what the Command must
do, while the Actuator specifies who should perform the operation. Like action and
actuator, the RuntimeCommand also provides no information about how it must be
executed. This is once again up to the runtime environment and done while mapping the
RuntimeCommand to a primitive net.
A WaitCommand simply waits for a given period of time without doing anything. This
type of command is usually used in composed structures of commands, e.g. if some
action must be delayed in relation to another action such as a tool action that must
be performed a certain time after a motion has started. WaitCommands will also be
executed by the RCC, thus the specified time will be precisely met with precision of one
primitive net execution cycle.
A TransactionCommand combines multiple Commands into one real-time context. It is
configurable as to whether a Command should be started together with its surrounding
TransactionCommand, or individually using the event mechanism for commands. Because
TransactionCommands themselves are also Commands, they can be nested into other
TransactionCommands.

Sensor

A Sensor is any kind of real-time capable data source. Such data sources can be classic
hardware sensors such as joint encoders embedded into a robot joint, or a force and
torque sensor attached to a robot’s flange. Sensors are not limited to hardware devices,
but can be any kind of data source that can be reliably calculated. Any combination of
sensor values, obtained e.g. by adding or multiplying values of other sensors is again a
sensor. Besides sensors provided by hardware or calculated values, it is also possible to
create “virtual” sensors whose values are supplied by the robotics application at run-time.
In contrast to most hardware sensors, no real-time guarantees can be given for this data.
All sensors can be mapped to primitives or combinations of primitives for execution
on the RCC. Physical sensors are represented by primitives which are provided by the
device drivers for the hardware sensors. Not only specific sensor hardware pieces provide
sensor data, but also most actuators have integrated sensors. Each joint in a robot can
provide at least its current position, often the current velocity and acceleration can also
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be measured. Some robots with special abilities such as the KUKA lightweight robot for
example can also provide measurements of external torques applied to the joints.
“Virtual” sensors are mapped to TNetcommIn primitives to inject a data source into a
running primitive net. New values can be provided by the application using the non real-
time communication channel between the Robotics API and the RCC (cf. Section 7.6.1).
Furthermore, virtual sensors providing a constant value are possible (using TValue
primitives).
Sensors can be data sources for all kinds of data types. For real-time execution, the data
type must also be available on the RCC. Common data types for sensors are integer
or double for numerical values, or Boolean for sensors with only two possible states.
Furthermore, sensors may also provide complex spatial data types such as vectors or
frames (position including orientation). An example for such a sensor is a position
detection system.
It is possible to combine multiple sensors with basic arithmetic operations such as
add or multiply. The result yields another sensor, which itself can be part of further
calculations. The basic arithmetic operations are mapped to calculation primitives
(e.g. TAdd, TMultiply, cf. Section 7.3.5) on the RCC. The use of multiple primitives
that provide only basic arithmetic functionality allows the developer to specify almost
arbitrarily complex calculations which can be automatically transformed into primitive
nets and later be executed in a real-time context. It is also possible to compare different
sensor values (equality, greater than, . . . ), yielding yet a new sensor with data type
Boolean.
Sensors can not only be used in a real-time context, but a robotics application can also
request the current value of any sensor by calling the Sensor#getCurrentValue() method
anywhere in the application. The Robotics API checks whether the current value of this
sensor can be retrieved “cheaply”, i.e. all required values are already known. If this is not
the case, a primitive net with the required sensor structure is created and evaluated on
the RCC. If an application requires continuous non real-time information about sensor
values, a SensorListener can be attached to the sensor. This listener will be called each
time a change of the sensor value is detected. It can be configured how changes of the
sensor value should be handled in case the last called listener is still running. Value
changes can either be queued or dropped. SensorListeners are not executed in a real-time
context, thus there is no guarantee that all value changes will be reported (especially
short value pulses are likely to being missed).

State

A State describes a discrete state of a robotics system which can be either active or
inactive. States are not identical to the traditional state in a state machine, but rather
captures one discrete feature of a complex robotics system. Different types of a State
originate from different sources:
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SensorState is provided by a Boolean sensor and is active as long as the sensor reports
the value true. States can also be derived from non-Boolean sensors by first creating
a Boolean sensor using a condition, e.g. the isGreater function can be applied to
two Double sensors (or one Double sensor and a constant value) and creates a new
Boolean sensor which provides a SensorState.

ActuatorState is provided by an actuator and can monitor certain actuator-specific
properties, e.g. whether an actuator is powered or not.

ActionState is provided by an action, e.g. an action provides states whether it is com-
pletely finished or whether a certain percentage of an action has been completed.

CommandState is provided by commands, e.g. whether a command is finished, started,
or currently executing.

Besides those states provided by parts of the robotics application or the hardware, states
can also be derived from other states:

AndState combines two states and is active if both other states are active.
OrState also combines two other states and is active if at least one of the states is active.
NotState is active, if another state is not active and vice versa.
LongState is active, if another state has been active without interruption for a given

amount of time.

Event

Different commands can be combined into one TransactionCommand that is executed
real-time safe. It is possible to start all commands synchronously, however, often it is
required to start one command and trigger the execution of other commands based on
certain conditions. Such an event can be triggered by entering or leaving a State. A state
is entered when it was inactive and becomes active, and is left when it becomes inactive
after being active. Events can be limited to the first occurrence of a State being entered
or left.
An event is handled by an EventHandler which is attached to a Command. The
EventHandler monitors the appropriate state and triggers an EventEffect if necessary
(i.e. the state has been entered or left). EventEffects can influence other commands. The
following EventEffects exist:

• CommandStarter starts another command in the same TransactionCommand
• CommandStopper unconditionally stops another command
• CommandCanceller requests another command to terminate gracefully
• WorkflowEffect is an EventEffect which does not directly influence another command

in the real-time context, but is propagated to the robotics application. This event
effect does not provide any real-time guarantees.
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• CommandSynchronizer is a “virtual” event effect which assigns a token to the event
for usage in a synchronization condition. See Section 10.2.5 for more details.

With the exception of the WorkflowEffect, all event effects will be processed real-time safe
within the RCC and thus are guaranteed to occur at the first primitive net execution cycle
the condition becomes true. Unlike non real-time sensor listeners, events are guaranteed
not to miss any sensor value (which is transformed to a state) if the value is available for
at least one execution cycle.
The CommandStopper will immediately stop another command (i.e. the parts of the
primitive net representing the command will not be executed again in the next execution
cycle). If the affected command was actively controlling an actuator and no other
command is started simultaneously that takes over control, the actuator will no longer
be actively controlled. Depending on the hardware, this can lead to an emergency stop
of the actuator and possibly even damage the hardware. If a TransactionCommand is
stopped, all commands contained in the transaction are also stopped.
The CommandCanceler will only issue a cancel request to the command (implemented
using a Boolean data-flow) which allows the command to stop gracefully, e.g. a robot
currently moving can be stopped first. A command may also decide to ignore a cancel
request completely if there is no safe way of canceling at the moment. A RuntimeCommand
will forward the cancel request to its Action, while a TransactionCommand ignores
canceling by default. However, the transaction command will enter its Cancel state,
thus an EventHandler can be attached to that state which then cancels specific inner
commands.

Examples

To demonstrate the expressiveness of the Robotics API, some real Java code examples
are provided which demonstrate the main concepts introduced in the previous sections.
The code examples abstract from configuration aspects, i.e. Java objects for robot devices
already exist. The Robotics API provides support for specifying configuration files
to configure what devices etc. are available, and provides easy means to retrieve the
appropriate objects within the robotics application. This step is, however, unnecessary
for demonstrating the main concepts of the command layer.

Single point-to-point motion The following example demonstrates a point-to-point
motion in joint space for a single robot.

1 RoboticsRuntime runtime = ...; // Retrieved from configuration
2 RobotArm robot = ...; // Retrieved from configuration
3 Action ptp = new PTP(new double[] { 0, 0, 0, 0, 0, 0 },
4 new double[] { 1, 1, 1, 1, 1, 1 });
5
6 Command cmd = runtime.createRuntimeCommand(robot, ptp);
7 cmd.execute();

161



10. Embedding RPI in the Robotics API

In line 1, an object of type Runtime is retrieved from configuration management. A
Runtime abstracts from the concept of a real-time system executing a command (e.g. the
SoftRobot RCC) and encapsulates all necessary components for utilizing this environment.
This contains the complete mapping algorithm (cf. Section 10.2), but also all necessary
communication links (cf. Section 7.6). In line 2, an instance of the device which is to be
controlled is retrieved. The device is stored in a variable of type RobotArm, which is a
special interface for articulated arms. In line 3, a new Action is created. The constructor
of the class PTP takes two arguments which specify the angles of all actuator joints
at the beginning and at the end of the motion. In this example, the action specifies
a point-to-point motion for any 6-DOF device from a position where all joints are at
position 0 to a position where all joints are at position 1. The Robotics API always uses
base SI units, thus the position 1 means either 1 m for translational joints or 1 rad for
rotational joints. The same point-to-point action can be used for both types of joints,
because the concept of a point-to-point motion is independent of the type of joint used.
In line 7, the newly created Action is combined with the Actuator to create a new
Command. The combination is performed by the Runtime, which also ensures that the
specified action can be executed by the specified actuator (e.g. if the point-to-point
motion action is created for a 4-DOF robot, it cannot be combined with a 6-DOF robot).
The command is finally executed in line 7. The default behavior for execution of a
command is blocking, i.e. the control flow of the application will stop until the actuator
has stopped moving.
Neither the Action nor the Device may store any information about the current condition.
As a result, it is not sufficient to specify just the destination of the motion, but also
the start position must be specified. If the robot’s joints are not exactly at the position
specified as the start position, execution of the command will fail and an exception will be
thrown. In many cases, the current position of the robot is not known to the programmer,
but the actual position is to be used. This can be done by using a sensor providing the
current joint position.
Action ptp = new PTP(robot.getJointAngles(),

new double[] { 1, 1, 1, 1, 1, 1 });

It should be noted that the getJointAngles() method is evaluated at the time the Action
is created. Changes to the robot’s position between the creation and the execution of
the Action will not be taken into account. This must be kept in mind particularly when
actions are embedded in transactional commands, i.e. when other actions are planned for
prior execution.

Reaction to sensor events The integration of sensor data and the reaction to changes
of this data are key features of the Robotics API. The following example demonstrates
both sensor integration, as well as the event handling mechanism.

1 RoboticsRuntime runtime = ...;
2 RobotArm robot = ...;
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3 Action ptp = new PTP(robot.getJointAngles(), new double[] { 1, 1, 1, 1, 1, 1 });
4
5 RuntimeCommand cmd = runtime.createRuntimeCommand(robot, ptp);
6
7 State state = robot.getJoint(0).getMeasuredPositionSensor().isGreater(0.5);
8 EventEffect effect = new CommandCanceller(cmd);
9 cmd.addStateEnteredHandler(state, effect);
10
11 cmd.execute();

Lines 1 to 5 are identical to the previous example and create a command to move a robot
from its current position to a position where all joints have the position 1 rad. In line 7,
the sensor which reports the measured position of the first joint is accessed, and a state
created which is active if the joint position is greater than 0.5 rad. In line 8 an event
effect is defined, which cancels the running command. In line 9, the state and the effect
are combined using the “state entered” paradigm, and finally the command is executed
in line 11.
When starting the application while the first joint has a position smaller than 0.5 rad,
the robot will start a point-to-point motion to the given joint coordinates. Once the first
joint reaches a position greater than 0.5 rad, the command is canceled (i.e. the robot
starts to brake). The event is handled within the real-time context of the RCC, thus the
robot motion will be reliably and immediately canceled once the state is entered. The
command has to provide an appropriate handler for the cancel event, which in the case
of a point-to-point motion will immediately start with the deceleration phase and thus
stop the robot.

Combining several commands Multiple commands can be combined using a Trans-
actionCommand. The following example executes two point-to-point motions strictly
sequentially.

1 RoboticsRuntime runtime = ...;
2 RobotArm robot = ...;
3 double[] dest1 = new double[] { 1, 1, 1, 1, 1, 1 };
4 Action ptp1 = new PTP(robot.getJointAngles(), dest1);
5 double[] dest2 = new double[] { 1.5, -1.5, 1, 1.2, 1, 1.5 };
6 Action ptp2 = new PTP(dest1, dest2);
7
8 RuntimeCommand cmd1 = runtime.createRuntimeCommand(robot, ptp1);
9 RuntimeCommand cmd2 = runtime.createRuntimeCommand(robot, ptp2);
10
11 TransactionCommand tc = runtime.createTransactionCommand(cmd1, cmd2);
12
13 tc.addStartCommand(cmd1);
14 tc.addStateFirstEnteredHandler(cmd1.getCompletedState(),
15 new CommandStarter(cmd2));
16
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17 tc.execute();

In lines 3 to 9, two subsequent commands are created which each perform a point-to-point
motion. The second command uses the destination position of the first command as the
start position. In line 11, a new TransactionCommand is created. The first command
is added as start command in line 13, i.e. this command will be started immediately
when the transaction command is started. The second command is started using a
CommandStarter event effect when the first command has been finished (i.e. it enters
the “command completed” state for the first time). The transaction command is then
executed in line 17.
Using a TransactionCommand embeds all commands into the same real-time context,
thus in the example above, the second motion will be executed right after the first has
finished, and the operation as a whole is deterministic. If both commands were executed
individually, the Java application would be responsible for starting the second motion
after the first has finished, which does not provide a deterministic timing.
Motion blending (cf. Section 2.5) can be achieved by placing all motions into a single
TransactionCommand. A specific state must be defined on the blending condition (e.g.
20 cm prior to the completion of the motion, cf. point B in Fig. 2.4). When this state is first
entered, a CommandStopper has to terminate the first motion, and a CommandStarter
has to start the second motion. The command for the second motion must contain a
specific Action that is capable of taking over the moving robot, automatically planning
the blending trajectory (point B to D) and finally completing the originally specified
second trajectory (point D to E).
Motion blending achieved by placing all motions into a single TransactionCommand is
guaranteed to succeed since all motions are executed within a single real-time context,
however this is not the recommended mechanism. Rather it is advisable to use two
independent commands which are joined by a synchronization rule, thus the robotics
application maintains control of the program flow. In this scenario, motion blending
is performed on a best-effort base, i.e. if the robotics application does not supply the
second motion command in time (prior to reaching the blending condition), the original
motion will be completed and motion blending will simply be ignored. This does impact
the performance of the overall system (since the time savings achieved through motion
blending are lost); the safety of the system however is never in danger. The actuator is
always controlled by a running primitive net as long as it is moving.

10.1.2. Activity layer

The command layer introduced in Section 10.1.1 provides a very powerful and flexible
interface for any robotics application without being restricted to any specific application
domain (e.g. it is not only possible to control articulated arms, but also mobile robots
or even flying robots). This flexibility however also incurs a rather complex syntax for
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specifying robot commands, in particular if compared to traditional robot programming
languages such as KRL.
A simple point-to-point motion to a point given in joint-coordinates looks as follows
when programmed using KUKA’s KRL language:
PTP {AXIS: A1=10, A2=20, A3=-40, A4=50, A5=-90, A6=20}

Using the Robotics API’s command layer, the same motion1 can be programmed using
runtime.createRuntimeCommand(robot, new PTP(robot.getJointAngles(), new double[] { 10,

20, -40, 50, -90, 20 } )).execute();

It is not very surprising that a domain specific language (DSL) such as KRL offers a more
convenient programming interface for all purposes for what it was intended. However,
the extensibility of such languages is usually very limited, thus new requirements such as
sensor integration or cooperating robots are difficult to implement.
To support developers for “standard” robotics application, a change or supplement to
the Robotics API’s command layer is required. It would be possible to redesign the
command layer for better robotics application support, however the Robotics API has
proven to be a stable platform, and it was not intended to sacrifice the flexibility of the
API just to simplify the development of some applications.
It is possible to extend the command layer using a domain specific language which aims
at developers for standard industrial robotics applications. Some research has been
done by Mühe et al. [90] to support the execution of legacy KRL applications using the
Robotics API. However, using a DSL as main programming paradigm contradicts the
aims of the SoftRobot project of supporting the robotics domain using a general purpose
programming layer. Using a DSL, it is once again difficult to benefit from the large
ecosystems of modern programming languages and environments.
It was decided to extend the Robotics API command layer with another Java-based
layer, the Activity Layer. This solution has the advantage of using the Java programming
language while still being able to provide an abstraction of the command layer to
facilitate the development of many robotics applications. The activity layer is based
on the command layer, however the command layer is not coupled in any way to the
activity layer. Thus it is still possible to use the command layer without the activity
layer. The following examples are provided to illustrate how end-users interact with the
Robotics API, but do not go into detail about the implementation of the activity layer.
More information about the activity layer can be found in [3] and [1, Ch. 8].
The activity layer introduces two new concepts into the Robotics API, the Activity and
the ActuatorInterface. An Activity encapsulates a real-time operation which may control
multiple actuators. The real-time behavior is implemented using a Command. Besides
the real-time operation, the activity also contains meta-data which provides information
about the states of all affected actuators during and after the execution of the activity,
e.g. the final position of all robots.

1the conversion between radians and degrees has been omitted for clarity
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Activity objects provide two methods for execution, execute() and beginExecute(). When
using the former method, the activity is executed completely and control is returned to
the application once the activity has finished. The latter method returns control to the
application once the activity has been started on the RCC. This allows the application
to perform further actions such as starting the next activity while the current one is still
being executed asynchronously.
For the creation of Activity objects and their execution, it would seem intuitive to add
methods for appropriate activities to devices. For example, a point-to-point motion
activity could be created and executed using the following line of code:
robot.ptp(new double[] { 10, 20, -40, 50, -90, 20 }).execute();

However, this syntax would break the separation of action and actuator as introduced
in Section 10.1.1, since an actuator object would need implementation for all possible
actions.
The activity layer adds the concept of ActuatorInterface to provide a collection of
functionalities which are supported by an actuator. For example all robots offer the
PtpInterface for point-to-point motions in joint space, and the LinInterface for linear
motions in Cartesian space. Further ActuatorInterfaces can be added to actuators at
run-time, i.e. without modifying the code of the actuator itself.
The developer can query all currently supported ActuatorInterfaces from an actuator
and request the use of such an interface using the actuator’s use method. All ActuatorIn-
terfaces provide methods to create activities, which then can be executed. For example,
the point-to-point motion from the previous example can now be written as
robot.use(PtpInterface.class).ptp(new double[] { 10, 20, -40, 50, -90, 20 }).execute();

Although this syntax is not as compact as it is in DSLs such as KUKA’s KRL, it combines
a straight forward syntax with the flexibility and extensibility of separated action and
actuator concepts.
A more compact syntax is not possible due to limitations of the Java programming
language. Using extension methods in C# [36] or mixins in Scala [88], the requirement
for the use method could be removed and an almost straight-forward syntax established.
Using the meta-data contained in activities and the asynchronous execution using
beginExecute(), motion blending can be elegantly specified:

1 PtpInterface ptpi = robot.use(PtpInterface.class);
2
3 ptpi.addDefaultParameters(new BlendingParameter(0.8));
4 ptpi.ptp(new double[] { 10, 20, -40, 50, -90, 20 }).beginExecute();
5 ptpi.ptp(new double[] { 40, 10, 50, 30, -40, 50 }).beginExecute();

In line 1, an instance of the ActuatorInterface for point-to-point motions is stored in a
local variable. In line 3, the blending condition is set to 80% completion of the motion
(for joint space motions the blending condition can only be specified as progress, not as
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distance). This setting is applied to all motions using this instance of the PtpInterface.
In lines 4 and 5 the two point-to-point motions are specified just like any other motion.
The meta-data available in the activity layer is used to retrieve the starting position for
each motion which is required for the underlying Commands. With the asynchronous
execution, line 5 can already be evaluated while the motion in line 4 has not yet completed.
In line 5 a new command will be created and attached to the previous motion command
using a synchronization rule.

10.2. Mapping Robotics API commands to primitive nets

A Robotics API Command describes what a robotics system should do, however it does
not contain information about how it should be done. To execute such a command on a
Robot Control Core, it must be converted into one or more primitive nets. This process
is the so-called mapping process and was first introduced in [105]. During this process,
the information about how to execute a command is introduced.
During mapping, all parts of a command are recursively converted into primitive net
fragments. For each part of a command (e.g. Actions, Actuators, Sensors, Events, but
also nested Commands within a TransactionCommand) a mapper implementation creates
a primitive net fragment for this part. Those fragments are later connected into a
large primitive net which represents the whole Command. Each mapper implementation
contains all information about how this specific part of the task can be encoded in a
primitive net fragment.
The Robotics API provides proxy classes for all primitives that are available on the RCC.
Using these proxies, it is possible to create a Java-representation of a primitive net or a
primitive net fragment during the mapping process. After all parts of a Robotics API
command have been mapped and connected, the resulting structure of proxy objects can
be transformed straightforwardly into either the XML (cf. Section 7.6.2) or the DirectIO
(cf. Section 7.6.3) representation of primitive nets which can be transmitted to the RCC.
The mapping process happens in several steps. Although the mapper implementations for
each part of a command create a primitive net fragment containing all relevant primitives
for this part, they cannot already create all necessary links between primitives, because
often connections of primitives within different command parts are necessary. To solve
this problem, mapping implementations can provide and require virtual data-flow ports
both for input and output purposes. Data-flow output ports from one fragment can be
connected to data-flow input ports of another fragment during a step in the mapping
process where both parts already have been mapped (i.e. in a higher hierarchy level).
A pair of input and output data-flow ports can be seen as some connection possibility
to transmit a certain type of data. A connection of two Boolean data-flow ports for
example can be directly mapped to a connection of a Boolean output port of one primitive
or fragment with an Boolean input port of another primitive or fragment. However,
data-flow ports do not need to map to a single link in a primitive net. It is possible
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to create complex data-flow types which consist of multiple links, possibly of different
types. For example there is a JointPositionDataflow type, which represents the type
of set-points for a number of joints of an actuator. For a 6-DOF articulated arm, this
data-flow will be mapped to six single links of type Double. Each type of data-flow is
represented by a distinct Java type in the Robotics API to allow the mapping algorithms
to distinguish between different types of data-flows, even if they are ultimately mapped
to the same type of links in a primitive net (e.g. joint set-points for a 6-DOF articulated
robot arm and a Cartesian position consisting of three values for position and three
values for orientation). Data-flow types are directly implemented by using appropriate
Java classes. Data-flow ports can be connected to input and output ports of the primitive
proxies just like other input or output ports. Using data-flow ports instead of directly
employing primitive input and output ports has several advantages. It allows the creation
of complex data-flow types without the need to implement those types also within the
real-time execution environment. Furthermore, by using special data-types, the built-in
type checks of the Java compiler can be used to detect bad connections. Additionally, the
Robotics API has special link builder algorithms that provide automatic transformations
for different data-flow types, e.g. for transformations of frames between different base
coordinate systems.

10.2.1. Basic Robotics API concepts

All basic concepts of the Robotics API command layer (Action, Actuator, etc., cf.
Section 10.1.1) are mapped into fragments. These fragments have well defined data-flow
input and output ports so that they can later be connected to each other as required.
Actions provide set-points for the actuator as an open-loop control. The mapper for
a specific action has to provide a combination of primitives that generate the desired
set-points. Examples of primitive nets which generate set-points for a point-to-point
motion can be found in Sections 5.4.2 and 5.4.3. Action mappers are always provided
with two Boolean data-flow input ports which represent the active and cancel states of
their context (usually the command they belong to). Using the active state, the action is
signaled when to start set-point generation, and the cancel state signals for a graceful
termination of set-point generation (e.g. braking an actuator, but not simply terminating).
Each action fragment provides at least two data-flow output ports. The main output of
the action mapper is a data-flow output port to provide the generated set-points (e.g. a
JointPositionDataflow for a point-to-point action). Furthermore, a Boolean data-flow
output port is used to provide the Completed state which is required for every Action.
Besides these two data-flow output ports, a further Boolean data-flow output port is
provided for each state the action supports. These additional states can be dynamically
created by the user of the action, e.g. a point-to-point action can be requested to provide
states for motion progress.
The primitive net fragment resulting from mapping an Actuator must be capable of
processing the set-points generated by an action. Therefore, the actuator fragment
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Figure 10.2.: Result of mapping a point-to-point action and a 6-DOF articulated
arm (adapted from [105])

is provided with the results of the action mapping using an input data-flow port of
the appropriate type. Usually a primitive from a driver or a device interface (e.g. the
JointPosition primitive for an articulated arm) is used to process the set-points and
transmit them to the hardware device. If necessary, it is possible to create a closed
loop controller within the actuator implementation by not only relying on the set-point
provided by the action, but also by reading sensor values of the actuator such as current
encoder values. Just like actions, actuators also are provided with input data-flow ports
for the active and cancel states, and are expected to provide an output data-flow port
for their completed state. Many actuators furthermore provide output data-flow ports
for any state (including error states for hardware failures) they can have.

Figure 10.2 depicts the primitive net fragments created by mapping a point-to-point
(PTP) action and a 6-DOF articulated arm actuator. The two generated primitive net
fragments are displayed as rounded rectangles (shown as shaded areas), data-flow ports as
small rectangles on the border of the fragment. Inside the fragments, primitives are also
displayed as rectangles, with little arrows for input and output ports. The PTP action is
mapped to a collection of 6 trajectory generating primitives which are all connected to
the active (port a) and cancel (port c) data-flow input ports. They all provide set-points
for each joint on their output port j and furthermore provide an output port f which
is true once the trajectory has been finished. Those output ports are connected using
the And primitive to provide the Completed state once all trajectories are finished (for
asynchronous motions it is possible that not all trajectories finish at the same time). All
set-points are collected into a single data-flow output port of type JointPositionDataflow.

The actuator is mapped into 6 JointPosition primitives, which are all connected to the
single data-flow input port. Besides the set-points, the primitives are also supplied with
the active state to detect when active control of the robot is required. It is important
that an actuator fragment only actively controls the hardware when its active input is
true, because larger (transactional) commands can have multiple instances of the same
actuator fragment. The articulated arm driver used in this example is able to reach
a given set-point within one control cycle (if the trajectory of set-points is physically
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feasible at all), thus it always returns true on the completed state. The overall motion
is only finished once both the action and the actuator report true on their Completed
output data-flow ports. In this example, the actuator ignores the cancel input (as it
finishes its task in a single execution cycle anyways).
The connection of the action’s data-flow output port carrying the set-points and the
actuator’s data-flow input port (dotted arrow in Fig. 10.2) is neither created by mapping
the action nor the actuator, but by mapping the surrounding command (cf. next section).
Sensors are also mapped to primitive net fragments and provide an output data-flow
port which represents the current value of the sensor. It is possible to create derived
sensors which rely on values generated by their underlying sensor and some calculation
primitives, e.g. to add, subtract or multiply a sensor value with a constant or another
sensor value. If any states are defined on a sensor or a derived sensor (e.g. sensor value
greater than a constant), these states are ultimately mapped to Boolean data-flow output
ports by inserting appropriate comparison primitives.

10.2.2. Basic executable commands

A RuntimeCommand is the smallest executable command of the Robotics API that
controls an actuator. It consists of one action and one actuator. All fragments resulting
from mapping commands share a common interface such that they can be combined
transparently and nested into other (e.g. transactional) commands. Every command
fragment has two Boolean data-flow input ports Start and Cancel which are used to
start and respectively cancel the execution of the command and provides two Boolean
data-flow output ports Active and Completed which signal whether the command is
currently running or has completed its task.
The Action and Actuator a command consists of are mapped to fragments as described
in Section 10.2.1, an example can be found in Fig. 10.2. During the mapping phase of
the command, the data-flow output port of the action providing set-points is connected
with the appropriate data-flow input port of the actuator. If the data-types of both ports
do not match, an automatic type-conversion is attempted (cf. Section 10.2.3).
To control the activation of a command using the command’s data-flow input ports, a
special Activation fragment is used which has three input ports: start, stop and cancel,
and provides three output ports: active, cancel and started. The three input ports are
used to determine when to start execution (setting output active and started to true)
and when to stop execution (setting output port active to false). The started output
ports remains true once a command has been started and allows to determine whether a
command has ever been run.
Figure 10.3 displays the results of mapping a RuntimeCommand. The parts Action and
Actuator are mapped as previously described, the content of their fragments is omitted
for clarity’s sake. The Start and Cancel ports of the Activation fragment are connected
to the data-flow input ports of the command fragment. The Active data-flow input ports
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Figure 10.3.: Result of mapping a RuntimeCommand (adapted from [105])

of the action and actuator fragments are connected to the active output of the Activation
fragment. The cancel port is handled analogously.

The termination of the command is also partly handled by the activation fragment. Both
Complete output data-flow ports of the action and actuator fragments are combined (using
an And primitive) and connected to the Stop input port of the Activation fragment. This
connection is displayed as a dashed line in Fig. 10.3, because it needs to be delayed for
one cycle, like every event effect. Both action and actuator fragments signal completion
during the last active execution cycle, thus any effect of this event must only happen in
the next execution cycle. A Pre primitive is used for connecting these ports to delay the
transmission to the next cycle. Without this delay, the resulting primitive net would also
contain an unguarded cycle which is not allowed.

To stop the execution of a command, the activation fragment switches off the active
output port, thus disabling the execution of the action and actuator fragments. The
Completion fragment signals true to the Complete data-flow output port if it received
false from the active port and true from the started port, i.e. the command has ever been
started and is no longer running. An additional shortcut from the combined Complete
ports of action and actuator is also connected to the Completion fragment without a delay.
This guarantees that the Complete output port of the runtime command changes to true
in the same execution cycle the action and actuator have completed. The Active data-flow
output port is directly connected with the active port of the activation fragment.

Besides action and actuator, commands can also contain events which must be mapped
into the primitive net. In the context of a single runtime command, not all event effects
as introduced in Section 10.1.1 are possible. The command stopper and canceler event
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effects can only apply to the same runtime command, and starting other commands is
not possible.
All events are represented by a State which provides a Boolean data-flow output port
on a fragment. This fragment can be e.g. the actuator, but also a fragment created by
the mapping of a sensor. The command stopper and command cancel event effects are
implemented by connecting the Boolean data-flow output port with the stop or cancel
input ports of the Activation fragment, using a delayed connection (using a BooleanPre
primitive). If multiple events stop or cancel the command, all connections are joined by
a logical or to allow each single event to cause the desired effect.
Workflow effects are also mapped into the primitive net. The result of this mapping
process contains a BooleanNetcommOut primitive (cf. Section 7.6.1) to signal the event
to the application. While this event is recognized within the real-time system (i.e.
states being active for only a single execution cycle reliably cause this event effect to be
triggered), the processing of the event in the Java application is no longer guaranteed to
be deterministic.

10.2.3. Automatic type conversion

In Fig. 10.2, the set-points generated by the action could directly be consumed by the
actuator. For articulated arms and motions in joint-space, usually no conversion is
required. Motions in Cartesian-space however cannot simply be fed into an actuator
fragment representing such an articulated arm; an inverse kinematics transformation has
to be performed.
The required data-type conversion is neither created by mapping the action nor the
actuator. Including type-conversions already at this stage would limit the applicabil-
ity of an action or actuator to a matching correspondent, and also lead to multiple
implementations of very similar concepts (e.g. one actuator for joint-space and one for
Cartesian-space). Both actions and actuators can provide converters that can also be
mapped to primitive net fragments and that can perform the required type conversions.
During the mapping process of the surrounding command, an appropriate converter will
be selected and mapped between the data-flow ports when required.
To determine which converter is appropriate, the (Java-)types of the data-flow ports are
considered. During the mapping process of action and actuator, instances of the data-flow
ports are created which can carry additional meta-data (e.g. the number of joints in a
JointPositionDataflow or the base coordinate system for a CartesianPositionDataflow).
The converter uses this meta-data to create an appropriate conversion fragment.
Converters are commonly required when motions are defined in Cartesian space (e.g. linear
or circular trajectories). The action fragment generates set-points in Cartesian space
(i.e. X, Y and Z coordinate for translation and Euler angles A, B and C for orientation)
using the CartesianPositionDataflow type, while the actuator expects set-points in joint
space (using JointPositionDataflow type). The actuator provides a converter module
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Figure 10.4.: Converter fragment for conversion from Cartesian space to joint space

which is able to create a conversion fragment. Figure 10.4 outlines a primitive net
combining the aforementioned action and actuator. The converter fragment contains an
inverse kinematics primitive to convert from Cartesian space to joint space. The inverse
kinematics primitive expects Cartesian positions in the actuator’s base coordinate system.
If the set-points generated by the action are specified using another coordinate system
(e.g. the global world coordinate system), an additional frame transformation fragment is
included which is able to perform the required coordinate system transformation. An
in-detail description of frame transformations in the Robotics API can be found in [1,
Chapter 7].

10.2.4. Multiple commands in a single real-time context

Multiple Commands can be combined into a single TransactionCommand. The developer
can define the behavior of every command using event effects, e.g. to start a command
directly after another one has finished. It is also possible to synchronously start multiple
commands, which then will be executed in parallel. Such a transactional command is
mapped into a single primitive net and thus is executed within the real-time context
of the RCC. Switching between different commands within a transactional command
is strictly deterministic. Because a TransactionCommand is a Command just as a
RuntimeCommand is (cf. Fig. 10.1), the primitive net fragment created during mapping
a TransactionCommand must have the same interface (i.e. data-flow input and output
ports) as a RuntimeCommand. This allows to transparently nest transactional commands
into other transactional commands.

To illustrate the mapping process for a transactional command, a simple electrical two
finger gripper is used as an example. The gripper opens as long as it receives a high
signal on its open input (e.g. from a fieldbus) and closes as long as a high input is set
on the close input. If the gripper detects it being in a final position (either completely
opened or closed), it activates a high signal on an output. A command to open the
gripper has to perform the following steps:

1. Set high signal to input open to start the opening process.

2. Wait until the gripper signals reaching final position.

3. Set low signal to input open to stop the gripper motor.
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1 // Retrieve from configuration ...
2 RoboticsRuntime runtime = ...;
3 DigitalOutput outOpen = ...;
4 DigitalInput inFinished = ...;
5
6 // Create commands for all three steps
7 Command setHigh = runtime.createRuntimeCommand(outOpen, new SetDigitalValue(true));
8 Command wait = runtime.createWaitCommand();
9 Command setLow = runtime.createRuntimeCommand(outOpen, new SetDigitalValue(false));
10
11 // Create transaction command containing all single commands
12 TransactionCommand tc=runtime.createTransactionCommand(setHigh, wait, setLow);
13 tc.addStartCommand(setHigh);
14
15 // Create sequential order of commands
16 tc.addStateFirstEnteredHandler(setHigh.getCompletedState(), new CommandStarter(wait));
17 tc.addStateFirstEnteredHandler(wait.getCompletedState(), new CommandStarter(setLow));
18
19 // Cancel waiting once final position has been reached
20 tc.addStateFirstEnteredHandler(inFinished.getSensor().isTrue().or(tc.getCancelState()),

new CommandCanceller(wait));
21
22
23 // Execute the command
24 tc.execute();

Listing 10.1: Java code for opening an electrical two finger gripper within a single
TransactionCommand

Each step can be programmed using a RuntimeCommand as described in Section 10.2.2,
and the process flow of all three steps can be achieved by using events and combining
the commands in a transaction. Listing 10.1 shows an exemplary application written
in Java to perform the steps within a single TransactionCommand. At first, three
RuntimeCommands are created, one for each step. All three commands are added to
one TransactionCommand and linked to each other using appropriate event effects. The
WaitCommand created in line 8 is a special command which controls no actuator but
rather waits for a given period of time or – in this example – until it is canceled. The first
time the true state of the digital input inFinished is entered (i.e. the gripper signaled
reaching final position on its output), the wait command is canceled and thus the final
step is performed.
The mapping process for a TransactionCommand is in many ways very similar to mapping
a RuntimeCommand. At first, all children elements (in this case: other commands) are
mapped. Later, connections among these commands are created as event effects and
the overall activation connections are created. The same fragments for activation and
completion handling are used.
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10.2. Mapping Robotics API commands to primitive nets

Figure 10.5.: Result of mapping a TransactionCommand (adapted from [105])

Figure 10.5 displays the results of mapping the TransactionCommand created in List-
ing 10.1. The three children Commands (each with the four typical data-flow ports) can
be seen as slightly darker rectangles on the right side. The transactional command’s
data-flow ports (Start, Cancel, Active and Complete) are connected to the Activation
and Completion fragments identically as in a RuntimeCommand. The end of execution
of a transactional command is detected by evaluating whether at least one child is still
active. If no child is active, the surrounding command also terminates.

The command created for the first step is marked as “start command” in line 13, thus
its active data-flow input port is directly connected to the active output port of the
activation fragment. As soon as the transactional command is started, the command for
the first step will be started simultaneously.

In lines 16 and 17, the commands for the second and the third step are linked with their
predecessor’s completed state using the command starter event effect. This event effect
can be mapped by connecting the predecessor’s Complete data-flow output port with
the successor’s Start data-flow input port. Like all event effects, this connection must be
delayed for one execution cycle (i.e. the successor shall only be started in the cycle after
the predecessor has finished, and not during the same execution cycle). Therefore it is
necessary that the Complete output port of the single command is not already delayed.

In line 20, a command canceler event effect is created to stop the execution of the wait
command for step two in two different situations. The first situation is encountered,
when the gripper reports reaching its final position. To detect this situation, the isTrue
state of a digital input port connected to the grippers “position reached” output port is
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used. The digital input is a sensor and thus recursively mapped, the resulting fragment
providing a Boolean data-flow output port for the requested state. This state is combined
with a logical or with the transactional command’s cancel state. If the transactional
command itself is canceled (e.g. by the user trying to abort a program), it causes the
wait command to be canceled as well. The command canceler event effect then causes
the combined state to be connected to the wait command’s Cancel data-flow input port
(using a delayed connection like for all event effects).
Unlike in a RuntimeCommand, where the cancel event of the command is automatically
distributed to action and actuator, the cancel event of a TransactionCommand is only
distributed to children if explicitly programmed. Only the developer can decide which
children commands can be safely canceled, and which must continue to run. In the
example of the two finger gripper, canceling the overall transaction command must not
lead to step three not being executed. If the command for step two is canceled before
the gripper has reached its final position, only the following execution of step three will
actually stop the gripper. Simply aborting the whole transactional command would lead
to the gripper motor not stopping at all.

10.2.5. Synchronizing multiple independent commands

Using a TransactionCommand, it is possible to create sequences of commands which
are executed one after another within the same real-time context, thus being able to
guarantee the timely execution of each command. However to achieve this, all commands
must be combined into a single Java Command, which does not allow to use mechanisms
of the Java programming language for control flow (such as if branches). For many
applications, hard real-time between different commands is not required, e.g. for motion
blending (cf. Section 2.5). The synchronization mechanism introduced in Chapter 6 allows
executing multiple distinct commands sequentially with a best-effort approach. Motion
blending and other transitions that require real-time transitions from one command
to another will be executed if the execution environment can guarantee the required
real-time transition.
A synchronization rule was defined in Section 6.1 as 4-tuple (cf. Eq. (6.1))

σ = (C,ω, ψ, α)

with ω, ψ and α being primitive nets to stop, cancel and start when condition C becomes
true. Within this section, ω, ψ and α can also be considered as commands, since every
top-level command (i.e. any command not contained within another command) can be
mapped to a single primitive net. Generally, commands stopped, canceled or started by
a synchronization rule are not different to any other “ordinary” command. Canceled
commands need to handle their cancel state appropriate to terminate, otherwise the
synchronization rule will have no effect on them. Commands started by a synchronization
rule must be able to cope with the state of the system, which may contain actuators in
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an unsafe state (e.g. moving or applying force). If the synchronization condition C is
properly defined, commands will only be started in exactly the situation they expect.

Commands can create CommandSynchronizer event effects which can be part of the
synchronization condition C. CommandSynchronizer can be used like any other event
effect. During the mapping process, all CommandSynchronizers are mapped to primitives
which make the attached event available to the synchronization mechanism. In the
reference implementation SoftRobot RCC, communication primitives (cf. Section 7.6.1)
are used for this purpose.

Example: motion blending

A

B

C

D

E
obstacle

Figure 10.6.: Motion blending (adapted form [125])

The motion blending concept is used to demonstrate the mapping process of multiple
synchronized commands. The desired action is a linear motion from point A to point C
and a subsequent linear motion to point E, while the actuator should not stop at point C
but rather continue moving on a curved connecting line (cf. Fig. 10.6). Three Commands
are required for this task:

1. Linear motion from point A to point C.

2. A combination of the curved connecting line (point B to D) and the remainder of
the second motion (D to E).

3. Linear motion from point C to point E.

For this example, all three commands are mapped into individual primitive nets, and
not embedded into a TransactionCommand. Usually commands 1 and 2 are sufficient for
executing the desired task. Due to non-real-time behavior of the Robotics API application
however it is possible that command 2 is not ready for execution when command 1 has
reached point B. Because the robot may not be left in an uncontrolled state, the execution
of command 1 must be continued until the motion stops in point C. Command 3 is only
required to restart in a safe way after motion blending has failed. After command 1 has
completed in point C the system is in a safe state; there are no timing requirements for
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1 RoboticsRuntime runtime = ...;
2 RobotArm robot = ...;
3
4 double[] dest1 = new double[] { 1, 1, 1, 1, 1, 1 };
5 PTP ptp1 = new PTP(robot.getJointAngles(), dest1);
6 RuntimeCommand cmd1 = runtime.createRuntimeCommand(robot, ptp1);
7
8 CommandSynchronizer syncToken = new CommandSynchronizer();
9 cmd1.addStateFirstEnteredHandler(ptp1.getMotionTimeProgress(0.8), syncToken);
10
11 runtime.synchronize(null, new Command[] {}, new Command[] {}, new Command[] { cmd1 });
12
13 double[] dest2 = new double[] { 1.5, -1.5, 1, 1.2, 1, 1.5 };
14 PTPFromMotion ptp2 = new PTPFromMotion(dest1, dest2, cmd1.getPlan(ptp1).

getJointPositionsAt(0.8), cmd1.getPlan(ptp1).getJointVelocitiesAt(0.8));
15 RuntimeCommand cmd2 = runtime.createRuntimeCommand(robot, ptp2);
16
17 CommandHandle cmd2handle = runtime.synchronize(syncToken, new Command[] { cmd1 }, new

Command[] {}, new Command[] { cmd2 });
18
19 cmd2handle.waitComplete();

Listing 10.2: Java code for two commands started using synchronization rules

the creation of command 3, it is even sufficient to create command 3 only after failure of
motion blending has been detected.
Listing 10.2 shows the Java code for two blended point-to-point motions. The first motion
is created in lines 4 to 6. In lines 7 and 8 a CommandSynchronizer event effect is created
and attached to the event “motion has progressed 80%”. The command is finally started
in line 11 by creating a synchronization rule, which has null as condition (i.e. it is started
immediately), does not stop or cancel any commands and starts cmd1. The execute()
method is not used since this method would block until the motion has completed.
The second point-to-point motion is planned in lines 13 to 15. In contrast to the first
motion, not only the start and stop positions are required, but also the position of the
point where blending should be started is required. Furthermore, since the robot is moving
at this point, the current velocities of all joints are required. The first motion command
can be queried for these values. The second motion finally is added to a synchronization
rule in line 17 which is scheduled for execution once the CommandSynchronizer in the
first command is triggered. When the second Command is started, the first one must be
terminated. Line 19 waits until the second motion has completed since line 17 does not
block. The example does not contain code to handle the case when the second motion is
not ready in time. In this case the first motion will be completed and the second never
started, since the event defined in line 9 did not become active when the second motion
was ready.
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Figure 10.7.: RuntimeCommand for first motion

Figure 10.7 shows the resulting primitive net after mapping the first point-to-point
motion command. Compared to a standard command, the action provides an additional
Boolean data-flow output port 80PComplete which signals reaching 80% of the motion.
This data-flow output port is connected to a NetCommOut primitive which provides the
Boolean variable required for the synchronization condition. The command generated for
the second motion does not differ from any other command. The contained Action must
be able to start with a moving robot.

The activity layer of the Robotics API relieves the developer from many of the tedious
tasks required in Listing 10.2 to ensure that the second motion can take over the first
(e.g. the position and velocity at the start of the second motion). The activity layer saves
meta-data for each previous Activity which is used to infer all required conditions at the
start of any successive motion.

10.2.6. Complete example for a generated primitive net

The mapping algorithm has been explained in the last sections on a rather abstract
level in order to give an overview of how real-time tasks of robotics applications can
be automatically translated into primitive nets. For real-world applications, the shown
examples are missing some important features, in particular error handling has been
omitted for simplicity’s sake. Error handling in the Robotics API is done using states,
all actions and actuators provide states for errors that can occur. With the appropriate
event handlers, the application can react to errors both in a real-time safe way, if the
error handling is also mapped into the primitive net; or by aborting the execution and
notifying the (non real-time) application.
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Figure
10.8.:P

rim
itive

net
ofa

point-to-point
m

otion
for

a
6-D

O
F

robot

180



10.2. Mapping Robotics API commands to primitive nets

The default settings include error handling for some of the most common errors that
occur with robots: loss of power supply to the drives (e.g. due to an external emergency
stop) or the attempt to move joints outside their allowed range. The inclusion of all
these events and handlers leads to a rather large primitive net. Figure 10.8 depicts a
point-to-point motion as it was generated by the Robotics API for a 6-DOF Stäubli
TX90L industrial robot. The graphical representation has been created using the dot
program [46] from the graphviz package.

10.2.7. Automatically optimizing generated primitive nets

The mapping algorithm creates primitive nets by recursively creating the structures
required for the different concepts in the command layer. Thus every command, every
event etc. is mapped completely independent of all other items. This allows for a very
flexible and extensible mapping algorithm, but results in potentially huge primitive nets.
Since every action, command or event handler shares some primitives (e.g. primitives for
injecting constant values, error handling fragments, . . . ), parts of the generated primitive
net are redundant.
An automated optimization step removes these redundancies after the mapping has
completed. Every RPI fragment is analyzed to find multiple primitives which can be
represented by a single instance. Two primitives are considered identical if all the following
conditions are met:

1. Both primitive instances have the same type
2. The two input ports with the same name of both primitive are connected to the

same source output port of the same instance of source primitive
3. The parameters of both primitive instances are identical

Two primitive instances fulfilling all conditions can be considered equal and replaced
by a single instance since primitives must not have – within a single execution cycle –
any side effects. After primitives have been replaced by a common representative, all
primitives connected to the output ports must be revisited again using the optimizing
algorithm since condition 2 could now be fulfilled. The optimization algorithm terminates
if a fix-point is reached, i.e. no further identical primitives are found.
The time required to transfer a primitive net to the RCC is reduced by the automated
optimization system by replacing all primitive names in the generated net with very short
automatically generated identifiers. This reduces the size of a primitive net encoded in
either the XML or the DirectIO format.

10.2.8. An Eclipse-based graphical editor for primitive nets and mapping code

As seen in Section 10.2.1, basic Actuator and Action objects are mapped to fragments,
providing the relevant functionality based on a combination of primitives. The resulting
primitive net fragments must be specified with means of Java proxy-objects, describing all
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Figure 10.9.: Eclipse plugin displaying a primitive net

necessary primitives and connections. The textual representation of these primitive nets
in Java is rather hard to read, and mistakes in writing can easily happen (e.g. accidentally
connecting the wrong ports or even primitives).
To support the development of mapping code, a plugin for the Eclipse IDE has been
developed by Kaup [72] during his master’s thesis. This plugin supports the graphical
design of primitive nets, and can automatically generate Java source code containing the
appropriate proxy objects, including all connections. Basic syntax checking is integrated,
i.e. the user is prevented from connecting incompatible ports, or from creating cycles
without Pre primitives. The available primitives are extracted from the Robotics API
runtime environment using reflection. Thus the editor automatically adjusts to changes
in the Robotics API, such as new hardware devices. The plugin also supports extracting
primitive nets from Java source files as long as it is possible to statically analyze the
code (i.e. loops etc. are not interpreted). This feature is mainly aimed at providing a
bidirectional way of editing primitive nets and Java mapping code.
Each primitive net that is created using the editor can also be used as a fragment and
inserted into other primitive nets, which allows for an easy reuse. During the creation
of the Java source code representing such a primitive net, one class is generated for
each fragment, which also implements the interface of a primitive. Thus it is possible to
include a fragment into another fragment in both the graphical editor as well as in the
Java source code. In the graphical editor it is possible to hide the contents of a fragment
for better overview of the primitive net; the content can be accessed by clicking on the
fragment. Figure 10.9 displays the Eclipse plugin with a graphical representation of the
primitive net which was introduced in Listing 7.1 (Page 105).
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Chapter 11

Evaluation

The concepts of the Real-time Primitives Interface and the synchronization mechanisms
for multiple primitive nets are evaluated in this chapter. To perform this evaluation, the
Robot Control Core reference implementation SoftRobot RCC is used.
The evaluation is performed in different aspects. At first, the real-time performance and
scalability of the system is investigated. Afterward, some applications which demonstrate
the real-time capabilities of the system are analyzed. The extensibility of the SoftRobot
RCC implementation is evaluated by the integration of a new type of robotics hardware.
Finally, the goals identified in Section 4.1 are reviewed.

11.1. Real-time performance

In order to evaluate the real-time performance of the SoftRobot RCC reference imple-
mentation, the execution times for primitive nets for a set of standard motions have
been measured. For all measurements, the hard- and software listed in Table 11.1 has
been used. The computer system has been fine-tuned for real-time operations, i.e. all
unnecessary components such as sound or USB interfaces have been deactivated. This is
necessary primarily to avoid having to share interrupt lines with multiple devices. Besides
these custom settings in the BIOS setup, the system is completely standard “off-the-shelf”
hardware.
Three different motion commands have been evaluated: A point-to-point motion in joint
space (PTP), a linear motion in Cartesian space (LIN), both executed by a single robot,
and a linear motion (SYNC-LIN) performed simultaneously by two robots have been
analyzed. All motions have been created using the command layer of the Robotics API
(cf. Section 10.1.1). The PTP and LIN motions both consist of a single runtime command
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System Fujitsu Esprimo P710 E90+
Processor Intel Core i5-3470 (4 cores)
Memory 8 GiB
Operating system Xubuntu 12.04.5 LTS
Kernel Linux 3.2.21 x64 with Xenomai real-time extensions
Real-time software Xenomai 2.6.2.1

Table 11.1.: Hardware used for performance measurements

PTP LIN SYNC-LIN
№ primitives 457 670 1350
Avg. cycle time 1.9993 ms 1.9992 ms 1.9992 ms
Standard deviation 9.1564 · 10−6 ms 1.733 · 10−5 ms 1.8886 · 10−5 ms
Min. cycle time 1.9860 ms 1.9804 ms 1.9809 ms
Max. cycle time 2.0146 ms 2.0143 ms 2.0167 ms
Min. execution time 0.0568 ms 0.0964 ms 0.0945 ms
Standard deviation 0.0057 ms 0.0039 ms 0.0042 ms
Max. execution time 0.0966 ms 0.1562 ms 0.3566 ms
Standard deviation 0.0045 ms 0.0119 ms 0.0400 ms

Table 11.2.: Measured performance results for three different motions

with one action and one actuator. The SYNC-LIN motion consists of two runtime
commands (one for each robot) which are started synchronously by embedding them into
a single transaction command. All motions have been repeated 100 times. Simulated
robot devices have been used which behave identically to real hardware devices.
Table 11.2 shows the results for all three motions. Three different aspects have been
evaluated: the total number of primitives that are required for the motion, the cycle
time for the primitive net and the minimum and maximum real execution times within a
single execution cycle. All times have been measured using the internal real-time clock of
the computer system. The current time is recorded every time an execution cycle starts;
the difference of this time in two subsequent execution cycles is the current cycle time.
This time is averaged over the whole lifetime of the primitive net. The average cycle
time in Table 11.2 is the mean of the average cycle times from each of the 100 primitive
nets. The standard deviation is calculated from these 100 values. The minimum and
maximum cycle times are the absolute minimum and maximum times for all cycles in all
primitive nets.
The execution times are the times an execution cycle of the primitive net is actively
running, i.e. the time difference from starting an execution cycle until all primitives have
been executed once. For each primitive net, the shortest and longest execution cycle has
been reported. Table 11.2 lists the averages and standard deviations of these values for
100 primitive nets.
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The point-to-point motion has the lowest number of primitives of all three motions. The
linear motion is slightly more complex due to two reasons: While the point-to-point
motion can be calculated completely in joint-space, the linear motion has to be calculated
in operation space and later converted into joint-space using the inverse kinematics
function which requires several primitives. Furthermore, the point-to-point motion used
in this evaluation used a trapeze velocity profile with three phases (cf. Section 2.3) while
the linear motion used a double S profile with seven phases. The synchronized linear
motion internally consists of two linear motions. The resulting primitive net is slightly
larger than twice the size due to the synchronization of both motions.
The average, minimum and maximum cycle times for all three motions do not differ
significantly. All primitive nets have been configured to run with a cycle time of 2 ms.
Keeping precise cycle times is the sole duty of the underlying real-time operating system
and depends largely on its ability to schedule all real-time threads appropriately. The
task of the primitive net does not influence the cycle times as long as it is possible to
execute the primitive net within a single cycle. If the task is too complex, or if too
many primitive nets are running concurrently, the real-time operating system can no
longer achieve the required cycle times. The SoftRobot RCC detects such situations and
terminates primitive nets which overrun the allocated cycle time. For all three evaluated
motions, the scheduler managed very good cycle times almost all the time with the worst
deviation being in the range of only 17 µs.
The minimum execution times are between 57 µs and 97 µs for all motions. The minimum
execution times are of no particular interest since the real-time operating system will
always be able to schedule the thread for the next cycle appropriately. The maximum
execution times are much more of interest to determine whether the primitive net can
be executed real-time safely. The standard deviation of the maximum execution time
is significantly higher than the standard deviation of the average cycle times. This is
mainly due to the real-time operating system interrupting the primitive net execution
thread for other high priority threads such as hardware device drivers. Nevertheless the
execution times are usually within 10% of the average maximum time.
Figure 11.1 shows the execution times exemplary for the point-to-point motion. Each
execution phase (cf. Section 5.3.2) is displayed separately. It can be seen that after a
comparably slow first execution cycle, most subsequent execution cycles take approxi-
mately the same time, however there are some outliers whose execution times differ at
most 30 µs. Those outliers do not correspond to any specific event within the primitive
net, but are rather caused by indeterminism of the x86 computer system. Experiments
have shown that actively using the graphics adapter causes many hardware interrupts
which can create jitter up to 150 µs, therefore the small outliers in Fig. 11.1 are to be
expected. They do not impact the overall real-time performance of the system, since
the cycle times of the primitive nets are not affected. All measurements for this section
have been performed using a remote connection to the RCC, thus avoiding load on the
graphics adapter.
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Figure 11.1.: Execution times for a point-to-point motion primitive net, separated
into the three execution phases

Point-to-point motions have the shortest maximum execution times. For linear motions,
the additional inverse kinematics functions take a considerable amount of time in each
execution cycle. Therefore, the synchronized linear motions are expected to take at least
twice the execution time of a single linear motion plus some overhead for synchronization.
With only 0.357 ms execution time for two synchronized robots and a 2 ms cycle time,
it is possible to scale the system to support many more synchronized robots. However
the maximum execution time must not reach the cycle time. In particular the overall
processor load should not exceed 70%, otherwise – depending on the scheduler used – the
system might no longer be able to schedule all tasks correctly [83]. For each additional
robot, the RCC also needs some calculation time for the device drivers which are always
executed in parallel to the primitive nets. It is also possible to reduce the cycle time to
lower values. This however only provides an advantage if the connected hardware devices
support control with high frequencies such as the KUKA lightweight robot does. The
other robots (Stäubli TX90L and KUKA KR-16) used for the evaluation only support
control cycles with 4 ms, thus further increasing the primitive net cycle time does not
provide any benefit.
Besides the hard real-time performance of the SoftRobot RCC, also the time required by
the Robotics API to generate primitive nets is important for the overall performance of
robotics application. An analysis of these times has been performed by Angerer et al.
[3, Section 7.3]. By average it takes 50 ms to 200 ms until a motion specified using an
Activity is started. The first three to five motions can take significantly longer to start
(up to 600 ms) which is most likely due to the just-in-time compiler of the Java virtual
machine. A long delay in starting activities can have an adverse impact on production
cycle times if motion blending is desired and the successive primitive is not loaded in
time. For applications with many motions with a duration much shorter than 1 s, motion
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Figure 11.2.: Stäubli TX90L and KUKA KR-16 robots holding a spaghetti between
the flanges for synchronous motions

blending might not be working reliably. For longer motions however the measured times
show that the Robotics API will be able to provide the successive primitive in time.
However, motion blending is still performed on a best-effort base as there cannot be
guarantees due to the Java application generally not being real-time safe.

11.2. Applications

To demonstrate the capabilities of the SoftRobot architecture, several small applications
have been developed. This section explains three applications with special attention to
real-time control. One application demonstrates the real-time synchronization of multiple
robots, the second applications shows (real-time) reactions to external events and finally
an example for the design of a closed loop controller using primitive nets is presented.

11.2.1. Synchronized robots

In order to evaluate the real-time synchronization of multiple actuators (cf. requirement 2
in Section 4.1), an application moving two robot synchronously on a linear trajectory

187



11. Evaluation

has been created. To show that both robot move exactly with the same velocity and
acceleration, a fragile spaghetti has been mounted between the flanges of the robots which
bends or breaks if too much force is applied due to unsynchronized motions. The overall
setup can be seen in Fig. 11.2. For this evaluation, robots from two different manufacturers
have been used. The first robot is a Stäubli TX90L, controlled over the EtherCAT fieldbus,
and the second robot is a KUKA KR-16, controlled using the Remote Sensor Interface
(RSI). A video of the experiment is available under http://video.isse.de/spaghetti/.
Before two robots can perform a synchronized motion in Cartesian space, a common base
coordinate system must be defined. Since the exact mounting positions of both robots
were not known, it was decided to measure a common base coordinate system for both
robots. Figure 11.2 shows the base coordinate system as a sheet of paper attached to the
floor between both robots. The metal spikes attached to both robots’ flanges have been
used to measure the coordinate system using the “3-point method”. For this method,
at first the origin of the coordinate system must be “touched” using the spike, and
subsequently a point on the positive X-axis and a second point on the positive XY-plane
must also be touched in order to define the orientation of the base coordinate system.
The experiments consisted of two linear motions, first from left to right (seen when
standing directly in front of the Stäubli robot, i.e. the Stäubli robot was moving forwards
and the KUKA robot backwards) and then back again. For robot cooperation, only
motions in operation space are viable, thus a linear motion has been chosen. In order to
achieve a smooth trajectory, a “Double S” profile with limited jerk has been implemented
according to [9, Section 3.4]. The speed was limited to 2 m/s, the acceleration to 10 m/s2

and the jerk to 100 m/s3.
The first experiments however showed that both robots did not move perfectly syn-
chronously – although the generated trajectories were perfectly in sync. Each time a
linear motion was performed from left to right, the spaghetti was bent, while in the
opposite direction the spaghetti was torn. Apparently the Stäubli robot was starting the
motion slightly earlier than the KUKA robot. In order to get reliable data about the
motions, an external motion tracking system was used to capture the precise positions of
the robots with a high frequency. Four Vicon MX-T40s cameras with each 4 megapixel
resolution (cf. Fig. 11.4a) were positioned around the robots, and infra-red reflecting
markers were attached to the flange of each robot (cf. Fig. 11.4b). The Vicon cameras
are equipped with a 12.5 mm lens which provides a field-of-view with 67◦ × 52◦, yielding
an angular resolution of approximately 0.014◦. The flanges of the robots were in approx.
3 m distance of the camera lens, resulting in a positioning resolution of approx. 0.7 mm
for each camera. By using four cameras and interpreting grayscale images, the resolution
is further increased. Unfortunately no exact information about the overall precision is
available from Vicon. The Vicon system captured the positions of the markers with
250 Hz. Figure 11.3 shows a diagram of the measured deviance of the distance of both
flanges. It can be seen that for the first motion the flanges are getting approximately 1 cm
closer, while the distance increases about the same amount during the second motion.
Between both motions, the original distance is restored. The captured velocity profiles
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Figure 11.3.: Distance of the robots’ flanges without additional synchronization

showed that both robots followed the same profile, i.e. no robot accelerated faster or
slower. The KUKA robot however started to accelerate 4-8 ms later.
This behavior can be explained with two main characteristics:

• The KUKA controller performs some internal smoothing of the trajectory which
takes a few milliseconds.

• The Stäubli robot expects new set-points always for the upcoming SYNC0 event.
Due to the distributed clocks feature of the EtherCAT bus, the time of this event is
known in advance. For the KUKA robot however, no such information is available.

In order to improve the performance of the system, the time the set-points are expected
for by the KUKA controller has been set several milliseconds to the future (cf. variable
t in Eq. (9.1) on Page 143). During several experiments a value of 6 ms has shown to
provide best results. New measurements show that the deviation of the distance between
the flanges is now reduced to ± 1 mm. The resulting diagram can be seen in Fig. 11.5.
Using the available measuring technology, results much smaller than 1 mm cannot be
expected.
To further increase the synchronization performance, the robots need to be synchronized
on a lower level. Both systems currently are controlled with a cycle time of 4 ms, however
these cycles are not synchronized to each other. Since the KUKA controller does not
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(a) Vicon MX-T40s camera (b) Infrared reflecting markers attached
to the flange of the robot

Figure 11.4.: Motion capturing system used to track both robots’ flanges

provide information about when set-points are required, this time can only be estimated
within the time frame of one cycle. With a top speed of 2 m/s, 4 ms time difference can
lead up to 8 mm of position difference. The distributed clock feature of the EtherCAT
fieldbus would greatly help for synchronization, since all devices connected to the bus will
expect new set-points at the same time (with only a jitter of ≤ 1 µs, cf. Section 9.4.1).
The application has been programmed using the MultiArmRobot concept of the Robotics
API (cf. [1, Section 10.6]). The MultiArmRobot provides a virtual actuator which can be
used in robotics applications like any other robot, albeit only motions in operation space
are possible. The aggregated robots keep the relations of their flanges with respect to
each other during all motions executed with the virtual actuator. Internally, the motion
is planned and distributed to all participating robots. Using a TransactionCommand,
the start of all robot motions is synchronized real-time safely. The MultiArmRobot takes
care to plan motions with appropriate velocities and accelerations so that all robots are
capable of executing the motion. Thus programming applications with multiple robots
do not differ from single-robot applications; the necessary synchronization is achieved by
automatically creating a suitable primitive net combing all actuators.
The “Factory 2020” demonstration was the final demonstrator for the SoftRobot project
and included many of the challenges for modern robotics applications. In particular,
cooperative manipulation using two robots was required. The task was to pick up heavy
work-pieces from an automated guided vehicle to a platform for further processing. Two
KUKA lightweight robots were used to simultaneously lift the work-pieces to split up
the weight between two robots. After all work-pieces have been transferred, two parts
had to be assembled using an electric screw-driver. After both robots cooperated in
assembling the work-piece, one of the robots held the piece while the other inserted the
screw, using the built-in force-torque sensors to locate the screw. Using this demonstrator,
the capabilities of the SoftRobot platform for real-time synchronized motions as well as
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Figure 11.5.: Distance of the robots’ flanges with additional 7 ms difference between
both trajectories

sensor-based, cooperative assembly tasks could be shown. A video1 of the demonstrator
is available, and a more in-depth analysis of the tasks can be found in [3, Section 7.1.3]
and [1, Section 11.3].

11.2.2. Real-time motion blending with I/O

The KUKA robot language (KRL) uses the concept of advance execution to support
motion blending, i.e. to allow one motion to be blended into the next without being
completed (cf. Section 2.5). Advance execution means that the program code interpreta-
tion (advance program counter) advances the currently executed motion (main program
counter) several steps (in KRL: at most 5 motion steps). During the interpretation of
a motion command by the advance program counter, the trajectory is already planned.
Because of this, modifying any variable a motion later relies on (but prior to the motion’s
real execution) does not affect the motion at all. Thus any non-motion related program
statements (logic, arithmetic) are also interpreted completely during the advance run.
If a KRL program requires information from the environment (e.g. the value of a digital
input), this information can not be retrieved during the advance run, because the

1http://video.isse.de/factory
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Figure 11.6.: Decision points t1 (advance execution) and t2 (last possible point of
decision) for a blended motion from point A over B to either C or D

information might have changed until the main run reaches the same position. Therefore
the KRL interpreter by default stops advance execution upon such a command and
waits until the main run has caught up. This allows the current value for environment
information to be used, but prevents motion blending to work. It is possible to allow the
use of environment information without stopping the advance execution; this however
leads to the usage of possibly outdated environment data.

An example for a motion depending on the evaluation of the environment is drafted in
Fig. 11.6. Depending on the outcome of the evaluation, either a motion from point A over
B to C or from A over B to D is desired. Both motion parts shall be blended into each
other, thus two possible trajectories for the blended motion exist (dashed, curved lines
around point B). Using KRL advance execution, it is either possible to disable motion
blending and take the decision after point B has been reached and the robot has stopped.
Or otherwise if advance execution is forced, the decision will be taken at some point t1
before the motion has even reached point A. Later changes in the environment cannot be
taken into account for the decision. It is not possible to define when or where exactly t1
occurs. Using the real-time primitives interface together with the synchronization rules,
it is possible to delay the time of decision to point t2 which is the last point where/when
a decision can be made, i.e. when the trajectories start to diverge.

It is possible to pack the whole motion from A to either C or D into a single primitive
net, which internally checks the environment and takes the proper decision. Using this
method, it can be guaranteed that the decision will be made at point t2, and that motion
blending will be performed reliably. For the same reasons as explained in Chapter 6
however, it is desirable to split the motion up into separate primitive nets which can be
combined using the synchronization mechanism. Using this approach, three primitive
nets are necessary: the first for the motion from A to B, including the environment
monitoring and one primitive net each for the possible motions from t2 to C and from t2
to D.
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Figure 11.7.: Real-time I/O demonstration: solid rectangle ABCD is performed if
push-button is not pressed at point t2, rectangle ABC’D’ otherwise

Do demonstrate the real-time decision taking capabilities of the Robotics API and the
SoftRobot RCC, an application has been created that moves a KUKA lightweight robot
continuously on four linear motions arranged in a rectangle (points ABCD in Fig. 11.7).
Each motion is blended into the next motion, thus the robot never stops. Right before
point B of the rectangle, the state of a push-button connected via fieldbus is evaluated.
If the button is not pushed, the motion continues as usual. If the button is pushed at the
moment the robot reaches point t2, a different rectangle with points ABC’D’ is performed.
To notify the user of an imminent decision, three traffic-light like lamps are used that
count down to point t2.

Two results could be observed with this experiment:

1. During long, continuous execution, motion blending was done almost on every point,
even though motion blending is only performed on a best-effort base. However,
there have been rare cases when the robot stopped at one point of the rectangle, in
particular when the computer executing the Java program was under high load.

2. The decision which rectangle to perform could be delayed until the last possible
point in time. Unlike in KRL programs, it was perfectly sufficient to start pressing
the button moments before point t2 was reached, in particular long after the motion
from A to B had started.
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Figure 11.8.: Crazyflie miniature quadcopter with infrared reflecting marker for
position tracking

11.2.3. Implementing closed-loop controllers using RPI: Controlling a quad-
copter

The crazyflie is a miniature quadcopter, a helicopter equipped with four propellers driven
by electric motors (cf. Fig. 11.8). Quadcopters fly by controlling the thrust of each
propeller individually. By increasing and decreasing the thrust of appropriate propellers,
the quadcopter can rotate around each axis and thus move in all directions. A quadcopter
can stay motionless in the air when it is completely horizontal and the torques of all four
motors sum to zero. In order to stay stable in the air, a quadcopter requires accelerometers
to measure its position in relation to the gravity force of the earth. The crazyflie has an
in-built controller which allows the user to specify the desired roll and pitch angles, a
yaw position and the overall thrust (to raise or sink). Using the accelerometer, the thrust
required to achieve the given parameters for each propeller is calculated internally.
Although the internal controller enables the quadcopter to hover stably in the air, the
quadcopter will not rest at the same position for a long time. Since a flying object cannot
directly measure its velocity with respect to the earth, the quadcopter will eventually
drift due do the air draft. In order to control the absolute position of a quadcopter,
an external positioning system is necessary. This can be achieved both by externally
monitoring the quadcopter as well as the quadcopter monitoring known fixed points
in the environment. For a student project at the Institute for Software and Systems
Engineering, four Vicon MX-T40s cameras (cf. Fig. 11.4a) and an infrared reflecting
marker on the crazyflie have been used. The Vicon system reports the current position
of the marker in Cartesian space with high frequency, however no information about the
orientation is available. For measuring the orientation, at least three IR markers are
required. These are already too heavy for the small quadcopter. To mitigate this issue,
the built-in compass has been used.
Figure 11.9 shows an overview of the cascaded closed-loop controller used in this project.
The desired position xdes and velocity vdes of the crazyflie is provided as input. Using the
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Figure 11.9.: Cascaded closed-loop controller for crazyflie quadcopter

measured position xmsr the first P-controller Kp creates the velocity to command vcmd.
Together with the desired velocity and the measured real velocity vmsr the second layer
P-controller Kv creates the acceleration to command acmd. The resulting acceleration
must be extended by the constant gravity force g before it can be converted into roll,
pitch, yaw and thrust values for the crazyflie. Depending on the coordinate system used,
an adjustment for the current yaw angle is necessary before the single components of the
acceleration vector can be applied to roll, pitch and thrust of the crazyflie. The ToRPYT
block in Fig. 11.9 performs this task together with the calculation of the required angles
from the requested accelerations (using the trigonometric functions asin and atan).

The application has been developed in Java. The closed loop controller is mapped to a
primitive net which is specified using the proxy objects provided by the Robotics API. A
generic primitive for PID control has been implemented which is used for the position
and velocity controller from Fig. 11.9. In this demonstration it was sufficient to use
only the proportional part of the controller, the integrative and derivative parts were
deactivated. The resulting primitive net does not show the closed loop of the controller,
but the measured values are rather read from a sensor primitive connected to the tracking
system.

Figure 11.10 shows the primitive net used to control the crazyflie, rendered using the
dot tool from the graphviz package. The upper right part contains primitives to retrieve
the current position measurements from the Vicon tracking system and the compass
reading from the crazyflie itself. Using several timing primitives, the current velocity
is calculated from the position value of the last primitive net execution cycle. The
Core::DoubleNetcommIn primitives serve as communication interface to the application
for supplying the target position in X, Y and Z coordinates. Together with the current
position, these values are fed into three primitives of type Ctrl::PID which contain the
PID controller logic (although only the P component was used in this project). The
resulting velocities are combined with the additional target velocities and the current
measured velocities and fed into the second set of Ctrl::PID primitives for the velocity
controller. These primitives use the same PID controller as the position controller, albeit
with other P parameters. The resulting acceleration vector is still in the world coordinate
system, the crazyflie however might be rotated around the world’s Z axis (yaw). The
current rotation of the crazyflie is retrieved by comparing the current compass reading
of the crazyflie with the known orientation of the world. The acceleration is converted
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Figure 11.10.: Primitive net for a closed-loop controller for a quadcopter
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to the local coordinate system of the crazyflie before it is fed into the QC:RollPitchT
primitive that calculates the roll, pitch and thrust values from the acceleration vector
using asin and atan functions. The resulting values are fed into the controller primitive
of the crazyflie. The yaw angle is directly read from the application, since the crazyflie
internally controls the yaw angle using the compass, therefore no controller is required.
The student project clearly showed that primitive nets can be used to implement closed-
loop controllers. The control frequency depends on the primitive net execution cycle
which defaults to 2 ms on the SoftRobot RCC; however this time is configurable. For the
crazyflie, 2 ms have been fast enough for good quality results. For this example, specific
stateful PID-controller primitives have been used. It would also be possible to create a
fragment that performs the same calculations using multiplication, division and addition
primitives, and several Pre would be required for the derivative and integral parts of the
controller to “store” values from the previous execution cycle. Embedding the controller
(consisting of only 7 lines of C++ code) into a primitive therefore simplifies the primitive
net slightly.

11.3. Hardware extensibility: KUKA robots using RSI

A key requirement for a modern software system is its extensibility. The Robotics
API Development Platform including the SoftRobot RCC has been developed with this
requirement in mind. The Real-time Primitives Interface provides a flexible interface for
the specification of real-time tasks, and the SoftRobot RCC is easily extendable with
new hardware devices. This extensibility is evaluated exemplary for the development and
testing of a driver for a new robot manipulator.
The KUKA lightweight robot (LWR) has been supported previously by the SoftRobot
RCC (cf. Section 9.4.4) using the Fast Research Interface (FRI) which allows providing
set-points in both joint space as well as Cartesian space with a cycle time up to 1 ms.
Using FRI, the KUKA controller is no longer performing motion planning or executing
the robotics application itself. Other “standard” KUKA robots do not offer the FRI
option and are generally only used by executing KRL programs directly on the KUKA
controller. To control standard KUKA robots with the SoftRobot RCC, an interface
similar to FRI is required. KUKA offers the Robot Sensor Interface (RSI) [82] option
which is intended to overlay a motion programmed in KRL with external correction data,
e.g. using a camera-based system to correct the position of a pre-programmed welding
seam. However, it is also possible to use RSI without a pre-programmed KRL-based
motion, but rather specifying the whole motion through set-points, much like using FRI.
RSI supports six joints for the robot arm itself as well as up to six additional so-called
external joints which can be used e.g. for a linear unit or a turn-and-tilt table.
Starting with the KRC-4 controller from KUKA, RSI is capable of receiving new set-
points with a cycle time of 4 ms. Optionally it is also possible to use a cycle time of
12 ms with the KRC internally interpolating the motion. Communication between the
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external motion controller (in this study the RCC) and the KUKA controller is done
using UDP/IP on a dedicated network segment. In each control cycle (i.e. usually every
4 ms) the KUKA controller sends a UDP packet containing XML encoded data to the
external controller and expects a reply within the cycle time with a new set-point. If a
configurable amount of replies is lost or received late, the KUKA controller deactivates
the RSI connection and brakes the manipulator with an emergency stop. Hard real-time
is required on the external motion controller in order to reliably be able to reply within
4 ms.
The KUKA controller needs some configuration data for communication with an external
system. The configuration consists of two parts, the “RSI diagram” which describes
communication connections among different “RSI objects”, and a configuration specifying
the format of the XML telegrams exchanged between the KUKA controller and the
external motion controller. The RSI option is not only capable of using a network
connection for correction data, but can also use other data available such as provided
by a fieldbus. So-called “RSI objects” are available to read from and write to input and
outputs. Furthermore, an object for Ethernet communication and objects which apply
correction values to the current motion in joint or Cartesian space are available. Using
the RSI diagram, those objects can be connected to each other, much like primitives
can be connected in a primitive net. The Ethernet object offers a variable number of
input and output ports which can be connected to any other object to transmit data
from the KRC to the external controller (e.g. values from fieldbus inputs) and to receive
data from the external controller for further processing (e.g. new set-points or new values
for fieldbus outputs). The second configuration file defines the mapping of the input and
output ports of the Ethernet object to XML attributes in the telegrams, and further
communication properties such as IP address and port.
Besides both static configuration files, a KRL program is also required, even if the
motion is completely remote controlled. The KRL program is responsible for loading the
configuration files and initiating the RSI connection to the external controller (the KRC
is always the UDP client, while the external motion controller provides a UDP server
socket). The KRL program can activate external control by using a dedicated KRL
command which blocks until the external controller signals its desire to terminate control
by setting the Boolean input port of the RSI stop object to true. After terminating
external control, the KRL program continues with normal program execution. Using RSI
it is possible to provide set-points for the actuator (and up to six optional external axes)
and to set fieldbus outputs in real-time. However, it is not possible to update certain
internal configuration data of the KRC such as tool load data (i.e. mass, center of mass
and moment of inertia of the attached tool) which is required by the KRC for precise
hardware control. This information can only be updated by means of the executed KRL
program, hence the external motion controller needs to interact with the KRL program.
This interaction can only be performed while external control is turned off, in particular
while the manipulator is not in motion.
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<Rob Type="KUKA">
<RIst X="445.0" Y="0.0" Z="810.0" A="-180.0" B="0.0" C="180.0" />
<RSol X="445.0" Y="0.0" Z="810.0" A="-180.0" B="0.0" C="-180.0" />
<AIPos A1="0.0" A2="-90.0" A3="90.0" A4="0.0" A5="90.0" A6="0.0" />
<ASPos A1="0.0" A2="-90.0" A3="90.0" A4="0.0" A5="90.0" A6="0.0" />
<EIPos E1="0.0" E2="0.0" E3="0.0" E4="0.0" E5="0.0" E6="0.0" />
<ESPos E1="0.0" E2="0.0" E3="0.0" E4="0.0" E5="0.0" E6="0.0" />
<MACur A1="0.0" A2="0.0" A3="0.0" A4="0.0" A5="0.0" A6="0.0" />
<MECur E1="0.0" E2="0.0" E3="0.0" E4="0.0" E5="0.0" E6="0.0" />
<IPOC>4485717</IPOC>

</Rob>

Listing 11.1: Example RSI XML packet transmitted by the KUKA KRC-4 controller

<Sen Type="ImFree">
<EStr>SoftRobotRCC running</EStr>
<AKorr A1="12.5" A2="33.2" A3="12.33" A4="0.0" A5="5.4" A6="0.0" />
<EKorr E1="0.0" E2="0.0" E3="0.0" E4="0.0" E5="0.0" E6="0.0"/>
<Stop>0</Stop>
<Tool X="0.0" Y="10.0" Z="40.0" M="5" />
<IPOC>4485717</IPOC>

</Sen>

Listing 11.2: Example RSI XML response generated by the SoftRobot RCC

RSI integration in the SoftRobot RCC

To integrate KUKA robots using RSI, a SoftRobot RCC driver for the RSI protocol
had to be developed. The KUKA controller regularly transmits UDP packets containing
XML telegrams with the current joint positions to the external motion controller. Each
packet must be responded to by sending new set-points, also encoded in XML.
Listing 11.1 shows an exemplary packet as received from the KUKA KRC-4 controller.
The first two lines describe the Cartesian position of the robot with regard to the tool and
base which is currently selected on the KUKA controller. RIst describes the measured
position, while RSol describes the commanded position, which does not necessarily have
to be reached yet. The following lines describe the currently measured position of the
robot’s joints (AIPos) and the external joints (EIPos) as well as the commanded positions
(ASPos and ESPos). The tags MACur and MECur list the electrical currents applied to the
corresponding motors. Finally the tag IPOC contains a strict monotonic increasing counter
value which must be included in the response to allow the KUKA controller to detect
missed packets. All units are in mm or degrees. Additional data such as the values of
inputs can be configured to be included in the XML telegram.
The external motion controller needs to reply immediately to each packet received from
the KRC. Listing 11.2 shows an exemplary reply. It contains a status message which
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Figure 11.11.: UML activity diagram of KRL program which controls the RSI con-
nection to the external motion controller.

is displayed on the KUKA teach pendant, set-points for the manipulator (AKorr) and
the external joints (EKorr), the stop request bit, tool configuration and the counter
value copied from the received packet which is currently being answered. When the
stop bit is set to “1”, the KRL program terminates remote control and continues with
normal program execution. It should be noted that all set-points provided to the KUKA
controller have to be relative to the position where the remote connection has been
activated, while the measured positions transmitted to the external motion controller are
absolute values.

Because the RSI protocol expects set-points relative to the position of the robot when
remote connection is started and does not allow changes to tool load configuration while
remote control is enabled, the SoftRobot RCC uses a two step process for initializing the
RSI connection. During the first step, a read-only connection to the KUKA controller
is established which is used to read the current position of the robot and to transmit
the desired tool load configuration into temporary variables on the KUKA controller.
The KRL program subsequently activates the new tool configuration and allows the
SoftRobot RCC to enter step two which performs the actual active external control of
the system. Figure 11.11 shows the program flow of the KRL program which is used
to interact between the KUKA controller and the SoftRobot RCC. The main loop first
activates read-only mode by transmitting an appropriate flag to the SoftRobot RCC,
which then internally stores the current position of each joint and replies with all joint
corrections set to zero, the desired tool configuration and an active stop request. As soon
as the KRL program recognizes the stop request, remote control is deactivated, the new
tool configuration is loaded and the read-only mode disabled. Afterward remote control
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«use»

Figure 11.12.: UML class diagram for KR driver

is enabled once again. The SoftRobot RCC now transmits new set-points relatively to
the previously stored initial position and does not signal a stop request. Only once the
tool configuration needs to be changed, another stop is requested which makes the KRL
program stop remote control and restart the main loop.

Figure 11.12 shows a UML class diagram of the RSI driver implementation in the
SoftRobot RCC. Classes in the upper part of the diagram have already existed, only
the four classes and one interface in the lower part of the diagram had to be created.
The first class KR_Controller_RSI contains the implementation of the RSI protocol
as described above. It uses an existing implementation of a UDP server socket for
communication with the KUKA controller, and inherits from the CyclicPositionDevice
class (cf. Section 9.4.3 and Fig. 9.7) for interpolation of the set-points provided by the
primitive net. The RSI driver creates its own real-time thread for reliable communication
with the KUKA controller. A second class KR_Controller_Sim also implements the
generic KR_Controller and provides simulation support. The RSI driver and the
simulation driver are exchangeable and thus allow for easy testing of robotics applications
for KUKA KR robots without having to use a real robot.

The class KR_RobotArm provides the device for the 6-DOF robot arm and the class
KR_ExternalAxis the device for external axes. Both classes implement the MultiJointIn-
terface (cf. Section 9.2) and thus can be used with the same primitives (and therefore
also the same applications) as all other robots. The robot arm device always controls
six joints and has a direct connection to the RSI driver. Because a standard KUKA
controller always controls a single robot, each KR_RobotArm is associated with exactly
one KR_Controller and vice versa. Up to six additional external axes can be controlled
using a single KUKA controller. Therefore instances of the KR_ExternalAxis class have
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Robot Robot controller Software versions
KUKA KR6 R900 sixx KR C4 compact KSS 8.2.3, RSI 3.1
KUKA KR16-3 KR C4 KSS 8.2.22, RSI 3.1
KUKA KR210 R3100 ultra KR C4 KSS 8.3, RSI 3.2

Table 11.3.: Hardware and software for which the RSI implementation has been
tested.

an association with a KR_Controller, but a controller may have up to six external axes
connected. Each external axis object must be configured with the number of joints (e.g. a
linear axis has only one joint, while a turn-and-tilt table uses two joints) and the number
of the first joint used (to allow connecting e.g. a linear axis as external joint 1 and the
turn-and-tilt table as joints 2 and 3).
Many of the functionality required to implement the MultiJointInterface can be delegated
to the RSI driver which inherits the handling of set-points from the CyclicPositionDevice.
Some features are specific to KUKA controller or the RSI protocol (e.g. the mechanism
for changing tool load data) and thus are newly implemented in the RSI driver.

Evaluation of the RSI integration

A driver for the RSI protocol has been integrated in the SoftRobot RCC and supports a
broad variety of KUKA industrial robots. As previously described, only very few parts
had to be developed from scratch and thus the integration could be completed within 4
working days by one developer (with some prior knowledge of KUKA robots, the RSI
protocol and the KRL programming language). Besides the development of the RSI
driver and the two devices in the RCC, also a Java representation of the KUKA robots
had to be created, which took less than half a working day. The Robotics API already
had support for robots using the MultiJointInterface, thus it was sufficient to create a
new class which precisely describes the new manipulator (with its Denavit-Hartenberg
parameters, mass, etc.) and depends on the existing device driver.
The RSI integration has been tested with robots of different sizes, ranging from systems
for small payloads (up to 6 kg) up to large payloads (210 kg). The tested hardware
is listed in Table 11.3. All robots have been successfully tested with point-to-point,
linear and blended motions with velocities up to the maximum joint velocity as allowed
according to the technical information of the robot systems.
Overall, the effort required for the integration of a new type of robotics controller has
been very low. Many generic functionality could be re-used and only few hardware
specifics had to be developed from scratch. Table 11.4 shows some statistical data of the
RSI driver implementation. Although lines of code may not be the perfect metric for
reusability, it provides an indication of the effort required for the development. More
than 60% of the overall code required for the implementation of the KR driver could
be reused from generic implementations. On top of the components shown, the RPI
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New components Lines of code
RSI driver (including both devices) 671
Simulation of KR robots 48
Real-time (inverse) kinematics 213
KRL code 88
Total 1.020
Reused components Lines of code
MultiJointInterface, CyclicPositionDevice 860
Generic (inverse) kinematics components 380
UDP communication infrastructure 310
Total 1.550

Table 11.4.: Statistical data of RSI driver implementation

execution environment consists of approximately 15.000 lines of code which is completely
independent of any hardware specific driver and is used for every robotics application.

11.4. Realization of requirements

In Section 4.1 a set of requirements has been identified which must be achieved with the
SoftRobot architecture. In this section, the requirements are reviewed again and their
realization is analyzed.

1. Usability: The real-time aspects of robotics applications are completely hidden by
the separation of the real-time safe RCC, and non real-time robotics applications.
The Real-time Primitives Interface provides means to specify tasks which need to
be real-time safe (e.g. synchronized tool commands), and the Robotics API event
mechanism will automatically be translated into real-time safe primitive nets.
The activity layer has been introduced to create an easy-to-use programming
interface. Using this layer, it is possible to create standard applications (containing
an industrial robot and several tools) with a syntax that is very similar to the
specialized domain specific languages currently in use for robot programming.
Despite this easy-to-use syntax, it is still possible to use the advanced and real-time
safe event mechanism of the Robotics API.

2. Multi-robot systems: The SoftRobot RCC supports multiple actuators simultane-
ously, only limited by the available resources (memory, computing performance).
The simultaneous control of four industrial robots with a single RCC has been
successfully tested in the lab. The RCC allows access from several applications
simultaneously, and ensures that no device is accessed contradictorily using a
resource concept. A single application can also control multiple actuators, and the
synchronous execution semantics of primitive nets automatically synchronizes all
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actuators controlled by a single instance. Thus it is both possible to use multiple
programs for multiple robots, as well as a single program for multiple robots.
Systems consisting of two robots have also been evaluated in Section 11.2.1. Motion
synchronization is possible to the degree that is supported by the underlying
hardware controllers, i.e. some form of time synchronization among all controllers
is required.

3. Sensor support: The sensor and event concepts of the Robotics API allow for an easy
integration of sensors into robotics applications. The evaluation of sensor values can
be programmed using Java and is automatically transformed into primitive nets for
a real-time safe execution. This allows to use sensors to influence robot trajectories
while they are executed. Triggering events can happen as late as possible, i.e. it is
not necessary to evaluate sensor values prior to starting a motion as it is required
with several current robot systems (cf. Section 11.2.2).

4. Extensibility: Both the SoftRobot RCC as well as the Robotics API can be flexibly
extended with new features. Such features can be new hardware devices, but also
new algorithms for path planning, reactions to sensor events, etc. The SoftRobot
RCC provides a flexible system of generic hardware interfaces which allows to
integrate new hardware devices and minimizes the need to modify existing robotics
applications. An example of the integration of a new robot system has been
evaluated in Section 11.3.

5. Special industrial robotics concepts: Motion blending, as well as force and torque
based manipulation tasks are supported by the Robotics API and the SoftRobot
RCC. Motion blending can be achieved by creating multiple successive primitive
nets and joining them by supplying appropriate synchronization rules. This allows
the main program flow to remain in the robotics application rather than having to
embed the whole chain of motions into a single real-time task. Creating primitive
nets one after another can only be performed on a best-effort base without real-time
capabilities of the application, however the system architecture ensures that at no
time the system is left out of active control. If a successive primitive net cannot
be loaded in time, the previous primitive net will either complete the motion to
standstill, or, in the case of force-based manipulation tasks, keeps running and
controlling the robot until eventually the successor is started. Motion blending
using multiple successive and independent primitive nets has been evaluated in
Section 11.2.2.

All requirements that have been identified at the beginning of the SoftRobot project
could be fulfilled. The SoftRobot RCC provides the real-time execution environment, and
the Robotics API provides a layered programming interface. Using either the command
or the activity layer, complex, sensor-based multi-robot applications can be created.
The whole architecture is neither limited to a specific set of hardware devices nor to a
predefined set of tasks; it can be flexibly extended with new hardware, control algorithms
etc.
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Chapter 12

Conclusion

In this work, a novel architecture for industrial robot programming has been introduced,
in particular the base layers that enable a real-time safe execution of robot programs have
been explained. In this chapter, first the results achieved in this work are summarized
and then an overview of current and future projects building upon the results is given.
Finally an outlook to future extensions and applications of the Real-time Primitives
Interface and the SoftRobot RCC with respect to distribution for mobile or large scale
systems is provided.

12.1. Summary

Industrial robots nowadays are usually programmed with proprietary, manufacturer-
dependent programming languages. In Chapter 1, advantages of modern software
engineering methods, in particular the application of object-oriented design, for the
robotics domain have been introduced. Basic concepts of industrial robotics have been
explained in Chapter 2.
One major issue preventing an easy application of modern general-purpose programming
languages to the industrial robotics domain is the inherent requirement for real-time
safe execution of robot programs, which cannot be guaranteed by most programming
languages, mainly due to automated memory management and a high level of hardware
abstraction. These real-time requirements have been analyzed in detail in Chapter 3
and it was found that most robotics applications in fact do not require hard real-time
during the whole duration of their execution. Every single motion must be planned
and executed with exact timing guarantees, otherwise fast, precise and smooth motions
cannot be performed. Interaction with peripheral tools such as welding torches, grippers,
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etc. also needs to be synchronized with the main actuator. Between two subsequent
motions however, soft real-time is sufficient, i.e. having the robot stop for some tenths of
a second more or less will not break the system, but still reduce the overall performance
of the system and thus should be avoided when possible. A major finding was that it is
possible, in general, to partition robotics applications into small parts which inherently
require hard real-time, but which then can be combined to form the overall program flow
with only soft real-time requirements.
Based on the results of the previous chapter, the architecture developed during the
SoftRobot project is presented in Chapter 4. A three tier architecture has been created
which provides real-time safe execution of tasks with the Robot Control Core as the
base layer. The middle tier is represented by the Robotics API, which provides an
object-oriented programming model for robotics applications, and automatically creates
real-time tasks for execution by the Robot Control Core. The top tier consists of individual
robotics applications which can use the Robotics API directly as a programming interface;
furthermore it is possible to create application specific programming interfaces by creating
domain specific languages or even using a service oriented architecture for cell level control.
The Real-time Primitives Interface (RPI) introduced in Chapter 5 allows the specification
of real-time tasks for execution on the Robot Control Core. The basic concept is the
primitive net, which is a data-flow graph consisting of multiple so-called primitives,
which are interconnected with links. Primitives provide basic calculation functions which
can be combined to large algorithms using the appropriate links. Primitive nets are
executed cyclically and every primitive is executed once per execution cycle, unless
explicitly deactivated. The synchronous execution of all primitives allows for an implicit
synchronization of sensors and multiple actuators. All tasks that are embedded in a
primitive net are executed with precise timing guarantees on a real-time system.
While all tasks embedded in a single primitive net are executed real-time safely, it is
still desirable to switch from one primitive net to another with timing guaranteed. The
switching condition can be specified using the synchronization rules that are explained
in Chapter 6. These rules consist of a logical condition when to switch from one set of
primitive nets to another set. Switching occurs instantaneously (i.e. with hard real-time)
and only if all new primitive nets are ready for starting. Otherwise the old set of primitive
nets will continue running and thus keep the system in a safe state. Synchronization
rules can be used for example to achieve motion blending while keeping the program
flow in the main robotics application, and also force/torque based manipulation tasks
containing several steps can be implemented safely across multiple primitive nets.
The SoftRobot RCC, a reference implementation for the Robot Control Core concept has
been created, and is explained in Chapters 7 to 9. The reference implementation has been
written in C++ and is executed on the Linux operating system with Xenomai real-time
extensions to ensure real-time safety. Chapter 7 explained the execution environment for
single primitive nets, including a set of basic primitives and the communication interface
to the robotics application. Chapter 8 concentrated on the synchronization mechanism for
multiple primitive nets which allows to switch from one set of primitives synchronously to
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a new set of primitives. Special attention was paid to minimizing the number of required
threads while still guaranteeing the availability of an appropriate execution thread when
necessary. To control real robots, manufacturer and possibly even type specific device
drivers are required. The SoftRobot RCC provides a modular and extensible system
for such device drivers which was explained exemplary for several robots and some
other generic periphery devices in Chapter 9. In particular, this system provides generic
device interfaces so that robotics applications can be used independently of the robot
manufacturer or type, as long as the hardware provides the same functionality (i.e. same
number of joints). It is also possible to replace the hardware drivers by simulation drivers
to test applications realistically.
The Robotics API is the primary programming interface for robotics applications in the
SoftRobot project. In Chapter 10 a general overview of the command layer is provided
which builds the foundation of the Robotics API. The command layer allows to create
an object-oriented model of real-time tasks which can then be transformed into primitive
nets using an automated mapping algorithm. Using this algorithm, tasks with multiple
actuators and sensor-triggered, event-based interactions can be automatically transformed
into the required data-flow graphs of primitive nets.
The results of the previous chapters are finally evaluated in Chapter 11. For this purpose,
several demonstration applications have been developed. An overview of the scalability
and real-time performance of the reference implementation has been provided, as well as
descriptions of applications that demonstrate the synchronization of multiple robots and
real-time reactions to external events. The effort for the integration of a new robot was
evaluated, and finally the requirements identified in Section 4.1 have been reviewed.
Using the results of this thesis, it is now possible to embed real-time critical (robotics)
tasks into programs written using managed, object-oriented programming languages.
The Real-time Primitives Interface provides the base language for the real-time task
specification. Complex robotics tasks including sensor-based events and cooperating
robots can be created using a set of basic calculation primitives. Most of the time it
is only necessary to alter the real-time execution environment to include support for
new hardware devices. Robotics applications can be created purely within the managed,
object-oriented programming language. The synchronization mechanism of the RPI
allows switching between different real-time tasks with guaranteed maximum transition
times, even allowing actuators to be in full motion or to apply force while tasks are
being switched. The Robotics API command model allows to specify real-time critical
tasks in an object-oriented way. The mapping algorithm presented in this thesis can
automatically transform these tasks into primitive nets for real-time safe execution.
Ultimately it is now possible to create robotics applications using a standard, off-the-shelf
object-oriented programming language and thus to benefit from all advantages such a
language provides (advanced software-engineering methods, good community support,
many skilled developers, etc.). The SoftRobot RCC allows to execute primitive nets (and
thus the robot programs created using the Robotics API) real-time safely using the Linux
operating system. Hardware drivers for several industrial robots, sensors and further
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periphery devices from different manufacturers are included and allow the Robotics API
to be used on real hardware.

12.2. Current applications and outlook

Overall, the Real-time Primitives Interface has proven to be a dependable base for
real-time task specification during the past few years. Together with the reference
implementations for the Robot Control Core as well as the Robotics API, it has been in
use for several past as well as for ongoing research projects.
The Institute for Software and Systems Engineering has developed an offline programming
platform in cooperation with the German Aerospce Center (DLR) for the production
of carbon-fiber-reinforced plastic (CFRP) products [92]. The technique of offline pro-
gramming is employed in order to reduce the overall development time for robotics
applications, but in particular to reduce the time the real robot hardware is blocked from
revenue production for development tasks. The offline programming platform provides
a 3D-view of the robot cell and allows the developer to preview all tasks. In order to
provide a realistic simulation, the Robotics API and the SoftRobot RCC have been
embedded with simulation drivers. The SoftRobot RCC is responsible to execute all
motions with the same profile as they would be executed with real robots. For the
offline programming platform, the RCC is executed under the Windows operating system
without any real-time extensions. Nevertheless, the Robotics API generates the same
primitive nets as for a real system, and the RCC executes all tasks identically – although
set-points are not produced with a reliable frequency. For simulation purposes, this is
not a problem, the worst-case is that the simulated robot moves jerky. However, the
simulated trajectories are identical to the trajectories of a real robot connected to a
(real-time safe) RCC. Until now the resulting program is transformed into KRL code and
then executed by the standard KUKA robot controllers. However plans exist to use the
SoftRobot RCC together with the RSI connection (cf. Section 11.3) also for real hardware
control. The modular design of the SoftRobot RCC allows to provide the same interface
for real and simulated robots, which allows to switch from offline to online programming
with only changing a configuration file.
The research project SafeAssistance intends to enable safe interaction of human workers
and industrial robots without separating the workspace. Capacitive sensors mounted to
the robot are used to detect humans (and other items in the workspace) by measuring
the disturbance of an electric field. The absolute value measured by the sensors cannot
be directly used to decide whether a worker (or any other obstacle) is in the robot’s way.
The workspace usually contains many items, in particular electrical machine tools, which
also disturb the electric field. Therefore it is necessary to create a model of the working
space with known items, i.e. expected sensor values must be learned for many different
positions of the robot. When a robot program is executed, the current sensor readings
must be compared to the recorded sensor readings to recognize any changes in the world
which indicate an obstacle. Since it is impossible to record all possible positions of the
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robot in the working space, during the execution of a program the current position of the
robot must be matched to one of the recorded positions. An algorithm to search for an
approximate nearest neighbor in the FLANN library [91] has been used for this purpose.
Both for creating the initial world model as well as for later comparing the world model
with the current situation, it is necessary to synchronize the times when the capacitive
sensors and the joint positions of the robot are read. Using the SoftRobot RCC greatly
facilitates this task, since both the capacitive sensors and the robot position sensors
can be included into a single primitive net which automatically synchronizes the sensor
reading times. A real-time safe implementation for the approximate nearest neighbor
search algorithm has been implemented in the form of a primitive. This allows to define
reactions of the robot based on the comparison of the world model and the current
situation inside the primitive net which is controlling the robot. These reactions can be
completely defined using the event mechanism of the Robotics API and the Real-time
Primitives Interface, thus they will be handled deterministically and reliably, which is a
key requirement for a safety-related system.
The current mapping algorithm creates one primitive net for each task which must be
executed real-time safely. Multiple actuators which need to perform tasks in cooperation
are embedded into a single primitive net to benefit from the synchronization of primitives
inside the net. Current research is undertaken to use the synchronization mechanism (cf.
Chapter 6) to split large transactional commands into multiple primitive nets. Switching
between commands can then be delegated to the RCC by supplying appropriate syn-
chronization rules. If all primitive nets that belong to a certain transaction are loaded
on the RCC before the first set of commands is started, the same real-time safety for
switching can be achieved as by embedding everything into a single primitive net. This
new approach yields several advantages: first, the complexity of each primitive net is
dramatically decreased since every net only contains a single command. Today’s primitive
nets for transactional commands contain large structures to determine which command
has to be active at every point in time. These structures are no longer required if the deci-
sion is encoded into logical conditions which are evaluated by the execution environment.
And second, splitting multi-actuator commands into single independent primitive nets is
a first step to a distributed system. In particular with mobile systems it is an interesting
perspective to have every robot run its own program (in the form of primitive nets) with
inter-robot synchronization still being possible (provided an appropriate communication
channel is available).
Distributing large applications while still being real-time safe is a key requirement for
further increasing the scalability of the SoftRobot architecture. Although several robots
currently can be controlled by a single RCC, scalability is naturally limited by the
available computing power. A current project at the Institute for Software and Systems
Engineering is to control the novel “multifunctional cell” (MFC) which has been built
in Augsburg for the German Aerospace Center (DLR)1. This system is intended for the
automated production of carbon-fiber-reinforced plastics (CFRP) and consists of two

1http://www.dlr.de/bt/desktopdefault.aspx/tabid-8372/14306_read-36171/
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KUKA KR-270 robots mounted on a common linear unit and three portal robots with
each a spherical hand. If even more robots are required, two additional KR-210 robots,
again mounted on a common linear unit, can be integrated into the cell. Altogether,
the facility has 46 joints to control for only the robots, not including possible further
actuated tools or periphery devices. Since CFRP parts can be very large, multiple robots
must cooperate during the manufacturing process. To increase the flexibility of the
process, it is desirable to assign robots to different groups as required. At the moment,
all robots can only be programmed using the standard controllers which require one KRL
program per robot. Synchronizing such a large number of systems with many independent
programs is a very tedious task. The vision of the research project is to extend both the
programming model of the Robotics API, as well as the real-time execution core of the
SoftRobot RCC to support an easy programming of this large cell using a single Java
program, or, if desired, multiple (synchronized) programs. To achieve this aim, it will be
necessary to extend the current programming interface of the Robotics API to provide a
convenient way to develop such large scale applications. The real-time part of the system,
in particular the SoftRobot RCC will have to be distributed across multiple computers.
A vision is to create a distributed version of the RPI which allows to use synchronization
rules for primitive nets which are running on different systems, while still providing the
same level of real-time performance as it is possible for a single system at the moment.

210



Appendix A

Language definitions

The SoftRobot RCC uses several languages for communicating with external systems
such as a robotics application using the Robotics API. This appendix lists the grammar
for each communication protocol.

A.1. XML specification of primitive nets

XSD schema definition for describing primitive nets. XML documents according to this
schema are transmitted from a Robotics API application to the RCC using the HTTP
protocol (cf. Section 7.6.2).
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://schema.isse.de/SoftRobot/RCC/RPINet.xsd"

elementFormDefault="qualified" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schema.isse.de/SoftRobot/RCC/RPINet.xsd">
<xsd:element name="rpinet" type="rpinet"></xsd:element>
<xsd:complexType name="rpinet">
<xsd:complexContent>

<xsd:restriction base="fragment">
<xsd:attribute name="id" type="xsd:string"

use="optional">
</xsd:attribute>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="primitive">
<xsd:sequence>

<xsd:element name="parameter" type="parameter" minOccurs="0"
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maxOccurs="unbounded">
</xsd:element>
<xsd:element name="port" type="port" minOccurs="0"

maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"></xsd:attribute>
<xsd:attribute name="id" type="xsd:string" use="required"></xsd:attribute>

</xsd:complexType>
<xsd:complexType name="parameter">
<xsd:attribute name="name" type="xsd:string" use="required"></xsd:attribute>
<xsd:attribute name="value" type="xsd:string" use="required"></xsd:attribute>

</xsd:complexType>
<xsd:complexType name="port">
<xsd:sequence></xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"></xsd:attribute>
<xsd:attribute name="fromprimitive" type="xsd:string"

use="required">
</xsd:attribute>
<xsd:attribute name="fromport" type="xsd:string"

use="required">
</xsd:attribute>
<xsd:attribute name="debug" type="xsd:int"></xsd:attribute>

</xsd:complexType>
<xsd:complexType name="fragment">
<xsd:sequence>

<xsd:element name="fragment" type="fragment" minOccurs="0"
maxOccurs="unbounded">

</xsd:element>
<xsd:element name="primitive" type="primitive" minOccurs="0"

maxOccurs="unbounded">
</xsd:element>
<xsd:element name="outPort" type="port" minOccurs="0"

maxOccurs="unbounded">
</xsd:element>
<xsd:element name="inPort" type="port" minOccurs="0" maxOccurs="unbounded"></

xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="required"></xsd:attribute>

</xsd:complexType>
</xsd:schema>

A.2. Grammar for DirectIO protocol

The DirectIO protocol is used for communication between a robotics application and the
RCC. It is used for creating new primitive nets and controlling their execution, as well
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as for other communication. The full grammar in extended Backus-Naur form (EBNF)
follows:

〈statement〉 ::= 〈identifier〉 ‘=’ 〈identifier〉 ‘(’ [ 〈parameter〉 { ‘,’ 〈parameter〉 } ] ‘)’ ;

〈parameter〉 ::= 〈literal〉
| ‘[’ [ 〈parameter〉 { ‘,’ 〈parameter〉 } ] ‘]’
| ‘{’ 〈keyvalue〉 { ‘,’ 〈keyvalue〉 } ‘}’;

〈keyvalue〉 ::= 〈identifier〉 ‘:’ 〈parameter〉;

〈literal〉 ::= 〈integer〉
| 〈float〉
| 〈string〉;

〈nondigit〉 ::= ‘A’ ... ‘Z’ | ‘a’ ... ‘z’ | ‘_’;

〈digit〉 ::= ‘0’ ... ‘9’;

〈character〉 ::= 〈nondigit〉 | 〈digit〉;

〈regularStringChar〉 ::= 〈ANY 〉 - ‘"’ - ‘\’;

〈string〉 ::= ‘"’ { 〈regularStringChar〉 | ‘\\’ | ‘\"’ } ‘"’;

〈identifier〉 ::= 〈nondigit〉 { 〈character〉 };

〈integer〉 ::= 〈digit〉 { digit };

〈float〉 ::= { 〈digit〉 } ‘.’ 〈digit〉 { 〈digit〉 };

A.3. Grammar for primitive nets over DirectIO

The DIO net protocol is used to transmit primitive nets over the DirectIO protocol.

〈Fragment〉 ::= ‘{’ [ 〈FragmentPart〉 { ‘,’ 〈FragmentPart〉 } ] ‘}’;

〈FragmentPart〉 ::= 〈identifier〉 ‘=’ 〈Primitive〉 [ ‘.’ 〈Identifier〉 ];

〈Primitive〉 ::= 〈identifier〉 [ ‘(’ [ 〈Parameter〉 { ‘,’ 〈Parameter〉 } ] ‘)’ ]
| 〈Fragment〉 ‘(’ [ 〈Parameter〉 { ‘,’ 〈Parameter〉 } ] ‘)’;

〈Parameter〉 ::= 〈identifier〉 ‘=’ 〈string〉
| 〈Primitive〉 ‘.’ 〈identifier〉;

〈nondigit〉 ::= ‘A’ ... ‘Z’ | ‘a’ ... ‘z’ | ‘_’ | ‘:’;

〈digit〉 ::= ‘0’ ... ‘9’;

〈character〉 ::= 〈nondigit〉 | 〈digit〉;

〈regularStringChar〉 ::= 〈ANY 〉 - ‘’’ - ‘\’;
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〈string〉 ::= ‘’’ { 〈regularStringChar〉 | ‘\\’ | ‘\’’ } ‘’’;

〈identifier〉 ::= 〈nondigit〉 { 〈character〉 };
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Appendix B

Hardware devices supported by the
SoftRobot RCC

Table B.1 on Page 216 lists hardware that has been successfully connected to the
SoftRobot RCC. Manufacturer and type are listed for all devices, and the software
version of the controller if applicable. Several interfaces are used. Some controllers are
connected using a standard network connection and UDP/IP packets. TCP is not used
because real-time connections are using dedicated network segments, thus packet loss
or reordering is not expected. Furthermore, retransmission of lost packets would not
provide any benefit since time limits would most likely be broken already. On top of
UDP, two proprietary protocols defined by the hardware manufacturer are used.
Some other devices use the EtherCAT fieldbus technology (cf. Section 9.4.1). On top
of EtherCAT, either a proprietary protocol or the standard DS 402 protocol is used
with CANopen over EtherCAT (CoE). Some devices use direct connection with CAN
(or CANopen). The SoftRobot RCC contains a driver which enables CANopen using
standard CAN hardware, which is accessed using the “socket-can” interface. Finally,
a gripper is connected using electrical I/O, i.e. the gripper controller is connected to
bus-terminals which then are controlled by the SoftRobot RCC using EtherCAT.
The table also lists the common control cycle times for most devices. For some devices,
no cycle time is applicable since the protocol does not offer cyclic communication (e.g.
the gripper can be opened or closed at any time using power).
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