
The Kleene Algebra of Nested
Pointer Structures:

Theory and Applications

Dissertation
zur Erlangung des Doktorgrades der Naturwissenschaften

der Fakultät für Angewandte Informatik
der Universität Augsburg

vorgelegt von

Dipl.-Inf. Thorsten Ehm

Augsburg

Oktober 2003

1. Gutachter: Prof. Dr. Bernhard Möller
2. Gutachter: Prof. Dr. Rudolf Berghammer

Tag der mündlichen Prüfung: 16. Dezember 2003

Zusammenfassung

Softwaregesteuerte Systeme finden mehr und mehr Eingang in unser tägliches Le-
ben. Damit steigt auch entscheidend die Wahrscheinlichkeit, auf Grund von schlam-
pig programmiertem Code mit Systemabstürzen, Ausfällen und fehlerhaftem Ver-
halten konfrontiert zu werden. Während dies bei Produkten aus der Unterhaltungs-
elektronik nur ärgerlich sein mag, kann es bei Kontrollsystemen für den Verkehr und
für Kernkraftwerke oder bei medizinischen Geräten lebensgefährlich sein. Anwen-
dungen aus diesen Gebieten verlangen nach einem formalen Software-Entwicklungs-
prozess zur Gewährleistung der Korrektheit.

Obwohl es einige Methoden zur Erlangung dieses Zieles gibt, haben sich die
Verifikation und die Entwicklung korrekter Zeigeralgorithmen einer allgemeinen,
formalen Behandlung weitgehend widersetzt.

In dieser Arbeit werden diese Unzulänglichkeiten in zweierlei Hinsicht behandelt.
Zuerst wird ein abstrakter Kalkül zur Behandlung von markierten Graphen und Zei-
gerstrukturen vorgestellt. Dieses System basiert auf Kleene-Algebra, welche trotz
ihres einfachen Aufbaus erfolgreich auf eine Vielzahl unterschiedlicher Problemstel-
lungen angewendet werden konnte. Die Einfachheit und Prägnanz wird direkt von
der hier definierten Zeiger-Kleene-Algebra geerbt. Diese ermöglicht eine kompak-
te Darstellung, ohne den Zugriff auf interne Strukturen zu verhindern. Auf einer
höheren Ebene werden Operatoren zur Beschreibung von Erreichbarkeit, Speicher-
reservierung, Selektion und Projektion eingeführt. Damit werden Eigenschaften zur
lokalen Einschränkung von Abänderungen auf bestimmte Teile des Speichers bewie-
sen.

In einem zweiten Teil werden Anwendungen der Zeigeralgebra in der Softwa-
reentwicklung von Algorithmen vorgestellt. Die Algebra wird als formale Grundla-
ge für ein Transformationssystem zur Herleitung korrekter Zeigeralgorithmen aus
funktionalen Spezifikationen benutzt. Um den vollständigen Bereich von der Spe-
zifikation bis zur Implementierung abzudecken wurde diese Methode um ein allge-
meines Transformationsschema zur Erzeugung effizienter imperativer Algorithmen
erweitert. In einer weiteren Anwendung wird gezeigt, daß die Zeigeralgebra auch als
algebraisches Modell für ein auf dem Hoare-Kalkül basierendes Verifikationssystem
für Algorithmen auf verzeigerten Datenstrukturen dienen kann.

Abstract

Software controlled systems more and more become established in our daily life.
Thus, the probability to be confronted with system crashes, breakdowns or erro-
neous behaviour due to slovenly programmed code is increased considerably. While
this may only be annoying for electronic entertainment products it could be dan-
gerous to life in traffic and nuclear power plant control systems or medical tools.
Applications from all these areas require a formal software development process to
assure correctness.

Although there are several methods to achieve this goal in general, verification
and development of correct pointer algorithms, which are most susceptible to errors,
have to a large extent defied a general formal treatment.

In this thesis this insufficiency is dealt with in two ways. First, an abstract
calculus for the treatment of labeled graphs and pointer structures is presented. The
framework is based on Kleene algebra, which despite its simple structure has been
successfully applied to a variety of different problems. Simplicity and succinctness is
inherited directly by the pointer Kleene algebra defined here. It enables a compact
representation without preventing access to the internal structure. We introduce
higher-level operators to describe reachability constraints, allocation, selection and
projection. Localization properties that allow restricting the effects of modifications
to particular parts of the memory are proved.

A second part presents applications of pointer Kleene algebra to the software
development process. The algebra is used as formal basis for a transformation
system to derive correct pointer algorithms from functional specifications. To cover
the whole scope from specification to implementation this method is extended by
a general transformation scheme to create efficient imperative algorithms. As a
further application it is shown that pointer Kleene algebra can also serve as an
algebraic model behind a Hoare-style verification system for algorithms on linked
data structures.

Contents

1 Introduction 1
1.1 Correct Software Development . 1
1.2 Pointer Algorithms . 3
1.3 Kleene Algebra . 5
1.4 Overview . 7
1.5 Acknowledgements . 8

2 Basics 11
2.1 Graphs and Relations . 11
2.2 Fuzzy Theory . 13
2.3 Functional Programming . 15

3 Kleene Algebra and Extensions 19
3.1 Kleene Algebra . 19
3.2 Predicates . 20
3.3 Residuals . 22
3.4 Kleene Algebra with Domain . 23
3.5 Scalars and Ideals . 24
3.6 Updates and Images . 29
3.7 Determinacy and Atomicity . 32
3.8 Cut Operations . 33
3.9 Crispness . 38

4 Pointer Kleene Algebra 41
4.1 Operations and Notations . 41
4.2 Reachability . 44
4.3 Non-reachability . 48
4.4 Localization . 52
4.5 Meaningful Pointer Structures . 53
4.6 Acyclicity and Sharing . 55

5 Pointer Algorithms 59
5.1 A Formal Derivation Method . 59
5.2 From Recursion to Iteration . 62
5.3 Transformation of Linear Recursive Algorithms 65
5.4 Improving the Scheme . 70
5.5 The Other Way ’Round: Verification 74

6 Discussion 77
6.1 Related Work . 77
6.2 Summary . 80
6.3 Outlook and Future Research . 81

vii

viii CONTENTS

A Appendix 83
A.1 Standard Kleene Algebra . 83
A.2 Selected Derivations . 83
A.3 Verification of mixp . 85

Bibliography 89

Chapter 1

Introduction

This thesis investigates the formal treatment of pointer structures and pointer al-
gorithms. We show how to calculate properties of pointer-linked data structures
and how to derive pointer manipulating algorithms from formal specifications. This
is a step towards correct implementations of programs using dynamically allocated
memory blocks. In practice, such programs cause serious problems in software and
are resistant even to contemporary testing and debugging methods. The thesis gi-
ves a comprehensive view - theoretical concepts, specification, transformations - of
a formal development process for pointer algorithms. We show that Kleene algebra
is an appropriate mathematical foundation in the form of an algebraic framework.
The main focus is the development of a suitable theory. Based on previous work
by B. Möller the presented algebra is applied as the basis for a technique using
functional specifications for algorithms on inductively defined data types. Since
functional specifications are built on recursive concepts, the method yields recur-
sive algorithms. In general, these waste a lot of memory on the stack for data
of pending method calls. Therefore, in a final step we show transformation and
optimization concepts to get efficient imperative algorithms.

1.1 Correct Software Development

In the history of software development intuitive programming has been replaced step
by step by structured methodical approaches. In the early days of computing such
improvements were the introduction of mnemonic codes for binary machine langua-
ges, symbolic assembly languages, macros for repeated tasks, high-level program-
ming languages and so on. Nevertheless, it was early realized that these techniques
do not suffice to create huge correct systems. Software development has remained
more a craft than a science. This phenomenon was called the software crisis and
caused that during the last decades a lot of effort was spent to solve problems arising
from the immense size of contemporary software systems. Some of them, like usage
of design patterns [GHJV94] and refactoring [Fow99], are only of informational cha-
racter. Based on many years of experience they help to avoid well-known errors and
serve as proposals how to implement common programming or restructuring tasks.
Other approaches like the unified modeling language (UML) [RJB98] are intended
as abstractions to allow talking about the design and managing the high complexity
of software systems. These methods support the requirements engineering process
to come from an imprecise informal description to a formal problem specification.
Recently, model driven architectures (MDA) [KWBW03] have been introduced to
make the particular models independent from a specific target language. All these
approaches are considered to solve problems in the large. But the real difficulties

1

2 CHAPTER 1. INTRODUCTION

arise in the refinement step from an abstract model to the concrete implementa-
tion. Even with code generating tools the programmer has to provide code pieces
for the automatically created frame. These are the substantial parts that have to
fulfill all the conditions and requirements the specification demands. In this step
the programmer is left quite alone to produce high-quality software.

The quality of software deals with several notions like correctness, reliability, ro-
bustness, efficiency, portability, adaptability, maintainability, modularity and reu-
sability [IEE83]. The main concern of this thesis is correctness, since incorrect
software, even if it shows all the other properties, is useless. Intuitively, correctness
is the extent to which a product meets the intended purpose. So the notion cor-
rectness is not restricted to software but can also be applied to custom products.
The terminology to describe the particular method to determine correctness of a
product slightly differs between quality management and software engineering. Va-
lidation of a product traditionally means to assure that the manufacturing process
fulfills certain criteria so that it is most likely to yield high-quality products whe-
reas verification describes the testing of the produced goods. This mostly is only
applied to a small sample, since testing of real-world products often can only be
achieved destructively, as for example in car crash-tests or examination of adhesion
of two glued pieces. Failing tests then lead to investigations and improvements of
the product design or the production process. By this quality management cor-
rectness continuously is improved by such process audits. It is sort of curious that
not absence but the presence of errors helps to increase correctness. Since tests can
only give a clue to correctness, in software engineering this weaker concept is called
validation. Verification of software is a little bit different. It describes the formal
process of proving correctness of an algorithm with mathematical methods. This
assures that the implementation satisfies the properties fixed in the formal specifi-
cation. Nevertheless, there remain the problems that the formal specification may
not meet the intended behaviour, an inadequate model is used, or the hardware on
which the program is executed is not correct either.

Verification can be avoided if the algorithm is correct by construction. Such
an approach is called transformational program construction which was quite po-
pular in the eighties [BBB+85, BEH+87] but went a little bit out of fashion in the
meantime. There starting from the specification an implementation is derived by
semantics-preserving manipulations. The derivation process is divided up into a
number of small but manageable transformation steps. Complex and repeatedly
arising tasks can be encapsulated and reused by general transformation rules. The
design decisions are reflected in the derivation process by the choice of particular
transformation rules. Applications of both methods, transformation and verifica-
tion, are shown in Chapter 5.

Due to additional financial expenditure formal software development is rarely
used in contemporary software engineering in industry. If someone pretends to use
formal methods this means in the best case that there is a semi-formal specification
and a test suite. It is accepted opinion that for often reused code in a standard
programming framework or in safety critical areas it is sometimes mandatory to
develop correct software by construction and not by testing. Since in the mean-
time a huge amount of time and resources is spent for testing and debugging of
implementation errors, it could be advantageous to replace these parts by a formal
development process even without big additional expenditure. But it is also clear
that such a process will never be applied to “throw-away” software.

1.2. POINTER ALGORITHMS 3

1.2 Pointer Algorithms

Pointers are the key to efficiency of many imperative algorithms. But experience
shows that programs manipulating pointer data structures are prominent candidates
for errors. Everybody working with a computer has had problems originating from
dereferencing nil pointers and links referring to protected parts or non-allocated
cells in memory. A reason for the omnipresence of pointer based mistakes is the
potentially high complexity of dynamically created data. Even medium-sized ap-
plications form complicated net structures on the heap. Manipulation of these
structures by allocation, deallocation or pointer modifications and the correspon-
ding consequences add an additional dynamic factor. The symptoms of such errors
are often observable only after a long system operation time, under high load or in a
different environment and so refrain from being detected by standard test scenarios.

One of the most dangerous methods to work with dynamically allocated heap
data is explicit pointer arithmetic as known from C [KR88]. It is evident, that
the intention of the language designers was to increase performance with these
constructs at machine code level. But as a consequence, the programmer needs
exact knowledge of data representation on the heap as well as detailed assumptions
about system internals as for example the width of processor registers. This is not
a very abstract programming discipline and in the development of correct software
such optimizations should be left to the (hopefully verified) compiler. Additionally,
the arbitrary access to almost any memory location is not only hard to manage
from a correctness point of view but also a security problem. In the sequel we will
start from the assumption that pointer arithmetic is not an acceptable choice for
implementing correct pointer algorithms. Nevertheless, there remain a lot of other
potential sources of difficulties.

One problem in explicit storage management is the deallocation of cells. Com-
plicated execution patterns of code often make it difficult to correctly determine the
lifetime of objects. Too optimistic estimations then result in too early deallocation
of memory. If a cell in memory is deallocated while another reference still points to
this part of the store, there is no possibility to know in advance what will happen
to the freed cell. As the affected cell can be reused by the memory manager to
store other data, the dynamic behaviour is unpredictable. It is quite likely to get
such effects called dangling links in systems with manually performed disposal of
seemingly no longer needed cells. A comparable problem that arises by manually
controlling the memory management of a system are space leaks. They show up
if the last reference to a heap structure is destroyed before the structure itself is
deallocated. Then there remains allocated but inaccessible data that cannot be
freed as there is no handle to access the affected part of the store. If this happens
once in a while the size of usable memory may decrease significantly. At first sight
this seems not to be a problem concerning the correctness of a program. Nevert-
heless, a system may get completely out of step due to unexpectedly running out
of memory. In the best case the system stops with an error message. In the worst
case it resumes execution and unrecognizedly produces wrong output. A similar
problem may arise if a program interchangeably allocates and frees small and large
memory blocks. Although one would expect that the total amount of memory used
is constant, the memory manager cannot fit large blocks into freed spaces that are
too small in size. The fragmentation of the store is too high to reuse such parts
and the memory manager has to allocate fresh cells. Thus, theoretically there is
enough memory for allocating new data but in practice one will not find a large
enough continuous part. The reason for fragmentation often is based on wasteful
dealing with memory since programmers often are afraid of reusing memory cells
due to complicated side-conditions and prefer to allocate new ones.

A solution to all these problems referring to deallocation would be to free no

4 CHAPTER 1. INTRODUCTION

cells at all. But even with contemporary memory sizes, a program managing large
data structures will rapidly reach the limit of the store. This memory overuse is
called hogging. In contrast to memory leaks there may be remaining pointers to
this part of the store that are not freed due to erroneous programs. Indeed not
only large data fills up the memory. Most of the allocated cells’ lifetime is only
short-termed and so a lot of small-sized garbage arises. As mentioned before, the
reuse of such cells often is refrained from, since this is complicated task and tends
to be erroneous.

A remedy for these problems would be the automatic determination of the mo-
ment from which on an object is not used any longer. This can be pre-calculated
by the compiler or decided during runtime. Unfortunately, static analysis techni-
ques to perform this task never reached more than a theoretical status. The better
automatic approach is to leave deallocation during runtime completely to the me-
mory manager. The system’s so called garbage collector decides which objects on
the heap are still alive and frees the non-used ones. Most contemporary functional
and object-oriented programming environments use garbage collectors to liberate
the programmer from memory management issues.

Garbage collection will solve manual deallocation problems, but apart from this,
most problems with pointer linked data structures arise from sharing. This multiple
use of common parts in the storage mostly is used to save memory or to have
alternative access possibilities. In the presence of sharing, changes of a pointer
can damage invariants of arbitrary pointer variables referring to the same data on
the heap. Therefore, sharing is also the main issue that makes reasoning about
properties of pointer structures that complex and difficult. As we will see later,
several operations can be simplified if the absence of sharing between two parts of
the memory can be shown.

The main problem that makes syntactical reasoning about heavily inter-related
objects so more difficult than reasoning about simple data types is pointer aliasing.
This means that distinct expressions denote the same l-value and therefore the
same memory cell in the store. As a consequence, changing one of them may alter
an at first sight completely unrelated variable or object. Although in theoretical
considerations this is often hidden by concurrent assignments, it is the rule and
mostly unavoidable in pointer algorithms. Otherwise handles for memory data will
get lost by simple assignments.

The best argument that it can be quite difficult for a programmer to under-
stand all the implications of dynamically allocated data is the existence of a large
number of debugging and profiling tools. These will not solve the implementation
problems but help to find errors by testing. There are two sorts of tools. The first
are visualization instruments like Inuse, a plug-in to Insure [Par02] that graphi-
cally displays and animates memory allocations. Such tools only help to find very
wasteful use of memory. Others like Valgrind [Sew02] or Electric Fence [Per99] are
dynamically linked to the programs and simulate the instructions concerned with
memory allocation/deallocation or even emulate the whole CPU. They observe the
allocated storage and discover errors like memory leaks, use of uninitialized memory
and the under- or overrun of allocated buffers. These are reported together with
the appearance in the code.

Despite all these pointer-specific difficulties there remain the same problems as
for algorithms that only use simple data types. So, often the provided implemen-
tation does not or only partly match the specification or data structure invariants
are broken. To avoid these problems and to be able to manage the pointer-specific
difficulties a formal algebraic treatment of pointer structures is needed. This ena-
bles us to prove transformation and verification methods as described in Section 1.1
which yield pointer algorithms that are correct with respect to its specification.

1.3. KLEENE ALGEBRA 5

1.3 Kleene Algebra

Iteration plays an essential rôle in almost all areas of computer science. There are
a lot of different mathematical structures to formally treat iteration. Most of them
are based on the Kleene star operator ∗, which algebraically expresses the properties
of finite iteration and is one of the basic building blocks of Kleene algebra.

The theory of Kleene algebra goes back to a technical paper by S.C. Kleene in
1951 [Kle51] which later was published in a shortened and revised form in [SM56].
Influenced by the biological question to what kind of events an organism can re-
spond, Kleene developed the theory of regular events. His studies are based on
the input/output behaviour of McCulloch-Pitts nerve nets which he generalized to
a model of finite automata. Kleene proved the equivalence of such machines and
regular events. The operations of the class of regular events are motivated by con-
structions with neuron activation tables. These can be overlaid, composed with one
another and iterated. So Kleene defined the regular set of tables as the least class
that includes the unit tables and is closed under sum, product and iteration. In
contrast to later approaches he defined iteration as a more general binary operation
E ∗ F , the iterate of E on F . Kleene gave some equalities for sets of tables but
posed the axiomatization of regular events as an open problem.

In contrast to other algebraic areas even nowadays there is no agreed-on defi-
nition of regular algebras. One of the reasons is that axiomatization of the star
operator is quite hard. In 1964 Redko [Red64] was the first who proved, that a
finite equational axiomatization does not exist. Nevertheless, a lot of different axio-
matizations where proposed. Salomaa [Sal66] was the first who gave two complete
axiomatizations for the family of regular sets over a finite alphabet. His rules are
sound when interpreted over the algebra of regular events but have some subtle
problems in other contexts. Further approaches used schemes to represent an in-
finite number of equations [BE93a, Kro91]. The first who treated the algebra of
regular events extensively was J.H. Conway [Con71]. He examined the different
axiomatizations of Kleene algebra and the connection to finite machines under a
more theoretical point of view than Kleene did. Conway gave a full mathematical
account of Moore’s identification theory [Moo56] which is concerned with the ex-
traction of information about the internal structure of a sequential machine. Similar
to Kleene’s research, Moore supposed a black-box approach and considered the re-
sponse on selected input sequences as the only means to get more knowledge about
the internal states. In his book Conway proposed five different notions of Kleene al-
gebra and compared their expressiveness. More generally, Bloom and Ésik [BÉ93b]
were concerned with equational properties of fixed point solutions. They defined
iteration theories which completely axiomatize valid fixed point identities in various
structures. Kozen [Koz90a] gave a succinct and more transparent axiomatization
than Conway did. He defined Kleene algebra to be an idempotent semiring with
star using a finite set of universally quantified equations and two Horn-clauses over
equations. Kozen axiomatized ∗ as the least fixed-point of a linear equation. The
universal Horn theory of Kozen’s axiomatization generates the equational theory
of regular algebras. In ∗-continuous Kleene algebras [Koz81] which are equal to
Conway’s N -algebras an infinitary summation operator

∑
is used to define star as

the supremum of the set of all powers. This definition implies the Horn-formula
axioms of Kozen’s formalization. Also closed semirings [Koz90b] use such a supre-
mum operator to define star. They are similar to Conway’s S-algebras but only
require suprema of countable sets. Apart from these approaches there are a lot of
other application-specific or slightly modified axiomatizations.

Apart from its simpleness regular structures have proved to be a useful tool in
various contexts. Hence, also appearance of Kleene algebra is widespread. Strongly
related to the automata theoretical roots is the theory of formal languages [KS86].

6 CHAPTER 1. INTRODUCTION

Following Chomsky’s hierarchy, type-three grammars are built from the regular
operations and exactly form the class of languages that are accepted by finite auto-
mata. The equational consequences of the Kleene algebra axioms as given by Kozen
are exactly the regular identitities [Con71, Koz90a]. Therefore the family of regular
languages over an alphabet A forms the free Kleene algebra on free generators A.

Moreover all standard models of relation algebra [Tar41, Ng84] are examples of
Kleene algebras. The star there coincides with transitive reflexive closure. Thus,
Kleene algebra has also its appearance in all relationally treated areas.

A significant rôle is played by Kleene algebra in the context of reasoning about
computer programs. There have been several proposals for methods to verify and
specify hard- and software, most notably [Flo67, Hoa69, Dij76]. All of them are ba-
sed on reasoning about states or predicates that specify sets of states and transitions
between them. A basic and important unifying concept to describe such systems
are labeled transition systems (LTS). They present a picture of all possible states of
a system together with all possible state transitions. The vertices of an LTS repre-
sent system states whereas edges are labeled by programs. Such a program maps
the state represented by the source vertex to the target’s state. Program logics,
the formal system to reason about LTSs and hence about computational processes,
are particular modal logics. In 1977 Pnueli [Pnu77] applied temporal logic (TL)
to express properties of programs for verification tasks. Different semantics called
linear- and branching-time and extensions to LTL, CTL, CTL∗ were proposed in
the meantime. TL is an endogenous approach, since it deals with internals of one
specific program. A more abstract treatment that subsumes temporal logic is dy-
namic logic (DL). The first of these was propositional dynamic logic (PDL) [FL79]
which later was extended to second order PDL and propositional µ-calculus. Dy-
namic algebra (DA) [Pra90b, Pra91, Koz79], the algebraic counterpart to PDL, is
like PDL itself a two-sorted system. One sort corresponds to propositions which are
used to characterize states. PDL imposes a Boolean structure B on propositions.
The second sort K defines program behaviour and therefore shows a regular struc-
ture allowing union, composition and non-deterministic iteration. These two sorts
are connected by a projection � : K ×B → B called the enables operator by Pratt
[Pra91]. Application of �(a, p) which often is written 〈a〉p is intended to denote the
predicate which has to hold so that application of a brings about a state satisfying
p. In DA there is no corresponding operation that relates propositions to programs.
Such an operation maps a proposition to a test program that returns the input state
exactly if the proposition holds on this state. These tests preserve the current state
or do not succeed otherwise. An approach to capture this algebraically are Kleene
algebras with tests (KAT) [Koz97]. Such an, again two-sorted, algebra consists of
a KA together with a Boolean algebra. As the Boolean sort is embedded into the
set of Kleene elements, the test operator vanishes. Both approaches are lopsided,
since reasoning in one of the two sorts is indirect and there either is no enables or
no test operator. The extension of KA with a domain operator [DMS03] eliminates
these defficiencies. The propositions also are embedded and we can express modali-
ties as well as projections. Most theorems hold also in the more abstract structure
of Kleene modules [EMS03], but for many practical application they suffer from
similar deficiencies as DA and KAT.

Another improvement of DAs are action algebras as proposed by Pratt [Pra90a].
They form the algebraic counterpart to action logic. An advantage of action algebras
is, that in contrast to regular algebras, they are finitely based due to the existence
of residuals. The crucial axiom to define the star operator equationally is the pure
induction rule (a\a)∗ ≤ (a\a). Kozen remarks that, unlike Kleene algebras, action
algebras are not closed under the formation of matrices. This is a property often
used in automata theory and the design and implementation of algorithms. As
an alternative Kozen proposed an extension of action algebras by a meet operator

1.4. OVERVIEW 7

resulting in action lattices [Koz94]. They inherit all the merits of action algebra
and are closed under the formation of matrices.

Similar to dynamic algebras, there are Peirce algebras which use relation algebra
and sets instead of Kleene algebra and propositions. They show both directions, a
set-forming operation on relations and a relation-forming operation on sets.

For several applications the possibility to describe infinite systems is an import-
ant task. Cohen [Coh00] therefore extended the axiomatics of Kleene algebra to
omega algebra. He introduced an additional ω-operator that is able to describe in-
finite system behaviour. Omega exponentiation is defined by a generalized greatest
fixed point law. Omega algebra axiomatizes the equational theory of omega-regular
languages. This theory is useful for reasoning about concurrent programs, progress
and termination. Nevertheless, Cohen has problems with modelling program termi-
nation and therefore is only able to reason about partial correctness. In contrast,
von Wright [vW02] uses a slightly different approach to transfer the advantages
of Kleene algebra into a framework of total correctness. By dropping the axiom
a · 0 = 0, which prevents a proper treatment of nontermination, he is able to model
conjunctive predicate transformer semantics in a refinement framework.

A more general appearance is made by Kleene algebra in the computation cal-
culus developed by R. Dijkstra [Dij98]. This subsumes for example wp-calculus,
linear-time temporal logic and CTL∗ in one unifying abstract theory. The basis of
his algebra is formed by a complete Boolean algebra together with a composition
operator and is called semi-regular (Boolean) algebra by R. Backhouse. Dijkstra
requires some more properties to model infinite iterations similar to the ω-algebra
constructs by Cohen.

There are also a number of non-standard examples for Kleene algebras. One of
the best-known are the so-called (min,+) algebras [AHU75]; they are also called
tropical semirings [Pin98] and used for design and analysis of algorithms. A main
application of (min,+) algebras is for example the calculation of shortest paths
in an edge-labeled graph. Not that prominent are the, in some sense symmetric,
(max,+) algebras used for all kinds of optimization problems. These arise in control
and game theory, performance evaluations of discrete event systems [Plu90] and
operations research. Special Kleene algebras called quantales [Yet90] are even used
for modelling measurements in quantum physics.

1.4 Overview

The contribution of this thesis consists in two main parts. First, we investigate
under which conditions Kleene algebra can be used as a formal basis to reason
about pointer structures. Based on these observations we introduce pointer Kleene
algebra that allows an algebraic treatment of labeled graphs. The simplicity and
succinctness of reasoning in Kleene algebra directly is passed on to the presented
calculus. In a second part, we show applications of pointer Kleene algebra to the
formal software development process of pointer algorithms. In this, we extend a
method to derive correct pointer programs from a functional specification to yield
efficient imperative algorithms.
The thesis is structured as follows:
Chapter 2 gives a short introduction to the basics needed from areas this thesis is
not directly concerned with. The concepts and theories presented are not treated
formally but are used as models or supporting framework. The chapter introduces
notions from graph theory and the connection between graphs and relations. In
a short overview about fuzzy theory it is shown that this connection can be lifted
to labeled graphs and fuzzy relations. The formalization of pointer structures in
Kleene algebra presented later is heavily influenced by these observations. A last

8 CHAPTER 1. INTRODUCTION

section gives a short introduction to functional programming constructs. In Chapter
5 these are used in form of a restricted functional language to specify algorithms on
inductively defined data types.
Chapter 3 presents the first main contribution of the thesis. After defining the
basic notions of Kleene algebra and its operations we investigate the conditions
needed to port concepts from fuzzy relation algebra to Kleene algebra. Although it
is possible to lift several concepts treated with relation algebra to the more abstract
level of Kleene algebra with tests, these are too weak to serve as a model for fuzzy
relations. Properties of cut-operators in relational fuzzy theory heavily depend
on a bijective correspondence between scalars and ideals. It is shown that the
needed connection can be established in Kleene algebra by adding the concept of
subordination. The introduced extensions support an algebraic treatment of labeled
graphs in Kleene algebra. In contrast to former approaches that modelled labeled
graphs by a family of unlabeled graphs, the presented calculus is more compact but
nevertheless allows looking into the elements by projecting to particular subgraphs.
Chapter 4 defines the structure of pointer Kleene algebra based on the investiga-
tions made in Chapter 3. We define a set of higher-level operations to characterize
reachability properties of pointer structures. This enables us to localize effects of
pointer modifications to particular regions of the store which makes it possible to
simplify pointer expressions considerably. Then further concepts based on reacha-
bility like sharing of common parts are defined. Some candidate expressions to
characterize acyclicity are presented and compared.
Chapter 5 is concerned with applications of this theory to the concrete develop-
ment process of correct pointer algorithms. We present a method for transformatio-
nal derivation of pointer algorithms introduced by B. Möller. There, starting from
a functional specification an implementation using pointer-linked data structures
is derived. It is shown that pointer Kleene algebra can be used as a formal basis
for the transformation rules in this framework. Further, we extend the calculus
by a general rule to get efficient imperative algorithms from the derived recursive
variants. This completes the presented method to a generally applicable framework
for inductively-defined data types. A further section shows how pointer Kleene al-
gebra can serve as foundation for deriving an extension of a Hoare-style calculus for
pointer manipulation programs.
In Chapter 6 we first present related work which is concerned with an algebraic
treatment of graph algorithms, derivation and verification of pointer algorithms and
comparable approaches. Then we discuss the progress achieved by the approach
presented in this thesis and point out starting-points for future investigations and
research.
In the Appendix some definitions, derivations, and non-essential proofs are given
in more detail.

1.5 Acknowledgements

Many people have supported me during this work. My first thank is due to my
advisor Prof. Dr. Bernhard Möller, Universität Augsburg for encouraging me to
this research, valuable comments, and discussions. It was always a pleasant working
environment in his group.

I owe thanks to Prof. Dr. Rudolf Berghammer, Universität Kiel, for reviewing
this thesis. I also want to thank Prof. Dr. Werner Kießling, Universität Augsburg
for his kind support.

I am grateful to my colleagues Dr. Georg Struth, Universität Augsburg, and
Dr. Michael Winter, University of the Federal Armed Forces Munich for valuable
hints and discussions.

1.5. ACKNOWLEDGEMENTS 9

Special thanks are due to my family - especially my parents - without their kind
support I would have never been able to do these studies and this thesis would never
have been written.

Last but not least I would like to thank Conny for her continual encouragement
and creating the necessary diversion.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

This chapter is intended to provide the theoretical foundation for the subsequent
parts of the thesis. We define the notions used and briefly explain facts from peri-
pheral areas. More precisely, we show the connections between graphs and relations
in Section 2.1. Further, we point out that this connection can be lifted to labeled
graphs and fuzzy relations. We will show that labeled graphs can be used as a
model for record-based pointer structures which is one of the key observations for
the axiomatization presented in Chapter 4. Since properties of algebraic operations
often are hard to understand we will give concrete models based on graphs and
matrices to visualize the intentions behind the definitions. Another section gives a
brief introduction to concepts of functional programming that are used in Chapter
5 to specify algorithms on inductively defined data structures.

2.1 Graphs and Relations

In principle, all problems in programming can be solved using simple unstructured
data types. To make programming simpler and easier and to be able to reason in
problem specific domains, more complex data structures are introduced. The most
general of these are dynamic pointer-linked data types. Prominent and mainly used
candidates are linked lists and trees. They are allocated during runtime and form a
complex net of interconnected elements on the heap. Due to this dynamic behaviour
they are quite resistant against static analysis methods and often are the reason for
erroneous programs.

A unifying abstract model of these structures are graphs [SS93, Jun94]. In
classical graph theory a directed graph G = (V,E) over a node set N consists
of a set of vertices V ⊆ N and a relation E ⊆ N × N representing the edges.
If we want to emphasize the embedding of a graph into a concrete memory we
interchangeably will use the notion cell for the nodes of the graph. Starting and
end points of edges are described by domain dom(E) and codomain cod(E) of the
edge relation. Since for the further work graphs with pending edges do not make
much sense, we additionally demand dom(E) ⊆ V and cod(E) ⊆ V . The union of
two graphs G1 = (V1, E1) and G2 = (V2, E2) over the same node set N is the graph
G∪ = (V1 ∪ V2, E1 ∪ E2) with nodes and edges from both graphs joined together.
Intersection is defined similarly to be the graph G∩ = (V1∩V2, E1∩E2) with only the
nodes and edges remaining which are present in both graphs. A graph G′ = (V ′, E′)
is called a subgraph of G if V ′ ⊆ V and E′ ⊆ E. G = (V,E) is called a labeled graph
if there exist two functions mV : V → MV and mE : E → ME with suitable label
sets MV and ME that associate labels to the vertices and edges. In the sequel we
will mainly use edge-labeled graphs. To get a representation for labeled graphs with

11

12 CHAPTER 2. BASICS

/.-,()*+ µ
**

ν //
π

44

µ

��
π

%%

/.-,()*+

µ

/.-,()*+

{µ,π}

��@
@@

@@
@@

@@
@@

@@
@

{µ,ν,π} // /.-,()*+

{µ}

/.-,()*+

��@
@@

@@
@@

@@
@@

@@
@ // /.-,()*+

��/.-,()*+ /.-,()*+
π

oo

ν

JJ

/.-,()*+ /.-,()*+
{π}

oo

{ν}

JJ

/.-,()*+ /.-,()*+

Figure 2.1: Isomorphic representation of labeled graphs and projection to the µ-
subgraph

several differently labeled edges between two nodes one has to make more effort.
Either it is possible to consider a family of graphs each representing edges with a
particular label or one has to refrain from the relational treatment. We will take
a different approach and join several distinctly labeled edges between two nodes to
one set-labeled edge. Thus, we extend the labeling function to yield sets. If the
empty set is interpreted as non-link this model is isomorphic to the representation
by a family of graphs. The relation between these two formalizations is depicted by
the two graphs on the left side in Figure 2.1. We will call the set-labeled variant
contracted representation. Edges marked with the set of all possible labels are called
completely labeled. The same notion is used for graphs if all existing connections
are completely labeled. For abbreviation reasons we call a subgraph consisting of
the same set of nodes and only edges with labels from set α an α-subgraph. We will
formally denote the projection of graph G to its α-subgraph by Pα(G). An arbitrary
edge-labeled graph can be split into the set of all its α-subgraphs. Obviously, this
dismantling can be inverted since G can be reconstructed as the union of all its
α-projections G =

⋃
α⊆ME

Pα(G).
A graph is said to be finite if the set of vertices V is finite. A path in a graph

is a sequence of nodes where successive nodes are connected by edges. The length
of a path is the number of connecting edges. A directed graph is called connected
if for all pairs of nodes m,n ∈ V there exists a path either from m to n or in the
opposite direction. It is called completely connected if for each pair of nodes m, n a
direct link from m to n exists. The unique completely labeled completely connected
graph simply is called the complete graph over a particular node set. If the first
and last node of a path coincide the path is called a cycle. Cycles of length one,
that are edges with coinciding source and target node n, are called loops on n. A
graph is called cyclic if it contains at least one cycle and acyclic if there is no cycle
at all. Acyclic graphs with an injective edge relation are called forests. In a forest,
the nodes without incoming links are the roots. Symmetrically, nodes that are only
endpoints of links are called leaves. A tree is a forest with exactly one root.

As we can see from the definition of edges, every binary relation can be iden-
tified with an unlabeled graph and vice versa. Thus, the structure REL(A) =
(2A×A,∪, ◦, ∅,4) of relations over a set A can be used as a mathematical framework
for algebraic calculations with graphs. REL(A) is the power set of the Cartesian
product A×A together with the operations of set union and relational composition
defined by:

(x, z) ∈ R ◦ S def⇔ ∃y. (x, y) ∈ R ∧ (y, z) ∈ S

The empty set ∅ denotes the empty relation and 4 denotes the identity relation
4 = {(x, x) | x ∈ A}. Relational composition ◦ puts together two graphs G1 and
G2 over the same set of nodes. The resulting graph connects nodes m and n exactly
if there exists a node o such that there is an edge from m to o in G1 and from o
to n in G2. We always have the two possibilities of looking at such a given set of

2.2. FUZZY THEORY 13

pairs, either as binary relation or as a mapping. For the further treatment we often
will use the second viewpoint of graphs mapping nodes to their successors. This is
similar to the behaviour of the enables operator in dynamic algebra or the Peirce
product in Peirce algebra. REL(A) can be extended to a Kleene algebra by defining
R∗ as reflexive, transitive closure R∗ =

⋃
i≥0R

i where R0 = 4 and Ri+1 = R ◦Ri.
Thus, we can also use Kleene algebra to abstractly model graphs. A representation
of REL(A) is the structure of matrices over the Boolean semiring ({0, 1},+, ·, 0, 1)
with + and · playing the rôle of disjunction and conjunction. These are A-indexed
matrices with elements in {0, 1} representing associations. We will refer to this
structure by the notion standard relational model.

Pointer based data structures are built from records consisting of several distinct
fields. Fields of simple data types hold the information of a node whereas pointer
data fields form the connections with the remaining records of the data structure.
In this thesis we are only interested in the complex pointer structure evolving from
these links and abstract our view by leaving the value fields behind. More precisely,
we assume that there exist mappings from addresses to simple data types for each
field name and identify value fields with their addresses. The names of the fields
are used as unique selectors to access the record’s components. Such a net of linked
records can be represented by a labeled graph by taking records as nodes and
selectors as edges labeled with the corresponding field names as shown in Figure
2.2. Object-oriented programming languages put together such data description and

next
B

right
left
A

next
C

? ?

���* ���
B -next

���
A

�
��	

left @
@@R

right

���
C -next ���

NIL

Figure 2.2: Isomorphic representation of record based pointer structure and edge-
labeled graphs

methods operating on that data in classes. Objects as instances of classes contain
the concrete data and can be viewed as enriched records. Therefore the data part of
objects can be handled by the same framework as record based pointer structures.

Some problems require the consideration of a distinguished set of nodes. Take
for example the question of reachability in a graph. This task needs a set of initial
nodes from which the calculation should start. In the sequel such a tuple (m,a) of
an entry point m together with a graph a is called a pointer structure. If appropriate
we will freely extend the notion of pointer structures to sequences of entries paired
with a graph representing the link structure.

2.2 Fuzzy Theory

In contrast to mathematics that is based on exact concepts and perfect notions,
imprecise structures prevail in real life. The formal treatment of such unsharpness
and inexactness goes back to Zadeh [Zad65]. In 1965 he introduced fuzzy set theory
as a generalization of abstract set theory. Even earlier the invention of many-valued

14 CHAPTER 2. BASICS

logic [LT30, Luk70] made it possible to reason about uncertain or incomplete infor-
mation. Nevertheless, it was Zadeh’s work that influenced researchers from logics,
relation algebra, measure and information theory and other areas to formally fix the
treatment of such imprecise concepts. Subsequently, fuzzy set theory successfully
was applied to a number of real-world applications. This not only includes engi-
neering disciplines and computer science but also natural, life and social sciences as
well as decision making in management and medicine. Nowadays, fuzzy tools even
made their entrance into consumer products.

In conventional set theory, the sets considered are defined as collections of objects
having some specific property. For example

X = {x | x is a street}

Considering the subclass of long streets it is not clear how long a street has to be
to be a member of this subclass. Obviously, this subclass of objects does not have
a well-defined criterion of membership. It is not necessary for an object to belong
or not to belong to the class. In contrast to classic sets the transition between
full membership and no membership is gradual. This is the concept of fuzzy sets.
Traditionally, membership in a set A over some universe U is determined by a
characteristic function µA : U 7→ {0, 1}. This function codes the truth and falsity
of the predicate “x ∈ A” such that µA(x) returns 1 exactly if the element x is
a member of A and 0 if the argument x does not belong to A. Such classic sets
with a discrete membership function only returning 0 or 1 are called crisp. Zadeh
generalized the characteristic function to return membership grades where larger
values denote higher degrees of set membership. The grades of membership reflect
a preorder of the objects in the universe. Although the most commonly used set
of membership grades is the unit interval [0, 1] which represents the percentage of
belonging, any arbitrary partially ordered set can be used. It is even possible to
assume a more sophisticated structure on the set of grades. In 1967 Goguen [Gog67]
introduced the notion of L-fuzzy sets where the values of the membership function
are supposed to form a lattice L. By assuming this lattice L to be Boolean one is
able to abstractly describe the behaviour of set valued membership functions.

The concepts of fuzzy set theory can be ported to logic as well. Logic based on
exact knowledge has a long tradition in mathematics and philosophy. Several calculi
were proposed to reason formally in these logics. In propositional logics for example
the basic building blocks are statements like “it is warm” and “I am sweating”
which are composed by logical connectors. These propositions themselves can also
describe relatively vague concepts as for example it is not mentioned explicitly
what temperature or temperature interval is meant with “warm”. Back in the
1920s the polish logician Lukasiewicz [LT30, Luk70] developed many-valued logic
to reason about such vague notions that are not simply characterizable by binary
truth functions. Comparable to Zadeh, he also generalized the set of truth degrees
to the real unit interval [0, 1] and used minimum and maximum as truth functions to
substitute conjunction and disjunction. In such a fuzzy logic it is possible to model
values like very true or fairly false in an arbitrary gradation. This is the basis
for approximate reasoning based on imprecise information as typical in natural
languages. The main application of fuzzy logic are all kind of controls based on
rules defined over linguistic variables. In contrast to Lukasiewicz’s approach, fuzzy
logic considers a whole class of different truth functions for conjunction, disjunction,
implication and negation. These are defined by so called t-norms and t-conorms.
So fuzzy logic can be seen as a further generalization of many-valued logic.

Since binary relations are isomorphic to sets of ordered pairs, the same gene-
ralizations introduced for classical sets can be applied to relations. Crisp relations
represent the presence or absence of connections between elements of two sets. If

2.3. FUNCTIONAL PROGRAMMING 15

we introduce degrees of associations we get fuzzy relations. This means that a fuzzy
relation is identified with a fuzzy set whose support is a subset of a suitable crisp
Cartesian product. There two elements are related only to a certain degree. Of
course, this can be extended to n-ary fuzzy relations but will play no rôle in this
thesis. The introduction of graded membership for these tuples implies degrees of
associations. Fuzzy relations again can be generalized to L-fuzzy relations where
the relation grades come from a lattice L.

Similarly, the standard model for binary relations can be extended to a matrix
model (P(L)A×A,∪, ·, 0, 1) for fuzzy relations on a finite set which we will call the
fuzzy model. These are A-indexed matrices with subsets of L as entries. Let U , V
be such matrices, then the operations and constants are defined point-wise by:

(U ∪ V)(x, y) = U(x, y) ∪ V (x, y)

(U · V)(x, y) =
⋃
z∈A

{U(x, z) ∩ V (z, y)}

0(x, y) = ∅

1(x, y) =
{
L , x = y
∅ otherwise

Above we argued that every crisp relation is isomorphic to a directed graph. Simi-
larly, fuzzy relations can be visualized by labeled directed graphs where the edges
are marked by the relation grades. For L-fuzzy relations, which are representations
of contracted labeled graphs, the degrees of association are subsets of L. To see this
connection we take the example of an atomic lattice L. Then an edge labeled with
set K ⊆ L can be split into several edges marked with the atoms of K. Therefore
L-fuzzy relations based on an atomic distributive lattice L can be used as a formal
model for labeled directed graphs.

Although there exists only a blurred notion of membership, there is a natural
demand to exhibit elements that typically belong to a fuzzy set. These can be
defined by introducing a threshold α that all such essential elements should exceed.
The operation which maps fuzzy sets to crisp sets of elements that have a particular
membership grade is called α-cut. The α-cut of a fuzzy set A is the level set
Aα = {x ∈ A | µA(x) ≥ α} of all elements that have membership grade at least α.
The value of α serves as discrimination level to select the essential elements from
the set A. Carried over to fuzzy relations, an α-cut is the relation that contains
all the associations that are connected at least with a degree α. Interpreted in the
graph model, the restriction α ·Aα of the α-cut corresponds to an algebraic version
of the projection Pα to the α-subgraph.

Similar to the representation of graphs by all its α-subgraphs it is possible to
decompose fuzzy sets into their level sets through the resolution identity

A =
∑
α

α ·Aα

This is the union of all crisp sets Aα comprising the α-cuts of the fuzzy set A
scaled by α. Each value α represents the minimal membership degree of elements
in Aα. As before this identity similarly holds for fuzzy relations and in particular
for L-fuzzy relations.

2.3 Functional Programming

Frequently, one of the most direct ways to write down a formal specification is to
use a purely functional programming language. Even if there is a more intuitive

16 CHAPTER 2. BASICS

non-functional formalization, it is often well-understood how to transform such a
problem calculationally and derive a functional program [BdM96, Par90]. This sec-
tion gives a short overview of the important aspects of functional programming used
in this thesis. More detailed introductions can be found in the standard textbooks
[BW89, Thi94].

The basic building blocks of functional languages are functions. They are first-
class citizens, which means that there can be variables of function type and functions
themselves can return function values. Functions are characterized by their domain,
range and a mapping. To get more sophisticated functions they can be composed
in several ways and applied to expressions. A major advantage of pure functional
languages is that repeated application of a function to the same argument always
returns the same result. Thus, the value of a function depends only on its parame-
ters and produces no side-effects. As a consequence, two expressions that evaluate
to the same value freely can be exchanged one by another. This is called referential
transparency and simplifies proofs and reasoning about functional programs enor-
mously. As most of the non-trivial programs are defined recursively, the main proof
tool used is induction and the proof steps are determined by the structure of the
functions. Such proofs are far easier than finding an invariant for a while -loop and
considering all side-effects in an equivalent imperative program.

The type of a function only depends on the types of expressions it is built from.
This strong typing makes it possible to automatically type-check a program. A type
inference algorithm calculates the resulting type from the subexpressions used. Sta-
tic type-checking and executability of functional programs makes them particularly
well-suited for rapid prototyping. This can be used for an immediate validation
with respect to the requirements and exposes ambiguities and inconsistencies in the
specification.

In this thesis we use a notation following Haskell [Bir98] style to write down
functional programs. To stay simple we will not cover sophisticated aspects of
modern functional languages like type and constructor classes or monads. In Haskell
simple types for numbers (Int) or characters (Char) are built into the language.
Additional algebraic data types can be defined by enumeration or composition using
the data declaration. So the type Bool for example is an enumeration of the nullary
constructors True and False:

data Bool = True | False

Data types can also be parameterized with other types which leads to polymorphic
types. A value of type

data Maybe a = Just a | Nothing

just encapsulates a value of type a or no value at all. The possibility to define
recursive data types gives this concept its real power. The data types we mainly
are working with are lists and binary trees.

data List a = Nil | Cons a (List a)
data Tree a = Empty | Fork (Tree a , a , Tree a)

As lists play a crucial part in most functional languages a special syntax for Nil
and Cons is provided. The empty list Nil is written [] and Cons a as is written
a:as. In addition, [a] can be used for the single element list a:[]. Although it
is not available in Haskell, we will use a similar abbreviation for binary trees in
this thesis. The empty tree will be denoted by 〈〉 and Fork (l,a,r) is written as
〈l, a, r〉.

In Haskell the formal arguments of a function are given as patterns that are
matched against the actual parameters. The evaluation order is sequential in the

2.3. FUNCTIONAL PROGRAMMING 17

program text. So the first matching pattern in the source code is applied. Therefore
most of the function definitions are case distinctions via this pattern scheme. The
arguments are treated in a curried fashion which means that if there are less para-
meters than needed a function that expects the remaining arguments is returned.

To simplify complexity of notation and abbreviate we will use two implemented
special patterns. The wildcard _ matches all values. There is no way to reference
the value of this parameter inside the function definition and therefore this is used
to indicate that the value is not needed, as for example in

const a _ = a

So (const 3) is a function that expects one argument that is ignored and always
returns 3. The as pattern @ is an alternative access possibility to structured ar-
guments like tuples. The pattern p@(x,y) matches a pair whose first and second
components are called x and y. The complete pair can also be referred to directly
by p.

18 CHAPTER 2. BASICS

Chapter 3

Kleene Algebra and
Extensions

In this chapter we introduce the notion of Kleene algebra (KA) and present general
operations. The definitions and presented properties of the introduced operators
are strongly oriented towards calculations and applications in the graph theoretic
model. As in relation algebra we will see Kleene algebra elements as representations
of the link structure of graphs. Enhancements to extend KA also to an abstract
theory of labeled graphs are presented. This leads to the definition of pointer Kleene
algebra considered in more detail in the next chapter.

The aim of the observations presented in this chapter was to remove a significant
drawback of a former approach by B. Möller [Möl97a]. There labeled graphs are
described by a family of relations each representing a particularly labeled subgraph
as described in Section 2.1. Thus, each calculation results in case distinctions with
respect to the set of labels. This makes proofs longer and more complicated than
they could be. To simplify reasoning about labeled graphs we are heading for
a compact algebraic representation of labeled graphs with possibilities to access
particular substructures and to model selective changes.

We assume that each element of the Kleene algebra represents a particular graph
and require that the set of labels shows a Boolean structure. This approach is
slightly different from that of labeled transition systems used in verification and
specification of computer systems. There the Boolean sort represents the nodes
whereas the edges are labeled with elements forming a regular structure. Thus an
LTS is represented by the whole Kleene algebra (for examples see [Pra91]) whereas
in our framework each element models a labeled graph.

3.1 Kleene Algebra

The algebraic structure of a Kleene algebra axiomatizes the three components of
regular events: sequential composition, nondeterministic choice and iteration, re-
presented by composition (·), join (+), and star (∗). As formal basis in this thesis
we consider Kleene algebra to be an idempotent semiring with star as introduced
by Kozen [Koz97].

Definition 1 (Kleene algebra). A Kleene algebra (K,+, ·, 0, 1,∗) is an idempo-
tent semiring with star, i.e.:

19

20 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

(K,+, 0) is an idempotent
commutative monoid:

a+ (b+ c) = (a+ b) + c (3.1)
a+ b = b+ a (3.2)
a+ 0 = a (3.3)
a+ a = a (3.4)

(K, ·, 1) is a monoid:

a · (b · c) = (a · b) · c (3.5)
1 · a = a (3.6)
a · 1 = a (3.7)

Composition distributes over +:

a · (b+ c) = a · b+ a · c (3.8)
(a+ b) · c = a · c+ b · c (3.9)

0 is a two-sided annihilator for ·:

0 · a = 0 (3.10)
a · 0 = 0 (3.11)

The ∗ operator satisfies:

1 + a · a∗ = a∗ (3.12)
1 + a∗ · a = a∗ (3.13)

b+ a · c ≤ c→ a∗ · b ≤ c (3.14)
b+ c · a ≤ c→ b · a∗ ≤ c (3.15)

Note, that we can do without either (3.12) or (3.13), as one of them is derivable
from the other axioms (see [Hol98]). Alternatively, one can define both laws only
by inequations. We will call a KA Boolean if the set K together with the respective
operations forms a Boolean algebra. As known from lattice theory, idempotence,
commutativity, and associativity of join induce a natural order relation over KA
elements by:

a ≤ b
def⇔ a+ b = b

A useful proof tool to show equality using inequations are the rules of indirect
equality:

a = b⇔ (∀c. c ≤ a⇔ c ≤ b) ⇔ (∀c. a ≤ c⇔ b ≤ c)

Abbreviating iterations that perform at least one step we additionally introduce:

a+ def= a · a∗

Both operations ∗ and + are monotonic and the well-known laws of regular lan-
guages hold:

Lemma 2.

1. 0∗ = 1∗ = 1
2. 0+ = 0 and 1+ = 1
3. 1 ≤ a∗

4. a ≤ a∗ and a ≤ a+

5. (a+ b)∗ = a∗ · (b · a∗)∗

6. a · (b · a)∗ = (a · b)∗ · a
7. a∗ · a∗ = a∗ and a+ · a+ = a · a+

8. a+ · a∗ = a+ = a∗ · a+

9. (a∗)+ = a∗ = (a+)∗

10. (a∗)∗ = a∗ and (a+)+ = a+

The proofs are trivial or can be found in [Koz90a].

3.2 Predicates

To model also sets of nodes in a single sorted theory like Kleene algebra we have
to find a representation for them as graphs. Then they can be embedded into the
algebra and treated uniformly with the graph model. The trick is to use graphs
with edges that only point from nodes to themselves. A node is then interpreted as
an element of the modeled set if and only if there exists a loop on this node. The
maximal graph in which each node has such a self-reference is formalized by the
identity 1 which represents the universal set of all nodes. Since each subgraph of this

3.2. PREDICATES 21

graph also consists of loops only, a set of nodes can be represented algebraically by
elements that are smaller than the identity. Influenced by KA applications to pro-
gram optimization and verification, where such subidentities are used to represent
program states, we will call them predicates.

Definition 3 (predicate). A predicate of a Kleene algebra is an element s with
s ≤ 1.

In the sequel we will use s, t to name predicates and denote the set of all predicates
by P = {s : s ≤ 1}. To be able to calculate with predicates as sets of nodes,
abstract properties of sets are needed. Therefore we assume that the predicates form
a Boolean lattice (P,+, ·,¬, 0, 1) with ¬ denoting the complement in P. This is a
restricted variant of Kleene algebra with tests (KAT) as defined by Kozen [Koz97].
Kozen considers our approach less desirable than using a second sort to represent
tests for two reasons. First, he criticizes that not every KA can be extended to a
KA with tests if the set of all predicates has to form a Boolean lattice. And second,
he complains that considering all predicates as tests may contradict interpretations
in his program semantics model. Both arguments do not hold for our purpose. To
model sets of nodes we are not interested in extensibility of an arbitrary Kleene
algebra into one satisfying our model. What we need is a representation showing a
set-like behaviour of predicates which is achieved by the Boolean structure. Since
the identity is a model for the universal set of all nodes and each smaller element
represents a subset, this implies the choice of the complete structure lying under the
identity. Obviously, iterated composition of predicates yields the predicate itself,
since composition coincides with meet. This is reflected by:

Lemma 4. For predicate s the following iteration laws hold:

s∗ = 1 and s+ = s

Proof. From 1∗ = 1 and monotonicity it follows that: s∗ ≤ 1∗ = 1 ≤ s∗ and
s+ = s · s∗ = s · 1 = s ut

Similar to Kozen’s KAT, we define Kleene algebra with predicates as an enhance-
ment of KA.

Definition 5 (KA with predicates). A Kleene algebra with predicates (KAP)
is a KA in which the set P of predicates forms a Boolean lattice (P,+, ·,¬, 0, 1)
with ¬ denoting the complement in P.

If constants and operations are clear from the context we simply say that P forms
a Boolean lattice. In the sequel we will assume to work in KAPs and use the notion
Kleene algebra interchangeably. Composition of a predicate s and graph a in the
graph model can be derived directly from the definition of composition of two graphs
in Section 2.1. Since s just consists of loops, composition restricts a to the set of
nodes represented by s. Composition from the left results in a domain restricted
subgraph and preserves only the links starting from nodes in s. Symmetrically, all
links with targets not in s are removed by composition from the right. Calculations
with restrictions often result in separate reasoning about a set of nodes satisfying
a particular condition and the remaining nodes that do not. We will refer to such
a partition of element a into the restriction s · a and the complementary restriction
¬s · a by the notion case distinction.

In the contracted labeled graph model, membership in the represented set indi-
cated by a loop is generalized. Each loop is marked with a set of labels which can
be interpreted as membership degree of the respective node. Thus, in the labeled
graph model predicates represent fuzzy sets of nodes. To get more information in
the context of this enhanced interpretation we need additional algebraic operations.

22 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

3.3 Residuals

A helpful tool to gain knowledge about the internal structure of elements but ne-
vertheless staying in an abstract framework is residuation. Residuals go back to
de Morgan [dM64] who introduced them for relation algebra and called the defi-
ning rule “Theorem K”. The term residual itself was coined by Ward and Dilworth
[WD39] and studied in lattices in more detail by Birkhoff [Bir67]. Later Conway
used the term factors [Con71] for the same concept. Note that this notion of factors
has nothing to do with factors in graph theory. Residuals also show up in a more
application-specific way as weakest pre-/post-specification [HJ87] and form the ba-
sis of division allegories [FS90]. Residuals characterize largest solutions of certain
linear equations and mostly are defined by Galois connections.

Definition 6 (residuals).

b ≤ a\c def⇔ a · b ≤ c
def⇔ a ≤ c/b

We will call a Kleene algebra where all residuals exist a residuated KA. As a direct
consequence from existing residuals 0 is a two-sided annihilator for composition and
the distributivity laws 3.8 and 3.9 hold. In a residuated KA we get a top element for
free, which is > = 0\0. Note, that this is not the only representation of the greatest
element. In fact all terms 0\a are equal to top. The structure of a residuated
Kleene algebra is equivalent to that of action algebras introduced by Pratt [Pra90a]
as an axiomatization for action logic. Action algebras have the advantage that
they are finitely, equationally definable and so form a variety. Nevertheless, they
are quite restrictive, since the existence of residuals is a rather strong demand.
In our case it is possible to get enough information about the internal structure
by restricting residuals to predicates. To motivate this we temporarily change our
view to residuals of binary relations.

In the matrix model S\R relates two elements x and y if column x in S is
covered by column y in R. R/S symmetrically works on rows. If S now is a
predicate and so only consists of unit vectors we have two cases. Either the column
in S is completely empty and therefore is covered by every column in R . Or the
column consists of exactly one entry and residuation indicates if this entry is also
present in the respective column in R. So S\R has completely filled rows where S
is undefined and equals R otherwise. We can show this model theoretic observation
generally in residuated Kleene algebras:

Lemma 7. In a residuated KA, residuals with respect to predicate s can be expres-
sed explicitly as

s\a = a+ ¬s · > a/s = a+> · ¬s (3.16)

Proof. We only show the first equality. Assume a residuated KA, then

(≤) : s\a = s · (s\a) + ¬s · (s\a) ≤ a+ ¬s · >
(≥) : s · (a+ ¬s · >) = s · a ≤ a⇔ a+ ¬s · > ≤ s\a

ut
So we just restrict ourselves to Kleene algebra with a greatest element and axioma-
tize \ and / by the equations (3.16).

Definition 8 (KA with top). A Kleene algebra with top (K,+, ·, 0, 1, ∗,>) is a
KA (K,+, ·, 0, 1, ∗) enhanced with an element > defined by: ∀a ∈ K. a ≤ >.

By definition it follows immediately that residuals are anti-monotone in the pre-
dicate argument and monotone in the other. Also the standard laws for residuals
hold restricted to predicates:

Lemma 9.

3.4. KLEENE ALGEBRA WITH DOMAIN 23

1. 0\a = >
2. 1\a = a
3. s\> = >
4. 1 ≤ s\s

5. s · (s\a) = s · a
6. s\(s · a) = s\a
7. (s · t)\a = t\(s\a)
8. (s\a)/t = s\(a/t)

The proofs follow immediately from Axioms (3.16). We can even show that in KAs
with top the Galois connections of Definition 6 holds restricted to predicates.

Lemma 10.

s · a ≤ b⇔ a ≤ s\b and a · s ≤ b⇔ a ≤ b/s

Proof. Assume s·a ≤ b, then a = s·a+¬s·a ≤ b+¬s·> = s\b. Now assume a ≤ s\b,
then s · a ≤ s · (s\b) 9.5= s · b ≤ b. The second proposition follows symmetrically. ut

3.4 Kleene Algebra with Domain

The representation of sets of nodes by predicates enables us also to give abstract
characterizations of domain and codomain of a graph. The domain represents the set
of nodes links start from and symmetrically codomain results in all target nodes. As
seen in Section 2.1 these operations coincide for directed graphs with the respective
notions on the edge relation. In the sequel we will focus on domain, as the laws for
codomain hold symmetrically. Abstractly, the set of nodes links start from can be
expressed as the least predicate that does not restrict the graph by composition.
We will use an equational axiomatization for domain based on the one given in
[DMS03].

Definition 11 (domain). The domain operation p is axiomatized by:

a ≤ pa · a (3.17)
p(s · a) ≤ s (3.18)

To speak in the notions of [DMS03] we more precisely just demand p to be a
predomain operator. Nevertheless, for practical applications that require equality
propositions one cannot do without a rule called locality. As we will see this fol-
lows from one of the later added extensions of the algebra. Definition 11 implies
distributivity over joins and therefore monotonicity, just as domain is strict, i.e.
pa = 0 ⇔ a = 0. Other properties which are easy to see are:

Lemma 12.

1. pa ≤ 1
2. ps = s

In particular: p1 = 1

3. pa · a = a
4. p(a · >) = pa

In particular: p> = 1

With these rules we can show that indeed:

Lemma 13. pa is the least solution of the equation s · a = a

Proof. pa is a solution by Lemma 12.3. Now assume that t ≤ pa is also a solution,
then: pa = p(t · a) ≤ t and therefore t = pa ut

By a straightforward calculation we can also show that for domain the Galois
connection

pa ≤ s⇔ a ≤ s · >
holds if there is a greatest element in the algebra. The extension of KAP by domain
and codomain operators leads us to:

24 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

/.-,()*+ µ
**

ν //
π

44

µ

��
π

%%

/.-,()*+

µ

/.-,()*+{µ,ν,π}
,, /.-,()*+{µ}

rr /.-,()*+ /.-,()*+{µ,ν,π}
rr

/.-,()*+ /.-,()*+
π

oo

ν

JJ

/.-,()*+ /.-,()*+
{ν,π}

ll /.-,()*+
{π}

22 /.-,()*+
{µ,π}

ll

Figure 3.1: Application of domain and codomain

Definition 14 (KA with domain). A Kleene algebra with domain (KAD) is a
KAP with two operators p and q for domain and codomain satisfying the laws of
Definition 11 and the symmetrical versions respectively.

For labeled graphs the domain operation not only yields a representation of the set
of nodes links start from. Additionally it sums up the set of symbols these links are
labeled with and assigns them to the respective loops (see Figure 3.1). This is the
representation of a fuzzy set of nodes where the membership degree of each node
corresponds to the set of labels of its outgoing links.

3.5 Scalars and Ideals

Based on the observation that the α-cut operation can be used to algebraically get
a particularly labeled subgraph, this section is concerned with the foundations of
such a projection. The first we need is a representation for the discrimination level
α which in our case corresponds to a set of edge labels. In Section 3.2 it was shown
that by representing sets of nodes as graphs, they can be treated in a single-sorted
graph theory. The same idea now is used to model sets of labels. The representation
of cut-level α will be a labeled graph with an α-labeled loop on each node. This
corresponds to a universal fuzzy set containing each node with membership grade
α. Algebraically this is fixed by the notion of a scalar.

/.-,()*+{µ,π}�� /.-,()*+{µ,π} �� /.-,()*+
{µ,π}

��

{µ,π}

{µ,π}
**

{µ,π}

��

/.-,()*+
{µ,π}

��

{µ,π}

{µ,π}
jj

{µ,π}

yy/.-,()*+
{µ,π}
LL

/.-,()*+
{µ,π}

RR
/.-,()*+{µ,π}

LL

{µ,π}

JJ

{µ,π}
**

{µ,π}

99

/.-,()*+ {µ,π}
RR

{µ,π}
jj

{µ,π}

JJ

{µ,π}

YY

Figure 3.2: Representation of scalars and ideals

Definition 15 (scalar). A scalar is an element α ∈ P that commutes with the top
element, i.e. α · > = > · α.

We observe that in the fuzzy model for predicate s and greatest element > we have:

(s · >)(x, y) = s(x, x)
(> · s)(x, y) = s(y, y)

3.5. SCALARS AND IDEALS 25

By equality of these two terms we get the intended interpretation for scalar α:

∀x, y. α(x, x) = α(y, y)

Scalars are closed under the KA operations and as they are predicates also under
complement:

Lemma 16. The set S = {α ≤ 1 | α · > = > · α} of scalars forms a Boolean
sublattice of P and (S,+, ·, 0, 1, ∗) is a Boolean KA.

Proof. Closedness under +, · and ∗ is trivial or follows from Lemma 4. The remai-
ning closedness under ¬ is proven by case distinction:

¬α · > = ¬α · > · α+ ¬α · > · ¬α = ¬α · > · ¬α ≤ > · ¬α

The other direction is shown symmetrically. ut

In the sequel we will use Greek letters α, β, γ for scalars. Scalars not only commute
with top but also show some other nice commutativity properties:

Lemma 17. Let α ∈ S be a scalar and a ∈ K, then

1. α\a = a/α
2. α · a = a · α

Proof. 1. α\a = a+ ¬α · > = a+> · ¬α = a/α
2. By indirect equality and Lemma 10: α ·a ≤ b⇔ a ≤ α\b⇔ a ≤ b/α⇔ a ·α ≤ b

ut

As seen in Section 2.1 an edge-labeled graph can be split up into the set of its
α-subgraphs. Projection of the subgraph using only edges of labels from set α
can be achieved by intersection with a completely connected α-subgraph. Such
a completely connected graph with only identically labeled arrows algebraically
corresponds to an ideal [JT51, JT52]. An ideal in a KA with top is an element that
is invariant under composition with top.

Definition 18 (ideal). A right ideal is an element j ∈ K that satisfies j = j · >.
Symmetrically we define the notion of left ideals. An ideal then is an element that
is a left and a right ideal, i.e. > · j · > = j.

In the sequel we will denote ideals by j and k. The set J = {j | > · j · > = j} of
ideals is closed under the KA operations + and · but not under ∗.

Lemma 19. For iteration of ideals one has: j∗ = 1 + j and j+ = j.

Proof. We only prove the second claim from which the first follows immediately:
j+ = j · j∗ ≤ j · > = j ≤ j+ ut

Since for the set of ideals the top element > coincides with the identity, this set
forms an algebra of subidentities:

Corollary 20. The ideal elements of a KA with top together with the restricted
operations form a semiring (J ,+, ·, 0,>) with top.

It is evident that every non-trivial KA with top has at least the two ideals 0 and
>. For simple algebras these are the only ones.

Definition 21 (simple). An algebra is called simple, if the Tarski rule a 6= 0 ⇒
> · a · > = > holds for all a.

26 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

In [JT52] Jónsson and Tarski first showed equivalence of these two characterizations
of simplicity for non-trivial relation algebras. The standard relation models all are
simple and therefore do not help to give us a better intuition of ideals. Thus, we
change our view to the fuzzy relational model. There an ideal corresponds to a
matrix with only identical sets as entries. This is the representation of a contracted
completely connected graph with all links labeled identically. Evidently, intersection
of such an element with an arbitrary graph representation results in the according
α-subgraph.

By idempotence of > we can see that for every element a ∈ K the composition
> · a · > is an ideal. By this operation each ideal is mapped onto itself and so every
ideal can be written in this form. Also for every scalar α function iSJ (α) = >·α ·>
is a mapping from scalars to ideals. By commutativity this can be simplified to

iSJ (α) = α · >

and we can show injectivity of this mapping:

Lemma 22. For a scalar α the element j = iSJ (α) is an ideal and iSJ : S → J
is injective.

Proof. > · j · > = > · (α · >) · > = α · > = j, so j is an ideal. Let now α, β ∈ S and
iSJ (α) = iSJ (β), then α = p(α · >) = p(β · >) = β. ut

It is well-known that a category of L-relations in the sense of Goguen forms a De-
dekind category [KF01]. The term Dedekind category was introduced by Olivier
and Serrato [OS95] and is called locally complete division allegory by Freyd and
Scedrov [FS90]. Kawahara and Furusawa [KF01] have proved the bijective corre-
spondence between scalars and ideals in such categories. Based on this bijection
Winter [Win01] has shown how to axiomatize cut operations to formalize crispness.
It is now shown how these concepts can be ported to Kleene algebra.

Kawahara and Furusawa used the two functions

iSJ (α) = α · > and iJS(j) = j u 1

as bijective mappings between the set of scalars S and the set of ideals J . Since
there is no meet operation in KAs, we show how to achieve the mapping iJS with
Kleene algebraic means. For the proof of injectivity of iJS in [KF01] the modular
laws

Q ·R u S ≤ Q · (R uQ` · S)
Q ·R u S ≤ (Q u S ·R`) ·R

find their place. To avoid unnecessary parentheses we assume that composition
binds more tightly than meet. Although the modular laws make use of the converse
operation ` , only a weaker version of them is needed. The top element, which
remains unchanged under ` , is used as conversed element. To be able to replay the
proof we will change our focus temporarily to standard Kleene algebras (SKA) which
are similar to S-algebras as defined in [Con71]. This is a more restrictive structure
based on a complete lattice. So there is a meet operation. For an axiomatization
see Section A.1 in the appendix. We will now extend SKAs by the modular laws:

Definition 23 (weakly modular SKA). We say a SKA is weakly modular if
the modular laws hold for >:

> · a u b ≤ > · (a u > · b)
a · > u b ≤ (a u b · >) · >

3.5. SCALARS AND IDEALS 27

In a WMKA we can replay the proof of injectivity for iJS :

Proof.
iJS(j) ·> = (ju1) ·> ≤ j ·> = j = ju1 ·> ≤ (j ·>u1) ·> = (ju1) ·> = iJS(j) ·>,
thus: iJS(j) · > = j which immediately shows injectivity of iJS . Symmetrically
j = > · iJS(j), so that iJS(j) indeed is a scalar. ut
In a next step we show how to eliminate the need for a meet operation by giving
conditions that are able to replace the restricted modular laws. A first observation
shows that in the case of WMKAs there is a closed formula for domain:

Lemma 24. Assume a WMKA, then

pa = a · > u 1

Proof. By the modular laws pa = p(au 1 · >) ≤ p((a · > u 1) · >) = a · > u 1. On the
other hand a · > u 1 = pa · a · > u 1 = pa · a · > u pa ≤ pa, since in SKA composition
with predicates distributes arbitrarily over meet. ut

As a consequence the operation iJS on ideals can be simplified to iJS(j) = j u 1 =
j · > u 1 = pj. We can give alternative conditions without using meet that iJS and
domain coincide:

Lemma 25. The following conditions are equivalent in SKAs with domain:

1. pa ≤ a · >
2. pa · > = a · >
3. pa = a · > u 1

Proof.

1.⇒ 2.: pa · > ≤ a · > · > = a · > = pa · a · > ≤ pa · >
2.⇒ 3.: pa = pa u 1 ≤ pa · > u 1 = a · > u 1 = pa · a · > u 1 = pa · a · > u pa ≤ pa
3.⇒ 1.: pa = a · > u 1 ≤ a · > ut

The reverse implication from 2. to 1. also holds in structures without a meet opera-
tion, so that they are equivalent even in KAPs with top and domain. Symmetrically,
the same proposition holds for codomain.

Lemma 26. The following formulas are equivalent in SKAs with codomain.

1. aq ≤ > · a
2. > · aq = > · a
3. aq = > · a u 1

Motivated by the form of Equations 25.1 and 26.1 we will call these properties
subordination of domain and codomain respectively.

Example 27. The algebra of regular languages LAN = (P(A∗),∪, ·, •, ∅, ε) only has
the two predicates ∅ and ε. Therefore all non-empty languages have domain ε.
Nevertheless, LAN does not show subordination, as in general ε is not contained in
the composition of an arbitrary language and A∗ which corresponds to >. ut
Alternatively we can give more symmetric conditions equivalent to Lemmas 25/26:

pa · b ≤ pb · a · >
a · bq ≤ > · b · aq

Nevertheless, we will keep the characterizations from Lemmas 25/26 due to their
simplicity. By adding subordination of domain and codomain we can show more
sophisticated properties of ideals and some that are needed for later derivation steps.
We only present the respective laws using domain, as the codomain variants follow
symmetrically.

28 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

Lemma 28. With subordination of domain composition of ideals is idempotent and
commutative.

Proof. j · j = j · > · j = pj · > · j = pj · j = j shows idempotence and commutativity
follows from j · k = j · k · j · k ≤ > · k · j · > = k · j. The other direction is shown
symmetrically. ut

Remember that we introduced subordination to establish a bijection between scalars
and ideals. We now can show some properties of the chosen mapping p on ideals:

Lemma 29. Assume again subordination, then for j ∈ J

1. pj ≤ j
2. j = pj · >
3. pj = jq
4. pj · > = > · pj

Proof. 1. pj ≤ j · > = j
2. pj · > = j · > = j

3. pj = (pj)q
1.
≤ jq and symmetrically jq ≤ pj

4. pj · > 2.= j = > · jq 3.= > · pj ut

The first law shows that the naming of subordination is justified. Indeed the domain
of an ideal, which equals its corresponding scalar, is below the ideal itself. The third
equation shows that it does not matter if one uses domain or codomain to map ideals
to scalars. This mimics the fact that one is also free to choose composition with
top either from the left or right to map a scalar to its corresponding ideal. With
subordination we are in the position to choose iJS(j) = pj = jq. Finally, we are
able to show that this mapping is injective:

Lemma 30. Assume subordination of domain, then iJS is injective on ideals.

Proof. Assume iJS(j) = iJS(k), i.e. pj = pk, then j
29.2= pj · > = pk · > 29.2= k ut

As one can see by Lemma 29.4 function iJS really maps into the set of scalars, viz
commutes with the top element. Indeed the two functions iJS and iSJ are inverse:

Lemma 31. iJS(iSJ (α)) = iJS(α · >) = p(α · >) = α

iSJ (iJS(j)) = iSJ (pj) = pj · > = j

By the now established bijection between scalars and ideals it is immediately clear
that the ideals also form a Boolean lattice with composition as meet operation.
The construction a\0, which in the presence of residuals often is used as pseudo
complement, now coincides for ideals with the real Boolean complement. Since we
only have residuals with respect to predicates, we first show:

Lemma 32. In a residuated KA with subordination for j ∈ J the pseudo comple-
ments j\0 and pj\0 coincide.

Proof. j\0 ≤ pj\0 follows from anti-monotonicity in the first argument. The other
inequality is shown by

j · (pj\0) = j · (0 + ¬pj · >) = j · jq · ¬pj · > = j · pj · ¬pj · > ≤ 0 ⇔ pj\0 ≤ j\0

ut

So we are able to give a closed formula of the complement operation on ideals and
conclude:

3.6. UPDATES AND IMAGES 29

Lemma 33. The set J of ideals forms a Boolean lattice (J ,+, ·, , 0,>) with j =
pj\0 = ¬pj · > the complement of j.

Proof. We just show the statement about the complement, since all the other parts
were shown previously. It follows that j + j = j + ¬pj · > 29.2= pj · >+ ¬pj · > = >
and j · j = 0 was shown in the proof of Lemma 32. ut

Summarizing, we have the following relations between scalars and ideals (here with
the use of domain and composition on the right):

J

p

��

p \0 // J

p

��
S

·>

TT

¬
// S

·>

TT

An important rule that neither follows from the axiomatization of Kleene algebra
nor holds in SKAs is locality. In [Möl99b] this rule is called (left)-local composition
and describes the fact that the domain of the composition of two elements does not
depend on the composed element itself but only on its domain.

Definition 34 (locality). A Kleene algebra shows left-locality if

pb = pc⇒ p(a · b) = p(a · c)

Right-locality is defined symmetrically. This definition is equivalent to

p(a · b) = p(a · pb)

which is the form in which locality most often is used. Left-locality also implies
immediately

p(pa · b) = pa · pb

We can show that Kleene algebras with subordination of domain show left-locality.

Lemma 35. Assume subordination of domain, then p(a · pb) = p(a · b)

Proof. p(a · pb)
25.1
≤ p(a · b · >) 25.2= p(p(a · b) · >) = p(a · b) and the opposite direction

holds in all Kleene algebras with domain. ut

Conversely, right-locality follows from subordination of codomain. Thus, subor-
dination makes p a real domain and q a real codomain operator in the sense of
[DMS03].

3.6 Updates and Images

This section will introduce two indispensable operations on graphs. One serves
to change the representations of the link structure selectively with respect to the
target nodes and a second one is used to get access to the mapping behaviour
induced by the links between nodes. Selective updating of links in the structure is
the most essential operation all algorithms working on pointer structures are based
on. We will model this by an operation to overwrite a graph representation with
another. This process is selective with respect to the source nodes of links, which
are represented by the domain of the overwriting element.

30 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

Definition 36 (update). Element b overwrites a by

b | a def= b+ ¬pb · a

The updated element is preserved exactly where the update is not defined. Hence,
a link is in the graph b | a if it is in b or the link is in a and there is no link with
the same source node in b. This operator will be our tool to represent changes in
a pointer structure. The structure (K, |, 0) is an idempotent monoid and we can
show:

Lemma 37. 1. > | a = >
2. b ≤ b | a
3. b = pb · (b | a)

4. p(b | a) = pb+ pa

5. c | (a+ b) = c | a+ c | b

The proofs are straightforward calculations using the definition and case distinction.
Similar to the enables operator in DAs and the Peirce product in Peirce algebras

we introduce an operation that mimics an action of a Kleene element on a predicate.
Intuitively the representation of a graph operates on a set of nodes by yielding all
successors of these nodes. This is a sort of image under the mapping represented
by the Kleene element. We adapt the notation of Peirce products and define:

Definition 38 (image). The image of s under a is defined by:

s : a def= (s · a)q

Hence, the direct successors are calculated by restricting graph a to the subgraph
with edges that start at nodes represented by s and then taking all the link targets.
In [EMS03] a more abstract axiomatization of the image operator in the context
of Kleene modules is given. There it is shown that the image operator abstractly
characterizes the relational image operation. It is also shown that for practical
applications the abstract setting of Kleene modules is not of useful expressiveness as
there are too few properties connecting the two sorts of the module. The embedding
of the Boolean sort by identifying it with the set of predicates in KAD avoids
these problems. In the sequel we assume that · binds more tightly than : to avoid
unnecessary parentheses if possible. Since the image operator is defined as the
composition of two monotone functions, that both distribute through joins, these
properties are directly inherited:

Corollary 39. Monotonicity: a ≤ b⇒ s : a ≤ s : b
s ≤ t⇒ s : a ≤ t : a

Distributivity: s : (a+ b) = s : a+ s : b
(s+ t) : a = s : a+ t : a

Locality of codomain is also inherited by the image operator. This results in a rule
that supports successive calculation of an image under a composed element, which
is one of the two defining laws for operations on groups:

Lemma 40. The image operator shows locality:

(s : a) : b = s : (a · b)

Proof. (s : a) : b = ((s · a)q · b)q = (s · (a · b))q = s : (a · b) ut

Further properties of the image operator can be deduced from this law and the
definition:

Lemma 41.

3.6. UPDATES AND IMAGES 31

1. s : t = s · t
Immediately: s : 1 = s and s : 0 = 0

2. 0 : a = 0
3. 1 : a = aq
4. s : a∗ = s+ (s : a) : a∗

5. s : a = 0 ⇔ s · a = 0
6. s : a∗ = 0 ⇔ s = 0
7. s : (a · t) = (s : a) · t
8. s : (t · a) = (s · t) : a

The induction rules for the star operator (Axioms (3.14) and (3.15)) can also be
lifted directly to images. So we get an image induction rule to prove properties not
only for direct but arbitrary successors:

Lemma 42. A generalized induction principle for the image operator is

s : a+ t : b ≤ t⇒ s : (a · b∗) ≤ t

Proof. By the Galois connection for codomain and star induction we get:

s : (a · b∗) ≤ t

⇔ s · a · b∗ ≤ > · t
⇐ s · a+> · t · b ≤ > · t
⇔ s : a+ (> · t · b)q ≤ t

⇔ s : a+ t : b ≤ t

ut

This law is an instance of the powerful µ-fusion rule known from fixed point calculus
(see [Bac02]), that is used to reason about inequations in which star is not the
principal function on the lower side.

A special rôle is played by the image of a predicate under the top element. This
operation can be used to equationally express the least scalar a predicate is included
in:

Lemma 43. The image of a predicate s under > is the least scalar α with s ≤ α.

Proof. s : > = (s · >)q = ((> · s)q · >)q = (> · s · >)q which by Lemma 31 is a scalar
and from the assumption β ≥ s we get s : > ≤ β : > = (β · >)q = (> · β)q = β,
which shows that s : > is the least scalar comprising s. ut

This can be seen as a sort of cylindrification [HMT71] with respect to the scalar
dimension.

Since we are heading for an abstract framework to handle pointer structures,
there may be cases in which the expressive power of the system will not be strong
enough. There may be non-standard models for which particular equality propo-
sitions cannot be shown but in most of these cases the equivalence of mapping
behaviour suffices for practical interests. Therefore we define:

Definition 44 (observational equivalence). We say the Kleene elements a and
b are observationally equivalent, if

a ≡ b
def⇔ ∀s ≤ 1. s : a = s : b

This is strongly related to separability in dynamic algebras. There an algebra is
called separable if every element is uniquely determined by its mapping behaviour:

∀a, b ∈ K. a ≡ b⇒ a = b (separable)

So for separable algebras observational equivalence and equality of two elements
coincide. The definition of observational equivalence even can be tweaked to re-
stricting the scope of s to the joined domain of both elements:

32 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

Lemma 45. a ≡ b⇔ ∀s ≤ p(a+ b). s : a = s : b

Proof. (⇐) is trivial.
(⇒) Let s ≤ 1 be an arbitrary predicate, then: s : a = (s · pa) : a = (s · pa) : b =
(s · pa · pb) : b = (s · pb · pa) : a = (s · pb) : a = (s · pb) : b = s : b ut

3.7 Determinacy and Atomicity

The abstract properties that are modeled by the Kleene elements are based on the
mapping behaviour of a pointer linked data structure. At the moment we have no
access to the internal structure of such a representation. Each information about
an element can only be derived from observable effects such as the image under a
set of nodes. Nevertheless, we sometimes need to model a single link or want to be
sure that each node has at most one successor. Such statements about the structure
often can be expressed by quantification over the set of all elements. In [DM01] it is
shown that determinacy of an element abstractly can be defined in Kleene algebra
by such a formula.

Definition 46 (determinacy). An element a ∈ K is called a map (deterministic)
if

map(a) def⇔ ∀b ≤ a. b = pb · a

Since every restriction of a to pb has to yield b, there is no chance that some node
is mapped to two distinct successors. Obviously, if in a graph each node has at
most one successor this holds also for each subgraph. Thus, the set of deterministic
elements in a Kleene algebra is downward closed:

Lemma 47. map(a) ⇒ ∀b ≤ a. map(b)

Proof. Let c ≤ b ≤ a and map(a), then pc · b = pc · pb · a = pc · a = c ut

For deterministic stores we can show an important annihilation rule. Updating with
links that are already in the store does not yield any changes:

Lemma 48. Assume map(a), then store a shows annihilation, i.e.:

b ≤ a⇒ b | a = a

Proof. b | a = b+ ¬pb · a = pb · a+ ¬pb · a = a ut

Another important concept to get a really applicable framework is atomicity. In a
sense, atomic elements represent smallest non-empty elements. As we are only able
to talk about sets of nodes, atomicity is the key to describe a single node or a single
link in a graph. Nevertheless, we try to stay on an abstract level and will see that
most of the laws can be proven without atomicity.

Definition 49 (atom). An element 0 6= a ∈ K is called an atom if

at(a) def⇔ ∀b ≤ a. b = 0 ∨ b = a

Obviously, atomic elements are deterministic. These two concepts are in a sense
related but not equal:

Lemma 50. 1. at(a) ⇒ map(a)
2. at(a) ⇒ at(pa) ∧ at(aq)
3. at(s) ∧map(a) ⇒ at(s · a)

3.8. CUT OPERATIONS 33

Proof. 1. Assume at(a), then ∀b ≤ a. b = 0∨b = a. From b = 0 we get pb·a = 0 = b
and b = a implies pb · a = pb · b = b which shows the claim.

2. Let s ≤ pa, then s · a ≤ a
at(a)⇒ s · a = 0 ∨ s · a = a. The first disjunct

simplifies by s ≤ pa to s = s · pa = p(s · a) = p0 = 0 whereas the second one by
s ·pa = p(s ·a) = pa and s ≤ pa implies s = pa which shows the claim for domain.
Atomicity of codomain is shown symmetrically.

3. Let b ≤ s · a and therefore also b ≤ a, hence pb ≤ p(s · a) ≤ s and by at(s) :

pb = 0 ∨ pb = s⇔ b = 0 ∨ pb = s
map(a)⇒ b = 0 ∨ b = pb · a = s · a ut

With these rules we can show that the image of an atom under a deterministic
mapping again is an atom:

Corollary 51. at(s) ∧map(a) ⇒ at(s : a)

More important than reasoning about atomic elements is atomicity of scalars. This
makes it possible to denote single labels of graphs. We introduce the notion of
scalar-atomicity that is not atomicity with respect to K but atomicity in the lattice
of scalars.

Definition 52 (scalar-atomic). A scalar 0 6= α ∈ S is called scalar-atomic if

sat(α) def⇔ ∀β ∈ S. β ≤ α⇒ β = 0 ∨ β = α

This concept gives us a handle to access and denote equally labeled subgraphs as
shown in the following sections.

3.8 Cut Operations

So far, our treatment of pointer structures in Kleene algebra is built on a record-
based view of labeled graphs. Each node represents a record and components are
modeled by labeled links to the nodes representing the field contents. We have
presented operations to restrict graph representations to particular nodes, change
them selectively and get information about successor relations. But currently, we
are not able to select particularly labeled substructures. To solve this task we
consider L-fuzzy relations as an abstract theoretical model for labeled graphs. In
Section 2.2 we have seen that an α-cut on fuzzy relations can be used to select
the α-subgraph. Our concern now is how to abstractly model an α-cut in Kleene
algebra. For this we define two cut operators ↑ and ↓ similar to [Win01] that send
an element to the least crisp element it is included in and to the greatest element it
includes respectively. The effect of these operations carried over to labeled graphs
is depicted in Figure 3.3. So for example assume we have three graphs (each an
element of a Kleene algebra) fitted together in one. To distinguish the edges that
come from different graphs each is labeled with a unique identifier, say µ, ν, π. In the
original graph on the left side a completely labeled connection exists from node A
to node B, as they are connected by all sorts of links. Application of ↑ results in the
graph in the middle, where nodes that were previously linked at all are completely
labeled. Application of ↓ yields the graph on the right side in which there remain
only the previously completely labeled parts. As ↑ and ↓ produce related least and
greatest elements we can use a Galois connection to define them.

Definition 53 (up and down). The cut operators ↑ and ↓ are axiomatized as
follows:

1. (↑,↓) form a Galois connection, i.e. a↑ ≤ b⇔ a ≤ b↓.
2. (a · b↓)↑ = a↑ · b↓ and (a↓ · b)↑ = a↓ · b↑.

34 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

/.-,()*+A
µ

**
ν //
π

44 /.-,()*+B /.-,()*+A
µ

**
ν //
π

44 /.-,()*+B /.-,()*+A
µ

**
ν //
π

44 /.-,()*+B

/.-,()*+C
µ

** /.-,()*+D
ν

jj

π

OO

/.-,()*+C tt
µ

**oo ν //jj
π

44 /.-,()*+D

µ

JJ

ν

OO

π

TT

/.-,()*+C /.-,()*+D

Figure 3.3: Example graph and application of ↑ and ↓

3. α scalar and α 6= 0, then α↑ = 1.

The second law defines the completion of a graph that is built from paths with one
part arising from a completely labeled graph. Then the same graph is yielded by
first completing the other part and then performing the composition. The third law
fixes the concrete semantics since by the first two laws ↑ and ↓ could also coincide
with the identical mapping. Monotonicity and the cancellation laws follow directly
from the Galois connection and therefore are given without proof. The interested
reader may have a look at [Aar92] for general properties of Galois connections.

Corollary 54. 1. ↑ and ↓ are monotone
2. a ≤ a↑↓ and a↓↑ ≤ a
3. a↑ = a↑↓↑ and a↓ = a↓↑↓

By these observations and the further parts of the definition we can show the follo-
wing properties of the cut operators ↑ and ↓:

Lemma 55.

1. 1↑= 1
2. a↓↑ = a↓

3. a↑↓ = a↑

4. a↑↑ = a↑ and a↓↓ = a↓

5. a ≤ a↑ and a↓ ≤ a
6. a↑ = a⇔ a↓ = a

7. 0↑ = 0 and >↑ = >
8. (a) a↑ = 0 ⇔ a = 0

(b) a↓ = > ⇔ a = >
(c) s↓ = 1 ⇔ s = 1

9. (a · b↑)↑ = a↑ · b↑ = (a↑ · b)↑

Proof. 1. Assume 1 6= 0, then apply Definition 53.3. Otherwise for all a holds
a = 1 · a = 0 · a = 0 and so 1↑ = 0 = 1.

2. a↓↑ = (1 · a↓)↑ = 1↑ · a↓ = 1 · a↓ = a↓

3. a↑ = a↑↓↑ = a↑↓

4. a↑ = a↑↓↑ = a↑↑

5. a ≤ a↑↓ = a↑ and a↓ = a↓↑ ≤ a
6. By Galois connection and Lemma 55.5
7. 0↓ ≤ 0, thus 0↓ = 0 and by Lemma 55.6 follows the proposition. The second is

immediate from Lemma 55.5 as > ≤ >↑.
8. We only show the first claim, as the others follow similarly. a↑ = 0 ⇔ a↑ ≤ 0 ⇔
a ≤ 0↓ ⇔ a ≤ 0 ⇔ a = 0

9. (a · b↑)↑ 55.3= (a · b↑↓)↑ 53.2= a↑ · b↑↓ 55.3= a↑ · b↑. The second property is shown
symmetrically.

ut

As we can see by Corollaries 54.1, 55.4 and Lemma 55.5, up is a closure and down an
interior operator. Some of the laws for up (e.g. Lemma 55.9) remind us of axioms
used in a cylindric algebra [HMT71]. Indeed one can see the up operator as a sort
of cylindrification or completion with respect to the labeling.

3.8. CUT OPERATIONS 35

Focusing on the interaction between the cut operators and ideals we get some
more insight into their behaviour. As we established by subordination of domain
and codomain a bijection between scalars and ideals, the special case for scalars in
Definition 53.3 is inherited by ideals and we can show a sort of specialized Tarski
rule.

Lemma 56. 1. If j 6= 0 is an ideal, then j↑ = >.
2. a 6= 0 ⇒ > · a↑ · > = >.

Proof. 1. Assume α = iJS(j) to be the scalar corresponding to j. Thus, j can
be represented by iSJ (α) = α · >. By strictness of iJS the proposition j 6= 0
implies α 6= 0 and therefore j↑ = (α · >)↑ = α↑ · > = >.

2. From a 6= 0 it follows that > · a · > is a non-zero ideal. Thus, by > = >↑ and
Lemma 55.9 we get: > · a↑ · > = (> · a · >)↑ 1.= > ut

This perfectly meets our intuition, since non-zero ideals are models of equally labeled
completely connected graphs. Application of ↑ clearly should yield the complete
graph represented by >. But we can also turn the tables. As the set of ideals forms
a Boolean lattice the symmetric law holds for all ideals not equal to top and for
application of ↓. Using again the bijective correspondence we get as an consequence
the symmetric version of Law 53.3 for scalars and application of ↓.

Lemma 57. For ideal j and scalar α the following implications hold:

j 6= > ⇒ j↓ = 0

α 6= 1 ⇒ α↓ = 0

Proof. Assume j↓ 6= 0. By Lemmas 55.5, 55.2, and 56.2 this implies j = > · j · > ≥
> · j↓ · > = > · j↓↑ · > = >. Inversion of this implication shows the first claim. Now
assume α 6= 1, then iSJ (α) = α · > is an ideal with α · > 6= > and application of
the first law yields: α↓ ≤ (α · >)↓ = 0 ut

In summary we have shown that cutting a scalar either by ↑ or ↓ results only in 0
or 1 whereas application on ideals yields either 0 or >. So the set of scalars as well
as the set of ideals are closed under the cut operations:

Corollary 58. Let α ∈ S and j ∈ J , then α↑, α↓ ∈ S and j↑, j↓ ∈ J .

The down operator can now be used to abstractly model an α-cut operation. We
use a scalar α as unique handle for the desired set of edge labels. Since under ↓ only
completely labeled links survive we first have to prepare the graph. This is achieved
by enlarging each link labeled at least with marks from set α to a completely labeled
edge. By α\a = a+ ¬α · > we can see that the residual exactly performs this task
by completing the graph with all labels from the complement of α. So after the
operation two nodes are connected by a completely labeled link if and only if they
were connected at least by all labels represented by α. Application of ↓ then removes
all remaining not completely connected links. We will extend this α-cut operation
slightly by a restriction to α to get a projection function yielding all the α-links of
the original graph:

Pα(a) = α · (α\a)↓

In contrast to the original α-cut this projection behaves a little bit more pleasantly.
The trouble in the calculation of an α-cut arises in connection with the empty set.
All cuts with other discrimination levels respect the original link structure and only
remove links that do not exceed level α. But the cut with discrimination level 0
adds new links that previously were not present as by (0\a)↓ = >↓ = > it returns
the complete graph. Pα is idempotent and monotone, since ↓ is and residuals

36 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

/.-,()*+ µ
**

ν //
π

44 /.-,()*+

µ

��

π

��~~
~~

~~
~~

~~
~~

~~
/.-,()*+ µ

**

ν

44 /.-,()*+ /.-,()*+ µ
**

ν

44 /.-,()*+

µ

��/.-,()*+ µ
**

ν

44

ν

OO

/.-,()*+ /.-,()*+ µ
**

ν

44 /.-,()*+ /.-,()*+ µ
**

ν

44

ν

OO

/.-,()*+

Figure 3.4: Effect of P{µ,ν} and restriction to {µ, ν}

are monotone in the non-predicate argument. We can show that the projection
is smaller than just restricting the graph to the α-level since restriction also yields
links labeled only by a subset of α (see Figure 3.4). We will see later that projection
and restriction coincide for atomic α.

Lemma 59. 1. Pα(a) ≤ α · a
2. Pα(Pα(a)) = Pα(a)
3. Pα(a+ ¬α · b) = Pα(a)
4. α · pa = 0 ⇒ Pα(a) = 0

Proof. 1. Pα(a) = α · (α\a)↓
55.5
≤ α · (α\a) 9.5= α · a

2. Pα(Pα(a)) ≤ α · Pα(a) = Pα(a) = α · (α\a)↓ = α · (α\a)↓↓

≤ α · ((α\a)↓ + ¬α · >)↓ = α · (α\(α\a)↓)↓ = α · (α\(α · (α\a)↓))↓

= Pα(Pα(a))
3. Pα(a+ ¬α · b) = α · (α\(a+ ¬α · b))↓ = α · (a+ ¬α · b+ ¬α · >)↓

= α · (a+ ¬α · >)↓ = α · (α\a)↓ = Pα(a)

4. Pα(a)
1.
≤ α · a = 0

ut

Obviously, if there is no α-labeled link in the graph the α-subgraph is empty, which
is shown algebraically by Lemma 59.4. To be able to model the decomposition
of graphs into its α-subgraphs we further need the resolution identity from fuzzy
theory as explained in Section 2.2. Since the other inequality holds trivially, we
define:

Definition 60 (resolution). The cut operations show resolution if

a ≤
∑
α∈S

Pα(a)

Resolution of the cut operators is an important tool to perform practically usable
calculations in the algebra. As an immediate consequence we are able to represent
a completely labeled element by the sum of all its real α-cuts:

Corollary 61. a↑ =
∑

0 6=α∈S(α\a)↓

Here the previously described anomaly of discrimination level 0 can be observed.
By Figure 3.4 we can see that the projection function Pα(a) can be considerably
simplified to a restriction if α is scalar-atomic. At the same time, this simplification
is a defining feature of scalar-atomicity if the cut operators show resolution.

Lemma 62. sat(α) ⇔ ∀a ∈ K. Pα(a) = α · a

3.8. CUT OPERATIONS 37

Proof. (⇒) Immediately from sat(α) and α · β ≤ α we get α · β = 0 ∨ α · β = α.
The second disjunct is equivalent to β ≥ α, so

α · a = α ·
∑
β∈S

Pβ(a) =
∑
β∈S

α · β · (β\a)↓ =
∑
β≥α

α · (β\a)↓ ≤
∑
β≥α

Pα(a) = Pα(a)

The other inequality follows from Lemma 59.1.
(⇐) Assume there is scalar β in between 0 and α, i.e. 0 < β < α, then β = α · β =

α · (α\β)↓ = α · (β +¬α · >)↓ ≤ α · ((β +¬α) · >)↓. By the assumption we have
β+¬α < α+¬α = 1 and thus (β+¬α) ·> 6= >. Now Lemma 57 implies β = 0
which is a contradiction. ut

By this equivalence projections with respect to atomic scalars behave more friendly
than general projections:

Corollary 63. Assume sat(α) and sat(β), then

1. Pα(a) + Pα(b) = Pα(a+ b)
2. Pα(a) · Pα(b) = Pα(a · b) = a · Pα(b)
3. Pα(s : a) = Pα(s) : Pα(a)

4. α\Pα(a) = α\a

5. Pα(a) + Pβ(a) = P(α+β)(a)

This shows closedness under join and composition. Thus, the set

Kα = {Pα(a) | a ∈ K}

of all elements of an atomic scalar α forms an idempotent semiring (Kα,+, ·, 0, α)
with top. The ideal j = Pα(>) = α ·> that corresponds to α forms the top element,
which is shown by Lemma 59.1. The set Kα is not closed under the star operation,
since 1 ≤ Pα(a)∗ which is not representable in the general form Pα(a) for arbitrary
α. But we can define a new operation ? that completes the idempotent semiring
to a Kleene algebra with top by:

Pα(a)? def= Pα(a∗) = α · a∗

The operation satisfies the expansion and induction laws that have to hold for a
star operator in this structure, which are:

Pα(a)? = Pα(1) + Pα(a) · Pα(a)?

Pα(b) + Pα(a) · Pα(c) ≤ Pα(c) ⇒ Pα(a)? · Pα(b) ≤ Pα(c)

and the symmetric versions.

Proof. We calculate:

a) Pα(1) + Pα(a) · Pα(a)? = Pα(1) + Pα(a) · Pα(a∗) = Pα(1) + Pα(a · a∗)
= Pα(1 + a · a∗) = Pα(a∗) = Pα(a)?

b) Pα(b) + Pα(a) · Pα(c) ≤ Pα(c) ⇔ Pα(b) + a · Pα(c) ≤ Pα(c)
⇒ a∗ · Pα(b) ≤ Pα(c)
⇔ Pα(a∗) · Pα(b) ≤ Pα(c)
⇔ Pα(a)? · Pα(b) ≤ Pα(c)

ut

Thus, each set Kα together with the respective operations forms a Kleene algebra
(Kα,+, ·, 0, α, ?, α · >) which is embedded in K. They form algebraic counterparts
of the set of α-subgraphs.

For scalar-atomic α we can also strengthen the idempotence law from Lemma
59.2 to projections completed by ↑:

38 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

Lemma 64. Assume sat(α), then Pα(Pα(a)↑) = Pα(a)

Proof. We have: Pα(a) = α · (α\a)↓ ≤ (α\a)↓ ⇔ Pα(a)↑ ≤ α\a
⇔ Pα(a)↑ ≤ α\Pα(a)

⇔ α · Pα(a)↑ ≤ Pα(a)

⇔ Pα(Pα(a)↑) ≤ Pα(a)
The other direction follows from idempotence of Pα with Lemma 55.5. ut

3.9 Crispness

Using the cut operations from the last section we are able to characterize crisp
elements in a Kleene algebra. These represent graphs only consisting of completely
labeled links. Obviously, a crisp element coincides with the least crisp element it is
included in. So we can define crisp elements as invariant under ↑.

Definition 65 (crispness). An element a ∈ K is called crisp, if a↑ = a.

Certainly, by Lemma 55.6 a↓ = a is an equivalent characterization. We denote the
set of crisp elements by C = {a | a↑ = a}. In addition to crispness of particular
elements we will also introduce a notion of crispness with respect to the whole
algebra. A Kleene algebra will be called crisp if every element a ∈ K is crisp, which
is equivalent to the condition K = C. Such crisp algebras can be defined by the
structure of their scalars. A first observation shows that most of the crisp elements
lie outside the set of scalars. In fact, there are exactly two crisp scalars:

Lemma 66. The only crisp scalars are 0 and 1.

Proof. By Lemmas 55.1 and 55.7 the elements 0 and 1 are crisp. Now suppose that
0 6= α ∈ S and α crisp. Then α = α↑ = 1 by Definition 53.3. ut

So in every crisp KA the structure of scalars is minimal and consists exactly of the
two elements 0 and 1 (disregarding the trivial algebra where 0 = 1). But the other
direction also holds if the cut operators show resolution:

Lemma 67. A Kleene algebra is crisp if and only if 0 and 1 are the only scalars.

Proof. First assume that 0 and 1 are the only scalars, then: a =
∑

α Pα(a) =
0 · (0\a)↓ + 1 · (1\a)↓ = a↓. So for every element a = a↓ = a↑ holds. Now assume a
crisp Kleene algebra. Then all elements are crisp and therefore also the scalars. By
Lemma 66 they can only be 0 and 1. ut

Example 68. Since α, which coincides with the identity, is scalar-atomic, the struc-
ture of scalars in the algebra (Kα,+, ·, 0, α, ?, α · >) of α-subgraphs is minimal.
Therefore the algebra is crisp. This means that there is only one particular labeling
of edges, which perfectly meets our intuition of α-subgraphs. ut

By the bijective connection between scalars and ideals we are also able to describe
a crisp algebra by the structure of its ideals. But by Definition 21 Kleene algebras
with 0 and > as only ideals are exactly the simple ones. So the notions of simple
and crisp Kleene algebras coincide. In all crisp algebras ↑ and ↓ coincide with the
identity function, since the differentiating Law 53.3 gets ineffective.

By definition of crispness it is easy to see that the crisp elements of an arbitrary
Kleene algebra are closed under join and composition. As the set of crisp elements
also involves the constants 0, 1 and > and crisp predicates are closed under negation
we observe:

3.9. CRISPNESS 39

Lemma 69. The set of crisp elements C ⊆ K together with the restricted Kleene
operations forms a KAP (C,+, ·, 0, 1, ∗,>) with top.

Proof. Crispness of 0,1 and > was shown in Lemma 55 and the closure properties of
join and composition follow from the Galois connection and Lemma 55.9. Assume
s↑ = s, then closedness of predicates under complement is shown by:

s+ (¬s)↑ = s↑ + (¬s)↑ = (s+ ¬s)↑ = 1↑ = 1

s · (¬s)↑ = s↑ · (¬s)↑ = (s↑ · ¬s)↑ = (s · ¬s)↑ = 0↑ = 0

It remains to show crispness of (a↑)∗. To avoid parentheses we abbreviate (a↑)∗

by a↑
∗
. One inequality is trivial by Lemma 55.5 whereas the other follows by the

induction principle from:

(1 + a↑ · (a↑
∗
)↓)↑ = 1 + a↑ · (a↑

∗
)↓ ≤ 1 + a↑ · a↑

∗
= a↑

∗

⇔ 1 + a↑ · (a↑
∗
)↓ ≤ (a↑

∗
)↓

⇒ a↑
∗
≤ (a↑

∗
)↓

⇔ (a↑
∗
)↑ ≤ a↑

∗

ut

Another interesting point is the interaction between domain and codomain and the
cut operators. Again we will focus on domain, as the laws for codomain follow
symmetrically. We can show that application of p and ↑ can be commuted whereas
for p and ↓ in general only an inequality can be shown. The reason for this is that
the domain operator in a sense sums up the labels of all outgoing links. Thus, after
this operation there may arise new completely labeled loops, which are not removed
by the down operator. For predicates this summing up disappears and so equality
follows. The up operator just completes arbitrary existing links which does not
make any difference if performed before or after the application of domain.

Lemma 70. 1. p(a↑) = (pa)↑
2. p(a↑) and p(a↓) are crisp, i.e. (p(a↑))↑ = p(a↑) and (p(a↓))↑ = p(a↓)
3. p(a↓) ≤ (pa)↓ but p(s↓) = (ps)↓

Proof.

1. p(a↑) = p(a↑ · >) = p((a · >)↑) 25= p((pa · >)↑) = p((pa)↑ · >) = (pa)↑

2. (p(a↑))↑ 1.= p(a↑↑) 55.4= p(a↑) and (p(a↓))↑ 1.= p(a↓↑) 55.2= p(a↓)
3. p(a↓) 2.= (p(a↓))↓ ≤ (pa)↓ and (ps)↓ = s↓ = p(s↓) · s↓ ≤ p(s↓) ut

This implies immediately that the composition laws for crisp elements from Defini-
tion 53.2 and Lemma 55.9 can be lifted to images.

Corollary 71. 1. (s : a↑)↑ = s↑ : a↑ = (s↑ : a)↑
2. (s : a↓)↑ = s↑ : a↓ and (s↓ : a)↑ = s↓ : a↑

For the complement of crisp predicates we are only able to show inequalities.

Lemma 72. 1. ¬(s↑) ≤ (¬s)↑
2. (¬s)↓ ≤ ¬(s↓)

Proof. We only show the first proposition. The second is proven symmetrically.
s ≤ s↑ ⇔ ¬(s↑) ≤ ¬s⇒ (¬(s↑))↑ ≤ (¬s)↑ and by ¬(s↑) ≤ (¬(s↑))↑ the proposition
follows. ut

The other directions do not hold. Assume for example a scalar α 6= 0, 1. Then
¬(α↑) = ¬1 = 0 and (¬α)↑ = 1, which shows the claim for the first expression. A
counterexample for the second one follows symmetrically from Lemma 57.

40 CHAPTER 3. KLEENE ALGEBRA AND EXTENSIONS

Chapter 4

Pointer Kleene Algebra

Based on the extensions to model labeled graphs in Kleene algebra presented in
the last chapter, this part of the thesis is concerned with higher level operations on
pointer structures. Following [Möl97a] we define a pointer algebra that is able to
express reachability conditions, allocation and modification of pointer structures.
Localization properties are shown that allow reasoning about the effects of changes,
perform simplifications and verify correctness of data structure implementations.

4.1 Operations and Notations

To fix the formal basis for the subsequent observations we introduce the structure
of a pointer Kleene algebra:

Definition 73 (pointer Kleene algebra). A pointer Kleene algebra (PKA) is a
KAD with top that shows subordination of domain and codomain and has two cut
operators ↑ and ↓ as defined in Section 3.8 that show resolution.

In the sequel we will assume our algebraic environment to be a pointer Kleene
algebra.

From Section 3.2 we know that predicates can be used to represent sets of nodes
in graphs. Each member of the set is identified with a loop on this node. For labeled
graphs there may be several distinctly labeled loops on the same node. Hence, to
get a unique representation of sets of nodes in arbitrary Kleene algebras we use
completely labeled loops. These elements are modeled by crisp predicates and can
play the part of addresses in pointer structures:

Definition 74. A crisp element m ≤ 1 is called an address.

In the sequel we will use letters m,n, o to denote addresses. As addresses are crisp
predicates, by Lemma 69 they form a Boolean sublattice of the predicates. This
shows that they really behave like sets of nodes.

Corollary 75. The set A = P ∩ C of addresses forms a Boolean lattice.

Similar to atomic scalars we mean atoms in this Boolean lattice when we refer to
atomic addresses. The predicate cat will be used to characterize such crisp atomic
elements. Obviously, this represents a singleton set of nodes. For local reasoning
starting from an address we often have to advance exactly one step further along
particular labeled edges. We will abbreviate the successor of address m under
selector α in graph a by the functional notation aα(m). As the result normally
should again represent a set of nodes, we additionally define âα(m) that yields
addresses.

41

42 CHAPTER 4. POINTER KLEENE ALGEBRA

Definition 76 (restricted image).

1. aα(m) def= m : Pα(a)

2. âα(m) def= aα(m)↑

Considering the anomaly of the α-cut we can simplify âα(m) to m : (α\a)↓ if m 6= 0.
To change such successor relations selectively we define a ministore representing
particular links between two addresses. This can be used to overwrite parts of a
store with a new link structure. We assume that such a ministore relates all nodes of
its domain m to all nodes of its codomain n by α-labeled links. Therefore we derive
the definition of a ministore by projecting the α-subgraph of the complete graph
represented by > and restricting it to m on its domain and to n on its codomain:

m · Pα(>) · n = m · α · (α\>)↓ · n = m · α · >↓ · n = m · α · > · n

This construct certainly is equal to first restricting the graph and then projecting
to the α-subgraph:

Corollary 77. m · Pα(>) · n = Pα(m · > · n)

Definition 78 (ministore). Let m,n ∈ K be addresses and α ∈ S a selector.
Then we call the element (m α→ n) def= Pα(m · > · n) an α-ministore with source
addresses m and target addresses n.

If addresses m and n are atomic and sat(α) holds, the ministore (m α→ n) models
exactly a single α-labeled pointer link from addressm to n. Obviously, the domain of
an α-ministore equals the set of starting addresses restricted to α and the codomain
for target addresses symmetrically. The image of starting address m under the
ministore (m α→ n) should yield target node n in the α-subgraph.

Lemma 79. Let α ∈ S a selector and m,n ∈ K be addresses

1. p(m α→ n) = m · α
2. (m α→ n)q = α · n
3. m : (m α→ n) = α · n

4. ¬m · ((m α→ n) | a) = ¬m · a

5. α 6= 0 ⇒ m : (α·((m α→ n) | a))↑ = n

Proof.

1. m ·α = p(m ·α · >) 55.2= p(m ·α · > ·n · >) 25= p(p(m ·α · > ·n) · >) = p(m ·α · > ·n)
2. Symmetrically to 1.
3. m : (m α→ n) = (m · (m · α · > · n))q = (m · α · > · n)q = α · n
4. ¬m · ((m α→ n) | a) = ¬m · (m α→ n) + ¬m · ¬(m · α) · a = ¬m · a
5. m : (α · ((m α→ n) | a))↑ = m : ((m α→ n) + α · ¬m · a)↑

= (m : (m α→ n))↑ = (α · n)↑ = n
ut

We can show that the change of a β-labeled link does not affect an α-subgraph if
α 6= β. On the other hand, a change of an α-labeled link is only reflected in the
α-subgraph:

Lemma 80. Assume sat(α) and sat(β), then

1. Pα((m α→ n) | a) = (m α→ n) + ¬m · Pα(a)

2. α · β = 0 ⇒ Pα((m
β→ n) | a) = Pα(a)

4.1. OPERATIONS AND NOTATIONS 43

Proof. 1. Pα((m α→ n) | a)

= Pα((m α→ n) + ¬(m · α) · a)

= α · (m α→ n) + α · ¬(m · α) · a

= (m α→ n) + ¬m · α · a

= (m α→ n) + ¬m · Pα(a)

2. Pα((m
β→ n) | a)

= Pα((m
β→ n) + ¬(m · β) · a)

= α · (m β→ n) + α · ¬(m · β) · a
= α · ¬m · a+ α · ¬β · a
= Pα(a)

ut

To get an intuitive notation of pointer structures and operations we introduce some
syntactic sugar. In the sequel we will assume pointer structures p = (m,a) to consist
of an address m (a crisp predicate) and a store a (an arbitrary Kleene element).
Throughout this thesis we will denote such pointer structures by variables p, q, and
r. For convenience we introduce the access functions

ptr(m,a) = m sto(m,a) = a

to project entry point and store of a pointer structure. Following traditional pro-
gramming languages we use a dot to denote selection of a particular record field:

Definition 81 (selection). (m,a).α def= (aα(m), a)

Selection returns a pointer structure with the root node of field α as entry.
Similar to selection we will use a notation for changing the α-successor of the

record stored at address m to point to n. This operation is based on the selective
update operator presented in Section 3.6.

Definition 82 (update). (m,a).α := (n, b) def= (m, (m α→ n) | b)

For the interaction between update and selection we can show that modification
of the α-subgraph in a pointer structure has no effect on the selection of the β
successor.

Lemma 83. Assume sat(α), sat(β), α · β = 0, p = (m,a), q = (n, b), and r =
(m, b), then

ptr((p.α := q).β) = ptr(r.β)

Proof. Setting c = (m α→ n) | b we get

ptr((p.α := q).β) = ptr((cβ(m), c) = m : Pβ((m α→ n) | b) 80.2= m : Pβ(b) = ptr(r.β)

ut

We are also in the position to show that overwriting of an α-successor with the
original value lets the store untouched, e.g. (p.α := p.α) = p with p = (m,a).
Nevertheless, by the more abstract model we are only able to show observational
equivalence of the two terms.

Lemma 84. Assume sat(α), then (m α→ aα(m)) | a ≡ a

44 CHAPTER 4. POINTER KLEENE ALGEBRA

Proof. Let m,n be addresses and m crisp atomic, then

m · n ≤ m⇒ m · n = 0 ∨m · n = m

So we handle two cases:

m · n = 0: By assumption n : (m α→ âα(m)) = 0 and n : ((m · α) · a) = 0.

n : ((m α→ âα(m)) | a) = n : (m α→ âα(m)) + n : (¬(m · α) · a)
= 0 + n : (¬(m · α) · a) + n : ((m · α) · a)
= n : a

m · n = m: With a first auxiliary calculation

n : (m α→ âα(m)) = (m α→ âα(m))q = Pα(âα(m)) = Pα(m : Pα(a)↑)

= Pα(m) : Pα(Pα(a)↑) = Pα(m) : Pα(a) = Pα(m · a)q
= Pα(n ·m · a)q = (n · Pα(m) · a)q = n : (Pα(m) · a)

we can show: n : ((m α→ âα(m)) | a)

= n : (m α→ âα(m)) + n : (¬(m · α) · a)
= n : ((m · α) · a) + n : (¬(m · α) · a)
= n : a

ut

4.2 Reachability

The complexity of reasoning about pointer structures mainly is caused by compli-
cated connections in the graph. Knowledge about associated nodes can simplify
calculations and propositions considerably. In contrast to the image operator that
returns the direct successors, we are now interested in all nodes reachable by any
number of steps. This leads us to:

Definition 85 (reach). The addresses reachable from node m in store a are

reach(m,a) def= m : (a↑)∗

By using the completed graph a↑ for the calculation we really get every somehow
reachable node independent of the link labels. To avoid unnecessary parentheses in
the sequel we abbreviate (a↑)∗ by a↑

∗
like in the proof of Lemma 69. Monotonicity

of reach in both arguments follows immediately. Distributivity over join in the
first argument is directly inherited from the image operator. The same inheritance
relation holds for image induction and we can formulate a reach induction law:

Corollary 86. m+ n : a↑ ≤ n⇒ reach(m,a) ≤ n

As an immediate consequence of strictness of codomain and 1 ≤ a∗ we obtain that
reach is strict in its first argument:

reach(m,a) = 0 ⇔ m = 0

By using the defining laws of star (Axioms 3.12 and 3.13) recursion equations for
reach can be derived.

Lemma 87. 1. reach(m,a) = m+ reach(m,a) : a↑

2. reach(m,a) = m+ reach(m : a↑, a)

4.2. REACHABILITY 45

Proof. 1. reach(m,a) = m : a↑
∗

= m : (1 + a↑
∗
· a↑) = m+m : (a↑

∗
· a↑)

= m+ (m : a↑
∗
) : a↑ = m+ reach(m,a) : a↑

2. Symmetrically to 1.
ut

The first rule defines reach(m,a) as fixed point of the equation x = m+ x : a↑ and
the second immediately can be implemented as recursive calculation of reachable
nodes in a labeled graph. The standard efficiency improvements to proceed only
with the part of the store not yet considered follows from reach induction:

Lemma 88. reach(m,a) = m+ reach(m : a↑,¬m · a)

Proof. By monotonicity and Lemma 87.2 ≥ is trivial. The claim follows from Co-
rollary 86 and case distinction with:

m+ (m+ reach(m : a↑,¬m · a)) : a↑

= m+m : a↑ + reach(m : a↑,¬m · a) : (m · a↑) + reach(m : a↑,¬m · a) : (¬m · a↑)
≤ m+m : a↑ + 1 : (m · a↑) + reach(m : a↑,¬m · a) : (¬m · a↑)
41.8= m+m : a↑ + reach(m : a↑,¬m · a) : (¬m · a↑)
87.1= m+ reach(m : a↑,¬m · a)

ut

The star decomposition rule from Lemma 2 to resolve the iteration of two joined
elements directly can be lifted to reach:

Lemma 89.

reach(m,a+ b) = reach(reach(m,a), b · a↑
∗
) = reach(reach(m,a↑

∗
· b), a)

Proof. We only show the first equality since the second follows symmetrically:

reach(m,a+ b) = m : (a↑ + b↑)∗ = m : (a↑
∗
· (b↑ · a↑

∗
)∗)

= (m : a↑
∗
) : (b · a↑

∗
)↑

∗
= reach(reach(m,a), b · a↑

∗
)

ut

For several tasks it is also necessary to calculate the nodes reachable only by proper
paths in the graph. This is the set of addresses reachable by at least one step. Thus,
in contrast to reach starting addresses are not in this set by default. They only
appear if they are reachable from any direct successor as for example in a cyclic
structure. We will see later how this can be used to characterize acyclic graphs.
The operation sreach is introduced by:

Definition 90 (sreach). The set of addresses reachable from m by at least one
step in store a is

sreach(m,a) def= m : (a↑)+

Obviously, reach consists of sreach and the set of starting addresses and for the
interaction of these two operators we can show:

Lemma 91. 1. sreach(m,a) = reach(m : a↑, a)
2. reach(m,a) = m+ sreach(m,a)

Immediately: sreach(m,a) ≤ reach(m,a)
3. reach(sreach(m,a), a) = sreach(m,a)
4. sreach(reach(m,a), a) = sreach(m,a)

46 CHAPTER 4. POINTER KLEENE ALGEBRA

A×K
reachα //

Pα×Pα

��

A

Pα

��

A×K
sreachα //

Pα×Pα

��

A

Pα

��
Aα ×Kα

reach // Aα Aα ×Kα
sreach // Aα

Figure 4.1: Reachability observations in subgraphs

Proof. 1. reach(m : a↑, a) = (m : a↑) : a↑
∗

= m : a↑
+

= sreach(m,a)
2. Immediate from Lemma 87.1.
3. reach(sreach(m,a), a) = reach(reach(m : a↑, a), a) = reach(m : a↑, a)

= sreach(m,a)
4. sreach(reach(m,a), a) = (m : a↑

∗
) : a↑

+
= m : (a↑

∗
· a↑

+
) = m : a↑

+

= sreach(m,a)
ut

In contrast, we define restricted versions that only are concerned with reachability
along particularly α-labeled links. If α is an atom, we can use the simplification for
the projection function Pα(a) for links labeled at least by α.

Definition 92 (α-reach).

reachα(m,a) def= reach(m,Pα(a))
sat(α)

= reach(m,α · a)

sreachα(m,a) def= sreach(m,Pα(a))
sat(α)

= sreach(m,α · a)

Certainly, these operations should be equivalent to reachability observations in the
(crisp) algebra (Kα,+, ·, 0, α, ?, α · >) of α-subgraphs and the diagrams in Figure
4.1 should commute. Indeed we can show:

Pα(reachα(m,a)) = Pα(m : Pα(a)↑
∗
)

= Pα(m) : Pα(Pα(a)↑
∗
)

= Pα(m) : Pα(Pα(a)↑)?

= Pα(m) : Pα(a)?

Remember that the algebra of α-subgraphs is crisp. This is the reason that ↑ and
↓ have no effect and therefore the last term equals reach in this subalgebra. The
proof for sreach works similar.

As reach and sreach should yield all addresses reachable along particular paths
from a set of starting addresses in a given pointer structure, we have to assure that
they really return sets of addresses. Remember that addresses are modeled by crisp
predicates. Since reach and sreach are defined as images, it is immediate that they
yield predicates. So we are left with showing crispness of the calculated result:

Lemma 93. The operators reach and sreach return addresses, i.e.

reach(m,a)↑ = reach(m,a) and sreach(m,a)↑ = sreach(m,a)

Proof. By Lemma 91.1 it suffices to show the claim for reach. With additivity of
↑, Corollary 71, Lemma 55.5 and Lemma 87 it follows that:

(m+ reach(m,a)↓ : a↑)↑ ≤ m+ reach(m,a) : a↑ = reach(m,a)

4.2. REACHABILITY 47

which by Galois connection and reach induction implies:

m+ reach(m,a)↓ : a↑ ≤ reach(m,a)↓

⇒ reach(m,a) ≤ reach(m,a)↓

⇔ reach(m,a)↑ ≤ reach(m,a)

The other inequality is trivially true by 55.5. ut

After advancing one step the entry address will not be reachable anymore if there
is no way back from its successors as for example in a cyclic pointer structure. So
obviously the set of reachable nodes in such a successor pointer structure cannot
grow.

Lemma 94. reach((m,a).α) ≤ reach(m,a)

Proof. reach((m,a).α) ≤ reach(m : a↑, a) = sreach(m,a) ≤ reach(m,a) ut

Similar to reach we introduce the operator from that calculates the subgraph built
from all reachable nodes. The yielded structure contains all the links and nodes that
are reachable from the given set of starting addresses. This is a sort of projection
onto the live part of the store.

Definition 95 (from). The part of store a which is reachable from m is:

from(m,a) def= reach(m,a) · a

The original definition of from in [Möl97a] returns a pointer structure with the
same entry as the argument. In contrast to the pointer algebra given there we
abstract from this definition and just focus on the store. Similar to reachα we
define a restricted variant of from that only considers selectors coming from set α.
This can be based on the previous definition of reachα:

Definition 96 (α-from). fromα(m,a) def= reachα(m,a) · a

The returned subgraph consists of all α-reachable nodes together with all links
between them which also entails the non-α-labeled ones.

We can show that an equality proposition about the live part of two stores is
stronger than the same statement about the set of reachable addresses:

Lemma 97. from(m,a) = from(m, b) ⇒ reach(m,a) = reach(m, b)

Proof. The claim follows immediately from Lemma 87.1 as we know that reach can
be expressed by from: reach(m,a) = m+ reach(m,a) : a↑ = m+ (from(m,a))q↑

ut

By investigation of the iterated reachability operators reach and from we can show
that they form closure and interior operators respectively. Idempotence of reach
is achieved by an application of locality of images which is entailed in the rules of
interaction between reach and sreach. Additionally, we can show that:

Lemma 98. reach is a closure operator, viz

1. Extensive: m ≤ reach(m,a)
2. Idempotent: reach(reach(m,a), a) = reach(m,a)
3. Monotone: m ≤ n⇒ reach(m,a) ≤ reach(n, a)

Proof. 1. Follows immediately from 87.1.

48 CHAPTER 4. POINTER KLEENE ALGEBRA

2. reach(reach(m,a), a) = reach(m,a) + sreach(reach(m,a), a)
= reach(m,a) + sreach(m,a)
= reach(m,a)

3. By monotonicity of all involved operators. ut

Idempotence of from is a little bit more tricky. To be able to reason about the star
of reach we have to use the reach induction principle:

Lemma 99. from is an interior operator, viz

1. Reductive: from(m,a) ≤ a
2. Idempotent: from(m, from(m,a)) = from(m,a)
3. Monotone: a ≤ b⇒ from(m,a) ≤ from(m, b)

Proof. 1. Trivial
2. Let b = reach(m,a) · a, then reach(m, b) ≤ reach(m,a) is trivial and the

opposite direction follows from reach induction and case distinction by:

m+ reach(m, b) : a↑

= m+ (reach(m, b) · reach(m,a)) : a↑ + (reach(m, b) · ¬reach(m,a)) : a↑

≤ m+ reach(m, b) : (reach(m,a) · a↑) + (reach(m,a) · ¬reach(m,a)) : a↑

= m+ reach(m, b) : b↑

= reach(m, b)

Hence: from(m, b) = reach(m, b) · b = reach(m, b) · reach(m,a) · a
= reach(m,a) · a = from(m,a)

3. Follows immediately from monotonicity of reach. ut

By this we can show that from indeed is the projection to a subgraph and does
not change the connections in the live part of the store. So for example the same
addresses are reachable as the ones that were before.

Lemma 100. reach(m, from(m,a)) = reach(m,a)

Proof. By Lemma 97 the claim can be reduced to idempotency of from. ut

4.3 Non-reachability

If we can specify the allocated addresses in a store, we are able to define a com-
plementary operator to reach that calculates all used but not reachable records in
a pointer structure. This is an abstract description of garbage nodes in the store -
cells that were in use but are no longer reachable from the roots. For this purpose
we define recs that returns all addresses of records where a pointer link starts from.

Definition 101 (allocated records). recs(a) def= (pa)↑

By Lemma 70 we know that p and ↑ can be commuted. So the definition is equi-
valent to recs(a) = p(a↑) which we will use if appropriate. Distributivity over
joins is directly inherited from the operators involved. Further simplification in the
calculation of recs can be achieved by

Lemma 102.

4.3. NON-REACHABILITY 49

1. recs(pa) = recs(a)
2. recs(pb · a) ≤ recs(b)
3. recs(b | a) = recs(b) + recs(a)
4. recs(m · a) = m · recs(a)

5. α 6= 0 ⇒ recs((m α→ n)) = m

6. α 6= 0 ⇒ recs((m α→ n) | a)
= m+ ¬m · recs(a)

Proof. 1. recs(pa) = (p(pa))↑ = (pa)↑ = recs(a)
2. recs(pb · a) 1.= recs(p(pb · a)) = recs(pb · pa) ≤ recs(pb) 1.= recs(b)
3. recs(b | a) = recs(b) + recs(¬pb · a) 2.= recs(b) + recs(pb · a) + recs(¬pb · a)

= recs(b) + recs(a)
4. recs(m · a) = (p(m · a))↑ = (m · pa)↑ = m · (pa)↑ = m · recs(a)
5. recs((m α→ n)) = (p(m α→ n))↑ = (m · α)↑ = m

6. recs((m α→ n) | a) = recs((m α→ n)) + ¬m · recs(a) 5.= m+ ¬m · recs(a) ut

Symmetrically we define the set of all addresses links point to by:

Definition 103 (link targets). targets(a) def= (aq)↑

For symmetry reasons all the laws that hold for recs hold correspondingly. As direct
consequence from Lemma 102.4 follows that the allocated records in the live part
of the store are all reachable nodes where links start from:

Corollary 104. recs(from(m,a)) = reach(m,a) · recs(a)

Reachability gets a trivial task if we know that the starting nodes are only non-
allocated records:

Lemma 105. Assume m · recs(a) = 0, then

sreach(m,a) = 0 reach(m,a) = m from(m,a) = m · a

Proof. a) sreach(m,a) = reach(m : a↑, a) = reach(0, a) = 0
b) reach(m,a) = m+ sreach(m,a) = m
c) from(m,a) = reach(m,a) · a = m · a

ut

With these laws we can further improve the calculation of reach defined in Section
4.2 to a more efficient version by considering only not yet visited addresses as new
starting points. This rule directly can be lifted to from:

Lemma 106. reach and from can be calculated efficiently by:

1. reach(m,a) = m+ reach((m : a↑) · ¬m,¬m · a)
2. from(m,a) = m · a+ from((m : a↑) · ¬m,¬m · a)

Proof. 1. reach(m,a)
88= m+ reach((m : a↑) ·m,¬m · a) + reach((m : a↑) · ¬m,¬m · a)
105= m+ reach((m : a↑) · ¬m,¬m · a)

2. from(m,a) 1.= m · a+ reach((m : a↑) · ¬m,¬m · a) · a
= m · a+ reach((m : a↑) · ¬m,¬m · a) ·m · a

+ reach((m : a↑) · ¬m,¬m · a) · ¬m · a
= m · a+ reach((m : a↑) · ¬m,¬m · a) · ¬m · a
= m · a+ from((m : a↑) · ¬m,¬m · a)

ut

50 CHAPTER 4. POINTER KLEENE ALGEBRA

These rules can immediately be implemented as efficient calculation of the reachable
nodes and the live part in a labeled graph. To derive and prove the calculation law
for from based on a calculus of maps in [BMM91] several pages were needed. The
solution presented there does not even directly handle different selectors. This again
shows the succinctness of the Kleene-algebraic approach.

By use of recs to describe all allocated records we are able to define the used
but non-reachable records.

Definition 107 (noreach). noreach(m,a) def= recs(a) · ¬reach(m,a)

The operator noreach returns the set of addresses from which links start but which
are not reachable from the given root nodes. We observe that noreach is anti-
monotone in its first argument by monotonicity of reach and anti-monotonicity of
the complement. Similar to reachα and fromα we can define noreachα to express
non-reachability via particular labels.

Definition 108 (α-noreach). noreachα
def= recs(a) · ¬reachα(m,a)

Corollary 104 can be used to write noreach in an alternative form based on from
instead of reach.

Lemma 109. noreach(m,a) = recs(a) · ¬recs(from(m,a))

Proof. recs(a) · ¬recs(from(m,a)) 104= recs(a) · ¬(reach(m,a) · recs(a))
= recs(a) · ¬reach(m,a) + recs(a) · ¬recs(a)
= noreach(m,a)

ut

By anti-monotonicity of noreach we can lift Lemma 94. Evidently, we potentially
increase the number of non-reachable addresses if we start the calculation at an
arbitrary successor node.

Lemma 110. noreach(m,a) ≤ noreach((m,a).α)

Proof. Immediate from Lemma 94 ut

More sophisticatedly we can show that changing the α-successor of address m yields
the same set of allocated but non-α-reachable records as in the structure of its new
successor and the store restricted to addresses not in m 1.

Lemma 111. sat(α) ⇒ noreachα((m,a).α := (n, a)) = noreachα(n,¬m · a)

Proof.

noreachα((m,a).α := (n, a))

= {[definition of assignment]}

noreachα(m, (m α→ n) | a)

= {[definition of noreachα and reachα]}

recs((m α→ n) | a) · ¬reach(m,α · ((m α→ n) | a))

= {[Lemmas 102.3, 102.5 and 88]}

(m+ recs(a)) · ¬(m+ reach(m : (α · ((m α→ n) | a))↑,¬m · α · ((m α→ n) | a)))

1 Incidentally we noticed a copy error on the right hand side of this lemma in [Möl99a] as we
tried to prove it in the form given there. The same lemma was noted correctly in the former
articles [Möl97a] and [Möl97b]. Nevertheless, in all these papers the restriction to a single selector
is not mentioned.

4.3. NON-REACHABILITY 51

= {[Boolean algebra and definition of |]}

¬m · recs(a) · ¬reach(m : (α · ((m α→ n) | a))↑, α · ¬m · a)

= {[Lemmas 102.4 and 79.5]}

recs(¬m · a) · ¬reach(n, α · ¬m · a)

= {[definition of reachα and noreachα]}

noreachα(n,¬m · a) ut

We should explain this pictorially in Figure 4.2. To abbreviate we will denote the

m
α // n

jjjjjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTTTTT n
11

jjjjjjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTTTTTT

$$
66 m

BC
EDGF α

��

Figure 4.2: Explanation of Lemma 111

left-hand side of the equation by (lhs) and similarly the right-hand side by (rhs).
The new link (m α→ n) in (lhs) adds m to the set of allocated records of store a and
the restriction ¬m · a in (rhs) removes m from this set. Thus, it suffices to consider
address m and to show that it is neither in (lhs) nor in (rhs). We distinguish two
cases. First assume m is not reachable from n (see left picture of Figure 4.2). Then
the set of reachable nodes from m in (lhs) consists of m itself together with the
nodes reachable from n. Thus, m is not included in (lhs) and the reachable parts
of (lhs) and (rhs) exactly differ by m. Now assume m is reachable from n (see right
picture of Figure 4.2). Then the reachable parts of (lhs) and (rhs) are equal and
both contain m. Also in this case m is neither in (lhs) nor in (rhs).

To be able to express reachability conditions succinctly we additionally define
reachability predicates. They should evaluate to true if a particular node is re-
achable from a pointer structure (m,a) and otherwise return false. In contrast to
the point-wise approach in [Möl97a] we are only able to model sets of nodes by
predicates. This abstraction is taken into account by distinguishing three cases:

Definition 112.

1. Every node in n is reachable: (m,a) ` n def⇔ n ≤ reach(m,a)

2. Some nodes in n are reachable: (m,a) � n def⇔ 0 < reach(m,a) · n < n

3. None of the nodes in n is reachable: (m,a) 0 n
def⇔ reach(m,a) · n = 0

If n is an atomic predicate � can never be fulfilled. In this case we have the point-
wise view. Each address element represents exactly one node and ` and 0 are
complementary reachability predicates. Both are downward closed in their second
argument. Transitivity of ` follows immediately from its definition and idempotence
of reach. Non-reachability by 0 and noreach are strongly connected. The validity
of predicate (m,a) 0 n can be deduced from non-reachability. Nevertheless, they
are not equivalent as could be presumed, since noreach respects allocated records
only. But they coincide if n is in the set of allocated records. Thus we can give the
equivalent characterization:

Lemma 113. n ≤ noreach(m,a) ⇔ n ≤ recs(a) ∧ (m,a) 0 n

52 CHAPTER 4. POINTER KLEENE ALGEBRA

Proof. The two conjuncts on the right side follow from:

n ≤ noreach(m,a) = recs(a) · ¬reach(m,a) ≤ recs(a) and
n · reach(m,a) ≤ recs(a) · ¬reach(m,a) · reach(m,a) = recs(a) · 0 = 0

whereas the opposite direction is shown by case distinction:

n = n · reach(m,a) + n · ¬reach(m,a) ≤ recs(a) · ¬reach(m,a) = noreach(m,a)

ut

4.4 Localization

Most of the expressions modifying pointer structures can be simplified if effects of
changes can be shown to take place only in particular parts of the store. Such
locality can be expressed by reachability and non-reachability conditions that have
to hold. So if we can show that the records of store b are not reachable from a
pointer structure (m,a), we do not have to expect side-effects on b of changing
(m,a). First we show some simple consequences from reachability constraints:

Lemma 114. Assume that (m,a) 0 recs(b) which by definition is equivalent to
reach(m,a) · recs(b) = 0, then

1. reach(m,a) · pb = 0
2. reach(m,a) · b = 0
3. reach(m,a) · b↑ = 0

Proof. 1. reach(m,a) · pb ≤ reach(m,a) · p(b↑) = reach(m,a) · recs(b) = 0
2. reach(m,a) · b = reach(m,a) · pb · b = 0
3. reach(m,a) · b↑ = reach(m,a) · p(b↑) · b↑ = reach(m,a) · recs(b) · b↑ = 0 ut

By strictness of codomain all these laws can be lifted from composition to image.
Using these prerequisites, the assumption of (m,a) 0 recs(b) gives us a lot of in-
formation for dealing with pointer structures. So for example in the calculation of
reachable addresses we can completely ignore whole regions of the store and con-
centrate on important parts. This is particularly helpful for stores that are built
from two parts joined together.

Lemma 115 (Localization I). Assume (m,a) 0 recs(b), then

1. reach(m,a+ b) = reach(m,a)
2. reach(m, b | a) = reach(m,a)

Proof. 1. reach(m,a+ b) 89= reach(reach(m,a), b · a↑∗) 105= reach(m,a)
2. (m,a) 0 recs(b) implies (m,¬pb · a) 0 recs(b) and (m,¬pb · a) 0 recs(pb), thus:

reach(m, b | a) = reach(m, b+ ¬pb · a) 1.= reach(m,¬pb · a)
1.= reach(m, pb · a+ ¬pb · a) = reach(m,a)

ut

As the definition of from is based on reach the previous lemma can be lifted to
from. So under the respective conditions the calculation of the live part of a
composed store can also be simplified:

Lemma 116 (Localization II). Assume (m,a) 0 recs(b), then

1. from(m,a+ b) = from(m,a)
2. from(m, b | a) = from(m,a)

4.5. MEANINGFUL POINTER STRUCTURES 53

Proof. 1. from(m,a+ b) = reach(m,a+ b) · (a+ b)
115.1= reach(m,a) · a+ reach(m,a) · b
114.2= reach(m,a) · a
= from(m,a)

2. from(m, b | a) = reach(m, b | a) · (b | a)
115.2= reach(m,a) · b+ reach(m,a) · (¬pb · a)
114.1= 0 + reach(m,a) · (¬pb · a) + reach(m,a) · (pb · a)
= from(m,a)

ut

In particular, with pointer structures p = (m,a), q = (n, b), and r = (m, b) we can
show some of the most sophisticated rules that are needed to derive algorithms on
pointer structures with selective updates.

Lemma 117. Assume sat(α) and sat(β) then

1. q 0 ptr(p) ⇒ from((p.α := q).α) = from(q)
2. α · β = 0 ∧ r.β 0 ptr(p) ⇒ from((p.α := q).β) = from(r.β)

Proof. Let c = (m α→ n) | b, then

from((p.α := q).α) = from(q)
⇔ from(((m,a).α := (n, b)).α) = from(q)
⇔ from((m, c).α) = from(q)
⇔ from(cα(m), c) = from(q)
⇔ from(n, c) = from(q)
116.2⇐ (n, b) 0 m

The second proposition is shown similarly. For the proof one needs to show that
cβ(m) = bβ(m) which follows from α · β = 0 and Lemma 80.2. ut

The essence of the first equation immediately is accepted by everyone. But it is
often forgotten that changing the α-successor of p may also influence q. This is the
case exactly if p is in the structure reachable from q. So in fact it is a matter of
localization which is expressed.

4.5 Meaningful Pointer Structures

We now want to show how correctness properties of pointer structures can be expres-
sed with respect to the modeled data structures. To have an anchor for inductively
defined data types we need a special address that serves as model for nil pointers.
In contrast to [HJ99] who proposed to model it by a node with all links pointing to
itself we more intuitively choose nil to be a special address that no link starts from.
This better reflects the property that it can not be dereferenced.

Definition 118 (nil). The special value � ∈ A is an address that has no image
under any store, i.e. � : a = 0 for all stores a

In the sequel we assume that all stores used fulfill this requirement and use it for
proofs if necessary. We can also show that the definition intuitively is correct, as it
implies that � is not in the set of allocated addresses:

Lemma 119. recs(a) · � = 0

54 CHAPTER 4. POINTER KLEENE ALGEBRA

Proof. � : a = 0 ⇔ � · a = 0 ⇔ � · pa = 0 ⇒ recs(a) · � = p(a↑) · � = (pa · �)↑ = 0 ut

The definition implies that no proper addresses are reachable from �:
Corollary 120. sreach(�, a) = 0 reach(�, a) = � from(�, a) = 0

We also can give the set of terminal nodes which are important for example in
automata theory by calculating all reachable nodes that no further link starts from:

Definition 121 (final nodes). final(m,a) def= reach(m,a) · ¬recs(a)

The intuitive interpretation of final nodes - that they have no successors - imme-
diately follows:

Corollary 122. final(m,a) : a = final(m,a) : a↑ = 0

Obviously, from terminal nodes no further addresses are reachable and final is an
idempotent operator

Lemma 123. 1. sreach(final(m,a), a) = 0
2. reach(final(m,a), a) = final(m,a)
3. final(reach(m,a), a) = final(m,a)
4. final(m, from(m,a)) = final(m,a)
5. final(final(m,a), a) = final(m,a)

Proof. 1. sreach(final(m,a), a) 91.1= reach(final(m,a) : a↑, a) 122= reach(0, a) = 0
2. reach(final(m,a), a) = final(m,a) + sreach(final(m,a), a) 1.= final(m,a)
3. final(reach(m,a), a) = reach(reach(m,a), a) · ¬recs(a)

= reach(m,a) · ¬recs(a) = final(m,a)
4. final(m, from(m,a)) = reach(m, from(m,a)) · ¬recs(from(m,a))

= reach(m,a) · ¬recs(a) = final(m,a)
5. final(final(m,a), a) = reach(final(m,a), a) · ¬recs(a)

2.= final(m,a) · ¬recs(a) = final(m,a)
ut

Since dynamic pointer implementations of non-recursive data types with a fixed size,
like e.g. tuples, are senseless, such representations are mainly used for recursive data
structures. Meaningful implementations of these types should be terminated by nil
pointers. With the use of final we can define a predicate that serves as a sort of
invariant for operators on pointer structures. This expresses that nil should be the
only final state in a pointer structure:

Definition 124 (meaningful). The store a is a meaningful representation of in-
ductively defined pointer data structures if for all available entries m of recursive
data types the condition final(m,a) ≤ � is satisfied.

Additionally one can demand that the store is closed. This excludes dangling links
by permitting only allocated records and nil as possible link targets.

Definition 125 (closedness). We say store a is closed if

targets(a) ≤ recs(a) + �

In a closed store there are no links that point to non-allocated records. Nevertheless,
this does not assure that a link points to an address that represents an object of
the desired type. This has to be checked by the type system and should not be the
concern of this thesis.

With respect to the store we can also define the set of sources and sinks of the
graph. These are the addresses where pointer-links only start from or where they
just end. With this we can define the inner nodes that have entering and leaving
edges.

4.6. ACYCLICITY AND SHARING 55

Definition 126 (source, sink and inner nodes).

src(a) def= recs(a) · ¬targets(a)

snk(a) def= targets(a) · ¬recs(a)

inner(a) def= recs(a) · ¬src(a) = targets(a) · ¬snk(a) = recs(a) · targets(a)

4.6 Acyclicity and Sharing

A higher concept that is based on reachability is acyclicity of graphs and pointer
structures. The standard way in relation algebra to define acyclicity is

Definition 127 (relational acyclicity (RA)).

acyclicRA(a) def⇔ a+ u 1 = 0

As there is no meet operation in EKA we have to find a different characterization.
One possibility is to switch to observational equivalence. This means that the image
of an arbitrary address under both sides has to be equal. So we work in the set of
predicates where we have a meet (namely composition) at hand.

Definition 128 (observational acyclicity (OA)).

acyclicOA(a) def⇔ ∀m. m · (m : a+) = 0

This definition seems quite natural, since it follows from a non-reachability propo-
sition:

∀m. (m : a↑, a) 0 m⇒ acyclicOA(a)

But by choosing m = 1 we immediately get that acyclicOA(a) is equivalent to a = 0!
As address elements model sets of nodes, a logical step would be to switch to atomic
address elements representing only single nodes. This also solves the problem m = 1
for algebras with a non-trivial predicate structure.

Definition 129 (atomic observational acyclicity (AOA)).

acyclicAOA(a) def⇔ ∀cat(m). m · (m : a+) = 0

An alternative characterization comes from graph theory. There one says that a
graph is progressively finite [SS93] if all paths in the graph have finite length. So
there are no infinite chains which means that the graph is Noetherian or well-
founded.

Definition 130 (progressively finite (PF)).

acyclicPF (a) def⇔ ∀m. m ≤ m : a+ ⇒ m = 0

For finite graphs it is well-known that progressive finiteness and acyclicity are equi-
valent. So we can also define progressive finiteness for atoms.

Definition 131 (atomic progressively finite (APF)).

acyclicAPF (a) def⇔ ∀cat(m). m ≤ m : a+ ⇒ m = 0

For these characterization candidates for acyclicity we can show the following rela-
tions:

56 CHAPTER 4. POINTER KLEENE ALGEBRA

RA

OA

77

7?wwwwwwww

wwwwwwww�� +3
__

��

PF
��

_g GGGGGGGG

GGGGGGGG

qy kkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkk

��
AOA ks +3 APF

Here an arrow with an open tail stands for an unknown connection between these
two characterizations in the respective direction. A closed tail (Z⇒) means that the
characterization on this side is strictly stronger than the one pointed to.

Proof. The unifying counterexample that proves that OA neither follows from
RA,AOA nor PF is the graph a with two nodes and only a single connection
between them:

'&%$!"#1 // '&%$!"#2

We choose m = {1, 2}, then m : a+ = {2} and m · (m : a+) = {2}. By this,
OA does not hold, but PF holds for all m, AOA holds for all atomic m and RA
trivially holds. A counter example for RA⇒ PF can be found in PAT, the algebra
of paths. Assume P = {aa} a path in PAT, then P+ = {aa, aaa, . . .} and therefore
P+ u 1 = 0. But 0 6= {a} ⊆ {a} : P+ = {a}. For finite graphs RA and PF are
equivalent (see [SS93]).
The implications from OA and PF to the respective atomic versions are trivial.
The other implications are shown as follows:

OA⇒ PF : Assume OA and m ≤ m : a+, then m = m ·m ≤ m · (m : a+) = 0
AOA⇒ APF : Similar to OA⇒ PF with additional assumption cat(m).
PF ⇒ AOA,APF ⇒ AOA: cat(m) ⇒ m · (m : a+) = m ∨m · (m : a+) = 0. The

first term is equivalent to m ≤ m : a+ and by PF/APF we get m = 0.
OA⇒ RA: OA holds for all addresses, so also for m = 1, then 0 = m · (m : a+) =

1 · (1 : a+) = (a+)q ⇒ a+ = 0 ⇒ a+ u 1 = 0
PF ⇒ RA: a+ u 1 = 0 follows from PF by:

a+ u 1 = (a+ u 1)q = ((a+ u 1) · (a+ u 1))q ≤ ((a+ u 1) · a+)q = (a+ u 1) : a+

In the sequel we will use characterization PF as definition of acyclicity as OA is too
strong and RA is not expressible in Kleene algebra. Obviously, if a graph is free of
cycles all its subgraphs also are. Thus, acyclicity is a downward closed predicate:

Lemma 132. acyclic(a) ⇒ ∀b ≤ a. acyclic(b)

Proof. Assume m ≤ m : b+, then m ≤ m : b+ ≤ m : a+ ⇒ m = 0 ut

Acyclicity of a↑ now can be expressed using sreach:

m ≤ sreach(m,a) ⇒ m = 0

With the additional assumption of acyclicity we can show stronger localization
properties of pointer algebra operations like in Section 4.3, since non-reachability
conditions follow. So one can reason about reachability after having performed one
step:

Lemma 133. acyclic(a↑) ∧m 6= 0 ⇒ reach(m : a, a) < reach(m,a)

4.6. ACYCLICITY AND SHARING 57

Proof. Obviously, reach(m : a, a) ≤ sreach(m,a) ≤ reach(m,a) holds. So we
assume reach(m,a) ≤ reach(m : a, a), which implies:

reach(m,a) ≤ reach(m : a, a) ≤ sreach(m,a) = sreach(reach(m,a), a)
⇒ reach(m,a) = 0
⇔ m = 0

This is a contradiction to m 6= 0 and thus shows the claim. ut

Standard consequences from acyclicity can also be proven. Assume an element n
is reachable from m in more than one step. It follows that m is not in the part of
the store reachable from n if the store is acyclic. In contrast to the corresponding
lemmas in [Möl97a] we always have to demand, that the involved address is not
0. This is a consequence of the set representation of addresses and ensures non-
emptyness.

Lemma 134. n 6= 0 ∧ n ≤ sreach(m,a) ∧ acyclic(a↑) ⇒ ¬((n, a) ` m)

Proof. Assume (n, a) ` m which is equivalent to m ≤ reach(n, a), then

n ≤ sreach(m,a) ≤ sreach(reach(n, a), a) = sreach(n, a)

It follows by acyclicity that n = 0, which contradicts the precondition. ut

If m is an atomic address the implication simplifies to (n, a) 0 m. By this obser-
vation specialized versions of the localization properties for single selective updates
in Lemma 117 follow from acyclicity:

Lemma 135 (Localization III). Assume cat(m), aβ(m) 6= 0 and acyclic(a↑),
then

1. from((p.α := p.β).α) = from(p.β)
2. α · β = 0 ⇒ from((p.α := p.γ).β) = from(p.β)

Proof. Using Lemma 117 for both claims (aβ(m), a) 0 m needs to be shown which by
cat(m) and Lemma 134 follows from the preconditions and aβ(m) ≤ sreach(m,a).
Hence, we are left to show: aβ(m) ≤ m : a↑ ≤ reach(m : a↑, a) = sreach(m,a) ut

Using the reachability operator from Section 4.2 we are able to define a predicate
that expresses the sharing of parts of two pointer structures. As � is used as termi-
nator for all linked data structures it plays a special rôle. We say that two pointer
structures do not share any parts if the intersection of their reachable addresses is
at most �.

Definition 136 (sharing). ¬sharing(m,n, a) def⇔ reach(m,a) · reach(n, a) ≤ �

As an immediate consequence from Lemma 94 it follows that if two pointer struc-
tures have no nodes in common the successor structures also do not show sharing:

Lemma 137. ¬sharing(m,n, a) ⇒ ¬sharing(aα(m), n, a)

Proof. reach(aα(m), a) · reach(n, a) ≤ reach(m,a) · reach(n, a) ≤ � ut

By calculations in our algebra we observed, that the following lemma from [Möl97a]
in fact does not need acyclicity as a precondition.

Lemma 138. n ≤ sreach(m,a) implies ∀o. ¬sharing(m, o, a) ⇒ ¬sharing(n, o, a)

Proof. reach(n, a) ≤ reach(sreach(m,a), a) = sreach(m,a) ≤ reach(m,a) and
thus reach(m,a) · reach(o, a) ≤ � ⇒ reach(n, a) · reach(o, a) ≤ � ut

58 CHAPTER 4. POINTER KLEENE ALGEBRA

Chapter 5

Pointer Algorithms

The main contribution of this chapter presents the process of correct construction
of pointer algorithms. As the object to be examined we use a library of list pro-
cessing functions. Following Möller [Möl97a] these are specified in a functional
programming style and transformed to algorithms working on pointer structures.
The purpose of this chapter is to show the pointer Kleene algebra at work and to
close the gap between recursive algorithms that arise from the development process
and concrete imperative implementations.

5.1 A Formal Derivation Method

The method to derive correct pointer algorithms is based on previous work by B.
Möller [Möl97a]. Pointer Kleene algebra forms the formal basis over which to express
properties about pointer structures and prove correctness of transformation steps.
The method is intended to use the simplicity of denoting and proving correctness of
algorithms in functional programming languages. This abstract level is the starting
point in a transformation process to formally derive concrete algorithms on pointer
structures. We establish the connection between concrete and abstract level by
partial abstraction functions as proposed by Hoare [Hoa72]. The implementation of
an object is represented by a pointer structure (m,L) with a single, atomic entry m
and store L. An abstraction function maps such a pointer structure into an abstract
data type representation. The standard abstraction function for singly linked lists
with selectors hd to reference the member values and tl to link the structure is for
example:

list(p) = if ptr(p) = � then []
else p.hd : list(p.tl)

Specification of pointer implementations fp of a given functional description f works
by requiring that fp mimics the abstract input/output behaviour of f on the pointer
structure level. Given abstraction functions F, F1, . . . , Fi the implementation of fp

is specified by the equation

f(F1(p1), . . . , Fi(pi)) = F (fp(p))

Here pj with 1 ≤ j ≤ i denotes the projection from a multi-entry pointer structure
(m1, . . . ,mi, L) which can be seen as representation of an i-tuple to the pointer
structure (mj , L) representing one particular data type. The whole specification
process can be depicted as follows:

59

60 CHAPTER 5. POINTER ALGORITHMS

functional
data objects
(O1, . . . , Oi)

functional
specification

f
//

functional
data object

O

pointer structure
(m1, . . . ,mi, L)

F1,...,Fi

OO

pointer algorithm
fp

// pointer structure
(m,L′)

F

OO

To derive a pointer implementation fp from this specification one tries to trans-
form the expression f(F1(p1), . . . , Fi(pi)) by equational reasoning into an expres-
sion F (E) such that E does not contain an abstraction function anymore. Then
we can define fp by setting fp(p) = E. The derivation can be seen as a step-by-
step refinement to a deterministic function. Since an abstract specification entails
several distinct implementations, this is a decision process towards the desired pro-
gram. There may be several concrete pointer algorithms satisfying the equation.
The required functionality is achieved by restricting the input/output behaviour
by suitable predicates. A natural condition is for example that allocated but non-
reachable records cannot be made reachable by fp. This can be expressed by the
following predicate:

Definition 139 (norea).

fp ∈ norea
def⇔ ∀(p, q) ∈ fp. noreach(p) ≤ noreach(q)

We should note that this does not prevent an algorithm from allocating new cells,
since norea refers only to previously used records.

To avoid magically constructed abstract objects we assume abstraction functions
to be reasonable. This prevents for example the use of random generators or similar
non-deterministic concepts in the abstraction process. An abstraction function is
called reasonable if equality of the reachable parts of two pointer structures implies
equal abstractions. To abbreviate this equality we define the equivalence relation
∼F by:

p ∼F q
def⇔ F (p) = F (q)

Definition 140 (reasonable). F is reasonable if

froms(F)(p) = froms(F)(q) ⇒ p ∼F q

Here s(F) denotes the scalar that describes the set of field selectors used by the
abstraction function F , e.g. hd and tl in list. Obviously, list is a reasonable
abstration function. By definition of reasonability we are able to transfer Lemma
117 to reasonable abstraction functions:

Corollary 141. Assume F to be a reasonable abstraction function and pointer
structures p = (m,a), q = (n, b), and r = (m, b), then

1. q 0 ptr(p) ⇒ (p.α := q).α ∼F q
2. α · β = 0 ∧ r.β 0 ptr(p) ⇒ (p.α := q).β ∼F r.β

Since normally we have no knowledge about reachability conditions of arbitrary
pointer structures that arise in the transformation process, we have to derive them
from higher concepts like acyclicity or absence of sharing:

Lemma 142. Assume a = sto(p) = sto(q) and q′ ∈ fp(q), then

fp ∈ norea ∧ ptr(p) · � = 0 ∧ ptr(p) ≤ recs(a) ∧ ¬sharing(ptr(p), ptr(q), a)
⇒ q′ 0 ptr(p)

5.1. A FORMAL DERIVATION METHOD 61

Proof.

¬sharing(ptr(p), ptr(q))

⇔ {[definition of sharing]}

reach(p) · reach(q) ≤ �

⇒ {[ptr(p) ≤ reach(p), ptr(p) · � = 0]}

ptr(p) · reach(q) = 0

⇔ {[definition of 0]}

q 0 ptr(p)

⇔ {[ptr(p) ≤ recs(a) and Lemma 113]}

ptr(p) ≤ noreach(q)

⇒ {[fp ∈ norea]}

ptr(p) ≤ noreach(q′)

⇒ {[Lemma 113]}

q′ 0 ptr(p)

With these prerequisites we are able to derive pointer algorithms from functional
implementations. This will be shown at the example of list concatenation specified
by:

cat [] ys = ys
cat (x:xs) ys = x : cat xs ys

We can now derive a pointer implementation of cat by reasoning about the two
cases of its definition:

Case m = �:
cat list(p) list(q)

= {[definition of list]}

cat [] list(q)

= {[definition of cat]}

list(q)

Thus, we can choose catp(�, n, L) = (n,L). If the first list is not empty we calculate:

Case m 6= � :
cat list(p) list(q)

= {[definition of list]}

cat (p.hd : list(p.tl)) list(q)

= {[definition of cat]}

p.hd : cat list(p.tl) list(q)

= {[choose an arbitrary q′ ∈ catp(Ltl(m), n, L)]}

p.hd : list(q′)

= {[set r = p.tl := q′, Lemma 83]}

r.hd : list(q′)

62 CHAPTER 5. POINTER ALGORITHMS

= {[Corollary 141.1 and Lemma 142]}

r.hd : list(r.tl)

= {[definition of list]}

list(r)

By resubstitution of r and composing both cases we get the following pointer algo-
rithm under the condition that both input lists do not share any parts and the first
list argument does not show any cycles:

catp(m,n,L) = ifm 6= � then p.tl := catp(Ltl(m), n, L)
else q

By abbreviating

K(m,n,L) def= (Ltl(m), n, L) B(m,n,L) def= m 6= � φα(u, v) def= v.α := u

H(m,n,L) def= (n,L) E(m,n,L) def= (m,L)

We get a standardized form of this algorithm that will be used for schematic trans-
formations in later sections:

f(x) = if B(x) thenφ(f(K(x)), E(x))
elseH(x)

Function φ is used to encapsulate the selective update operation. We assume, that
no other function except φ modifies the store, i.e. for all appearing functions F we
have:

sto(F (x)) = sto(x)

K is the function used to advance in the data structure. Similarly to cat we are
able to derive pointer implementations for other list processing functions. Some of
them that will serve as examples are presented in Appendix A.2. Further examples
can be found in [Ehm03].

5.2 From Recursion to Iteration

For implementation issues the method presented in Section 5.1 has one major dra-
wback. Since functional specification works recursively, the derivation process also
yields recursive algorithms. But manipulating pointers is a highly imperative con-
cept and recursive algorithms are quite inefficient in execution on a conventional
computer architecture. To get programs with sufficient performance that imme-
diately can be fed into a computer we have to make one more step from recursion
to iteration. As target language we assume a subset of an imperative language
consisting of loops, conditionals and concurrent assignments. Most contemporary
compilers do not support concurrent assignments but it is well-known how to re-
solve them using auxiliary variables. Thus, such an extension does not enhance
the expressiveness of a language but helps to simplify reasoning about complicated
things anyway. Rather than considering each transformation task independently
and therefore be faced with the same problems over and over again, we derive a
universally applicable rule for transferring the recursive algorithms into an impera-
tive world. This is achieved by considering the most general function pattern that
can arise from the derivation process. The abstract transformation scheme solves
the task comprehensively, since all reasonable results are comprised.

As we have seen, all the evolving functions are built from case distinctions with
different behaviours. We assume that in each of these branches there is only one

5.2. FROM RECURSION TO ITERATION 63

appearance of the function itself. This makes sense, since the structure potentially
can be changed by one of these recursive calls. So we would face problems with
aliasing, get side-effects and the evaluation order would play a significant rôle if
there are multiple calls. The form of these branches can syntactically be classified
into three groups. If the function symbol f itself does not occur in the branch
we have a termination case, since there is no further recursive call. If f is the
outermost function symbol we have a tail recursive call which is used to ignore the
parameters of the current recursion level. If the actual parameters should not be
dismissed we need a gluing function to compose the partial results. For all pointer
structure processing algorithms this is the selective update operator φ. It is used
to walk through the pointer structure as well as for changing links. In the first
case φ overwrites the store with links that already are present and thus performs
no changes at all. This seemingly complicated concept is a consequence of the
bottom-up style by which functional recursive algorithms compile their results. So
the third case is a linear recursive call where φ is the outermost function symbol
and f appears as parameter inside.

We can show that all branches of the same form can be fused together into one.
For several alternative termination cases this is an easy task. We just use sequential
conjunction && which is defined by:

Definition 143 (sequential logical operators).

B&&C = if B thenC else false

B ||C = if B then true elseC

AssumeH0, . . . ,Hn are all termination cases andM only consists of case distinctions
between tail and linear recursive calls. Then we immediately get:

f(x) = if C0(x) then if C1(x) then . . . if Cn(x) thenM(x)
elseHn(x)

...
... elseH1(x)

elseH0(x)
l

f(x) = if C0(x) &&C1(x) . . .&&Cn(x) thenM(x)
else if ¬C0(x) thenH0(x)

elsif ¬C1(x) thenH1(x)
...

elsif ¬Cn−1(x) thenHn−1(x)
elseHn(x)

By abbreviating the condition of the if -statement and summarizing the else part
into one function symbol we are left with exactly one terminating branch.

Similarly, multiple linear recursive branches with different arguments can be
merged by using the conditional operator ? : known from contemporary
programming languages as abbreviation. We just show the transformation for two
branches:

f(x) = if B(x) then if C(x) thenφ(f(K0(x)), E0(x))
elseφ(f(K1(x)), E1(x))

elseH(x)
l

f(x) = if B(x) thenφ(f(C(x) ?K0(x) :K1(x)), C(x) ?E0(x) :E1(x))
elseH(x)

64 CHAPTER 5. POINTER ALGORITHMS

Certainly, this transformation is valid only if C(x) has no side-effects, as for the tests
C(x) is evaluated twice. But this is no problem, since all these functions come from
the functional derivation process, they satisfy referential transparency. The same
method can be applied to tail recursive branches which leads us to the following
most general function pattern (MGFP) that can evolve from the derivation process:

f(x) = if B(x) then if C(x) then f(K(x))
elseφ(f(K(x)), E(x))

elseH(x)

Most general function pattern

By the previously described method all other patterns can be reduced to this one.
The scheme comprises two special cases. If we set C(x) to true we get a purely linear
recursive function and by setting C(x) to false we get a tail recursive algorithm.
Such tail recursive functions directly can be transformed into a while -loop by the
well-known standard transformation scheme [Par90]:

f(x) = if B(x) then f(K(x))
elseH(x)
l

f(x) = var vx := x
whileB(vx) do vx := K(vx)
returnH(vx)

Thus, to get a general transformation for the MGFP we have to focus on the more
difficult case of purely linear recursive algorithms. Then the term calculated by
f(x) is

φ(. . . φ(φ(H(Kn0(x)), E(Kn0(x))), E(Kn0−1(x))), . . . , E(x))

where the innermost part results from the deepest recursion level. The standard way
to transform such a linear recursive function into an imperative algorithm works
in two steps. First linear recursion is transformed into tail recursion and then the
previously presented scheme is applied.

Methods to get tail recursive versions of linear recursive functions heavily de-
pend on properties of the function φ that combines the recursive and the non-
recursive parts [BW82]. One of the best known procedures is changing the eva-
luation order of parentheses. The resulting expression then is calculated in a tail
recursive way using a function ψ satisfying φ(φ(r, s), t) = φ(r, ψ(s, t)). Obviously,
if φ is associative one can choose ψ = φ. Another method restructures the resul-
ting expression by changing the order of operands. For that it is necessary that
φ(φ(r, s), t) = φ(φ(r, t), s) holds or more generally a function ψ is needed that sa-
tisfies φ(ψ(r, s), t) = ψ(φ(r, t), s). In general, such functions ψ satisfying these
conditions only exist in very rare cases. Alternatively, one can use function inver-
sion to iteratively calculate parameter values from the arguments of the following
recursion level backwards. This demands for invertability of function K that cal-
culates the next parameter. But a direct consequence is the need for an additional
preparation pass to get the argument of the deepest recursion level as starting point.
An unacceptable method is the usage of tabulation. This requires the introduction
of a global data structure e.g. a stack and simply imitates the execution behaviour
of recursively defined functions with the same disadvantages. All of the presented
methods demand that the involved functions are good-natured enough to satisfy
the respective conditions. Unfortunately, in our applications φ coincides with the
selective update operator or slightly altered variants φα of it which are not associa-
tive and also do not satisfy any of the other conditions given. Just as function K
that is used to advance along a pointer link in general is not invertable.

5.3. TRANSFORMATION OF LINEAR RECURSIVE ALGORITHMS 65

Nevertheless, in 1970 Paterson and Hewitt (P & H) presented a transformation
scheme [PH70] that makes it possible to transform any linear recursive algorithm
into a tail recursive one. They applied the idea of function inversion to arbitrarily
shaped functions by calculating the inverse of function K that is used to advance
in the structure. By repeatedly calculating Ki(x) from the starting value x to get
the reverse image of value Ki+1(x) under function K, they where in the position to
make the step backwards also for non-injective functions. The function in focus is
transformed into a system of three tail recursive functions. The evolving scheme is:

f(x) = if B(x) thenφ(f(K(x)), E(x))
elseH(x)

l [P & H
f(x) = G(n0,H(m0)) where

(m0, n0) = num(x, 0)
num(y, i) = if B(y) thennum(K(y), i+ 1)

else (y, i)
it(y, i) = if i 6= 0 then it(K(y), i− 1)

else y
G(i, z) = if i 6= 0 thenG(i− 1, φ(z,E(it(x, i− 1))))

else z

The actual calculation is done in function G whereas num and it are auxiliary
tools to perform the inversion. Function num concurrently calculates the number
of iterations n0 that have to be performed and the final value Kn0(x) that satisfies
condition B. For all the other i < n0 it holds that B(Ki(x)) = false. G so to say
ascends from the deepest level of recursion starting from Kn0(x) by successively
calculating the inverse of K. This is achieved by iterating K on parameter x one
time less often than has to be done for the current value. G uses function it to
calculate the powers of K and we have it(y, i) = Ki(y). Therefore we can abbreviate
φ(z,E(it(x, i− 1))) to φ(z,E(Ki−1(x))) and eliminate it from the scheme:

f(x) = if B(x) thenφ(f(K(x)), E(x))
elseH(x)

l [P & H II
f(x) = G(n0,H(m0)) where

(m0, n0) = num(x, 0)
num(y, i) = if B(y) thennum(K(y), i+ 1)

else (y, i)
G(i, z) = if i 6= 0 thenG(i− 1, φ(z,E(Ki−1(x))))

else z

Certainly, this is only a cosmetic change and gives us no efficiency improvement as
the powers of K still have to be calculated. But in the sequel it is easier to use
the powers of K than reasoning about function it. As one immediately notices, the
P & H scheme yields very inefficient execution patterns. This is the reason why it
normally is only of theoretical interest. Nevertheless, under particular conditions it
is the starting point for further simplification.

5.3 Transformation of Linear Recursive Algorithms

Clearly, the bad runtime performance of the P & H scheme evolves from the repea-
ted exhaustive calculation of the powers of K starting again and again from scratch.
To improve efficiency of the transformation rule for the derived pointer algorithms
we investigate under which conditions the evaluation order can be reversed. Then

66 CHAPTER 5. POINTER ALGORITHMS

the function value and the powers of K can be calculated concurrently. This would
imply the need of only one pass through the structure and improve efficiency con-
siderably. As G successively applies the selective update operator φ that alters the
pointer structure we have to investigate under which conditions a reordering of the
applications of function φ can be performed. We first focus on the case of two
successive updates.

Lemma 144. Let m,n, o, p be atomic addresses, then:

m 6= o ∨ n = p ⇒ (m α→ n) | ((o α→ p) | L) = (o α→ p) | ((m α→ n) | L)

Proof. By definition of | the left hand side of the equation can be rewritten as:

(m α→ n) + ¬(m · α) · (o α→ p) + ¬(m · α) · ¬(o · α) · L

Whereas the right hand side is:

(o α→ p) + ¬(o · α) · (m α→ n) + ¬(o · α) · ¬(m · α) · L

By commutativity of predicates the last terms are equal and we can ignore them.
The precondition is equivalent to the statement (m = o∧n = p)∨m 6= o. Therefore
we split the rest of the proof into two cases:

m = o ∧ n = p : The remainder of both sides simplifies to (m α→ n)
m 6= o : As m and o are atomic it follows that ¬m · o = o and ¬o ·m = m. This

makes the domain restrictions vanish and the terms are equal by commutativity
of join. ut

We use this lemma to inductively change the execution order of the updates per-
formed by the Paterson/Hewitt scheme. For abbreviation reasons we will write si

for ptr(E(Ki(x))) and sn0 for ptr(H(Kn0(x))).
As the last parameter in the evaluation process of G is E(K0(x)) the P & H

scheme always returns a pointer structure (s0, X) with some store X. We first focus
only on this calculated store. Assuming the update operator to be right-associative
the performed changes of the store result in:

(s0
α→ s1) | (s1

α→ s2) | . . . | (sn0−2
α→ sn0−1) | (sn0−1

α→ sn0) | sto(x) (*)

To get efficient single-pass algorithms on pointer structures our goal is the reversal
of these updates to:

(sn0−1
α→ sn0) | (sn0−2

α→ sn0−1) | . . . | (s1
α→ s2) | (s0

α→ s1) | sto(x) (**)

This term easily can be calculated by a tail recursive function counting the indices
of s from 0 to n0 − 1. In fact, we introduce a somewhat more general function g
that makes it possible to describe an arbitrary but coherent section of the update
sequence.

g(j, i, L) = if j 6= i then g(j + 1, i, (sj
α→ sj+1) | L)

elseL

We implicitly assume that j ≤ i holds, since otherwise g would not terminate. The
first ministore applied as update to store L is (sj

α→ sj+1) whereas (si−1
α→ si) is

the last . Thus g(0, n0, L) exactly yields expression (**). With this generalization
the effect of pushing an update through the sequence can be expressed by lifting
Lemma 144 from the binary case to a sequence of updates. Certainly, also the

5.3. TRANSFORMATION OF LINEAR RECURSIVE ALGORITHMS 67

conditions have to be extended to all indices the binary change rule is applied to.
As an abbreviation we define

PRE(i, j) def⇔ si 6= sj ∨ si+1 = sj+1

to be able to succinctly express the precondition and show a sort of commutativity
rule for function g:

Lemma 145. ∧
j≤k≤i

PRE(i, k) ⇒ g(j, i, (si
α→ si+1) | L) = g(j, i+ 1, L)

Proof. j = i : g(i, i, (si
α→ si+1) | L)

= (si
α→ si+1) | L

= g(i+ 1, i+ 1, (si
α→ si+1) | L)

= if i 6= i+ 1 then g(i+ 1, i+ 1, (si
α→ si+1) | L)

elseL
= g(i, i+ 1, L)

j → j − 1 : g(j, i, (si
α→ si+1) | L)

= if j 6= i then g(j + 1, i, (sj
α→ sj+1) | (si

α→ si+1) | L)
elseL

144= g(j + 1, i, (si
α→ si+1) | (sj

α→ sj+1) | L)
I.H.= g(j + 1, i+ 1, (sj

α→ sj+1) | L)
= if j 6= i+ 1 then g(j + 1, i+ 1, (sj

α→ sj+1) | L)
elseL

= g(j, i+ 1, L)
ut

This shows that under the given conditions terms (*) and (**) are equivalent. Hence,
using this lemma we can calculate the result of the Patterson/Hewitt scheme by
replacing G by g.

Lemma 146.

∀i ≤ n0 :
∧

0≤k≤i

PRE(i, k) ⇒ G(i, (si, L)) = (s0, g(0, i, L))

Proof. The proof again is an induction over i:

i = 0 : G(0, (s0, L)) = if 0 6= 0 thenG(−1, φα((s0, L), E(K−1(x))))
else (s0, L)

= (s0, L)
= (s0, if 0 6= 0 then g(1, 0, (s0

α→ s1) | L) elseL)
= (s0, g(0, 0, L))

i→ i+ 1 : G(i+ 1, (si+1, L))
= if i+ 1 6= 0 thenG(i, φα((si+1, L), E(Ki(x))))

else (si+1, L)
= G(i, E(Ki(x)).α := (si+1, L))
= G(i, (si, (si

α→ si+1) | L))
I.H.= (s0, g(0, i, (si

α→ si+1) | L))
145= (s0, g(0, i+ 1, L))

ut

68 CHAPTER 5. POINTER ALGORITHMS

We take advantage of the fact that the evaluation order of updates is reversed to
further simplify g. The quadratic cost factor can be eliminated by calculating the
powers of K concurrently with the evaluation of g. This is achieved by introducing
a new parameter z that sums up the applications of K. Additionally, we reverse the
substitution of si. Here we handle the distinct case sn0 by introducing the choice
function S. Since we now have access to the powers of K, function S is able to
manage without referencing i or n0:

S(z) = if B(z) thenE(z)
elseH(z)

Similarly, testing the termination condition can be performed by applying B directly
to z. So we change g to an equivalent function g′ defined by:

g′(j, i, z, L) = if B(z) then g′(j + 1, i,K(z), (ptr(E(z)) α→ ptr(S(K(z)))) | L)
elseL

Obviously, parameters i and j are now neither used anymore in the function nor
returned as part of the result. Hence, we can remove them securely and transform
g′ to g′′.

g′′(z, L) = if B(z) then g′′(K(z), (ptr(E(z)) α→ ptr(S(K(z)))) | L)
elseL

As a direct consequence of these simplifications there is no longer any need for
function num in the P & H scheme. So the only remaining term is G that is
replaced by g′′. As g′′ is tail recursive we get an imperative version by simply using
the standard transformation scheme presented previously. Some extra attention has
to be drawn to the case n0 = 0. Then the entry address returned by f is s0 which in
this case is not ptr(E(x)) but ptr(H(x)). So here the auxiliary function S also has to
be used. The evolving scheme is depicted in Figure 5.1. Additionally we propagate
the if statement at the end over the while -loop. The derived transformation pattern
now can be applied to linear recursive algorithms as for example mixp.

Example 147. We use the derived recursive algorithm from Appendix A.2, replace
the formal parameters, abbreviate Ltl(m) by the more object oriented syntax m.tl,
eliminate the ineffective update (vm tl→ vm.tl), and achieve:

mixp(m,n,L) =
var (vm, vn, vL) := (m,n,L)
if m 6= � then

while vm 6= � do

if vn 6= � then (vm, vn, vL) := (vn, vm.tl, (vm tl→ vn) | vL)
else (vm, vn, vL) := (vn, vm.tl, vL)

return (m, vL)
else return (n,L)

Condition vn == � inside the while -loop immediately implies by the assignments
that vm == � at the next loop and therefore the while -loop terminates. Since
the value of vn is not used afterwards and vL is not changed, we can eliminate
these assignments from the else branch. By removing unused variables like vn
and resolving the concurrent assignment the algorithm directly can be noted in
C-syntax:

5.3. TRANSFORMATION OF LINEAR RECURSIVE ALGORITHMS 69

f(x) = (ptr(S(x)), g′′(x, sto(x))) where

g′′(y) = if B(y) then g′′(ptr(K(y)), (ptr(E(y)) α→ ptr(S(K(y)))) | sto(y))
else sto(y)

l [tail to while
f(x) = var vx@(vy, vL) := x

whileB(vx) do

vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(S(K(vx))) | vL)
return (ptr(S(x)), vL)

l [unfolding S
f(x) = var vx@(vy, vL) := x

whileB(vx) do
if B(K(vx))

then vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(E(K(vx))) | vL)
else vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(H(K(vx))) | vL)

if B(x) then return (ptr(E(x)), vL)
else return (ptr(H(x)), vL)

l [if propagation
f(x) = var vx@(vy, vL) := x

if B(x) then
whileB(vx) do

if B(K(vx))
then vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(E(K(vx))) | vL)
else vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(H(K(vx))) | vL)

return (ptr(E(x)), vL)
else returnH(x)

Figure 5.1: Transformation scheme for linear recursive algorithms

list mix(list m, list n) {

list vhm,vm = m;

if (m) {
while (vm)
if (n) {
vhm = vm;
vm = n;
n = vhm->tail;
vhm->tail = vm;

}
else
vm = n;

return m;
}
else
return n;

}
ut

The applicability condition of the transformation scheme follows immediately from
acyclicity of lists and ¬sharing(m,n,L). Under the class of linear recursive pointer

70 CHAPTER 5. POINTER ALGORITHMS

algorithms there is a particular subclass that can be treated in a more efficient way.
The members of this class can be characterized as algorithms modifying exactly one
link of the pointer structure as for example inserting an element into a sorted list or
concatenation of two lists. They use function φα to pass through the pointer struc-
ture to find the position where the change has to be performed. A characterizing
feature is that the selective update in the then branch has no effect. This follows
from

∀x, i ≤ n0. ptr(E(Ki(x))) α→ ptr(E(Ki+1(x))) ≤ L (ann)

by annihilation. Since function K does not change the pointer structure it follows:

(ptr(K(x)), vL) = (ptr(K(x)), sto(K(x))) = K(x)

which simplifies the then branch. For the first iteration of the while -loop B(vx)
holds since vx = x. If additionally the value of B is independent from the change
of the store in the else part which is expressed by:

∀x. B(x) = B(ptr(x), (ptr(E(Kn0−1(x))) α→ ptr(H(Kn0(x)))) | sto(x)) (ind)

the assignment to vx can be propagated and the resulting function pattern can be
transformed to:

f(x) = var vx := x
if B(x) then whileB(K(vx)) do vx := K(vx)

return (ptr(E(x)), (ptr(E(vx)) α→ ptr(H(K(vx)))) | L)
elseH(x)

Example 148. For the concatenation of two lists condition (ann) holds, since the left-
hand side evaluates to (Li

tl(m) tl→ Li+1
tl (m)) and (ind) is satisfied since B(m,n,L) =

m 6= � only depends on the entries. Therefore the more efficient pattern can be
applied to catp and we immediately get the C-program:

list cat(list m,list n) {
list vm = m;
if (m) {
while (vm->tail) vm=vm->tail;
vm->tail=n;
return m;

}
else
return n;

}
ut

The same transformation pattern was derived in [Ehm01] from scratch. Neverthe-
less, there only an informal description of the class of treated algorithms was given.
By the two conditions (ann) and (ind) the members of this class are characterized
formally.

5.4 Improving the Scheme

By the observations of the previous section we are able to transform linear recursive
pointer algorithms into imperative variants. This section is concerned with exten-
ding the scheme to treat algorithms matching the most general function pattern.

5.4. IMPROVING THE SCHEME 71

The problem we currently are not able to deal with is the concurrent appearance of
a linear and a tail recursive branch. Such patterns mainly appear in deletion algo-
rithms. The linear recursive branch is used to traverse the data structure and the
tail recursive one performs the deletion of elements. To reproduce this behaviour
we introduce an auxiliary function that skips over all the elements to be dismissed.
Then the tail recursive part can be embedded into a linear recursive one and the
previously derived scheme can be applied. We define function δ that summarizes
successive execution of a tail recursive branch by multiple application of advance
function K:

Definition 149. The function δB,C,K is defined by

δB,C,K(x) = if B(x) &&C(x) then δ(K(x))
elsex

If B,C and K are obvious from the context we simply will write δ(x) for δB,C,K(x).
In the sequel we abbreviate the application of δ prior to the application of function
f by writing:

−→
f

def= f ◦ δ

We present some properties of δ that are needed to generalize the linear recursive
scheme. Evidently, iterated application of δ has no further effect:

Lemma 150. The function δ is idempotent, i.e. δ(δ(x)) = δ(x)

Proof. If δ(x) does not terminate the expressions on both sides of the equation do
not succeed. So assume that the calculation terminates and let y = δ(x), then
¬(B(y) &&C(y)) holds and it follows that

δ(δ(x)) = δ(y) = if B(y) &&C(y) then δ(K(y)) else y = y = δ(x)

ut

It is also clear at first sight that if B(y) holds for y = δ(x) then C cannot hold.
Otherwise δ would not have terminated for y. By denoting sequential implication,
where the left argument is evaluated first, by �, we have:

Lemma 151.
−→
B (x)� ¬

−→
C (x)

Proof. Let y = δ(x), then by termination of δ we get:

¬(B(y) &&C(y)) ⇔ ¬B(y) || ¬C(y)
⇔ B(y)� ¬C(y)

⇔
−→
B (x)� ¬

−→
C (x)

ut

We can show that δ(x) has no effect if B does not hold for x or if C(x) fails under
the precondition that B terminates. We will use the predicate def to express
definedness. This means that the calculation is solvable and for example will not
run forever. For a formal definition see [Par90].

Lemma 152. ¬B(x) ⇒ f(x) =
−→
f (x)

def (B) ∧ ¬C(x) ⇒ f(x) =
−→
f (x)

72 CHAPTER 5. POINTER ALGORITHMS

Proof. Assume ¬B(x), then:

−→
f (x) = f(δ(x)) = f(if B(x) &&C(x) then δ(K(x)) elsex) = f(x)

The second proposition is shown the same way. ut

With these prerequisites the most general function pattern can be transformed into
a linear recursive form:

f(x) = if B(x) then if C(x) then f(K(x))
elseφ(f(K(x)), E(x))

elseH(x)

= {[introducing δ]}

f(x) = if B(x) then if C(x) then f(δ(x))
elseφ(f(K(x)), E(x))

elseH(x)

= {[unfold f]}

f(x) = if B(x) then if C(x) then
if B(δ(x)) then if C(δ(x))

then f(δ(δ(x)))
elseφ(f(K(δ(x))), E(δ(x)))

elseH(δ(x))
elseφ(f(K(x)), E(x))

elseH(x)

= {[Lemmas 150, 151 and 152 and Definition of
−→
f]}

f(x) = if B(x) then if C(x) then if
−→
B (x) thenφ(f(

−→
K(x)),

−→
E (x))

else
−→
H (x)

elseφ(f(
−→
K(x)),

−→
E (x))

else
−→
H (x)

= {[simplification of conditions (∗)]}

f(x) = if B(x) &&
−→
B (x) thenφ(f(

−→
K(x)),

−→
E (x))

else
−→
H (x)

The simplification (∗) works as follows. The two branches where f is called recur-
sively can be described by B&&(C &&

−→
B) and B&&¬C. Since by Lemma 152

we have B&&¬C ⇒
−→
B , the second formula equals B&&(¬C &&

−→
B) and we can

summarize the two expressions and simplify them to B&&
−→
B . So we can apply the

transformation scheme for linear recursive functions derived in the previous section
and get:

f(x) = var vx@(vy, vL) := x

if B(x) &&
−→
B (x) then

whileB(vx) &&
−→
B (vx) do

if B(
−→
K(vx)) &&

−→
B (
−→
K(vx))

then vx := (ptr(
−→
K(vx)), (ptr(

−→
E (vx)) α→ ptr(

−→
E (
−→
K(vx)))) | vL)

else vx := (ptr(
−→
K(vx)), (ptr(

−→
E (vx)) α→ ptr(

−→
H (

−→
K(vx)))) | vL)

return (ptr(
−→
E (x)), vL)

else return
−→
H (x)

5.4. IMPROVING THE SCHEME 73

Further we can make some improvements concerning the efficiency. To prevent the
repeated calculation of δ(vx) we introduce a new variable vδ to hold this value. A
second new variable vh is used to store the initial value of δ(x) which is needed after
the while -loop in the calculation of the entry of the returned pointer structure.

f(x) = var vx@(vy, vL) := x
var vδ, vh := δ(x)
if B(x) &&B(vδ) then

whileB(vx) &&B(vδ) do
vx := vδ
vδ := δ(K(vx))
if B(K(vx)) &&B(vδ)

then vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(E(vδ))) | vL)
else vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(H(vδ))) | vL)

return (ptr(E(vh)), vL)
else returnH(vδ)

Finally, we can unfold the definition of δ and transform the tail recursive function
into a while -loop. The resulting transformation scheme for the MGFP then looks
like follows:

f(x) = if B(x) then if C(x) then f(K(x))
elseφ(f(K(x)), E(x))

elseH(x)
l

f(x) = var vx@(vy, vL) := x
var vδ := x
whileB(vδ) &&C(vδ) do vδ := K(vδ)
var vh := vδ
if B(x) &&B(vδ) then

whileB(vx) &&B(vδ) do
vx := vδ
vδ := K(vx)
whileB(vδ) &&C(vδ) do vδ := K(vδ)
if B(K(vx)) &&B(vδ)

then vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(E(vδ))) | vL)
else vx := (ptr(K(vx)), (ptr(E(vx)) α→ ptr(H(vδ))) | vL)

return (ptr(E(vh)), vL)
else returnH(vδ)

Certainly, the conditions to apply the linear recursive transformation scheme have
to hold for the respective instances of functions.

Example 153. The pattern immediately can be applied to deletep. By removing the
explicitly mentioned store and resolving concurrent assignments we get the program:

list delete(int v,list m) {
list vh, vl, vm = m, va = vm;

while (va && v==va->head) va = va->tail;
vh = va;
if (m && va) {
while (vm && va) {
vm = va;
va = vm->tail;

74 CHAPTER 5. POINTER ALGORITHMS

while (va && v==va->head) va = va->tail;
if (vm->tail && va) {
vl = vm;
vm = vl->tail;
vl->tail = va;

}
else {
vl = vm;
vm = vl->tail;
vl->tail = NULL;

}
}
return vh;

}
else
return NULL;

ut

At first sight the algorithm looks a little bit complicated compared to the ones given
in present algorithm textbooks. But most of them use header cells for lists to avoid
a number of cases concerning nil pointers and empty lists. We are sure that given
to experienced programmers the exercise to code the deletion algorithm without
using header cells on a sheet of paper, there would be a minimal number of correct
solutions disregarding syntactic errors.

5.5 The Other Way ’Round: Verification

Another application area of pointer Kleene algebra can be found in verification of
pointer structures. In contrast to a transformational approach where an executa-
ble implementation is derived step by step from a specification, verification works
the other way round. Given a specification the software engineer invents an imple-
mentation and has to prove that the specification is fulfilled. The transformational
approach has its advantages if there is a sufficient set of applicable transformation
rules that encapsulates most of the work to be done. On the other hand, verifica-
tion is a universal method but often requires a great deal of painstaking work. The
creative programming process is reflected in the invention of loop invariants and
assertions that have to hold at intermediate calculation steps. We will show how
pointer Kleene algebra can be used as a formal foundation of Hoare-style rules to
verify pointer algorithms. In a second step we use these rules to verify one of the
algorithms yielded by the transformation method described before.

We take a verification formalism presented by Bornat [Bor00]. Based on previous
work on correctness of assignments by Burstall [Bur72] and Morris [Mor81a] Bornat
extends Hoare logic by object-component assignment rules. In contrast to Morris’s,
Bornat’s method also is capable of whole-object assignments and multiple object
component references. This is accomplished by considering a spatial separated
heap representation. His approach is strongly related to the work presented in
[Rey00, ORY01] concerned with the same problem. To fix the object-component
assignment axioms Bornat uses an embedding of the heap into a two-dimensional
array. He treats the heap as a pointer-indexed collection of objects each of which
is a name-indexed collection of components. This heap model bijectively can be
transferred to labeled graphs and therefore treated with pointer Kleene algebra.
The first index step corresponds to the selection of an address and the second one is
represented by following a labeled link. Therefore the double indexing of an object

5.5. THE OTHER WAY ’ROUND: VERIFICATION 75

component reference A.f in a heap H in Bornat’s model is reflected by an image
calculation in pointer algebra:

JA.fKH
def= (JAKH) : Pf (H)

We here have used Bornat’s naming conventions and notions to support easy com-
parison of both formalizations. He uses JEKH to denote the semantics of expression
E in heap H which in this case maps a pointer expression to an address. As we
identify object names and addresses in our pointer algebra model, the interpretation
of JAKH of object A simplifies to A itself. By assigning a value to A.f the mapping
of object A is changed at component f . This results in a selective change of the
heap representation which directly can be expressed in pointer Kleene algebra by
the update operator:

JF
/A.f
E KH

def= JF KH ′ with H ′ = (A
f→ E) | H

Here F denotes an arbitrary object-component reference expression. As a conse-
quence, we can formally validate the axioms for object component substitution.
This reveals the advantages and succinctness of the pointer Kleene algebra ap-
proach. In contrast to the array treatment our calculation is half as long and half
as complicated. For distinct component names f and g we obtain:

J(B.g)/A.f
E KH = JB.gKH ′ with H ′ = (A

f→ E) | H
= (JBKH ′) : Pg(H ′)
80.2= (JBKH ′) : Pg(H)

= (JB/A.f
E KH) : Pg(H)

= J(B/A.f
E).gKH

With identical component names we calculate:

J(B.f)/A.f
E KH = JB.fKH ′ with H ′ = (A

f→ E) | H
= (JBKH ′) : Pf (H ′)
80.1= (JBKH ′) : (A

f→ E) + (JBKH ′) : ¬A · Pf (H)

= (A ·B) : (A
f→ E) + (¬A ·B) : Pf (H)

= if A = B thenA : (A
f→ E) else JBKH ′ : Pf (H)

= if A = B thenE else (B/A.f
E) : Pf (H)

= if A = B thenE else J(B/A.f
E).fKH

These calculations result in the following axioms for assignments of object com-
ponents:

(B.g)/A.f
E , (B/A.f

E).g (B.f)/A.f
E , if A = B

/A.f
E thenE else (B/A.f

E).f

The complete set of Hoare-triple rules for a language with assignment to variables
and object components, conditionals, while -loop and instruction sequence can be
found in Appendix A.3. We will now use this method to show correctness of one of
the algorithms derived with the transformational approach. This should show two
things. First, how verification of pointer algorithms can be achieved and second,
give an evidence that the transformation schemes derived are correct. Certainly, we

76 CHAPTER 5. POINTER ALGORITHMS

can also apply the verification method directly to the transformation pattern. But
this leads to a very abstract verification template with a bunch of proof obligations.
Such a high abstraction also suffers from the lack of knowledge about the underlying
pointer structure to perform simplifications, the concrete abstraction function and
so on.

For the case study we will use the function mixp derived in Appendix A.2 that
in a C-like style similar to Bornat’s notation is:

{PRE}
if p 6= � then r := p

{INV }
while r 6= � do

if q 6= � then s := r; r := q; q := s.tl; s.tl := r
else r := q;

u := p
elseu := q

{POST}

To have an access possibility the result is returned in a new variable u. The algo-
rithm is enriched by assertions satisfied at the respective locations. To denote these
conditions Bornat uses a sort of generalized abstraction function for lists A ⇒f B
starting at object A and following links in f components until a pointer equal to B
is encountered:

A⇒f B
def= if A = B then [] else [A] @(A.f ⇒f B)

He uses the @ operator to concatenate two lists. The list abstraction list(m,a) from
the transformation method is equal to (m ⇒Ptl(a) �). He uses another predicate
list to express listness of such sequences. This can be seen as an abstract test for
cycle-freeness. Additionally 6∩ is used to denote disjointness of two sequences. With
these tools the assertions can be expressed by:

PRE = {list(p⇒tl �) ∧ list(q ⇒tl �) ∧ (p⇒tl �) = S ∧ (q ⇒tl �) = T}
INV = {list(r ⇒tl �) ∧ list(q ⇒tl �) ∧ (r ⇒tl �) 6∩ (q ⇒tl �)∧

(p⇒tl r) @mix(r ⇒tl �) (q ⇒tl �) = mix S T}
POST = {(u⇒tl �) = mix S T}

As termination measure for the while -loop we use the sum of length of lists repre-
sented by r and q:

t = length(r ⇒tl �) + length(q ⇒tl �)

The complete proof including all calculations is somewhat longer and can be found
in Appendix A.3.

Chapter 6

Discussion

6.1 Related Work

Since this thesis considers the complete development process of pointer algorithms,
a broad spectrum of areas is touched. Thus, we try to classify the related work
into groups of related topics although such a categorization does not always match
exactly.

We first give an overview of papers that present approaches to treat graphs
or pointer structures formally. These are either specialized logics to reason about
pointer linked structure or algebraic frameworks to perform calculations and trans-
formations. Since graph theory has a long tradition in mathematics, there are a lot
of publications in this area. Nevertheless, most of them just present more efficient
calculation methods and are not concerned with correct program development. We
here will focus on work that uses graphs from a software engineering point of view,
and that is involved with derivations and transformations of pointer algorithms.

In [Möl93] a relational approach based on the algebra of regular languages and
path algebra is used to derive graph and pointer algorithms. Möller sticks primarily
to recursively defined equations as specifications. The derivation of an algorithm for
in-situ chain concatenation can be seen as preliminary work for the transformation
method presented in [Möl97a], which is used in this thesis. The passage from
recursive to imperative programs in general is not considered and is only shown for
the simple tail recursive case of chain reversal.

In contrast, in [Bvv94] imperative loops enriched by equational invariants are
used immediately. The equational reasoning is based on a matrix algebra over a
regular algebra. By this approach it is possible to have access to the elements inside
a matrix but the calculus loses abstractness and turns towards point-wise reasoning.
Nevertheless, the presented derivation is abstract, since a general implementation of
path algorithm that comprises finding of shortest paths, reachability and bottleneck
problems is derived. The concrete interpretation is achieved by instantiating the
regular algebra by a suitable structure.

A comparison between the two approaches [Bvv94] and [Möl93] can be found
in [Cle95]. Clenaghan identifies dynamic algebra as a common abstract algebraic
framework that unites both methods. At this abstract level he derives Dijkstra’s
shortest path algorithm. This is achieved independently of a specific (min,+)
algebra by adding extra properties characterizing the used structure.

A quite general approach to the derivation of graph algorithms is presented
in [Rus96]. The thesis derives abstract algorithm schemes for classes of graph al-
gorithms. These entail layer-oriented graph traversal and problems based on the
calculation of hamiltonian paths as for example topological sorting. The underlying

77

78 CHAPTER 6. DISCUSSION

calculus is based on an algebra of formal languages and paths and allows to express
graph problems transparently and concise. The problems treated origin more from
the previously mentioned mathematical view of graph theory and are not focused on
pointer algorithms but the transformational approach and the abstract framework
used is similar to the ones presented in this thesis.

Butler [But99] uses enriched trees to derive pointer algorithms from applicative
specifications. He extends abstract trees by paths to access subtrees. Instead of
working on trees themselves all changes are performed on these path descriptions.
In contrast to [Möl97a] Butler does not have to carry along a representation for the
whole store in the code itself. A data refinement method is presented to transform
operations on enriched trees to pointer operations. Similar to the transformation
rule presented in Chapter 5 Butler introduces a generic refinement rule for search
algorithms to make the step to imperative algorithms. Although he shows how to
derive an algorithm to delete an element from a sorted tree, we cannot see that his
rule also covers the more general case of deleting all appearances from a sorted tree
with potential multiple occurrences of elements. Such a scheme would be on the
same level as the transformation rule for the MGFP.

In [BEZ88] several reachability algorithms for directed graphs are presented.
The paper is mainly focused on application of the transformation framework CIP.
Based on an abstract data type of graphs a predicate logical specification of the
set of reachable vertices is transformed into reachability algorithms implemented
by depth-first-search, breadth-first-search or more application-specific strategies. It
is shown how well-known transformation tactics like iterative augmentation and
formal differentiation can be used to get these concretizations of a derived general
abstract algorithm pattern.

A second group of papers is concerned with verification of pointer algorithms
as seen in Section 5.5. Most of these use an extension of weakest precondition or
Hoare-like verification rules that are able to cope with pointer assignments and
aliasing.

Although there is earlier work on this task [Bur72, LS79, Kow79] most of these
approaches to verify pointer algorithms are based on previous work by Morris. In
[Mor81a] he presents a new axiom for pointer assignments where assignments of
references are broken down to conditions over scalar variables. With this, one is
able to verify correctness of pointer algorithms and programs modifying linked data
structures. Morris works with observations of aliasing which are sufficient for lan-
guages like Pascal, where no calculations with pointers are available. Nevertheless
this method is not transferable to C-like languages with direct manipulations of
pointers, since there it is syntactically not decidable if two references point to the
same location or not. In the same volume [Mor81b] Morris applied this framework
to prove correctness of the Schorr-Waite marking algorithm.

A completely functional treatment of pointer structures is presented in [Bir01].
Bird derives simple list processing functions and as main contribution also the
Schorr-Waite marking algorithm. The theory is heavily influenced by [Möl97a]
and also explicitly uses a variable for the store. Bird completely stays in a func-
tional setting until he reaches a tail recursive variant. Although the derivation has
some subtle problems the method itself constitutes a substantial contribution to a
formal development process of pointer algorithms. Nevertheless, it is more driven
by intuition than the method presented in Chapter 5.

In [Mas88] a LISP based method to derive programs that destructively mani-
pulate their data is introduced. Mason presents a theory to determine equivalence
between pure functional and imperative implementations. This is used to intro-
duce transformation laws to get destructive imperative algorithms from functional
specifications. The approach is strongly related to the method presented in Chap-
ter 5. Although compared to [Bir01] it shows succinctness in the derivation of the

6.1. RELATED WORK 79

Schorr-Waite marking algorithm, there is a lack of abstraction and generality since
the theory is tightly embedded into the LISP environment.

Bijlsma [Bij89] pretends that his calculus is superior to Morris’ approach, since
assertions are not limited to reachability conditions. He uses a function to denote
the length of a sequence between two pointers following a particular field type.
His case study about insertion into a list shows that this construct is only used to
express reachability in a complicated way. This leads to an immense blow-up of
complexity of calculations but the gain of the more general treatment is not used.

In [Nel83] verification of reachability invariants in linked data structures is achie-
ved by introducing an axiomatization of a reachability predicate. A simple set union
algorithm based on a sort of union/find structure is derived from an abstract spe-
cification and verified on several pages. In contrast to our approach Nelson has the
possibility to talk about the number of steps that have to be performed to reach
a particular node but his system is also restricted to such reachability statements.
Similarly to Bijlsma, this leads to complex formulas flooded with quantifiers.

The main focus in [Rey00] is laid on restricting assertions about a heap structure
to statements over independent disjoint parts. This extends former work by Burstall
[Bur72] and Kowaltowski [Kow79]. They assume to have a sequence of assertions
for distinct regions so that by an assignment to a single location only one of these is
affected. Reynolds argues that this situation is not always achievable. He uses a mix
of an imperative language together with inductively defined data types. Reynolds
himself admits that his work is very preliminary and needs to be investigated more
exactly.

Another approach to verification of pointer algorithms is presented in [Kub03].
Specification of pointer data structures there is achieved by using a temporal specifi-
cation of dynamic algebra. This allows to talk about paths in the pointer structure.
The model is more related to the trace model of pointers introduced in [HJ99].
Kubica presents a deduction system for an extended version of Hoare logic that
allows temporal dynamic formulae as assertions. It is not completely clear how this
approach exactly relates to the one presented here. Since we are able to model tem-
poral operators like always and sometimes, it seems possible that most statements
in some way can be expressed in our calculus, too.

Although we presented in Chapter 5 transformational program development
from a functional specification as an application of pointer Kleene algebra, this
approach has some limitations. The main problem is that graphs are not naturally
inductively definable data types like lists and trees. So there are several approaches
originating from the functional programming community to deal with graphs and
linked data structures in functional programming languages. We will only dwell
upon two selected representative approaches here.

Although it is unusual to think of graphs as an algebraic type with constructors,
Erwig [Erw01] proposed an inductive graph definition. There graphs are construc-
ted from the empty graph and extensions with new nodes together with edges from
and to the nodes already present. He uses unique identifiers for the nodes to esta-
blish edge connections and tries to resolve the ambiguity of representations by a
particular kind of pattern matching. This works well to write functional programs
on graphs and get efficient implementations. Nevertheless, the approach cannot
serve as solution to treat graphs with the method presented in Chapter 5 due to
the complex pattern matching concept.

Also Klarlund and Schwartzbach [KS93] defined graph types as extensions of
classical recursive data types. They use a spanning tree as underlying backbone
enhanced with additional routing links. These links are denoted by routing expres-
sions which describe relative addresses within the backbone. They show how to
decide which routing fields of a data type have to be updated and that efficient
imperative algorithms can be derived. Monadic second-order logic is used to define

80 CHAPTER 6. DISCUSSION

shape invariants on these data types. To implement imperative style concepts they
use monads and get efficient execution patterns.

Finally, we present papers concerned with an abstract description of fuzzy con-
cepts in a relational environment. These approaches heavily influenced the algebraic
treatment presented in this thesis.

The algebraic treatment of fuzzy relations goes back to the thesis of Furusawa
[Fur98]. Together with Kawahara [KF01] he introduced the concept of scalars and
proposed several notions of crispness. Winter [Win01] has shown that it is impos-
sible to characterize L-fuzzy relations in Dedekind categories for arbitrary distri-
butive lattices L. He introduced Goguen categories which are Dedekind categories
extended with cut-operators to specify crisp L-relations. However, Kawahara and
Furusawa again tried to do without these extensions but assumed the existence of
unit objects in the category and a linear ordering of L around the least element.
Despite the evidence that L-fuzzy relations are able to model labeled graphs, to our
knowledge this abstract framework has not been applied to graph theory.

6.2 Summary

We have seen how an extension of Kleene algebra can serve as an algebraic foun-
dation for the treatment of labeled graphs. Simplicity and succinctness of Kleene
algebra is inherited by the calculus and leads to short proofs at a high abstract
level. We defined pointer Kleene algebra and more sophisticated operations to ex-
press properties of pointer structures or to characterize particular sets of nodes and
substructures. In contrast to a relational approach considering each equally labe-
led subgraph distinctly we developed a compact representation of labeled graphs.
On the other hand, the matrix theoretical treatment often found in the literature
mostly can be replaced by the presented abstract framework. This prevents unclear
and complex point-wise reasoning.

Since subordination holds in relation algebra, the usage of fuzzy relation algebra
or equivalently Goguen categories with transitive closure would also be an appro-
priate choice as formal basis for labeled graphs. Nevertheless, calculating with a
converse operator makes proofs intransparent and from an algorithmic point of view
reversal of all pointers in memory is a highly inefficient task. We have shown how
several properties can be defined in a structure without converse and meet. If the
existence of a meet is required the right choice would be to use action lattices. Since
they are extensions of action algebras, we get residuals for free.

As application we have shown how to use pointer Kleene algebra as formal basis
to show the correctness of rules to transform pointer manipulating programs. In this
course we extended a method to derive correct pointer algorithms from specifications
in a functional programming style. We characterized a general syntactic form of
function patterns that may arise and provided a transformation rule to get efficient
imperative pointer manipulating programs. This particular method is only usable
to derive algorithms on inductively defined data types which mostly are lists and
trees. Nevertheless, the underlying calculus is not limited to this class of programs.

In sum, we have presented an algebraic framework to formalize labeled graphs
which is simple but of strong expressive power. None of the previous approaches
to achieve this task in the literature are as compact and concise as the treatment
based on Kleene algebra introduced in this thesis. The algebraic foundation is the
basis for reasoning about pointer structures at a high abstract level. Application to
transformation and verification techniques is the key to get correct implementations
of pointer algorithms.

6.3. OUTLOOK AND FUTURE RESEARCH 81

6.3 Outlook and Future Research

There are some points where the two big areas covered in this thesis can be further
developed.

Since one of the most often used systems in a programming environment are the
compiler and the executing machine, these are natural candidates to be verified.
An important rôle there plays the garbage collector. It would be an interesting
case study to port the derivation of a copying garbage collector in [BMM91] to
the framework presented here. In this thesis we first concentrated on a general
algebraic treatment of pointer structures and did not let us guide from such a
specific application. Since the derivation in the paper is based on a calculus of
partial maps and the representation of chains, the transfer seems to be no problem.
Nevertheless, to get the same concrete algorithm on a linearly ordered memory one
has to add additional properties or has to leave the abstract framework.

The method to transform functional specifications into correct implementations
of pointer algorithms has been proved suitable to derive algorithms on inductively
defined data structures. Since general graphs are not naturally describable induc-
tively, the transformation schemes demand for more sophisticated rules that consi-
der such cyclic data types. We will investigate the approaches of [Erw01] and [KS93]
in more detail and try to extend the derivation method also to a high level treatment
of graphs without refraining from the advantages of applicative specification.

Due to additional expenditure with respect to time and money formal methods
will never be applied if not necessary or demanded. To increase efficiency and make
complexity in dealing with formulas and proof obligations manageable a high degree
of automation and tool support is needed. Some preliminary work has been done
by implementing different axiomatizations into the automatic proof system KIV
[RSSB98]. To further automation of proofs we plan to develop decision procedures
for at least fragments of pointer Kleene algebra, since decidability is not solved.

Another step towards an efficient treatment of pointer algorithms was performed
by implementing a prototype of a transformation system [Vog03]. This can be
used to rapidly derive transformation rules similar to the one presented in Chapter
5. Further research may confirm our supposition, that the derivation of pointer
algorithms on inductively defined data types follows a simple unfold/fold heuristic.

The crucial extension of Kleene algebra to be able to perform the step to pointer
Kleene algebra is the concept of subordination. From a theoretical point of view it
is important to study the relation to extensions from other areas. This would give
more insight into the expressiveness of Kleene algebras with subordination. So we
know for example that subordination strictly implies the concept of local linearity
as defined by R. Dijkstra [Dij98] in his computation calculus. Thus, it would be
interesting to see how much of this calculus can be transferred to Kleene algebra
with subordination.

82 CHAPTER 6. DISCUSSION

Appendix A

The appendix shows definitions, derivations and the complete verification of mixp.
The definition of standard Kleene algebra is used in the derivation of subordination
whereas the derivation of list processing functions shows the transformation method
at work and yields the motivating examples. Section A.3 presents a detailed proof
of correctness of the derived algorithm mixp.

A.1 Standard Kleene Algebra

In [Con71] Conway gives five different notions of Kleene algebra. As reason for
this multiplicity he mentioned that the formal laws of regular operations are not
easily codified. So for example already in 1964 Redko [Red64] proved that star is not
finitely axiomatizable. The most restricted algebra Conway gave he called S-algebra
(standard Kleene algebra). We will give here a slightly different axiomatization that
better meets our requirements.

Definition 154 (SKA). A standard Kleene algebra is a sixtuple (K,≤,>, ·, 0, 1)
satisfying the following properties:

1. (K,≤) is a complete lattice with least element 0 and greatest element >.
2. (K, ·, 1) is a monoid.
3. The operation · is universally disjunctive (i.e. distributes through arbitrary su-

prema) in both arguments.

We only summarize the important laws that hold in SKAs due to the existence of
a meet operator.

Lemma 155. Consider a SKA and s, t ∈ P.

1. s · t = s u t
2. s · (a u b) = s · a u s · b
3. (s u t) · a = s · a u t · a

4. s · a u ¬s · b = 0
5. a u s · b = s · a u s · b

In particular: a u s · > = s · a

A.2 Selected Derivations

The most important and wide-spread dynamically allocated pointer linked data
types are lists and trees. Simultaneously lists are the simplest non-trivial of such
structures as there is only one successor record. Trees in so far are generalizations
of lists as they consist of two descendants. We present functional definitions of some
list-processing functions that are examined in Chapter 5. For some of them which
are used as examples for the application of the MGFP transformation pattern we
also provide the derivation of pointer manipulating variants. Further examples can
be found in [Ehm03].

83

84 APPENDIX A. APPENDIX

The constructor to build sorted lists is a function that inserts an element before
the first element that is greater:

insert a [] = [a]
insert a (x:xs) = if a <= x then a:(x:xs)

else x : insert a xs

To remove the same element from the list we define

del a [] = []
del a (x:xs) = if a==x then xs

else x : del a xs

Obviously, this only holds under the promise that del is applied only to sorted
lists. Function del only removes the first occurrence of a in the list. As we did not
assume repetition free sorted lists, the generalization delete removes all occurrences
of element a. Actually, we define delete even to be applicable to arbitrary lists,
since we do not stop if a greater element is encountered.

delete a [] = []
delete a (x:xs) = if a==x then delete a xs

else x : delete a xs

From a pointer implementation point of view the two functions insert and del
change exactly one link in the pointer structure imlementation of the considered
lists. delete performs as many modifications as elements a are in the list. From
this observation the algorithm that changes all links is the function mix that shuffles
the elements of two lists element by element. If one of the lists is longer than the
other the remainder is concatenated to the end of the result. This can be specified
by:

mix [] ys = ys
mix (x:xs) ys = x : mix ys xs

To get pointer implementations of delete and mix we use the method presented in
Section 5.1. The derivation for the case m = � works similarly to the derivation of
cat in this section and we choose

deletep a (�, L) = (�, L)

For the other case we get:

Case m 6= �:
delete a list(p)

= {[unfold definitions of list and delete]}

if a == p.hd then delete a list(p.tl)
else p.hd : delete a list(p.tl)

= {[fold with spec. of deletep; choose an arbitrary q ∈ deletep a p.tl]}

if a == p.hd then list(q)
else p.hd : list(q)

= {[set r = p.tl := q, Lemma 83]}

if a == p.hd then list(q)
else r.hd : list(q)

= {[Corollary 141.1 and Lemma 142]}

A.3. VERIFICATION OF MIXP 85

if a == p.hd then list(q)
else r.hd : list(r.tl)

= {[fold with definition of list]}

if a == p.hd then list(q) else list(r)

= {[if propagation]}

list(if a == p.hd then q else r)

By resubstituting q and r we get the pointer algorithm:

deletep a p = if m 6= � then if a 6= Lhd(m)
then p.tl := deletep a p.tl
else deletep a p.tl

else (�, L)

In a similar way we derive for mix in the case m = �:

mixp (�, n, L) = (n,L)

and calculate:

Case m 6= �:
mix list(p) list(q)

= {[unfold definitions of list and mix]}

p.hd : mix list(q) list(p.tl)

= {[fold with spec. of mixp; choose an arbitrary r ∈ mixp(n,Ltl(m), L)]}

p.hd : list(r)

= {[set s = p.tl := r, Lemma 83]}

s.hd : list(r)

= {[Corollary 141.1 and Lemma 142]}

s.hd : list(s.tl)

= {[fold with definition of list]}

list(s)

Again resubstitution yields the algorithm:

mixp(m,n,L) = if m 6= � then p.tl := mixp(n,Ltl(m), L)
else (n,L)

A.3 Verification of mixp

This section shows the verification of the imperative version of mixp from Section
5.5. We use the Hoare-style rules depicted in Figure A.1. For the assignment of the
result to u in both branches of the if statement we first calculate:

then part:

{POST}

u := p

{(p⇒tl �) = mix S T}

else part:

{POST}

u := q

{(q ⇒tl �) = mix S T}

86 APPENDIX A. APPENDIX

Q⇒ Rx
E

{Q}x := E{R}
Q⇒ Rf

f⊕A→E

{Q}A.f := E{R}
{Q}S{R′} R′ ⇒ R

{Q}S{R}

Q⇒ P {P ∧B}S{P} P ∧ ¬B ⇒ R P ∧B ⇒ t > 0 {P ∧B ∧ t = vt}S{t < vt}
{Q}whileB doS{R}

{Q ∧B}Sthen{R} {Q ∧ ¬B}Selse{R}
{Q}if B thenSthen elseSelse{R}

{Q}S1{Q′} {Q′}S2{R}
{Q}S1;S2{R}

Figure A.1: Hoare-triple rules

The rest of the else branch is simply proven. From PRE and p = � follows
S = [] ∧ T = (q ⇒tl �) which implies by definition of mix:

mix S T = mix [] T = T = (q ⇒tl �)

Thus, we are left with showing correctness of the rest of the then part which mainly
consists of the verification of the while -loop. We will use Q as abbreviation for the
condition that has to hold after the loop. First, we show the following implications
that can be derived from INV and r 6= �:

Lemma 156. Assume INV and r 6= �, then

1. (r.tl⇒tl⊕r→q �) = (r.tl⇒tl �)
2. (q ⇒tl⊕r→q �) = (q ⇒tl �)

Proof. 1. list(r ⇒tl �) ∧ r 6= �
⇒ list(r.tl⇒tl �) ∧ [r] 6∩ (r.tl⇒tl �)
⇒ (r.tl⇒tl⊕r→q �) = (r.tl⇒tl �)

2. list(q ⇒tl �) ∧ (r ⇒tl �) 6∩ (q ⇒tl �)
⇒ list(q ⇒tl �) ∧ [r] 6∩ (q ⇒tl �)
⇒ (q ⇒tl⊕r→q �) = (q ⇒tl �)

To show that invariant INV holds after the initialization we calculate:

{INV }

r := p{
list(p⇒tl �) ∧ list(q ⇒tl �) ∧ (p⇒tl �) 6∩ (q ⇒tl �)∧
(p⇒tl p) @mix(p⇒tl �) (q ⇒tl �) = mix S T

}
This follows immediately from PRE by a straightforward calculation. For the loop
body we show that INV indeed is an invariant:{
list(r ⇒tl �) ∧ list(q ⇒tl �) ∧ (r ⇒tl �) 6∩ (q ⇒tl �)
∧(p⇒tl r) @mix(r ⇒tl �) (q ⇒tl �) = mix S T

}
s.tl := r{
list(r ⇒tl⊕s→r �) ∧ list(q ⇒tl⊕s→r �) ∧ (r ⇒tl⊕s→r �) 6∩ (q ⇒tl⊕s→r �)
∧(p⇒tl⊕s→r r) @mix(r ⇒tl⊕s→r �) (q ⇒tl⊕s→r �) = mix S T

}
q := s.tl{
list(r ⇒tl⊕s→r �) ∧ list(s.tl⇒tl⊕s→r �) ∧ (r ⇒tl⊕s→r �) 6∩ (s.tl⇒tl⊕s→r �)
∧(p⇒tl⊕s→r r) @mix(r ⇒tl⊕s→r �) (s.tl⇒tl⊕s→r �) = mix S T

}
r := q{
list(q ⇒tl⊕s→q �) ∧ list(s.tl⇒tl⊕s→q �) ∧ (q ⇒tl⊕s→q �) 6∩ (s.tl⇒tl⊕s→q �)
∧(p⇒tl⊕s→q q) @mix(q ⇒tl⊕s→q �) (s.tl⇒tl⊕s→q �) = mix S T

}

A.3. VERIFICATION OF MIXP 87

s := r{
list(q ⇒tl⊕r→q �) ∧ list(r.tl⇒tl⊕r→q �) ∧ (q ⇒tl⊕r→q �) 6∩ (r.tl⇒tl⊕r→q �)
∧(p⇒tl⊕r→q q) @mix(q ⇒tl⊕r→q �) (r.tl⇒tl⊕r→q �) = mix S T

}
This follows immediately from INV and r 6= � with Lemmas 156.1 and 156.2 and
by the straightforward calculation:

(p⇒tl r) @mix(r ⇒tl �) (q ⇒tl �)
= (p⇒tl r) @[r] @mix(q ⇒tl �) (r.tl⇒tl �)
= (p⇒tl r.tl) @mix(q ⇒tl⊕r→q �) (r.tl⇒tl⊕r→q �)
= (p⇒tl⊕r→q q) @mix(q ⇒tl⊕r→q �) (r.tl⇒tl⊕r→q �)

After the while -loop Q has to hold. Since INV and r = � imply q = �, this can be
shown by:

mix S T = (p⇒tl r) @mix(r ⇒tl �) (q ⇒tl �)
= (p⇒tl �) @mix(� ⇒tl �) (� ⇒tl �)
= (p⇒tl �) @mix [] []
= (p⇒tl �) @ []
= (p⇒tl �)

For measure t we have to show that it is positive after the initialization. From r 6= �
we get:

t = length(r ⇒tl �) + length(q ⇒tl �)
≥ length(r ⇒tl �)
= length([r] @(r.tl⇒tl �))
= 1 + length(r.tl⇒tl �)
> 0

To show termination of the loop we have to prove that the loop body reduces
measure t. We just show the calculation for the then branch, since the else branch
works similar:

{length(r ⇒tl �) + length(q ⇒tl �) < vt}

s.tl := r

{length(r ⇒tl⊕s→r �) + length(q ⇒tl⊕s→r �) < vt}

q := s.tl

{length(r ⇒tl⊕s→r �) + length(s.tl⇒tl⊕s→r �) < vt}

r := q

{length(q ⇒tl⊕s→q �) + length(s.tl⇒tl⊕s→q �) < vt}

s := r

{length(q ⇒tl⊕r→q �) + length(r.tl⇒tl⊕r→q �) < vt}

By Lemmas 156.1 and 156.2 under the assumption of INV and r 6= � this is
equivalent to:

length(q ⇒tl �) + length(r.tl⇒tl �) < vt

88 APPENDIX A. APPENDIX

which follows immediately from INV by:

vt = length(r ⇒tl �) + length(q ⇒tl �)
= length([r] @(r.tl⇒tl �)) + length(q ⇒tl �)
= 1 + length(r.tl⇒tl �) + length(q ⇒tl �)
> length(r.tl⇒tl �) + length(q ⇒tl �)

Bibliography

[Aar92] C.J. Aarts. Galois connections presented calculationally. Afstudeer
verslag (Graduating Dissertation), Department of Computing Science,
Eindhoven University of Technology, July 1992.

[AHU75] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1975.

[Bac02] R. Backhouse. Galois connections and fixed point calculus. In Algebraic
and Coalgebraic Methods in the Mathematics of Program Construction
International Summer School and Workshop, Oxford, UK, April 10-
14, 2000, Revised Lectures, volume 2297 of Lecture Notes in Computer
Science, pages 89–148. Springer-Verlag, 2002.

[BBB+85] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matz-
ner, B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wir-
sing, and H. Wössner. The Munich Project CIP, Volume I: The Wide
Spectrum Language CIP-L, volume 183 of Lecture Notes in Computer
Science. Springer-Verlag, 1985.

[BdM96] R.S. Bird and O. de Moor. Algebra of Programming. Prentice Hall
International, 1996.

[BE93a] S.L. Bloom and Z. Ésik. Equational axioms for regular sets. Mathe-
matical structures in computer science, 3:1–24, 1993.

[BÉ93b] S.L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1993.

[BEH+87] F.L. Bauer, H. Ehler, A. Horsch, B. Möller, H. Partsch, O. Paukner,
and P. Pepper. The Munich Project CIP, Volume II: The Program
Transformation System CIP-S, volume 292 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1987.

[BEZ88] R. Berghammer, H. Ehler, and H. Zierer. Development of several
reachability algorithms for directed graphs. In H. Göttler and H.J.
Schneider, editors, Graph-Theoretic Concepts in Computer Science, In-
ternational Workshop, WG ’87, Kloster Banz/Staffelstein, Germany,
June 29 - July 1, 1987, volume 314 of Lecture Notes in Computer
Science, pages 206–218. Springer-Verlag, 1988.

[Bij89] A. Bijlsma. Calculating with pointers. Science of Computer Program-
ming, 12(3):191–206, September 1989.

[Bir67] G. Birkhoff. Lattice theory. A.M.S. Colloquium Publications, 25, 1967.
[Bir98] R. Bird. Introduction to Functional Programming using Haskell. Pren-

tice Hall International, 1998. 2nd edition.
[Bir01] R.S. Bird. Functional pearl: Unfolding pointer algorithms. Journal of

Functional Programming, 11(3):347–358, May 2001.
[BMM91] U. Berger, W. Meixner, and B. Möller. Calculating a garbage collector.

In M. Broy and M. Wirsing, editors, Methods of programming, volume

89

90 BIBLIOGRAPHY

544 of Lecture Notes in Computer Science, pages 137–192. Springer-
Verlag, 1991.

[Bor00] R. Bornat. Proving pointer programs in Hoare logic. In R. Backhouse
and J.N. Oliveira, editors, Mathematics of Program Construction, 5th
International Conference, MPC 2000, volume 1837 of Lecture Notes in
Computer Science, pages 102–126. Springer-Verlag, 2000.

[Bur72] R.M. Burstall. Some techniques for proving correctness of programs
which alter data structures. In B. Meltzer and D. Mitchie, editors, Ma-
chine Intelligence 7, pages 23–50. Edinburgh University Press, Edin-
burgh, Scotland, 1972.

[But99] M. Butler. Calculational derivation of pointer algorithms from tree
operations. Science of Computer Programming, 33(3):221–260, March
1999.

[Bvv94] R.C. Backhouse, J.P.H.W. van den Eijnde, and A.J.M. van Gasteren.
Calculating path algorithms. Science of Computer Programming, 22(1–
2):3–19, April 1994.

[BW82] F.L. Bauer and H. Wössner. Algorithmic Language and Program De-
velopment. Springer-Verlag, 1982.

[BW89] R. Bird and Ph. Wadler. Introduction to Functional Programming.
Prentice Hall International, 1989.

[Cle95] K. Clenaghan. Calculational graph algorithmics: reconciling two ap-
proaches with dynamic algebra. Technical report CS-R9518, CWI -
Centrum voor Wiskunde en Informatica, March 1995.

[Coh00] E. Cohen. Separation and reduction. In R. Backhouse and J.N.
Oliveira, editors, Proceedings of Mathematics of Program Construc-
tion, 5th International Conference, MPC 2000, volume 1837 of Lecture
Notes in Computer Science, pages 45–59. Springer-Verlag, 2000.

[Con71] J.H. Conway. Regular Algebra and Finite Machines. Chapman & Hall,
London, 1971.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall Interna-
tional, 1976.

[Dij98] R. Dijkstra. Computation calculus — bridging a formalization gap.
In J. Jeuring, editor, Mathematics of Program Construction, MPC’98,
Marstrand, Sweden, June 15-17, 1998, Proceedings, volume 1422 of
Lecture Notes in Computer Science, pages 151–174, 1998.

[dM64] A. de Morgan. On the syllogism, no. iv, and on the logic of relations.
Transactions of the Cambridge Philosophical Society, 10:331–358, 1864.

[DM01] J. Desharnais and B. Möller. Characterizing determinacy in Kleene
algebras. In J. Desharnais, M. Frappier, A. Jaoua, and W. MacCaull,
editors, Relational Methods in Computer Science. Int. Seminar on Re-
lational Methods in Computer Science, Jan 9–14, 2000 in Québec, vo-
lume 139 of Information Sciences — An International Journal, pages
153–273, 2001.

[DMS03] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with a domain
operator. Technical report 2003-7, Institut für Informatik, Universität
Augsburg, 2003.

[Ehm01] T. Ehm. Transformational Construction of Correct Pointer Algo-
rithms. In D. Bjørner, M. Broy, and A.V. Zamulin, editors, Perspecti-
ves of System Informatics, volume 2244 of Lecture Notes in Computer
Science, pages 116–130. Springer-Verlag, July 2001.

[Ehm03] T. Ehm. Case studies for the derivation of pointer algorithms. Techni-
cal report 2003-9, Institut für Informatik, Universität Augsburg, 2003.

[EMS03] T. Ehm, B. Möller, and G. Struth. Kleene modules. Submitted to
RelMiCS, 2003.

BIBLIOGRAPHY 91

[Erw01] M. Erwig. Inductive graphs and functional graph algorithms. Journal
of Functional Programming, 11(5):467–492, 2001.

[FL79] J.M. Fischer and R.F. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Science, 18(2):194–211,
1979.

[Flo67] R.W. Floyd. Assigning meanings to programs. Mathematical Aspects
of Computer Science, pages 19–32, 1967.

[Fow99] M. Fowler. Refactoring. Imporving the design of existing code. Addison-
Wesley, 1999.

[FS90] P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of North-
Holland Mathematical Library. North-Holland, Amsterdam, 1990.

[Fur98] H. Furusawa. Algebraic Formalizations of Fuzzy Relations and their
Representation Theorems. PhD thesis, Kyushu University, 1998.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Gog67] J.A. Goguen. L-fuzzy sets. Journal of Mathmatical Analysis and Ap-
plications, 18:145–157, 1967.

[HJ87] C.A.R. Hoare and H. Jifeng. Weakest prespecification. Information
Processing Letters, 24, 1987.

[HJ99] C.A.R. Hoare and H. Jifeng. A trace model for pointers and objects.
In R. Guerraoui, editor, ECCOP’99 - Object-Oriented Programming,
13th European Conference, Lisbon, Portugal, June 14-18, 1999, Pro-
ceedings, volume 1628 of Lecture Notes in Computer Science, pages
1–17. Springer-Verlag, 1999.

[HMT71] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras I, volume 64
of Studies in logic and the foundations of mathematics. North-Holland,
1971.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12:576–580, 1969.

[Hoa72] C.A.R. Hoare. Proofs of correctness of data representation. Acta In-
formatica, 1:271–281, 1972.

[Hol98] M. Hollenberg. Equational axioms of test algebra. In M. Nielsen
and W. Thomas, editors, Computer Science Logic, 11th Internatio-
nal Workshop, CSL ’97, Annual Conference of the EACSL, Aarhus,
Denmark, August 23-29, 1997, Selected Papers, volume 1414 of Lecture
Notes in Computer Science, pages 295–310, 1998.

[IEE83] IEEE Standard Glossary of software engineering terminology, 1983.
[JT51] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I.

American Journal of Mathematics, 73:891–939, 1951.
[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators, Part II.

American Journal of Mathematics, 74:127–167, 1952.
[Jun94] D. Jungnickel. Graphs, Networks and Algorithms, volume 5 of Algo-

rithms and Computation in Mathematics. Springer-Verlag, 1994.
[KF01] Y. Kawahara and H. Furusawa. Crispness in Dedekind categories.

Bulletin of Informatics and Cybernetics, 33(1–2):1–18, 2001.
[Kle51] S.C. Kleene. Representation of events in nerve nets and finite auto-

mata. Technical report, The Rand Corporation, 1951.
[Kow79] T. Kowaltowski. Data structures and correctness of programs. Journal

of the ACM (JACM), 26(2):283–301, 1979.
[Koz79] D. Kozen. A representation theorem for ∗-free PDL. Technical Report

RC7864, IBM, 1979.
[Koz81] D. Kozen. On induction vs. ∗-continuity. In D. Kozen, editor, Procee-

dings of Workshop on Logics of Programs, volume 131 of Lecture Notes
in Computer Science, pages 167–176. Springer-Verlag, 1981.

92 BIBLIOGRAPHY

[Koz90a] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Technical report TR90-1123, Cornell University,
Computer Science Department, May 1990.

[Koz90b] D. Kozen. On Kleene algebras and closed semirings. In B. Rovan, edi-
tor, Proceedings of Mathematical Foundations of Computer Science, vo-
lume 452 of Lecture Notes in Computer Science, pages 26–47. Springer-
Verlag, 1990.

[Koz94] D. Kozen. On action algebras. In J. van Eijck and A. Visser, editors,
Logic and Information Flow, pages 78–88. MIT Press, 1994.

[Koz97] D. Kozen. Kleene algebra with tests. ACM Transactions on Program-
ming Languages and Systems, 19(3):427–443, May 1997.

[KR88] B. Kernighan and D. Ritchi. The C programming language. Prentice
Hall International, 1988.

[Kro91] D. Krob. A complete system of b-rational identities. Journal of Theo-
retical Computer Science, 89(2):207–343, October 1991.

[KS86] W. Kuich and A. Salomaa. Semiring, Automata, and Languages.
Springer-Verlag, 1986.

[KS93] N. Klarlund and M. Schwartzbach. Graph types. In Conference Re-
cord of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 196–205, Charleston,
South Carolina, 1993.

[Kub03] M. Kubica. A temporal approach to specification and verification of
pointer data-structures. In Mauro Pezzè, editor, Fundamental Ap-
proaches to Software Engineering, 6th International Conference, FASE
2003, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003,
volume 2621 of Lecture Notes in Computer Science, pages 231–245.
Springer-Verlag, 2003.

[KWBW03] A. Kleppe, J. Warmer, W. Bast, and A. Watson. MDA Explained: The
Model Driven Architecture - Practice and Promise. Addison-Wesley,
2003.

[LS79] D. Luckham and N. Suzuki. Verication of array, record, and pointer
operations in pascal. ACM Transactions on Programming Languages
and Systems, 1(2):226–244, October 1979.

[LT30] J. Lukasiewicz and A. Tarski. Untersuchungen über den Aussagenkal-
kül. Comptes Rendus Séances Société des Sciences et Lettres Varsovie,
cl. III, 23:30–50, 1930.

[Luk70] J. Lukasiewicz. Selected works, 1970.
[Mas88] I.A. Mason. Verification of programs that destructively manipulate

data. Science of Computer Programming, 10(2):177–210, April 1988.
[Möl93] B. Möller. Derivation of graph and pointer algorithms. In B. Möller,

H.A. Partsch, and S.A. Schuman, editors, Formal program develop-
ment, volume 755 of Lecture Notes in Computer Science, pages 123–
160. Springer-Verlag, 1993.

[Möl97a] B. Möller. Calculating with pointer structures. In R. Bird and L. Meer-
tens, editors, Algorithmic Languages and Calculi, pages 24–48. Proc.
IFIP TC2/WG2.1 Working Conference, Le Bischenberg, Feb. 1997,
Chapman & Hall, 1997.

[Möl97b] B. Möller. Linked Lists Calculated. Technical report 1997-7, Institut
für Informatik, Universität Augsburg, 1997.

[Möl99a] B. Möller. Calculating with acyclic and cyclic lists. In A. Jaoua and
G. Schmidt, editors, Relational Methods in Computer Science. Int. Se-
minar on Relational Methods in Computer Science, Jan 6–10, 1997 in
Hammamet, volume 119 of Information Sciences — An International
Journal, pages 135–154, 1999.

BIBLIOGRAPHY 93

[Möl99b] B. Möller. Typed Kleene Algebras. Technical report 1999-8, Institut
für Informatik, Universität Augsburg, 1999.

[Moo56] E.F. Moore. Gedanken-experiments on sequential machines. Automata
Studies, pages 129–153, 1956.

[Mor81a] J.M. Morris. A general axiom of assignment. In Theoretical Foundati-
ons of Programming Methodology, volume 91 of NATO Advanced Study
Institutes Series C Mathematical and Physical Sciences, pages 25–34.
Dordrecht, Reidel, 1981.

[Mor81b] J.M. Morris. A proof of the Schorr-Waite algorithm. In Theoretical
Foundations of Programming Methodology, volume 91 of NATO Ad-
vanced Study Institutes Series C Mathematical and Physical Sciences,
pages 35–51. Dordrecht, Reidel, 1981.

[Nel83] G. Nelson. Verifying reachability invariants of linked structures. In
Conference Record of the Tenth Annual ACM Symposium on Principles
of Programming Languages, pages 38–47, Austin, Texas, 1983.

[Ng84] K.C. Ng. Relation Algebras with Transitive Closure. PhD thesis, Uni-
versity of California, Berkley, 1984.

[ORY01] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about pro-
grams that alter data structures. In Computer Science Logic: 15th
International Workshop, CSL 2001. 10th Annual Conference of the
EACSL, Paris, France, September 10-13, volume 2142 of Lecture No-
tes in Computer Science, pages 1–19. Springer-Verlag, 2001.

[OS95] J.P. Olivier and D. Serrato. Squares and rectangles in relational cate-
gories - three cases: semilattice, distributive lattice and non-unitary.
Fuzzy sets and systems, 72:167–178, 1995.

[Par90] H.A. Partsch. Specification and Transformation of Programs - a Formal
Approach to Software Development. Monographs in Computer Science.
Springer-Verlag, Berlin, 1990.

[Par02] Parasoft. Insure++: An automatic runtime error detection tool, Oc-
tober 2002. White Paper.

[Per99] B. Perens. Electric fence, 1999. available from: http://perens.com/
FreeSoftware/.

[PH70] M.S. Paterson and C.E. Hewitt. Comparative schematology. In Rec.
Project MAC Conference on Concurrent Systems and Parallel Compu-
tation, pages 119–128, Woods Hole, MA, December 1970.

[Pin98] J.E. Pin. Tropical semirings. Idempotency, pages 50–69, 1998.
[Plu90] Max Plus. Linear systems in (max,+) algebra. In Proceedings of the

29th Conference on Decision and Control, Honolulu, December 1990.
[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of 19th

IEEE Symposium on Foundations of Computer Science, pages 46–57.
IEEE, 1977.

[Pra90a] V. Pratt. Action logic and pure induction. In J. van Benthem and
J. Eijck, editors, Proceedings of JELIA-90, European Workshop on
Logics in AI, Amsterdam, September 1990.

[Pra90b] V. Pratt. Dynamic Algebras as a well-behaved fragment of Relation
Algebras. In C.H. Bergman, R.D. Maddux, and D.L. Pigozzi, editors,
Algebraic Logic and Universal Algebra in Computer Science, volume
425 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[Pra91] V. Pratt. Dynamic algebras: Examples, constructions, applications.
Studia Logica, 50:571–605, 1991.

[Red64] V.N. Redko. On defining relations for the algebra of regular events.
Ukrain. Math. Z., 16:120–126, 1964. In russian.

[Rey00] J.C. Reynolds. Intuitionistic reasoning about shared mutable data
structure. In J. Davies, B. Roscoe, and J. Woodcock, editors, Mill-

http://perens.com/FreeSoftware/
http://perens.com/FreeSoftware/

94 BIBLIOGRAPHY

ennial Perspectives in Computer Science, pages 303–321, Houndsmill,
Hampshire, 2000. Palgrave.

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1998.

[RSSB98] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifi-
cations and interactive proofs with KIV. In W. Bibel and P.H. Schmidt,
editors, Automated Deduction: A Basis for Applications. Volume II,
Systems and Implementation Techniques. Kluwer Academic Publishers,
Dordrecht, Reidel, 1998.

[Rus96] M. Russling. Deriving General Schemes for Classes of Graph Al-
gorithms. PhD thesis, Universität Augsburg, 1996. Augsburger
mathematisch-naturwissenschaftliche Schriften, 13, Wißner.

[Sal66] A. Salomaa. Two complete axiom systems for the algebra of regular
events. Journal of the ACM, 13(1):158–169, January 1966.

[Sew02] J. Seward. The design and implementation of valgrind, 2002. available
from: http://developer.kde.org/\char126\relaxsewardj.

[SM56] C.E. Shannon and J. McCarthy. Automata Studies. Princeton Univer-
sity Press, Princeton, 1956.

[SS93] G. Schmidt and T. Ströhlein. Relations and Graphs, Discrete Mathe-
matics for Computer Scientists. EATCS-Monographs on Theoretical
Computer Science. Springer-Verlag, 1993.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic Logic,
6(3):65–106, 1941.

[Thi94] P. Thiemannn. Grundlagen der funktionalen Programmierung. B.G.
Teubner, Stuttgart, 1994.

[Vog03] W. Vogl. Fallstudie zur entwicklung eines programmtransformations-
systems unter verwendung von xml und xpath. Master’s thesis, Uni-
versität Augsburg, 2003. in german.

[vW02] J. von Wright. From Kleene algebra to refinement algebra. In B. Möller
and E. Boiten, editors, Mathematics of Program Construction, 6th In-
ternational Conference, MPC 2002, volume 2386 of Lecture Notes in
Computer Science, pages 233–262. Springer-Verlag, 2002.

[WD39] M. Ward and R.P. Dilworth. Residuated lattices. Transactions of the
American Mathematical Society, 45:335–354, 1939.

[Win01] M. Winter. Relational constructions in Goguen categories. In
H. de Swart, editor, 6th International Seminar on Relational Methods
in Computer Science (RelMiCS), pages 222–236, 2001.

[Yet90] D. Yetter. Quantales and (noncommutative) linear logic. Journal of
Symbolic Logic, 55(1):41–64, 1990.

[Zad65] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

http://developer.kde.org/char 126elax sewardj

