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Implementing parallel elliptic solver

on a Beowulf cluster ∗

Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez

Abstract

In a recent paper [5] a parallel direct solver for the linear systems
arising from elliptic partial differential equations has been proposed. The
aim of this note is to present the initial evaluation of the performance
characteristics of this algorithm on Beowulf-type cluster. In this context
the performance of PVM and MPI based implementations is compared.

1 Introduction

Recently a new parallel algorithm for the solution of separable second order
elliptic PDE’s on rectangular domains has been presented by Petrova [5]. The
method is based on the sequential algorithm proposed by Vassilevski [7, 8].
The algorithm consists of odd-even block elimination combined with discrete
separation of variables. It was established that the proposed solver has good
numerical properties for both 2D and 3D problems [5, 7, 8, 9]. The parallel algo-
rithm by Petrova was implemented using PVM to facilitate parallelism and the
initial performance evaluation has been reported in [2] (for a brief descriptions of
PVM and MPI programming environments, see below). The performance study
has run into technical problems. For obvious reasons, one should use parallel
computers to solve large problems. On the computers we had access to (Silicon
Graphics machines at NCSA in Urbana), this meant that using the batch-queues
was required (there is an imposed limit on the size and time allowed for inter-
active jobs). We have found that for some reason the PVM environment, when
invoked from the NQS (NCSA batch job submission system), was relatively un-
stable (approximately two of every three jobs hang up when the PVM daemons
died). In the mean time, while running MPI-based jobs (in the same environ-
ment) we have not encountered such problems (see also [4]). We have therefore
re-implemented the algorithm using the MPI environment to facilitate paral-
lelism and experimented with it on a Beowulf cluster. Due to the fact that we
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had two versions of the code we were able to run both of them for problems of
the same size and compare their performance. The aim of this note is to report
on the results of our experiments.
Parallel Virtual Machine (PVM) is a programming environment (developed

at Oak Ridge National Laboratory) which allows a heterogeneous collection of
workstations and/or supercomputers to function as a single high-performance
parallel machine. PVM was designed to link computing resources and provide
users with a parallel platform for running their computing applications, irrespec-
tive of the number of different computers they use and where the computers are
located. It was created primarily as an interactive-type tool, where a console
is started on one of the machines and the interactions with other computers
are handled from this console. Over the last two years its role has been slowly
descreasing. In the meantime, the popularity of the Message Passing Interface
(MPI) is increasing. MPI is a message passing library facilitating parallel pro-
gramming (primarily for codes written in C and Fortran). It was designed in
Argonne National Laboratory and released in 1994. In contrast to PVM, MPI
is just a specification of a library without an attempt to build an interactive
parallel environment. Both PVM and MPI became standards and are supported
by most vendors of parallel computers.
We proceed as follows. In Section 2 the method of discrete separation of

variables is presented. Section 3 contains a brief summary of the Fast Algorithm
for Separation of Variables (FASV) (for more details of both phases of the
algorithm, see [5, 7]). In Section 4 we discuss a number of issues related to the
parallel implementation and execution. Finally, Section 5 presents the results of
experiments performed on a Beowulf cluster. We conclude with the description
of future research.

2 Discrete separtion of variables

Consider a separable second order elliptic equation of the form

−
d∑
s=1

∂
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difference approximation of the one-dimensional operators− ∂
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Let us now assume that the system of the form (2.1) has a sparse right-
hand side (SHRS) (for more details of origins of such problems see for instance
Banegas [1], Proskurowski [6] and Kuznetsov [3]). More precisely, assume that
the right-hand side f
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(1) Forward step of FASV

For k = 1, 2, . . . , l − 1 solve the problem:

A(k,s)x
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The new right-hand side f
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and using A from (3.1) we have the following equivalent form for (3.7)




A(k,1) A12 0
A21 T + b2k2kIn A23

A32 A(k,2) A34
. . .

. . .
. . .

0 A2l−k+1−1,2l−k+1−2 A(k,2
l−k)







y
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4 Parallel implementation

When a 2D problem is solved the rectangular domain is decomposed into hor-
izontal strips. We then assign a processor to each strip. In each forward step
of FASV a number of solves with matrices A(k,s) are involved. These are prob-
lems with sparse right hand sides and to find the components of the solution
algorithm SRHS is applied. In general, the forward sweep of FASV requires
O(log(m)) steps. The backward sweep of FASV is a reverse of the forward step
and results in the solution of the original system (2.1).

In [5] it was shown that the total arithmetical complexity of the algorithm
is (28n2−9n2/(l−1))(l−3− logP+2P )/P and the speed-up S = (l−1)P/(l−
3 − logP + 2P ). Therefore, in the two limiting cases, for large l the optimal
speed-up P is obtained, while for a fixed l and a large P the speed-up is limited
by l/2.

As mentioned above, we have used two versions of the code. The only
difference between them was that in one the PVM environment was used to
facilitate interprocessor communication, while the other was based on the MPI
library. While re-implementing the code we have fixed the way that the time was
measured. In the original code an average of processor times was reported. We
have decided that this may be slightly misleading as it hides possible workload
imbalances. In the new version of the code we measured the time spent by each
individual processor. Since the workload differs from processor to processor, in
each run we recorded the longest time (all remaining processors have to wait
for the slowest one to complete its job before the problem is solved). After
performing several runs, we kept and reported the shortest time (of the longest
times). We used the function mclock() to measure time in the PVM version
while in the MPI version we used the MPI
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