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Abstract 

Taking a Preference SQL approach, a context-aware vacation planner for on-site activities is 
proposed to automatically generate vacation plans based on user preferences and situational 
aspects. Using different levels of abstraction, the result of the corresponding preference queries 
is always optimal and the result size is minimal. It consists of stereotype-specific and context-
aware activities which are combined to create daily or even multi-day plans of activities. The 
correctness, completeness and optimality are assured by a preference calculus of strict partial 
orders. User preferences are initially collected and defined by a feedback questionnaire. The 
application is modelled by adequate preference compositions and the Preference SQL runtime 
system efficiently evaluates the resulting preference queries. The prototype proves that soft run-
time requirements are met. Initial tests with real data from the industry-leading outdooractive 
platform indicate that the database-driven preference technology can successfully be employed 
to provide added value for vacation planning. 

Keywords: vacation planner; timetable; preference modelling; context awareness; optimality; 
best matches only semantics. 

1  Introduction 

Up to now, tourists inform about interesting vacation destinations by travel agencies, 

social relations, and online information. If the destination is chosen, on-site activities 

are influenced by the tourist information, landlords, and indigenous people. Their 

experience assigns roles, associated activities and interests to the tourists. These insid-

ers give hints or suggestions, which seem appropriate. Often, even bad weather alter-

natives are offered to increase tourists’ customer satisfaction by taking into account 

the actual context. 

Anyhow the behaviour of clients is changing substituting analogue information by 

digital. These native digitals expect 24/7 service everywhere. Typical up-to-date app-

lications like www.tripit.com stick fixed points like airports or hotels together with 

driving directions to generate a linear vacation itinerary. Döring and Preisinger (2008) 

enhanced the underlying concept of dynamic packaging by a personalised search 

model based on preferences. At first, www.inspirock.com  focuses on touristic points 

of interests which are connected by different modes of transportation and accom-

modation facilities afterwards. Obeying the precept of dichotomy, tourists often stay 

or even have to stay in a region and react to opportunities depending on circumstances 

changing every day. Thus, stereotype-specific and context-aware plans for on-site 

activities or attractions are desirable. A generic architecture implemented as a proto-

type is proposed which relies on databases and preferences generating best-suitable 

plans of on-site activities. 

Planning of activities is a well-known branch of Artificial Intelligence as described 

e.g. by Ghallab, Nau, and Traverso (2004). Optimizing tasks, duty rosters, timetables, 

and schedules are assignment problems further explained by Burkard, Dell’Amico, 

and Martello (2012). However, preferences defined as strict partial orders are rarely 

supported by these approaches. Our prototype relies on the widespread and accepted 

use of SQL and applies both technologies for tourism applications. 

http://www.tripit.com/
http://www.inspirock.com/
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2 Basics of Preference-based Modelling and Querying 

The theory of preferences was first introduced by Kießling (2002) and Chomicki 

(2003).  

 

 Definition Preference P = (A, <P): 

 

Given a set A of attribute names, a preference P is a strict partial order P = (A, <P), 

where <P ⊆ dom(A) × dom(A).  

 

This initial proposal of Kießling (2002) was implemented by Kießling and Köstler 

(2002) as Preference SQL, a complete run-time system. Preference SQL is still further 

developed by Kießling et al. (2011). All base preferences are derived from a base 

preference called SCORE(anyAttribute). This preference denotes that all objects 

whose score value with regard to anyAttribute is smaller than others are considered to 

be better than those. 

The use case of section 4 relies on the following specialisations of SCORE: 

 LESS THAN(a, v) or AROUND(a, v) using an asymmetric or symmetric distance 

between the desired value v and others of an attribute a to be minimised as well as, 

 HIGHEST(a) or LOWEST(a) for maximising or minimising the values of an 

attribute a. 

These fundamental preferences as well as any resulting complex preferences (pi) are 

combined by the following complex preferences: 

 The clause pi AND pj is stating that both preferences have the equal importance. 

 The clause pi PRIOR TO pj is stating that preference pi is more important than pj. 

Semantical and syntactical details can be found in the literature mentioned above. The 

most import feature of preference queries underlying this sound and complete theory 

of preferences as strict partial orders is the property of having best matches only 

(BMO) that guarantees the correctness and the optimality of the result set of prefe-

rence queries. 

This classical preference theory has to be reinterpreted in the context of hierarchical 

data structures stemming from the requirements of a planning application. Starting 

from Aristotle’s quotation “The whole is more than the sum of its parts” the relation 

Aristotle looks like: 

Table 1. Hierarchical data structure 

Whole_name Part_name Part_attribute 

… … … 

a_b_c a 1 

a_b_c b 2 

a_b_c c 3 

… … … 
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This relational representation corresponds to a hierarchical data structure (tree) as 

shown in fig. 1: 

  

 

 

 

 

 

 

Fig. 1. Part-whole hierarchy 

Aristotle’s gem may be expressed by: 

SELECT  whole_name,  

  -- A(.) 

SUM(part_attribute)  +  COUNT(part_attribute) - 1 

AS whole_attribute 

FROM  Aristotle 

GROUP BY whole_name 

This query focuses on the higher abstraction level “whole” by taking into account the 

lower abstraction level “part”. Clearly, the result of this query may be used as a 

subquery of a structural identical query treating the just created wholes as parts of 

further wholes, etc.  

Having a fixed count of iteration this process of self-similarity may be formulated as 

SQL2-query of iterated subqueries. But the resulting query is complex and the count 

of iteration is often unknown, however some conditions of termination are a priori 

known. Thus, the available recursion of SQL3 is the white knight. 

Also the relation “Aristotle” can equivalently transformed to a non-standard relation 

using set-valued attributes like: 

Table 2. Hierarchical data with set-valued attributes in SQL3 

Whole_name Whole_attribute Part_names Part_attributes 

… … … … 

a_b_c 8 {a, b, c} {1, 2, 3} 

… … … … 

 

The attributes “Part_names” and “Part_attributes” are set-valued. No order exists 

among the set members. However, the enumeration of the set implicitly defines a total 

a 

a_b_c  

c b 
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order on the members of the set which can be interpreted as sequence. Such a stack of 

activities is represented in condensed form. Both interpretations of partial order or 

total order are useful in the context of planning, as shown later on. 

The reinterpretation of the Kießling’s preference definition is intended by following 

extension. 

 Definition Preference P’ = (A, <P’): 

 

Given a multiset A of attribute names, a preference P’ is a strict partial order defined 

as  

P’ = (Ƥ(A), <P’),  

 

where <P’ ⊆ F(Ƥ(A)) × F(Ƥ(A)). Ƥ(A) is the power set of the multiset A, and F(Ƥ(A)) 

is a function whose input parameters are multiset members and the output is of type 

FLOAT. The involved operators have to be commutative. A(.) acts as an agglomerate 

like the SQL-aggregation on each member of the power set instance. 

 

Simplifying the multiplicity function for multisets to the set indicator function of 

normal sets and constraining the power set Ƥ(A) to sets of size 1, each set member is 

interpreted as an attribute value and the agglomerate A(.) is defined as identity. This 

construction yields the original definition of the preference P = (A, <P). Zhang and 

Chomicki already introduced preferences over sets in 2011. But they restricted their 

work to sets of fixed cardinality. We insist on the whole power set of a multiset. 

 

Aristotle’s examples above defines the agglomerate A(.) as sum of “part_attribute” of 

all set members of Ƥ(A) plus the count of set members of Ƥ(A) minus 1, where A is 

“part_attribute”. 

The power set Ƥ(A) urges the cooperation of SQL3 and Preference SQL defined as an 

extension of SQL2 as independent components to achieve following goals: 

 Handling of hierarchical / recursive data structures by recursion of SQL3 

 Transformation of set-valued types of SQL3 to atomic types of SQL2 by 

SQL3 

Therefore a smart integration exists, since new preference constructors are not 

necessary. As first step, the interleafing of Preference SQL and SQL3 can be instru-

mented by combining SQL3 and Preference SQL in one script materialising the 

results of SQL3. 

3 An Architecture of Context-aware and Preference-based 

Planners 

In this section, a generic preference-driven architecture is proposed from a question-

naire as starting point to preference modelling and preference evaluation finally. 
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3.1 Questionnaire as Starting Point 

A starting point of context-aware and preference-driven planners consists of: 

 Defining a controlled vocabulary as basics. 

 Using this vocabulary to define a questionnaire by getting feedback from users.  

Controlled vocabularies base on terms having semantic relations among each other 

which are described by thesauri (ANSI/NISO Z39.19 [ANSI], 2005). Thus applica-

tion-specific languages are defined on a solid base. Having technical systems imple-

menting an application, the same model can be used by replacing thesauri with 

taxonomies or even ontologies defining classes, individuals, attributes, and relations. 

In any case, the closed world assumption (CWA) holds relying on a finite description 

of the world. The CWA states that only facts assigned as true are true. The CWA 

excludes the emergence of new terms or the use of synonyms known by clients of an 

application but unknown to the controlled vocabulary. Thus the open world assump-

tion is preferable in dynamically changing applications. Having a database-oriented 

architecture NULL-values are paving the way to tackle this task as described by 

Gottlob and Zicari (1988). Preferences can also handle NULLs as demonstrated by 

Endres, Roocks, Wenzel, Huhn, and Kießling (2012). Thus the proposed generic arch-

itecture is independent of the closed or open world assumption. 

After having defined the controlled vocabulary, it is convenient to gather the feedback 

of users through a questionnaire. The questionnaire approach can be applied as a web-

based or traditional interview, in a stand-alone manner or directed by an interviewer. 

Interviewed people answer questions formulated in terms of the controlled vocabulary 

by evoking their rating. The procedure generates a Likert scale as defined by Likert 

(1932). The used terms, as part of the controlled vocabulary, have to be mapped to the 

attributes of relations relying on a database-oriented architecture.  

Since the Likert terms are a subset of the controlled vocabulary and people do not 

necessarily answer all questions of a questionnaire, the problem of how to handle 

incomplete feedback arises. Based on the assumption that most terms can be arranged 

by taxonomies fulfilling the Liskov substitution principle (LSP) introduced by Liskov 

and Wing (2001), the rating of a term is valid until the rating of a more restricted sub-

term got a different rating as shown in fig. 2: 

 
 
 
 

 

 

 

Fig. 2. Incomplete feedback and the consequences of LSP 
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Any taxonomy of terms is represented by nodes and blue-dotted arrows in a tree as 

shown in fig. 2. Nodes with black outlines correspond to the feedback of a user. The 

colour of a node is representing a possible class of feedback. If the root of the tree has 

not been rated by a user, a default rating has to be assumed (e.g. NULL shown by 

blue). 

The questionnaire may be used as an 

 Input for statistics after having collected a lot of interviews or as a 

 Behaviour model of stereotypes.  

The behaviour model of a stereotype as illustrated in fig. 2 is defined explicitly by a 

domain expert or through an analysis of user feedback from multiple interviews.  

Now, preferences come into play by using the rated taxonomy of fig. 2 in this way: 

 All items with the same rating constitute a layer.  

This procedure directly results in a LAYEREDl-preference as defined by Kießling 

(2002). 

Assuming five layers, the transformation of the questionnaire may generate the fol-

lowing LAYERED5-preferences: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Construction of two stereotype-specific LAYERED5-preferences 

Each layer of each preference consists only of terms. Trees inside a layer just visua-

lise the provenience. Four empty layers exist in fig. 3. NULL values in blue are 

handled e.g. as yellow values. According to Kießling (2005) all items of the same 

layer are substitutable. Users are rating all of them as equally good known as regular 
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SV-semantics stating SV as acronym for substitutable values as shown by the left 

preference. 

Looking at the provenience, the right preference is evident by introducing finer SV-

classes shown as black rectangles inside layers. Layers and also SV-classes consist of 

disjoint sets of items. SV-classes are named by the root of the corresponding subtree. 

Specific SV-semantics is shown by the right preference. Now, only members of the 

same SV-class are substitutable, but members of different SV-classes are not sub-

stitutable, even if they belong to the same layer as introduced by Kießling (2005). 

This construction is favourable having very different semantic concepts in the original 

taxonomy. Thus, they are not substitutable and the semantic diversity is obtained by 

composing a complex preference as in case of planning. In summary, specific SV-

semantics widens coarse-grained classes to fine grained classes.  

Having taxonomies, the importance of the involved taxonomies is reflected by prefe-

rences having  

 Equal importance or, 

 Having more, or having less importance respectively. 

Thus, the complex preference constructors of Kießling (2002) can model user or 

system preferences, which are influenced by the stereotypes and the context as shown 

in the next section. 

3.2 Context-aware Top-k Lists as Basic Set 

Already Roocks, Endres, Mandl, and Kießling (2012) have demonstrated a model to 

construct context-aware preferences by the prioritisation of context-specific prefe-

rences assigned to each basic preference.   

The planning system needs a basic set of at least k elements to generate plans. Thus, 

the system relies on the top-k operator of the Preference SQL system, guaranteeing 

that the result set has just size k.  

3.3 Combinations of Elements of a Basic Set as State Space 

From the above mentioned construction, each element of any context-aware result set 

is optimal with regard to the underlying preference. Next, combinations of these 

optimal elements are generated.  

For planning each combination acts like a group subsuming its parts as a whole and 

having an appropriate agglomerate function A(.). A combination is a subset of a basic 

set aka activities. The order of execution inside the combination is out of interest. 

Each node has an assessment by the agglomerate. The state space is characterized by 

properties like:  

 Repetition of elements of the basic set is forbidden, allowed, or restricted. 

 Hard restrictions expressed on state space variables limit the state space size. 

 Soft restrictions expressed on state space variables may model user or system pre-

ferences. 

 The result of an agglomerate function is subject to a stereotype-specific preference 

to get appropriate combinations fulfilling the BMO-property. 
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 The state space grows exponentially. 

According to Chapman (1987) nonlinear planning is sufficient. Thus, a plan is a par-

tial order of operators in which an operator corresponds to an element of a context-

aware top-k list mentioned in section 3.2. Hence, the planning result is always a non-

linear plan which is less prone to re-planning due to changes of context.  

Following the principle of hierarchical planning as described by Wilkins (1986) a 

plan refinement process is proposed by using the output of a lower abstraction level as 

input of a higher abstraction level iteratively until a plan is created.   

After the requirements of the planning task are apparent, the projection (part_name, 

part_attribute) of the excerpt in table 1 is the basic set in order to generate its power 

set as state space (see also its representation as set-valued relation shown in table 2), 

depicted in fig. 4. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Power set as a state space of the basic set {a, b, c} 

The nodes are the elements of the power set. The edges reflect all possibilities to 

generate the nodes of layer i with the help of the nodes of layer i- 1. The structure is a 

lattice. The root of the lattice has per default NULL as value for the considered 

attribute, since “any attribute of [doing] nothing” is indetermined. Each application 

has to decide whether this state makes sense. Remember the NULL-handling of 

Preference SQL (Endres 2012) which maps NULL at runtime to any level or distance 

without any change of the underlying model. 

{a} 
{1} 

{ } 
{NULL} 

{c} 
{3} 

{b} 
{2} 

{a, b} 
{1, 2} 

{a, c} 
{1, 3} 

{b, c} 
{2, 3} 

{a, b, c} 
{1, 2, 3} 

NULL 

1 2 3 

4 5 6 

8 

0 

1 

2 

3 

Depth: 
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The blue numbers at the left of each node show the return value of A(.) having the 

numbers inside of each node as input. The states and their associated agglomerated 

attribute in blue are settled at a higher abstraction level than their components in black 

reflecting the structure of table 1. Since the states can be constructed in different ways 

by following all paths from the root to the interesting state, a spanning tree shown in 

green avoids redundant work while generating the states. Having a database 

perspective, only the states and their agglomerated attributes are of interest modelling 

aspects at the whole-level. Having a hierarchical / recursive data structure, recursion 

of SQL3 generates the desired data structures. Having no a priori knowledge which 

states are illegal, the whole state space – a complete lattice – is generated. However, 

the use of a spanning tree involves an artificial dependency since children depend on 

the existence of their unique father and furthermore on the existence of all their 

ancestors. When heuristics (e.g. preferences) come into play at each depth during the 

generation process, a spanning tree algorithm is inappropriate, when the heuristics 

cannot guarantee monotony. A bad father swept off by the heuristics kills also its 

better descendants. 

If only states are regarded the independence of its components is implicitly an 

assumption. No order is defined. The components behave like a set. Regarding the 

agglomerated attribute at the whole-level the function A(.) has to be independent of 

the order of the input parameters. No history or a stack trace comes into play. This 

feature matches nicely the concept of partial plans having no order (dependency) 

defined on its activities. Details like the runtime of generating the power set of 

activities as state space are found in the appendix at the section A.7. 

Following the principle of self-similarity or hierarchical planning as described by 

Wilkins (1986), multi-day plans obey the “part-whole” pattern as shown in fig. 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Hierarchical planning of multi-day plans 
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Elements of a lower abstraction level may be reused several times by elements of a 

higher abstraction level indicated by blue arrows issuing a one-to-many relationship. 

The reuse of components may be interpreted as “conflict” or “shared resource”. In the 

use case of vacation planning, the pragmatics is boredom. A refinement of the plan-

ning architecture is depicted in fig. 7 by reusing the concept of state spaces at 

different abstraction levels following the part-whole pattern. Also a preference 

evaluation takes place at each abstraction level to receive just the best matching 

objects. 

Regarding the dichotomy of nodes and edges, another interpretation of fig. 4 is 

possible. The set of all paths starting from the root { } as starting point s and having 

different length is generated. Now a path p1: s->a->a_c and a path p2: s->c->a_c have 

the same endpoint, which means they are equivalent in a node-oriented interpretation. 

In an edge-oriented interpretation paths can be handled different with respect to the 

agglomerated attribute, which is now associated to a path. The value may depend on 

the predecessor.  

An equivalent transformation of the state space of fig. 4 into a search space is shown 

in fig. 6: 

 

 

 

 

 

 

 

 

Fig. 6. Equivalent search space of the state space of fig. 4 

Each node consists of the triple (activity; nodeAttribute; reuse). Reuse indicates the 

maximal count of visiting a node. To each directed edge the attribute “edgeAttribute” 

is assigned. For simplicity, blue bidirectional edges use two numbers: one for each 

incoming edge. The reuse is constraint to one. Therefore each path contains every 

node only once. All paths are generated from the starting point s to the endpoint e. 

Since the basic set {a, b, c} has three members, the path length ranges from 1 to 4. 

Each path now encodes the order of generation resulting in a total plan of activities. 

The count of total plans vastly exceeds the count of partial plans.  

Following a path, the function A(.) is defined by:  

 SUM(edgeAttribute)  + SUM(nodeAttribute).  

E.g. the path s->a->b->c->e has the agglomerate A(.)= 1+ 1+ 2+ 1+ 3+ 1+ 0+ (-1) = 8 

which corresponds to the state {a, b, c} with A(.)= 8 in fig. 4. The “empty” activity 

(a;1;1) 

(s;0;1) 

(c;1;1) 

(b;1;1) 

(e;-1;1) 
NULL 

1 
2 3 

0 

1 

1 3 

2 
3 

2 

0 
0 
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encoded as path s->e has the agglomerate A(.)= NULL -1 = NULL which is handled 

by the NULL handling of preferences in Endres (2012). 

Details like the runtime of generating the power set of a multiset of activities are 

found in the appendix at the section A.8. 

As a special case of fig. 6, predefined graphs can be interpreted as an abstraction of 

maps. Having specified a starting point s and an endpoint e, the recursion takes care 

of the predefined transition relation of the graph to generate all paths from s to e 

obeying some conditions and preferences. Suitable routes are the outcome of this 

planning process. 

3.4 Preference-based Evaluation of a State Space 

As proof of concept the relation “top100” was created as set of (id, attribute)-tuples 

ranging from 1 to 100. By creating a view, any top-k list with k<= 100 can be created 

as the basic set of experiments by creating different state spaces and by evaluating 

preferences on these state spaces. 

First, we assume no repetition of elements. Thus the power set of the basic set having 

k elements is the desired state space. 

Table 3. Execution time [s] of generating the power set based on k elements 

k Execution time [s] 

5 0,138 

10 0,144 

15 1,057 

20 28,567 

Regarding table 3, an Intel i7-3540M notebook with 3.0 GHz and 16 GB was used. 

Obviously, smaller values of k fulfil the soft time constraints to generate the power 

set.  

Second, we release the hard restriction of having no repetitions. A multiset is a repre-

sentation of the state space whereupon the count of an element states the maximum of 

repetitions of this element. A power set is clearly a specialization of a multiset. The 

execution time of smaller multisets is similar to that of power sets shown in table 3. 

Preference queries are executed on these state spaces whereupon state space variables 

may be involved and interpreted by the application as shown in section 4. 
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4 Use case - Vacation Planner from Backend to Frontend  

Having a database with relations like tours, points of interest (POIs), offers, and taxo-

nomies of activities or POIs, the vacation planner constructs partial plans as sugges-

tions of activities and delivers the result through a user-interface (UI) as illustrated in 

fig. 7. The resulting timetable of the vacation planner considers the stereotype 

assigned to the user, the region, and the situational context of users with the weather 

situation clearly having the most important impact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Software architecture of a vacation planner from backend to frontend 

Top-k preference queries (oval) are used to get the k-best results based on the input 

relations and the context-aware and stereotype-specific preferences. The preference 

queries are refined in the following section 4.2, 4.3, and 4.3. Some transformations 

Context-aware, stereotype-specific top-k list 

Equivalence classes of top-k list 

State space of (equivalence classes of) top-k list 

4.2 Top-k preference query 

4.3 Top-k preference query 

Top-k list of daily plans 

State space of top-k list of daily plans 

4.4 Top-k preference query 

Top-k list of multi-daily plans 

Fig. 8 UI: timetable 

Tours, pois, offers, regions, stereotypes, context 

Preference 

SQL 

Postgres 

9.3 
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SQL 

Postgres 

9.3 

Preference 

SQL 
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(grey) like the building of equivalence classes to reduce the state space, as well as the 

following generation of state spaces, are necessary to construct input relations for 

successive preference queries. Three stages corresponding to Hierarchical Planning 

(Wilkins 1986) are pipelined to generate multi-day plans of which one is delivered to 

the customer per UI. 

4.1 Questionnaire 

Analysing the database of outdooractive.com, the richness of its semantics is expres-

sed by following numbers of concepts (see table 4). The value of 1 for depth of taxo-

nomy indicates that no hierarchy of concepts exists.  

Table 4. Size and kind of Controlled Vocabulary 

Semantics Count of concepts Depth of Taxonomy 

POIs 654 4 

Activities 68 4 

Offers 112 3 

Relations 162 1 

Annotations 194 1 

 

Next, concepts and stereotypes have to be matched by bias and aversion i.e. prefe-

rences. Influenced by the stereotypes described by Gibson and Yiannakis (2002), each 

semantic concept is rather explicitly denoted by numbers between 1 and 5 according 

to our model-driven approach and using a Likert scale.  

Context is modelled by  

 Weather (good / bad) and 

 Season (summer / winter). 

The weather forecast obtained through the outdooractive.com API is valid for three 

days and structured in time intervals of three hours. Changes of weather require and 

trigger the re-planning of vacation plans according to the new conditions. At the 

moment of planning, the actual forecast is used and the weather conditions serve as 

guards of integrity to be checked. 

The region of any POI, activity, and offer is delivered by some of the above men-

tioned semantic relations. 

Stereotype, region, and context act as keys to retrieve the context-aware and stereo-

type-specific top-k lists and are generated by a preference composition as shown next.  
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4.2 Preference Composition 

Having an application-specific view, those tours, attractions, and offers are preferable, 

which fulfil the following properties best:  

 Since each stereotype has rated the available activities and they are convenient 

with respect to season and weather, only those activities were preferred which are 

better rated by its associated questionnaire. 

 Activities are as important as POIs. 

 Following the same principle as for activities, the hierarchy of POIs is transformed 

to a hierarchy of layers. Thus, those activities are preferred, which guarantee more 

attractive POIs than others. 

 The knowledge of the provider is encoded in a ranking for each touristic object. Its 

experience is as important as activities or POIs. 

The above specification creates the following, syntactically reduced, preference ex-

pression: 

PREFERRING 

activity LAYERED ($best, $good, $equal, $bad, $worst)  AND  

((count_of_best_pois HIGHEST  PRIOR TO  

  count_of_good_pois HIGHEST  PRIOR TO  

  count_of_equal_pois HIGHEST)  PRIOR TO  

 (count_of_worst_pois LOWEST  PRIOR TO  

  count_of_bad_pois LOWEST))     AND  

ranking HIGHEST 

The result set consists of objects of the types “tours”, “pois”, and “offers” and it con-

tains the prerequisites as keys to deliver the context-aware and stereotype-specific 

best objects as top-k lists. The terms “$best”, … , “$worst” are Preference SQL-speci-

fic macros which substitute the macro names by sets of concepts resulting from ade-

quate queries to get just those concepts of the questionnaire with a specific rating. The 

middle term of the above expression in brackets is a priority chain and generates an 

ordered result list. The resulting specific top-k lists are used as basic set to generate 

daily plans. 

4.3 Daily Plan as a Parametric Component of Total Duration 

After generating a context-aware and stereotype-specific relation per region, the 

BMO-property of preferences guarantees the optimality of each tuple. Thus, the task 

consists of finding appropriate combinations of tuples to fill the time slots of a daily 

plan.  

The attribute “duration” of type “float” is evaluated for all activities such as tours, 

POIs, and offers - i.e. activities. The combination of activities requires an agglomerate 

to obtain a total duration. Since transfer times were excluded to reduce the complex-

ity of the initial prototype, the implemented agglomerate generally assumes 1 h as 

transport time between the activities that are suggested for. Clearly, each single acti-

vity may be used to generate the state space of its power set but often the basic set is 

already too large. Thus, equivalence classes of activities having n hours of duration 

are used to avoid the complexity of the state space. Since the equivalence classes may 
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contain several elements, a multiset is used as state space. This discretization nicely 

corresponds to time slots of a timetable shown at UI. A finer discretization generates 

more equivalence classes. The present prototype hints that a lower bound of ½ hour is 

computationally manageable. 

With regard to different weather conditions during a day, the total duration is handled 

as a parameter. Like a target function to be maximised, we formulate the specification 

that the total duration should be para_duration. It is always more agreeable if the dur-

ation is shorter than longer. The according preference looks like:  

PREFERRING 

(total_duration LESS THAN $para_duration   PRIOR TO 

 total_duration AROUND $para_duration) AS duration_preference 

These heuristics yields the desired behaviour of “good” daily plans. The name of the 

preference is duration_preference. According to the BMO-property tourists get per-

fect plans just having a total duration of para_duration or, alternatively, shorter ones. 

Since Preference SQL contains the WHERE-clause of SQL, the total duration is re-

stricted by 24 hours reducing the size of the state space. 

The resulting plans are nonlinear plans (Chapman 1987). There is no order of execu-

tion inside a combination of activities. Also the starting time is out of the scope hav-

ing stereotypes and no individuals. The arrangement of activities is left to users at UI. 

At the end, the involved equivalence classes and their count of use are mapped to the 

atomic activities. 

The above preference may be enriched for the stereotype “young & fun” by adding a 

bias of diversity having the same importance:  

PREFERRING 

duration_preference      AND 

count_activity HIGHEST 

In summary, the algorithm generates context-aware and stereospecific daily plans of a 

region and presents them as a vacation planner timetable for tourists. 

4.4 Multi-Day Plan as a Parametric Component by Number of Days 

As shown in the previous section, the preference-driven approach generates a set of 

optimal daily plans with respect to the total duration. The size of this set may be 

controlled by a TOP-k clause. The parameter of the next planning stage is the number 

n of days. Regarding the reliability of weather forecasts, the number of days is set to 3 

per default, without loss of generality. 

The repetition of the same activity is termed as a conflict to avoid that tourists are 

bored by a repeating suggestion. At this abstraction level, the state space offers the 

concepts of: 

 Number of conflicts and 

 Average distance of conflicting parties. 

The specification demands a minimal number of conflicts. In case of conflict, a con-

figuration of daily plans should maximise the average distance between the con-
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flicting parties. Consequently, the target function is translated in the following 

preference: 

PREFERRING 

conflict_count LOWEST     PRIOR TO 

average_distance_among_conflicts HIGHEST 

Following the self-similarity of our design the BMO-property once more guarantees 

the optimality of the result set. It contains all optimal context-aware and stereotype-

specific multi-daily plans per region to be displayed by a timetable at UI.  

Finally, a linear timetable is constructed according to the extension theorem of 

Szpilrajn (1930). For every strict partial order, the generated (multi-)day plan is 

contained into a total order as shown in fig. 8: 

 

 
 

Fig. 8. UI as timetable of the stereotype “Family” in the region Allgäu  
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The timetable is a marketing vision of outdooractive. The itinerary offers context-

aware and stereotype-specific suggestions to tourists. It provides an interactive 

interface to arrange activities and to augment the plan with social events, meals, etc. It 

is evident that all activities follow the weather timeline of the forecast generating 

blocks of parametric total length (sub-daily plans). 

4.5 Implementation and Performance 

Details of the implementations are found in the appendix. The implementation relies 

on Preference SQL and SQL3. Both systems are running on Postgres databases. The 

run-time of the entire planning process is about one second for typical examples. Note 

that this process is not even a time-critical task. 

The reactivity of the prototype already fulfils the soft time constraints of the applica-

tion. Further runtime improvements are surely achieved if the Preference SQL proto-

type is exchanged by EXASolution 5.0. This preference implementation is supplied 

by the world’s fastest analytic database of www.exasolution.com as proven in the 

TPC-H contest. The preference implementation of EXASOL AG is due to the project 

P-SOL in conjunction with the department of Prof. Kießling at the University of 

Augsburg. This project has also been funded by Bayerisches Staatsministerium für 

Wirtschaft und Medien, Energie und Technologie (grant no. IUK-398/002). Mandl, 

Kozachuk, Endres, and Kießling (2015) show the performance of skyline queries in 

EXASOL’s distributed server farm by scaling the data volumes of the TPC-H 

benchmark
1
. Thus this preference implementation may pave the way for huge state 

spaces and their preference evaluation. 

5 Summary and Outlook 

Similar to suggestions given in tourism information centres or provided by local 

residents, the proposed preference-based architecture uses a database and Preference 

SQL to generate appropriate activity suggestions for tourists as daily plans or even 

multi-day plans. The prototype implements a generic planning architecture by defin-

ing a controlled vocabulary, and then by deriving a questionnaire. Stereotypes and 

context are associated to the questionnaire. The feedback of the questionnaire is after-

wards transformed into preferences. They are composed to complex preferences at 

different abstraction levels. The preferences are further enriched by soft requirements 

of the application modelled as preferences, too. 

The preference theory guarantees the correctness, completeness, and optimality of the 

result. This BMO-characteristic reduces also the size of the result of an abstraction 

level to be delivered as input to the next stage. For the whole chain of queries, there 

are evidently no unnecessary, missing, or even better results!  

The inclusion of hard constraints, such as opening hours, vacancies or the availability 

of tickets, will be the next step to extend the prototype with the option to also book 

                                                           
1
 http://www.tpc.org/tpch/spec/tpch2.17.0.pdf 

file:///C:/Users/huhnalfo/Desktop/TSMP/ENTER2016/www.exasolution.com
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offers. In addition, the transfer times between starting points and endpoints of sub-

sequent activities have to be integrated to generate more realistic time schedules.  

While preferences in the current version of the prototype are solely based on context 

and stereotype that each user is assigned to, embedding individual preferences will 

further improve the quality of plans generated for each user in the future. Personalisa-

tion can be then improved by adding sequential or temporal preferences, for example 

the preferred time to have lunch, or personal habits of doing activities in a specific 

order. 
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A Appendix: Runtime Measurements of a Preference-Driven 

Planner 

A.1  Configuration and Software Architecture 

Table 5. Preference SQL Server and Preference SQL Client 

 Preference SQL Server Preference SQL Client 

CPU Intel(R) Xeon(R) 

CPU  E5540   

Intel i7-3540M 

RAM 74 GB 16 GB 

Frequency 2.53 GHz 3.0 GHz 

Hard Disk 2000.4 GB 1 GB 

Database Postgres 8.4.13 Postgres 9.3.5 

Name Server (ursamajor) local 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Software architecture of Vacation Planner from backend to frontend 
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A.2  Basic Relations of the Outdooractive Database 

The planner relies on following basic relations and their tuples:  

 oa_tours   # 343248 

 oa_poi   # 591957 

 oa_offer   # 2841 

 oa_tourismarea  # 667 

 

Concepts are related to each other by a semantic net which is implemented by the 

relation: 

 bc_relationrole  # 14420831 

 

All relations have indices with regard to the primary key. A typical SQL query uses 

the semantic net to establish a semantic relation between concepts like activities and 

regions as follows: 

SELECT t.oa_category_id, ta.pid 

FROM  oa_tour t, bc_relationrole r, oa_tourismarea ta  

-- TourIsInTourismArea (26122) 

WHERE t.pid = r.source_id and r.relationtype_id = 26122 and r.target_id = 

ta.pid and t.state = 1 and ta.state = 1 

 

Table 6. Runtime of SQL queries relying on bc_relationrole 

 

 Server Runtime I/O 

bc_relationrole ursamajor 8.502 0.090 

 

All joining attributes are indexed. Nevertheless, in a pre-processing stage the semantic 

net was eliminated by creating new relations which dispose of foreign keys referring 

the involved relations. 

A.3  Taxonomies 

The planner relies on activities which are modelled by the attribute “category_id“ in 

the relations “oa_tour“, ”oa_poi“, and “oa_offer“ having the semantics of doing 

something. Activities, points of interests (POIs), and offers are arranged in just one 

taxonomy:  

 bc_category   # 76990 

Starting with any concept as root, more specialised concepts which area modelled as 

children point to their unique father and so forth until no more children exist.  The 

resulting tree is implemented within a relational schema. Since Preference SQL is 

incapable of handling hierarchical data structures as Preference XPath (see Kießling, 

Hafenrichter, Fischer and Holland, 2001), “flat” relations were created by a SQL3 

query as e.g. 
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WITH RECURSIVE category(extended_name, id, niveau) AS ( 

SELECT cast (name as text), pid, 1  

FROM   bc_category 

WHERE  pid = 2002  -- root 

UNION 

SELECT  c.extended_name || '/' || bcc.name, bcc.pid, c.niveau +1 

FROM   bc_category bcc, category c 

WHERE  bcc.parent_id = c.id 

) 

 

SELECT  *  

FROM   category 

ORDER BY  extended_name; 

 

Table 7. Runtime of SQL3 query flattening the hierarchical relation “bc_category” 

 Server Runtime I/O 

bc_category ursamajor 0.483 0.005 

 

The attributes pid and parent_id have indices. 

The semantic analysis of the outdooractive database is summarised by table 8:  

Table 8. Size and kind of Controlled Vocabulary 

Semantics Count of concepts Depth of Taxonomy 

POIs 654 4 

Activities 68 4 

Offers 112 3 

Relations 162 1 

Annotations 194 1 

 

The terms of the controlled vocabulary are only partially used in queries and all 

queries are self-contained by having eliminated the vast ua_relationrole relation and 

relying on indexed foreign keys. 

A.4  Top-k Query to Generate the Basic Set for Planning 

The planner needs a basic set of activities which are optimal with regard to a choosen 

stereotype and the actual context.  Consider fig. 7 and the step indexed by 1. 
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To achieve this goal a preference is generated having the following generic structure: 

modelled by  

 activity  PARETO  poi_asssessment  PARETO  ranking 

The Preference SQL query is 

 

SELECT  sta.*, level(p_activity) as level_activity, level(p_ranking) as  

  level_ranking  

FROM   stereotype_tour_assessment sta 

PREFERRING 

(activity_layer lowest 1,1 as p_activity) 

and 

((poi_count_of_layer_1 highest prior to poi_count_of_layer_2   

   highest prior to poi_count_of_layer_3 highest prior to   

   poi_count_of_layer_5 lowest prior to poi_count_of_layer_4  

   lowest) as p_poi) 

and 

(ranking between 80, 100, 20 as p_ranking) 

 

Table 9. Runtime of a top-k query for generating the basic set of activities 

  

The sterotype_tour_assessment relation is a further condensed relation of tours and 

POIs having 1644 tuples. The region is Allgäu and the stereotype is athlete having 

good weather conditions. The preference is evaluated by BNL.  

By pre-processing the underlying database, the context-aware preferences are 

evaluated for each configuration defined by context and stereotype. These parameters 

are stored together with the result set of the context-aware preference evaluation. 

Later on, they are used as filters to get the correct result set for any context. The 

context-aware result set defines the basic set to generate combinations of its set 

elements as nodes of an abstract state space as shown in the next steps of fig. 7. 

A.5  Generation of Equivalence Classes 

After having generated the basic set of the planner, the most interesting attribute is 

duration being of type FLOAT. All values of this attribute are transformed to INT by 

CEIL(anyAttribute/divisor)::int  equivClass_ID and counted per the discretised 

attribute. These tuples (anyDiscreteAttribute, count) are a representation of a multiset 

used as input to a state space of equivalence classes. Consider fig. 7 and the step 

indexed by 3. 

 Server Runtime [s] I/O [s] # Tuples 

BMO ursamajor 0.648 0.000 5 

Top 10 ursamajor 0.632 0.002 10 

Top 20 ursamjor 0.695 0.001 20 

Top 100 ursamajor 0.703 0.015 100 
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Following query is used: 

SELECT  discreteDuration as equivClass_ID, count(*) 

FROM  (SELECT ceil(duration/60)::int4 as discreteDuration -- n hours 

 FROM stereotype_tour_assessment 

) as tmp 

GROUP BY discreteDuration 

The costs of this transformation are negligible. The equivClass_ID is the primary key 

of a new relation and acts as filter by   

 WHERE anyAttribute >  equivClass_ID - 1 AND anyAttribute <= equivClass_ID 

in order to identify all members of an equivalence class in the original relation. 

A.6  Generation of a State Space for Daily Plans 

The combination of top-k elements of the basic set is modelled by a state space. Any 

attribute of the basic set may be agglomerated: 

 Duration   total duration of combination 

 Multilevel   overall quality 

E.g. the duration attribute is used. 

A.7  Power Set of a Set of Activities 

A power set guarantees that each element of the basic set appears only uniquely in 

each combination. Consider fig. 7 and the step indexed by 4. 

The basic structure of the query is: 

CREATE  temp sequence seq;  

CREATE  table ua_day_statespace  as 

WITH RECURSIVE stateSpace (ancestors, ego, agglomerate, iteration, id, resources) 

AS (                          

SELECT  ARRAY[0::int4] as ancestors, t.id as ego, t.duration as  

agglomerate, 1 as iteration,  nextval('seq') as id,  

cast(2 ^ (t.id-1) as bigint) as resources  

 FROM     basic_set t       

 WHERE   t.id <= 5 -- parameter: 5, 10, 15, 20, …   

      -- AND t.duration <= 24                               -- restriction

      

 UNION     
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SELECT  array_cat(s.ancestors, ARRAY[s.ego]) as ancestors, t.id as  

  ego, s. agglomerate + t.duration as agglomerate, 

s.iteration +1 as iteration,   nextval('seq') as id,  

resources | cast(2 ^ (ego-1) as bigint) as resources 

 FROM     basic_set t, stateSpace s             

  

 WHERE  t.id > s.ego          

   -- AND s. agglomerate + t.duration <= 24 -- restriction

   AND t.id <= 5  -- parameter: 5, 10, 15, 20, … 

)         

         

SELECT *       

FROM stateSpace       

UNION       

 -- NULL-Element nach Bedarf       

SELECT NULL, NULL, 0, 0, 0, 0     

ORDER BY iteration, ancestors, ego  

 

Table 10. Runtime of generating the state space of a set of activities 

 

A.8  Power Set of a Multiset of Activities / Equivalence Classes 

A multiset allows the reuse of any element in the basic set several times in each com-

bination. For each element the maximal reuse is constricted as individual parameter. 

Consider fig. 7 and the step indexed by 4. 

The basic structure of the query is: 

CREATE  temp sequence seq; 

-- ALTER SEQUENCE seq RESTART WITH 1; 

 
  

Size of basic set: k Server Runtime [s] I/O [s] # Tuples 

5 local 0.062 0.000 32 

10 local 0.194 0.000 1024 

15 local 0.657 0.000 32768 

17 local 2.238 0.000 131072 

20 local 23.985 0.000 1048576 
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CREATE  table ua_day_statespace 

AS    

WITH RECURSIVE  stateSpace (id, ancestors, agglomerate, iteration,  

     freedom_degree)                             

AS (             

  WITH    

para AS (    

      SELECT  5 as cardinal_number     --Parameter: 5, 10, 15, 20 

 ),    

     

 restriction AS (    

  SELECT  ARRAY (select 1            -- constant 1 =  Power set 

  FROM   basic_set t, para p    

  WHERE  t.id <= p.cardinal_number    

  ORDER BY  id) as init    

     ) -- WITH restriction_init     

         

SELECT  nextval('seq') as id, array_cat(ARRAY[0::int4],  

ARRAY[t.id::int4]) as ancestors, t.duration as 

agglomerate,  

1 as iteration, array_cat( array_cat( r.init [1:t.id-1],  

ARRAY [r.init[t.id] -1]),   

r.init [t.id +1:array_length(r.init, 1)]) as freedom_degree 

FROM     basic_set t, restriction r, para p    

WHERE  t.id <= p.cardinal_number   

       -- and t.duration <= 24   -- restriction 

 

UNION                
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SELECT  nextval('seq') as id, array_cat(s.ancestors,  

  ARRAY[t.id::int4]) as ancestors,  

s. agglomerate + t.duration as agglomerate,  

s.iteration +1 as iteration,  

          -- DEC() after use  

array_cat( array_cat( s.freedom_degree [1:t.id-1],   

ARRAY [s.freedom_degree[t.id] -1]),  

s.freedom_degree [t.id +1:array_length(s.freedom_degree,  

1)]) as freedom_degree     

FROM     basic_set t, stateSpace s, para p   

                    

WHERE   t.id <= p.cardinal_number              -- Parameter 

 -- AND  s. agglomerate + t.duration <= 24 -- restriction 

       AND s.freedom_degree[t.id] > 0         -- restriction of reuse 

    -- only 1 representant 

       AND t.id >=  s.ancestors[s.iteration+1]   

)                    

       

SELECT  *                    

FROM   stateSpace        

UNION     

 -- NULL, if necessary    

SELECT  0, ARRAY[0::int4], 0, 0, init     

FROM      

(SELECT  ARRAY (select 1     -- constant 1 =  Power set 

 FROM     basic_set t    

  WHERE  t.id <= 5   -- Parameter 

  ORDR BY  id) as init    

) as restriction     

ORDER BY iteration, ancestors;   
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Table 11. Runtime of generating the state space of a multiset of activities / 

equivalence classes 

The reuse of elements is restricted to 1. Thus a power set is generated in order to 

compare the runtime of both generation algorithms, easily.  

A.9  Restrictions of State Spaces 

Normally, every application implies hard constraints which cut the state space. 

Creating a daily plan with hourly activities, the total duration is always less equal 24 

hours. The hard constraint is:  

 WHERE agglomerate <= 24 

This restriction is valid for a power set based on a set (S) as well as based on a 

multiset (MS). The queries of g) and h) contain this restriction as comment.  

 

Table 12. Runtime of generating a restricted state space 

 

Activities are discretised to get half-hour or hourly activities as equivalence classes. 

Clearly, a finer discretisation achieves a greater state space and therefore a longer 

runtime. 

 

  

Size of basic set: k Server Runtime I/O # Tuples 

5 local 0.129 0.000 32 

10 local 0.172 0.000 1024 

15 local 1.029 0.000 32768 

17 local 3.345 0.000 131072 

20 local 28.657 0.000 1048576 

Size of basic set: k Server # Tuples Reduction Runtime 

[s], S 

Runtime 

[s], MS 

5 local 32 0.00% 0.099 0.104 

10 local 394 61,52% 0.109 0.126 

15 local 676 97,94% 0.121 0.132 

20 local 751 99,43% 0.146 0.185 

25 local 762 99,93% 0.136 0.143 
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A.10  Generation of Daily Plans by Preference Evaluation 

Consider fig. 7 and the step indexed by 5. Following two preferences are of interest: 

1) PREFERRING 

(total_duration LESS THAN 8 , 1 PRIOR TO 

 total_duration AROUND 8, 1) AS duration_preference 

 

2) PREFERRING 

(activity_count HIGHEST) AS alternation_preference 

 

The agglomerated attribute corresponds to the total duration. It is handled as a para-

meter depending on stereotype and context.  

The preference query P1 with 1) is: 

CREATE TABLE ua_daily_plan_1dim 

AS 

SELECT  id, agglomerate, level(duration_preference)  

FROM   ua_day_statespace 

PREFERRING 

(agglomerate LESS THAN 8 , 1 PRIOR TO 

     agglomerate AROUND 8, 1) AS duration_preference 

 

The preference query P2 with 1) PARETO 2) is: 

CREATE TABLE ua_daily_plan_2dim  

AS 

SELECT  id, agglomerate, iteration, level(duration_preference),  

  level(alternation_preference)  

FROM    ua_day_statespace 

PREFERRING 

(agglomerate LESS THAN 8 , 1 PRIOR TO 

  agglomerate AROUND 8, 1 AS duration_preference) 

AND 

(iteration HIGHEST 100, 1 AS alternation_preference) 
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Table 13. Runtime of two instances of the preference evaluation of the same state 

space for daily plans defined on basic sets of different size k 

 

 

 

 

 

BMO is the number of the best matching objects of a preference P. # is the count of 

daily plans. With regard to preference P1 all plans are perfect because they all have a 

total duration of 8 hours.  

A.11  Generation of a State Space for Multi-Day Plans 

Consider fig. 7 and the step indexed by 7. Now combinations of daily plans are con-

structed. The basic set of the state space generation for multi-day plans is the result 

set of the best suitable daily plans generated by a top-k preference query. 

 

Following query generates the state space of multi-day plans as power set, since each 

outcome of a daily plan is unique: 

CREATE temp SEQUENCE seq; 

-- ALTER SEQUENCE seq RESTART WITH 1; 

CREATE TABLE ua_week_statespace 

AS    

WITH RECURSIVE stateSpace (weeklyplan_id, ancestors, agglomerate, iteration)                   

AS (  

WITH init_wp  

AS (    

      SELECT  DISTINCT id AS dailyplan_id, agglomerate 

      FROM   ua_daily_plan 

) 

                   

SELECT  nextval('seq') as weeklyplan_id, ARRAY[w.dailyplan_id]  

as ancestors,  agglomerate, 1 as iteration 

FROM   init_wp w 

 

Size of basic set: k Server P1: BMO of #, 

Runtime [s] 

P2: BMO of #,  

Runtime [s]:  

5 local 3 of   32, 0.089 4 of   32, 0.077 

10 local 6 of 394, 0.166 5 of 394, 0.132 

15 local 6 of 676, 0.115 5 of 676, 0.219 

20 local 6 of 751, 0.187 5 of 751, 0.088 

25 local 6 of 762, 0.150 5 of 762, 0.085 
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UNION 

 

SELECT  DISTINCT nextval('seq') as weeklyplan_id,  

array_cat(ARRAY[w.dailyplan_id],  

s.ancestors) as ancestors,  

s. agglomerate + w. agglomerate as agglomerate,  

s.iteration +1 as iteration      

FROM  init_wp w, stateSpace s           

WHERE  w.dailyplan_id > s.ancestors[1]   --StateSpace=PowerSet      

) 

 

SELECT *  

FROM   stateSpace 

ORDER BY  iteration, ancestors 

The runtime behaviour is similar to table 10, since a power set is generated as state 

space. The result size of the underlying top-k query with TOP LEVEL = 0 ranges 

from 3 to 6 as shown in table 13, therefore 0.2 sec seems to be an appropriate upper 

limit of the runtime. 

A.12  Assignment of Quality by Counting Conflicts 

Consider fig. 7 and the step indexed by 8. Now adequate combinations of daily plans 

are needed. Adequateness is modelled by following preference:  

 PREFERRING  count_of_conflicts LOWEST  

A conflict is defined as the repetition of an activity to avoid ennui of tourists. 

The number of conflicts is associated to each state of the state space as a quality 

assignment by following query: 

CREATE TABLE ua_week_conflicts 

AS 

WITH para  

AS ( 

SELECT  3 as count_of_days 

), 
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  -- WP => {DP} => {Activity} 

partner  

AS ( 

SELECT weeklyplan_id, dailyplan_id, activity 

FROM 

( 

       SELECT weeklyplan_id, dailyplan_id,  

     unnest(d.ancestors) as activity 

       FROM   ua_day_statespace_10 d, 

           ( 

            SELECT w.weeklyplan_id,  

unnest(w.ancestors) as  

dailyplan_id 

FROM   ua_week_statespace_1dim_10  

w,  para 

-- WHERE  w.iteration =  

para.count_of_days  

--Parameter:  Size of time table 

           ) as wp2Ndp 

       WHERE  dailyplan_id = d.id 

      ) as wp2Ndp2Nactivity 

      WHERE  activity <> 0  

), 
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-- relation graph per WP 

pairing  

AS ( 

SELECT   wp1.weeklyplan_id as weeklyplan_id,  

wp1.dailyplan_id as dailyplan_id_1,  

wp1.activity as activity_1,  

wp2.dailyplan_id as dailyplan_id_2,  

wp2.activity as activity_2 

FROM   partner wp1, partner wp2 

   -- upper triangular matrix (symmetry) 

WHERE  wp1.weeklyplan_id = wp2.weeklyplan_id 

AND wp1.dailyplan_id < wp2.dailyplan_id 

 

UNION 

 

 -- Plus combinations of ONE element 

SELECT   weeklyplan_id as weeklyplan_id,  

dailyplan_id as dailyplan_id_1, activity as activity_1,  

null as dailyplan_id_2, null as activity_2 

FROM   partner 

WHERE  weeklyplan_id IN  

      (SELECT  weeklyplan_id 

       FROM   ua_week_statespace_1dim_10 

       WHERE  iteration = 1) 

), 
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-- conflict graph 

conflict_graph_per_wp  

AS ( 

SELECT weeklyplan_id, dailyplan_id_1, dailyplan_id_2,  

  activity_1, activity_2,  

CASE  WHEN activity_1 = activity_2 

         THEN 1   -- conflict 

         ELSE 0 

END AS conflict 

FROM   pairing 

), 

 

agg_conflict_graph_in_wp  

AS ( 

SELECT weeklyplan_id, dailyplan_id_1, dailyplan_id_2,  

sum(conflict) as agg_count_conflict_in_days 

FROM   conflict_graph_per_wp 

GROUP BY weeklyplan_id, dailyplan_id_1, dailyplan_id_2 

) 

 

SELECT weeklyplan_id, sum(agg_count_conflict_in_days)  

as count_conflict_of_wp 

FROM   agg_conflict_graph_in_wp 

GROUP BY  weeklyplan_id 

ORDER BY  weeklyplan_id; 
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Table 14. Runtime of counting conflicts of a 3-day plan 

 

 

 

 

 

A.13  Preference Evaluation of Multi-Day Plans 

Consider fig.7 and the step indexed by 8, again. Now all information is available to 

appraise the adequate combinations of daily plans. Adequateness is modelled by 

following preference:  

 PREFERRING  count_of_conflicts LOWEST  

The following preference query minimises the count of conflicts: 

CREATE TABLE ua_weekly_plan 

AS 

SELECT  w.*, level(p_conflict) AS conflict_level 

FROM   ua_week_conflicts c, ua_week_statespace w 

WHERE  c.weeklyplan_id = w.weeklyplan_id 

-- Parameter: number of days in the weekly plan / time table  

AND w.iteration = 3  

PREFERRING  

c.count_conflict_of_wp LOWEST 0 , 1 AS p_conflict 

GROUPING  iteration  
 
-- TOP 10; 
 

  

Size of basic set: k Server Runtime [s] 

  5 local 0.143 

10 local 0.139 

15 local 0.187 

20 local 0.203 

25 local 0.151 
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Table 15. Runtime of preference evaluation in a state space for multi-day plans 

defined on a basic set of size k 

 

If the k-parameter of the top-k-operator is greater than 10, sufficiently many alter-

natives exist to avoid conflicts. The number of days in the time table was restricted to 

3, but the state space also disposes of combinations having less or even more than 3-

day timetables. 

If conflicts exist, the shared activities should have a maximal distance between their 

occurrences.  

A.14 Total Runtime as Summary 

To measure the total runtime, a consistent use case was defined by:  

 Size of basic set = 10  

 Size of best activities for 1 day = 10 

 Maximal size of alternative multi-day plans = 10 

 Maximal days = 5 

TOP 10 as part of Preference SQL achieves the above requirements. The planner is 

parameterised by a hard constraint of having <= 5 days. 

Table 16. Total Runtime of the use case 

 

The total runtime of about 1 second is sufficient to achieve the runtime requirements 

of a planning application on pre-processed data of the Alpstein database.  

(Size of initial basic set, 

# optimal daily plans) 

Server Runtime 

[s] 

# Conflicts |BMO| 

(5, 3) local 0.080 3 1 

(10, 6) local 0.101 0 5 

(15, 6) local 0.109 0 5 

(20, 6) local 0.099 0 5 

(25, 6) local 0.103 0 5 

Query  SQL3 PSQL Response time 

h) + i) Restricted power set of daily activities 0.200   

j) Preference wrt. daily total duration (P1)  0.185  

k) Power set of daily plans 0.240   

l) Quality assessment by count of conflicts 0.101   

m) Preference wrt. minimal conflicts  0.315  

Total runtime of component 0.541 0.500  

Total runtime of application   1.041 
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Caveat 

The spreading of multiple measurements may surpass 10 percent of the minimal 

measurement. 

 


