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Wage Flexibility, Menu Costs, and Price Level Stickiness

by
ALFRED MAUSSNER

I consider the relation between wage determination and price level stickiness
along the lines of the menu costs approach. I allow for flexible wages and a
variable fraction of firms adjusting their prices in response to aggregate demand
shocks. Strategic substitutability between firms arises for empirically plausible
parameter values implying (1) a price elasticity of aggregate supply which is
neither zero nor infinite and (2) unrealistically high menu costs. Efficiency
wages as well as fixed wages imply that either all firms do or do not adjust
prices. In both cases, menu costs required for fixed prices are quite small.
(JEL: E24, E42, L 16)

1. Introduction

Among the stylized facts of business cycles is the positive correlation between
real and nominal GNP. Keynesian economics attributes this finding to sticky
wages and product prices. The literature labeled **New Keynesian” by Stanley
FiscHER [1988] provides choice-theoretic underpinnings to this assumption.

AKERLOF and YELLEN [1985], MANKIW [1985], and PARKIN [1986] point out
that fixed costs of price adjustment (menu costs) deter monopolistically com-
petitive firms from adjusting prices to temporary cost or demand shocks.
According to the envelope theorem, profits lost due to changed market condi-
tions are independent from optimally chosen prices up to a first order approx-
imation. Hence, even small menu costs may suffice to prevent price adjustment.

AKERLOF and YELLEN [1985], BALL and ROMER [1990], and BLANCHARD and
K1voTAk1 [1987] present numerical examples of the size of profits (utility) lost
in percent of revenue (real income) when prices remain fixed in response to a
five or ten percent increase of money supply. Most of the cases show a loss of
less than one-tenth of one percent.

These papers share two closely related implications. {1) Profits lost by a firm
which does not xdjust its price to a demand shock are an increasing function
of the fraction of price-adjusting firms. Price decisions are characterized by
strategic complementarity (CooPER and JOHN [1988]). (2) As a consequence, in
a stable Nash equilibrium with a given size of menu costs, either all firms do
or do not adjust their price. Therefore, aggregate supply is either perfectly price
elastic or perfectly inelastic.
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1 shall show that these results, as well as the size of menu costs required for
price level stickiness, depend heavily upon the way in which the labor market
is modelled. My starting point is a suitably modified version of the BLANCHARD
and Krvotaki [1987] model. Given a one percent increase of money supply, a
fraction p of firms adjusts their prices optimally while other firms keep their
prices fixed. I compute the profits lost by these firms in percent of revenue. 1
then consider fixed wages, wages set on a monopolistically competitive market,
market clearing wages, and efficiency wages. The computed loss of profits
defines the size of menu costs required to establish the model’s outcome as a
Nash equilibrium.

The results may be summarized as follows. (1) With market clearing wages
and identical preferences of househoulds, the loss of profits of non-maximizers
is independent of whether wages are set monopolistically or competitively. Yet,
losses depend crucially upon the elasticity of labor supply with respect to the
real wage and the elasticity of substitution between any two of the produced
goods, which determines the degree of competitiveness of the product market.
For empirically plausible values of both elasticities, the menu costs required to
imply a certain degree of price level stickiness seem unrealistically high. (2)
Moreover, there is a range of values of both elasticities such that more than one
Nash equilibrium exists. In these cases prices and, hence, menu costs are not
uniquely determined. (3) When firms set wages in order to control labor pro-
ductivity, the sensitivity of work effort with respect to the real wage has no
significant effect upon profits lost by non-maximizers. Thus, the size of menu
costs required for fixed prices is much more plausible. (4) Fixed wages and
efficiency wages imply strategic complementarity. Unless menu costs are above
the level that would prevent all firms from adjusting their prices, in a stable
Nash equilibrium either all firms do or do not adjust prices. With flexible
wages, profits lost may decrease with the fraction of maximizing firms and
strategic substitutability arises. The stable equilibrium is the one in which a
fraction of firms does not adjust their prices. The elasticity of real GNP with
respect to nominal GNP ranges in between zero and one and declines with the
size of the demand shock.

The next section provides an intuitive explanation for these results. They are
based on a general equilibrium model set up in section 3. Section 4 analyzes
equilibria with a fraction of non-maximizers. It reports the loss of profits
incurred by non-maximizing firms for a variety of parameter constellations.
Section 5 offers concluding remarks. The Appendix covers technical details.

2. Profits Lost by Non-Maximizing Firms

Consider the price decision of a monopolistically competitive firm.' The solu-
tion to this textbook problem is depicted in figure 1. Faced with demand D, and

' T am grateful to the referee who suggested the following exposition.
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marginal costs MC, its optimal price is Fy. Let the demand function shift to
position D, . The firm maintains its price and produces beyond the point where
marginal costs equal marginal revenue. It incurs a loss of profits measured by
the area of the hatched triangle. I shall label this the demand-pull effect. In a
general equilibrium framework with a money supply shock, the shift of the
firm’s demand function depends upon the size of the shock and upon the price
decisions of its competitors. The more of them decide to adjust their price,
the further D, is to the right of D,. Thus, the demand-pull effect is positively
related to the fraction of price-adjusting firms.

If marginal costs shift upwards in response to the shock, which cannot
happen in the yeoman farmer model of BALL and ROMER {1990}, the firm suffers
from an additional loss measured by the area of the shaded trapezoid. It
depends upon the modelling of the labor market whether this cost-push effect
unambiguously increases with the fraction of price-adjusting firms.

In the efficiency wage model of AKERLOF and YELLEN [1985], labor produc-
tivity increases with the real wage. If other firms raise their prices the real wage
of workers at firms with fixed wages decreases. Labor productivity declines and
marginal costs increase. Thus, the cost-push effect is positively related to the
fraction of price-adjusting firms.

Consider instead market clearing wages and a one precent increase in the
money supply. At constant prices, output must rise by one percent. If labor
supply is sufficiently inelastic, nominal wages must rise by more than one
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percent. On the other hand, if all firms adjust prices, output remains constant
and nominal wages increase by one percent. Under these circumstances, the
cost-push effect declines with the fraction of price-adjusting firms.

3. The Model

I consider an economy with a continuum of firms and households of equal size,
indexed on the unit interval by j and # respectively.? Each firm produces a
single good Y; using the labor services N, of all households. Households own
the economy’s given stock of money, M, receive wages and dividends and

consume the production of firms.

3.1 Households

The utility of household # is a function of its consumption bundle {C,;}}_,, its
holdings of real cash balances, M,/P, and its labor supply N,. The specific
functional form is:

e—1 1 g/e—1)
e TCEp Tl S
(1) ep 0

p:=07%1 -9V, 0e(0,1), e>1, f=>1.

The parameter y normalizes the marginal utility of real income to one. In the
case of competitive wage and price setting (or equal mark-ups on both markets),
the term (¢ — 1)/(¢ B) secures a real wage of equal to one. ¢ and B are the focal
parameters of this paper. ¢ is the elasticity of substitution between any two
consumption goods. The case ¢ — oo reflects a perfectly competitive product
market. 1/(f — 1) is the elasticity of labor supply with respect to real wages. 8
determines the fraction of the household’s budget spent on consumption goods.
This parameter has no influence upon profits lost by non-maximizers.
The household’s budget constraint,

1
2 [ PCydj + M, < W,N, + D, + M,,
i)

% This is just for convenience. Nothing essential would change if I used {0, J] and [0, H]
instead of [0, 1]. The original version of BLANCHARD and KivyoTaki [1987] considers a
countable set of firms and households. This has the disadvantage that the function
relating the loss of profits of non-maximizers to the fraction of maximizing firms is
defined only on the set of non negative rational numbers. With a continuum of firms, this
function is defined on the interval {0, 1].
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1
states that expenditures on consumption goods, | P; G,;dj, together with end-of-
0

period cash balances, M,, must not exceed wage income, W, N,, dividends
received, D, and beginning-of-period money holdings M,. P, and W, denote the
price of good j, and the wage of labor service of type h, respectively. In the case
of a competitive labor market, household k regards the wage as a parameter of
its decision problem. If the labor market is monopolistically competitive, it sets
the wage conditional on the labor demand function. In any case, since utility is
additively separable in (G,, M,/F) and N,, consumption and money demand are
independent of the labor supply decision. Thus, for an arbitrarily given budget
B,, the household’s demand for good j is

P\"* B
(3a) ch,-=<—1§> 0,

and its money demand is
(3b) M,=(1-0)B,,

with the price level defined by

1
leedj}lvs.

Substitution of equations (3) into equation (1) yields utility as a function of the
household’s real budget B,/P and its labor supply N,:

@) P={

O ey 4

B, e—1
5 Vi=— — NE .
5 = g M

Equation (3a) implies the market demand for good j:

P\* B 1
6 C.=(2) -, B:=( B,dh.
© i <P> P g "

3.2 Firms

The production function of firm j relates its output ¥, to the inputs of the
different types of labor services N according to

ag

1
%) Y.—L{j zng,”*“r’ﬂdh}”'l, e>1, ae(0,1].

I—“(U—l) 0

The elasticity of substitution between any two different types of labor services
is o. Labor is homogeneous if ¢ — . o is the elasticity of production with
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respect to total labor input as defined by the index formula
1 _o
M:Z{j [\[jgla/ 1)/adh}a— 1
0 .

o .
The term (—1) combined with the corresponding term of the household’s
afe —
utility function normalizes the equilibrium real wage. Cost minimization, min
1
K;: = jW,,Nj,, dh subject to equation (7), determines the demand for labor ser-
[

vices of type h by firm j:

W\~ (a(o — 1) \'"*
© o =(7v) (T ¥>

and implies the cost function

_ 1/a
o) K, = (M Yj) w.

g

where aggregate wages W are given by

1

(10) w;z{f W,}'”dh}l_"
0 .

The demand for labor services of type h is the sum of equation (8) over all firms:

-0 _ 1/a
(11 N;j:(%) i(@ Yj> dj.

3.3 Prices and Wages

The product price of firm j maximizes profits, B Y, — K, subject to the demand
function (6). The solution is:

8 o*—1<at(0'-—1) >1_a_l
(12a) P = w Y; .

e—1 o o

The firm calculates its price via a constant mark-up 1/(¢ — 1) on marginal costs.
At this price, the firm produces as much as consumers demand:

(12b) Y. =C

J 7

If the labor services of different households are imperfect substitutes for each
other, the wage set by household h maximizes the utility function (5} subject to
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the labor demand function (11). The wage is chosen via a constant mark-up
1/(6 — 1) on the marginal disutility of labor:

(13a) AL —— NEL.

At this wage, the household supplies as much labor as producers demand:

(13b) NS = N¢.

3.4 General Equilibrium

Firms do not differ from one another with respect to their production function
and households share the same preferences. The distribution of wealth among
households is without significance because of the separability properties of the
utility function. Therefore, in general equilibrium, all firms set the same price
and all households choose the same wage: P= F Vje[0,1] and W= W,
YV h e [0, 1]. From equation (6), demand for good j is 8 B/P, and all firms must
produce the same amount, Y = Y;VJ e [0, 1]. Likewise, equation (13 a) implies
that all households supply the same quantity of labor services, N = N,Vhe
[0, 1]. Since the budget of all households must be

B: =

)

O

1
PY, + M, M:=([M,,
0

equation (6) and equation (12 b) determine the market clearing level of produc-
tion:

(14) Y= — .

Eliminating Y; from equation(12a) by using equation (11), W= W,, and
Y=Y, yields the aggregate demand for labor services for type h, N,, as a
function of the real wage. This function and equations (13) imply the equilibri-
um real wage:

W_s—l o
TP ¢ o—-1

(15a) 0¥ i=—=

Perfect competition in both the product and the labor market, ie. ¢, o— 00,
would yield a real wage equal to one. Heterogenous products and homogenous
labor services would imply a real wage of less than one. Thus, the real wage is
the smaller, the more competitive the labor market is compared to the product
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market. The equilibrium real wage and equations (13) determine labor supply
and demand:

(15b) N*=Nzr=1.

J

Therefore, from equation (7), production of firm j is

.. O
(15¢) Y; —a_(a— s

Equation (15¢) and equation (14) determine the equilibrium price level,

ac—1) 6
15d Pr=pPf=————M
(159) f M-

which is directly proportional to money supply.

3.5 Efficiency Wages

Suppose, for convenience, that labor services are homogenous and aggregate
labor supply exceeds aggregate labor demand in the range of real wages consid-
ered below. The production of firm j € [0, 1] depends on labor services mea-
sured in efficiency units, e; N;, according to

1 a
(16) Yj=&<eij), o€ (0,1].
AKERLOF and YELLEN [1985] assume that the efficiency factor of one unit of
physical labor input, e;, is the following function of the workers’ real wage:

W,‘f
17 ej=—a+b<?’>, £e(0,1), ab>0.

W, is the wage paid by firm j, and P is the price level defined by equation (4).
Firm j’s price F; and wage offer W, maximize profits subject to (17) and the
demand function (6). A symmetric equilibrium determines prices and quantities
as functions of the model’s parameters. The solutions are:

*._W_VVJ-_ a 1/¢
(18b) e, =e*=a ¢
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1 € w* ail
8 N* =~ i
(189) J e*<s—1e*> ’

1/ ¢ o*\&1
18d Y¥ = —
(18d) ! a<s-1 e*> ’

6 & (,{)* lia

18 P*=pP*— M| )
(13¢) / 1-6 (8—1e*>

Therefore, as in the model before, the price level is unit elastic with respect to
money supply.

4. Equilibria With Maximizing and Non-Maximizing Firms

Suppose a lump sum transfer to households increases the stock of money from
M, to M, =(1+m)M,, by m x 100 percent. At given prices and wages,
aggregate demand rises by m x 100 percent. As a response, a fraction p of firms
adjusts their prices optimally taking into account the behavior of 1 — p firms
that do not change their prices but expand production appropriately. The
insight of the early menu costs literature is that, according to the envelope
theorem, the difference between the profits of price-adjusting firms (henceforth
labeled maximizers) and the profits of firms with fixed prices (the non-maximiz-
ers) is of second order (with respect to a Taylor’s series expansion of the profit
function). But how large is this second order effect, e.g., in percent of revenue?
Thus, what is the size of fixed costs of price adjustment (menu costs) necessary
to make 1 — p firms indifferent between the option of raising their price and
paying the menu costs and that of maintaining their price and saving the menu
costs? This section provides an answer that depends crucially upon the behav-
ior of wages.

4.1 Fixed Wages

Let P,i € [0, p], denote the price of maximizing firms and B, = P*, ke (p, 1] the
price of non-maximizing firms. With a fraction p of maximizing firms, the price
level implied by definition (4) is:

1
(19) P={pP (1 —p R

and nominal GNP is:

P
20) PY=[RY,di+ [RY,dk=pRY, +(1 - p)RY,.
1]

T C—
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At prices P and F,, respectively, both maximizers and non-maximizers produce
as much as consumers demand. Thus, ¥; and ¥, must solve the two linear

equations:
P\"t PY+ M
v=(g) o7
P P
(21)
B\ PY+ M
Y, = (k) ot it M
P P
It is easily verified that
(22) Y; = Fy* 8 M =1k
i=\p) 1Zep> T

solves this system. Substituting Y; in equation (12a) by the right hand side of
equation (22) for j = 1 yields

(23) P= ¢ G_IWan MLM {171)’[P(8‘1)(1—a)1r
! e—1 ¢ o 1—-9 ! >

1
=
a+e(l —a)

This equation implicitly defines the profit maximizing price F, as a function of
wages, money supply and the fraction of maximizers. [t reflects the demand-pull
effect: it is increased demand that motivates firms faced with diminishing re-
turns to scale to raise their prices. If marginal costs are constant, i.e. « = 1, the
profit-maximizing price is independent of the level of demand, and equation (23)
implies P = B, = P*.

Equation (23) has a unique solution in P, for given values of W, m, p, and the
model’s parameters (see Appendix A). Taylor’s theorem permits an approximate
solution:

11—« P
atel—a)—pe—1(1—a

(24) P~PR +

i

Apply Taylor’s theorem to the profit function

1—¢ _ - 1/a
H(g)::(%) OB—W[———“(UG “(%) 9%} ,

All:=I1(R) — I (R) =~ [I'(A)(R, — P) + ; II"(R)(R. — B’

)

to get
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where IT'(P) and I1"(P) denote the first and second derivative of the profit
function evaluated at P. Note that P = F, at m =0 and, hence, II'(B) =0.
Eliminate (B, — P)* using (24) and divide by PY, = B Y, . The ensuing formula

55 a1 te—1 1—u z
@3) BY,” 2 an {G+el—a)—ple—1d -]

approximates the loss of profits in percent of revenue incurred by non-maximiz-
ers. This loss is a function of «,¢,p and m. Formula (25) (and more general
Appendix A) proves that the demand-pull effect is an increasing function of the
fraction of maximizers p. The underlying economic reasoning is this: the price
level increases with p. Firms keeping their nominal prices fixed experience
decreasing relative prices. Consequently, they produce the further beyond the
point at which marginal revenue covers marginal costs, the more other firms
decide to adjust prices.

Table 1 reports the results of numerical examples. For a one percent increase
in money supply it displays the loss of profits in percent of (orginal) revenue
and, in parentheses, the associated percentage increase of aggregate employ-
ment. p = 0(p = 1) marks the case where all firms but one keep their prices fixed
(adjust prices). The figures are derived from solutions of equation (23). Especial-
ly for high values of ¢, there is a significant difference between results derived
from the approximate formula (25) and those based on solutions of equa-
tion (23). The values of parameters with no obvious influence, namely 0,0, and
B, were chosen for convenience.

The loss of profits declines with the elasticity of production with respect to
total labor input, a, and rises with the elasticity of substitution with respect to
any two of the consumer goods. Labor’s share in GNP, which is not smaller
than 0.65, provides a proxy of «. Empirically plausible mark-ups? favor ¢ = 7.7.
The respective entries of table 1 are quite small, 0.008 (x = 0.75, ¢ = 7.7) percent
of revenue being the biggest. Even in a highly competitive product market,
£ = 20.1, the loss is less than 0.15 percent. These results, so far, confirm the
argument that even small menu costs might suffice to prevent price adjustment.

4.2 Flexible Wages

Suppose wages respond to increased labor demand. Then, wages satisfy equa-
tion (13a) in the case of a monopolistically competitive labor market. If the
labor market is perfectly competitive, wages satisfy equation (13a) with the

term

id 1 replaced by 1. Again, symmetry implies W, = WVh € [0, 1]. Hence,

3 See, e.g., HALL [1988] and SCHERER [1980].



150/4 (1994) Wage Flexibility, Menu Costs, and Price Level Stickiness 681
Table 1
a p € 3 3 g
2.0 5.0 7.7 20.1
0.25 0.00 0.006 0.011 0.013 0.014
(4.06) (4.06) (4.06) (4.06)
0.25 0.008 0.017 0.020 0.024
(3.58) (3.84) (3.92) (4.01)
0.50 0.011 0.029 0.037 0.050
(2.96) (3.48) (3.67) (3.92)
0.75 0.014 0.060 0.92 0.161
(2.14) (2.80) (3.12) (3.69)
1.00 0.020 0.191 0.499 4.253
(1.00) (1.00) (1.00) (1.00)
0.500 0.00 0.002 0.003 0.004 0.005
2.01) 2.01) 2.01) (2.01)
0.25 0.002 0.005 0.006 0.008
(1.83) (1.91) (1.94) (1.98)
0.50 0.002 0.008 0.010 0.015
(1.61) (1.76) (1.83) (1.93)
0.75 0.003 0.013 0.022 0.044
(1.34) (1.51) (1.61) (1.81)
1.00 0.004 0.031 0.076 0.556
(1.00) (1.00) (1.00) (1.00)
0.650 0.00 0.001 0.002 0.002 0.002
(1.54) (1.54) (1.54) (1.54)
0.25 0.001 0.002 0.003 0.004
(1.44) (1.48) (1.49) (1.52)
0.50 0.001 0.003 0.004 0.007
(1.31) (1.38) (1.42) (1.48)
0.75 0.001 0.005 0.008 0.019
1.17) (1.24) (1.29) (1.40)
1.00 0.001 0.009 0.022 0.147
(1.00) (1.00) (1.00) (1.00)
0.75 0.00 0.000 0.001 0.001 0.001
(1.34) (1.34) (1.34) (1.34)
0.25 0.000 0.001 0.001 0.002
1.27) (1.29) (1.30) 1.32)
0.50 0.000 0.001 0.002 0.004
(1.19) (1.22) (1.25) (1.29)
0.75 0.000 0.002 0.004 0.010
(1.10) (1.14) (1.16) 1.22)
1.00 0.001 0.003 0.008 0.048
(1.00) (1.00) (1.00) (1.00)

p=77,8=05m=001;06 =c¢
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demand for labor service of type 4 is

_ 1lix - 1/x
6) wi=p (X205 - (20 2 )"

The first term of the right hand side of equation (26) is the labor demand of
maximizing firms, the second term is labor demanded by non-maximizers.
Replacing N, in equation (13a) by the right hand side of equation (26), and
substituting for Y; and Y, from equations (21), yields W as a function of B. This
function can be used to eliminate W in equation (23). The ensuing equation,
written in implicit form, determines the optimal price of maximizing firms as a
function of p, m, and the former optimal price P* = E.:

B—x)n
@) T e Y
c 1—0

X (PR 4 (1 = p)RIPUTIT  p

Appendix B proves that a solution of equation (27) exists. Yet, there may be
more than one solution. Figure 1 illustrates this possibility for quite plausible
values of the model’s parameters. The reason for this ambiguity is the behavior
of labor demand, equation (26), with respect to the price of maximizing firms.
Consider P increasing the interval [P¥*, o¢). The relative price of non-maximizers
declines steadily, shifting product demand from maximizing to non-maximizing
firms. Initially, planned lay-offs at maximizing firms overcompensate planned
hiring by non-maximizing firms. The demand for labor services of type h de-
clines. When the maximizers’ share of the product market has become small,
planned hiring outweighs planned lay-offs, and labor demand rises (see Ap-
pendix C). If the elasticity of labor supply with respect to the real wage is small,
there may be three equilibria in the labor market. Since the loss of profits of
non-maximizers increases with the price difference B, — P, menu costs required
to establish the equilibrium labeled C in figure 2 are noticeably greater than
those necessary to establish equilibrium A.

The results summarized in table 2 are based — if necessary — on the optimal
price that is closest to the original price. A variety of numerical experiments
confirms the conjecture that profits lost decline with the elasticity of production
with respect to labor input, o. The figures in table 2 were calculated with
o = 0.75. The values of  and ¢ are essentially those used by BALL and ROMER
[1990] and BLANCHARD and KivyoTaki [1987]. The remaining, inessential
parameters were chosen to imply w* = 1 and N} = 1. Asin table 1, the numbers
in parentheses are the percentage increase of employment when money supply
rises by one percent and when a fraction 1 — p of firms keeps their prices fixed.

Table 2 reveals a variety of cases where profits lost are significant in size. If
all firms but one increase prices, aggregate production and employment do not
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0.0808

0.0539
T
L

v(Py)
0.0269

0.0000
(
w
(@]

I\ i
0568 08611 0.658 0.701 0.747 0.792 0.837 0.882 0.928 0.973 1.018

P;

-0.0269

«=0.85 =770 &=0=7.70 p=0.50

Figure 2

change. The wage of the single non-maximizer increases by one percent and is
independent of . Even in this case and for £ = 7.7, the non-maximizers loss
(0.126 percent of revenue) is more than fifteen times larger than with constant
wages (0.008 percent of revenue). If the fraction of non-maximizers is greater
than zero, their losses increase with . Empirically, the elasticity of labor supply
with respect to the real wage. 1/(f — 1), is small*, implying a f§ not smaller than
7.7. Combined with ¢ = 7.7, in two out of five cases profits lost are bigger than
0.5 percent of revenue. Menu costs of about 0.5 percent of revenue, however,
seem unrealistically large.

Since the wage increase is independent of o, the figures of table 2 would not
change if a perfectly competitive labor market were assumed rather than a
monopolistically competitive labor market.

Table 2 shows that there is no monoton relation between profits lost and the
fraction of maximizers. The underlying logic is that the market clearing wage
may decline with the fraction of maximizers. To see this, consider the polar cases
p = 0and p = 1. In the first case the price level does not change and production
rises by one percent, requiring nominal wages to rise by (f — 1)/ percent. If
p = 1, prices and wages rise by one percent. Thus, if f is greater than 1 + «, the
wage increase for small p exceeds one percent and must decrease as p approach-

4 See, e.g.. KILLINGSWORTH [1983].
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Table 2
a p £ £ £ €
2.0 5.0 7.7 20.1
1.2 0.00 0.001 0.003 0.003 0.004
(1.34) (1.34) (1.34) (1.34)
0.25 0.002 0.004 0.005 0.008
(1.19) (1.24) (1.27) (1.30)
0.50 0.002 0.007 0.010 0.0150
(0.98) (1.09) (1.15) (1.24)
0.75 0.004 0.016 0.024 0.047
(0.64) (0.80) (0.90) (1.10)
1.00 0.008 0.055 0.126 0.858
(0.00) (0.00) (0.00) (0.00)
2.0 0.00 0.008 0.021 0.026 0.034
(1.34) (1.34) (1.34) (1.34)
0.25 0.008 0.026 0.035 0.054
(1.00) (1.11) (1.17) (1.26)
0.50 0.008 0.032 0.050 0.097
(0.67) (0.83) (0.93) (.13)
0.75 0.008 0.042 0.076 0.221
(0.34) (0.47) (0.57) (0.86)
1.00 0.008 0.055 0.126 0.858
(0.00) (0.00) (0.00) (0.00)
7.7 0.00 0.261 0.635 0.786 1.020
(1.34) (1.34) (1.34) (1.34)
0.25 0.060 0.288 0.519 1.561
(0.48) (0.67) (0.81) (1.26)
0.50 0.025 0.146 0.310 2.154
(0.21) (0.32) (0.42) (1.00)
0.75 0.014 0.085 0.191 1.498
(0.08) 0.12) (0.16) (0.42)
1.00 0.008 0.055 0.126 0.858
(0.00) (0.00) (0.00) (0.00)
201 0.00 2.074 4.825 5.867 7.399
(1.34) (1.34) (1.34) (1.34)
0.25 0.104 0.726 2.138 698.6
(0.23) (0.39) (0.60) (11.32)
0.50 0.031 0.210 0.532 1.986E + 04
(0.08) (0.14) (0.20) (27.67)
0.75 0.015 0.097 0.229 4.326E + 06
(0.03) (0.05) (0.06) (60.86)
1.00 0.008 0.055 0.126 0.858
(0.00) (0.00) (0.00) (0.00)

«=075;0=05;m=001;0=¢
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es one. In that case the cost-push effect opposes the demand-pull effect and may
dominate or come to dominate the latter (see figure 3, Panel (b) and Panel (c),
respectively). Only if the demand-pull effect is strong enough from the begin-
ning, do profits lost steadily increase with the fraction of firms adjusting prices
(see figure 3, Panel (a)).

Consider the case shown in Panel (a) of figure 3. Suppose there are costs of
adjusting prices of size mc. At point B, each firm is indifferent between the
option of keeping its price fixed and saving the menu costs and the alternative
of raising its price and paying the menu costs. Yet, since the losses of non-max-
imizers increase with the fraction of maximizers, the Nash equilibrium at B is
unstable. A small increase of p raises profits lost above the menu costs and
triggers a positive feed-back effect that finally induces all firms to raise prices.
Likewise, a small decrease of p causes all firms to keep their prices fixed. Within
a range of money supply shocks where menu costs are smaller than profits lost
at p = 1, the aggregate supply function is either perfectly price elastic or perfect-
ly inelastic. The interdependence between the decision of one fraction of firms
to change its price and the decision of other firms to change their price is an
example of strategic complementarity in the sense defined by COOPER and JOHN
[1988].

Stable Nash equilibria require a negative feed-back effect, i.., strategic substi-
tutability. This occurs if the cost-push effect outweighs the demand-pull effect.

(41,/P,Y;)*100

ws]

«=0.75 £=1.20 £=5.00 m=0.01

Figure 3a
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(AI%/P;Y;)*100

JITTE

a=0.75 £=5.00 £=5.00 m=0.01
Figure 3b

(AN,/P,Y;)*100

/ C
mc

a=0.75 f=2.80 £=5.00 m=0.01

Figure 3¢
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In Panel (b) of figure 3 there is only one equilibrium, the point labeled B. At A,
profits lost if all but one firm maintain their prices exceed the menu costs mc.
At C menu costs are greater than profits lost if all but one firm raise prices. The
Nash equilibrium B is stable. A small decrease of p raises profits lost above
menu costs and other firms find it profitable to adjust prices, offsetting the initial
decrease of p. Profits lost increase with the size of the money supply shock. The
curve ABC in Panel (b) shifts upward if m rises. Thus, for given costs of price
adjustment, the fraction of price adjusting firms increases with the size of the
money supply shock. The aggregate supply function exhibits a decreasing price
clasticity.

The intermediate case of Panel (c) shows two stable Nash equilibria: points
labeled A and C. Either none or a large fraction of firms adjust prices. B is an
unstable equilibrium. D is not an equilibrium, at all.

4.3 Efficiency Wages

Table 3 displays the results of numerical examples of the efficiency wage model.
Appendix D covers the technical details of this model. There is a unique
optimal price R for each fraction of maximizers, and hence no ambiguity with
respect to profits lost. The formula approximating profits lost in percent of
(original) revenue,

4 ife-DErei—o) ae-11-8 ,
BY,” 2 x e

(28)

1—ua 22
lared—w—plte—na—af "’

indicates that the parameters of the effort function (17) have no influence on
profits lost. A variety of numerical experiments confirms this conjecture. They
also show that the negative impact of ¢ is quite small. This admits setting a, b,
and ¢ to imply an equilibrium real wage and an equilibrium effort level of one.

Formula (28) is equivalent to formula (25) if p = 0. In this case the price level
does not change and maximizing firms are not forced to offer higher wages that
would prevent the effort level from falling. Consequently, the efficiency model
is equivalent to the constant wage model if no firm but one adjusts its price.

Table 3 reveals that the efficiency wage model implies noticeably smaller
losses than the market clearing wage model. The largest number occurring for
a = 0.75 is about 0.9 percent of revenue (p = 1 and ¢ = 20.1). If the product
market is less competitive, e.g. ¢ = 7.7, it is ouly for p close to one that losses
exceed one tenth of a percent.

Table 3 provides evidence of the fact that profits lost increase with the fraction
of maximizers. As in the fixed wage model, this can be shown to hold indepen-
dent of the parameter values chosen. Hence, strategic complementarity exits,
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Table 3
o p £ £ € £
2.0 5.0 7.7 20.1
0.50 0.00 0.002 0.003 0.004 0.005
(2.01) 2.01) (2.01) (2.01)
0.25 0.002 0.005 0.006 0.008
(1.89) (1.95) (1.97) (1.99)
0.50 0.004 0.010 0.012 0.017
(1.64) (1.80) (1.86) (1.95)
0.75 0.007 0.024 0.034 0.056
(1.14) (1.44) (1.58) (1.82)
1.00 0.016 0.127 0.315 2.463
(0.00) (0.00) (0.00) (0.00)
0.75 0.00 0.000 0.001 0.001 0.001
(1.34) (1.34) (1.34) (1.34)
0.25 0.001 0.001 0.002 0.002
(1.30) (1.31) (1.32) (1.33)
0.50 0.001 0.003 0.004 0.005
(1.20) (1.24) (1.27) (1.30)
0.75 0.002 0.007 0.010 0.017
(0.93) (1.04) (1.10) (1.22)
1.00 0.009 0.057 0.128 0.860
(0.00) (0.00) (0.00) (0.00)

0=05a=1;b=2;¢=05m=0.01

and menu costs of a given size imply that stable equilibria have either none or
all firms adjusting prices.

5. Conclusion

Fixed costs of price adjustment can prevent firms from changing prices in
response to an aggregate demand shock. This is beyond doubt. But, I believe,
the really important question is whether they can explain the observed correla-
tion between real and nominal GNP, which is neither zero nor one. This paper
shows that the answer depends critically on the behavior of wages.

Fixed wages as well as efficiency wages imply that profits lost by firms that
do not adjust their prices are quite small. In most of the cases studied, menu
costs of acceptable size could prevent price adjustment. In both models the
strategic interdependence between price adjusting and non-adjusting firms is
complementary. Hence, either none or all firms adjust their prices. Any inter-
mediate case is unlikely to be observed.

This does not hold true with wages that are set either monopolistically or at
market clearing levels. If labor supply is sufficiently inelastic with respect to the
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real wage, strategic substitutability may arise. What will be observed are equi-
libria in which a fraction of firms adjusts prices while other firms keep their
prices fixed. The elasticity of real GNP with respect to nominal GNP takes
values in between zero and one and declines with the size of the demand shock.
Furthermore, real wages are procyclical, which is in line with empirical evi-
dence.? Unfortunately, and especially with a sufficiently competitive product
market, menu costs required to imply these results seem unrealistically large.
The conclusion is somewhat startling: the empirically relevant outcome re-
quires unrealistically large menu costs.

Zusammenfassung

Ich untersuche die Bedeutung der Lohnbildung fiir Preisniveaustarrheiten im
Rahmen des Menu Costs Ansatzes. Die Nominallohne sind flexibel und die
Zahl der Unternchmen, welche ihre Preise an Nachfrageschocks anpassen, ist
variabel. Fiir empirisch plausible Parameterwerte entsteht strategische Substi-
tutionalitdt zwischen den Unternchmen. In diesem Fall ist die Preiselastizitét
der aggregierten Giiterangebotsfunktion weder null noch unendlich, aller-
dings sind mit dieser Situation unrealistisch grofie Menu Costs verbunden. Bei
Effizienzlohnen und starren Nominalldhnen passen entweder alle Unterneh-
men die Preise an oder halten sie konstant. In beiden Fillen sind die fiir starre
Preise erforderlichen Menu Costs sehr klein.

Appendix

A) Existence of Solutions of Equation (23)
Let

—1 " _1 0 (1-ayn
(A1) l//(PJ:( o W> (0((0' ) 0M1> pe-Du-ar _ p.
G

& — o 1— '

with 7 defined in (23). This function is continuously differentiable in P,. It is
positively valued at P, = P¥*,

(A2) Y(P, = P*) = P*[(l + myt o 1] > 0form > 0,
and approaches — o0 as P,— 0. Thus, there must be at least one P* € (P*, «c)

> More recent empirical papers on this subject are GARMAN and RICHARDS {1992} and
SoLON, BARSKY and PARKER [1994].



690 Alfred Maussner JITE

solving equation (23). At P* the derivative of ¥/ (P) is

V(P¥)=s—1—-sn<0,
(A3)

Ol

RY,di

P- 1-¢
s:=p<l—)’> =~ py €l0, p] for Pe[P* ),

where s is the market share of maximizers. Thus, Y (P) cuts the abzissa only once
and P¥ is unique.

B) Zeros of Function (27)

It is easily seen that the function defined by equation (27) is positively valued at
P, = P* and approaches —oo as P,—oo. Hence (27) has at least one root
P* € (P*, o0 ). The derivative of (27) evaluated at P* is

W (B*) = (o + (e — 1)(B — D)]s — e(B — 1)S(B*) — (1/m)),

(R*) = B [1 (P
)—e/a ?

(B1)
T p(B¥) 7 (1 = p)(P* 1 —p} for B* e [P*, o).

o(R*):

This expression, with s as in (A 3), is assuredly negative if f§ = 1 but may be
positive if § is large. In this case, there must be at least three roots of y(P).

C) Properties of Function (26)

Substitute Y; and Y, in equation (26) by the right hand side of (22). Since the
price level defined in equation (19) is also a function of P, the result,

_ _ lja
Nu(B):= (pR ™" + (1 = p)R™")

—1) 0 s
(=D Oy hm) peve
o 1-6

(C1)

portrays market demand for labor of type h as a function of P,. At P, = P*,

(C2) N,(P. = P¥) = N¥(1 + m)!"* > N¥.
Furthermore,
(C3) lim N,(R) = (14 m'*(1 — p)*"V2N¥ > N, (B = P*) > N}.

P, >«
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The derivative of (C1) at P, = P* is

dN,(F,=P*) _ pNy

€4 dP, o P*

1+m' <o0.

Thus, when P, departs from P* and approaches infinity, labor demand first
declines but finally increases beyond N,(P, = P¥*).

D) Equilibria with Maximizers and Non-Maximizers in the
Efficiency Wage Model

The profit maximizing price of firm i is

W*
(D1) P= " T eNyte,

g —1 e*

where W;* = w*P. The production function implies
e*N; = (aY)'",

and Y, is given by (22) for j = i. Hence, (D 1), the production function, and
equation (22) imply

*\an 0 (1—a)m
(D2) w(g):( ¢ “’) <°’ M0(1+m)> plte-ba-al_ p.

e—1e*) \1—-6

This function, with = as defined in (23), determines the optimal price of maximiz-
ers. At P, = P*, it is positively valued and approaches — oo as P,—o0. Hence,
at least one root P* ¢ (P*, oo ) exists. The derivative of (D2) evaluated at
P =F*is

(D3) Y(F=P)=5s-1-(1-0n<0,

with s as defined in (A 4), proving the uniqueness of P*.
Approximately, the difference between the optimal price and the price of non-
maximizers as derived from (D2) is
1—a

(D4) Pi_P":[ochs(l—tx)]—P[a+(3—1)(1_“)]Pkm.

Sinée W, = w*P the difference between the optimal wage and the wage of non-
maximizers is
pl —a) _p
m .
fo +e(1 —a)] —pla+(e— DA -]

Taylor’s theorem and the optimality of the former price P* = P, and wage
W* = W, imply

(D5) W, — W, ~

i
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1 11 11 P— P
(D6) All ~ (P — R, W_m)< PP PW>< i k>7
2 Iyp Hyw W, — W,
where
(D7) n e 1Y
PP — an PJ*
and
(1 =<&N¥
(D8) waz_Tf

are the second derivative of the profit function with respect to price and wage,
respectively, both evaluated at m = 0. The mixed second partial derivatives of the
profit function can be shown to be zero at m = 0. Insert (D7) and (D 8) into (D6),
consider [1py, = IIyp = 0, and divide by P* Y* in order to get equation (28).
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