
UNIVERSITÄT AUGSBURG

A Context-Aware and Preference-Driven
Vacation Planner for Tourism Regions

Alfons Huhna, Patrick Roocksa,
Werner Kießlinga, and Martin Soutschekb

aDBIS, Faculty of Applied Informatics
University of Augsburg, Germany

bALPSTEIN Tourismus GmbH & Co. KG
Immenstadt, Germany

Report 2015-04 December 2015

INSTITUT FÜR INFORMATIK
D-86135 AUGSBURG

Copyright © A. Huhn, P. Roocks, W. Kießling, and M. Soutschek
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.informatik.uni-augsburg.de
— all rights reserved —

 1

Contents

1 Introduction .. 2

2 Basics of Preference-based Modelling and Querying ... 3

3 An Architecture of Context-aware and Preference-based Planners 5

3.1 Questionnaire as Starting Point ... 6

3.2 Context-aware Top-k Lists as Basic Set .. 8

3.3 Combinations of Elements of a Basic Set as State Space 8

3.4 Preference-based Evaluation of a State Space ... 12

4 Use case - Vacation Planner from Backend to Frontend 13

4.1 Questionnaire .. 14

4.2 Preference Composition .. 15

4.3 Daily Plan as a Parametric Component of Total Duration 15

4.4 Multi-Day Plan as a Parametric Component by Number of Days 16

4.5 Implementation and Performance ... 18

5 Summary and Outlook .. 18

References .. 19

Acknowledgements .. 20

A Appendix: Runtime Measurements of a Preference-Driven Planner 21

A.1 Configuration and Software Architecture ... 21

A.2 Basic Relations of the Outdooractive Database .. 22

A.3 Taxonomies ... 22

A.4 Top-k Query to Generate the Basic Set for Planning 23

A.5 Generation of Equivalence Classes ... 24

A.6 Generation of a State Space for Daily Plans ... 25

A.7 Power Set of a Set of Activities... 25

A.8 Power Set of a Multiset of Activities / Equivalence Classes 26

A.9 Restrictions of State Spaces .. 29

A.10 Generation of Daily Plans by Preference Evaluation 30

A.11 Generation of a State Space for Multi-Day Plans 31

A.12 Assignment of Quality by Counting Conflicts .. 32

A.13 Preference Evaluation of Multi-Day Plans .. 36

A.14 Total Runtime as Summary ... 37

 2

Abstract

Taking a Preference SQL approach, a context-aware vacation planner for on-site activities is
proposed to automatically generate vacation plans based on user preferences and situational
aspects. Using different levels of abstraction, the result of the corresponding preference queries
is always optimal and the result size is minimal. It consists of stereotype-specific and context-
aware activities which are combined to create daily or even multi-day plans of activities. The
correctness, completeness and optimality are assured by a preference calculus of strict partial
orders. User preferences are initially collected and defined by a feedback questionnaire. The
application is modelled by adequate preference compositions and the Preference SQL runtime
system efficiently evaluates the resulting preference queries. The prototype proves that soft run-
time requirements are met. Initial tests with real data from the industry-leading outdooractive
platform indicate that the database-driven preference technology can successfully be employed
to provide added value for vacation planning.

Keywords: vacation planner; timetable; preference modelling; context awareness; optimality;
best matches only semantics.

1 Introduction

Up to now, tourists inform about interesting vacation destinations by travel agencies,

social relations, and online information. If the destination is chosen, on-site activities

are influenced by the tourist information, landlords, and indigenous people. Their

experience assigns roles, associated activities and interests to the tourists. These insid-

ers give hints or suggestions, which seem appropriate. Often, even bad weather alter-

natives are offered to increase tourists’ customer satisfaction by taking into account

the actual context.

Anyhow the behaviour of clients is changing substituting analogue information by

digital. These native digitals expect 24/7 service everywhere. Typical up-to-date app-

lications like www.tripit.com stick fixed points like airports or hotels together with

driving directions to generate a linear vacation itinerary. Döring and Preisinger (2008)

enhanced the underlying concept of dynamic packaging by a personalised search

model based on preferences. At first, www.inspirock.com focuses on touristic points

of interests which are connected by different modes of transportation and accom-

modation facilities afterwards. Obeying the precept of dichotomy, tourists often stay

or even have to stay in a region and react to opportunities depending on circumstances

changing every day. Thus, stereotype-specific and context-aware plans for on-site

activities or attractions are desirable. A generic architecture implemented as a proto-

type is proposed which relies on databases and preferences generating best-suitable

plans of on-site activities.

Planning of activities is a well-known branch of Artificial Intelligence as described

e.g. by Ghallab, Nau, and Traverso (2004). Optimizing tasks, duty rosters, timetables,

and schedules are assignment problems further explained by Burkard, Dell’Amico,

and Martello (2012). However, preferences defined as strict partial orders are rarely

supported by these approaches. Our prototype relies on the widespread and accepted

use of SQL and applies both technologies for tourism applications.

http://www.tripit.com/
http://www.inspirock.com/

 3

2 Basics of Preference-based Modelling and Querying

The theory of preferences was first introduced by Kießling (2002) and Chomicki

(2003).

 Definition Preference P = (A, <P):

Given a set A of attribute names, a preference P is a strict partial order P = (A, <P),

where <P ⊆ dom(A) × dom(A).

This initial proposal of Kießling (2002) was implemented by Kießling and Köstler

(2002) as Preference SQL, a complete run-time system. Preference SQL is still further

developed by Kießling et al. (2011). All base preferences are derived from a base

preference called SCORE(anyAttribute). This preference denotes that all objects

whose score value with regard to anyAttribute is smaller than others are considered to

be better than those.

The use case of section 4 relies on the following specialisations of SCORE:

 LESS THAN(a, v) or AROUND(a, v) using an asymmetric or symmetric distance

between the desired value v and others of an attribute a to be minimised as well as,

 HIGHEST(a) or LOWEST(a) for maximising or minimising the values of an

attribute a.

These fundamental preferences as well as any resulting complex preferences (pi) are

combined by the following complex preferences:

 The clause pi AND pj is stating that both preferences have the equal importance.

 The clause pi PRIOR TO pj is stating that preference pi is more important than pj.

Semantical and syntactical details can be found in the literature mentioned above. The

most import feature of preference queries underlying this sound and complete theory

of preferences as strict partial orders is the property of having best matches only

(BMO) that guarantees the correctness and the optimality of the result set of prefe-

rence queries.

This classical preference theory has to be reinterpreted in the context of hierarchical

data structures stemming from the requirements of a planning application. Starting

from Aristotle’s quotation “The whole is more than the sum of its parts” the relation

Aristotle looks like:

Table 1. Hierarchical data structure

Whole_name Part_name Part_attribute

… … …

a_b_c a 1

a_b_c b 2

a_b_c c 3

… … …

 4

This relational representation corresponds to a hierarchical data structure (tree) as

shown in fig. 1:

Fig. 1. Part-whole hierarchy

Aristotle’s gem may be expressed by:

SELECT whole_name,

 -- A(.)

SUM(part_attribute) + COUNT(part_attribute) - 1

AS whole_attribute

FROM Aristotle

GROUP BY whole_name

This query focuses on the higher abstraction level “whole” by taking into account the

lower abstraction level “part”. Clearly, the result of this query may be used as a

subquery of a structural identical query treating the just created wholes as parts of

further wholes, etc.

Having a fixed count of iteration this process of self-similarity may be formulated as

SQL2-query of iterated subqueries. But the resulting query is complex and the count

of iteration is often unknown, however some conditions of termination are a priori

known. Thus, the available recursion of SQL3 is the white knight.

Also the relation “Aristotle” can equivalently transformed to a non-standard relation

using set-valued attributes like:

Table 2. Hierarchical data with set-valued attributes in SQL3

Whole_name Whole_attribute Part_names Part_attributes

… … … …

a_b_c 8 {a, b, c} {1, 2, 3}

… … … …

The attributes “Part_names” and “Part_attributes” are set-valued. No order exists

among the set members. However, the enumeration of the set implicitly defines a total

a

a_b_c

c b

 5

order on the members of the set which can be interpreted as sequence. Such a stack of

activities is represented in condensed form. Both interpretations of partial order or

total order are useful in the context of planning, as shown later on.

The reinterpretation of the Kießling’s preference definition is intended by following

extension.

 Definition Preference P’ = (A, <P’):

Given a multiset A of attribute names, a preference P’ is a strict partial order defined

as

P’ = (Ƥ(A), <P’),

where <P’ ⊆ F(Ƥ(A)) × F(Ƥ(A)). Ƥ(A) is the power set of the multiset A, and F(Ƥ(A))

is a function whose input parameters are multiset members and the output is of type

FLOAT. The involved operators have to be commutative. A(.) acts as an agglomerate

like the SQL-aggregation on each member of the power set instance.

Simplifying the multiplicity function for multisets to the set indicator function of

normal sets and constraining the power set Ƥ(A) to sets of size 1, each set member is

interpreted as an attribute value and the agglomerate A(.) is defined as identity. This

construction yields the original definition of the preference P = (A, <P). Zhang and

Chomicki already introduced preferences over sets in 2011. But they restricted their

work to sets of fixed cardinality. We insist on the whole power set of a multiset.

Aristotle’s examples above defines the agglomerate A(.) as sum of “part_attribute” of

all set members of Ƥ(A) plus the count of set members of Ƥ(A) minus 1, where A is

“part_attribute”.

The power set Ƥ(A) urges the cooperation of SQL3 and Preference SQL defined as an

extension of SQL2 as independent components to achieve following goals:

 Handling of hierarchical / recursive data structures by recursion of SQL3

 Transformation of set-valued types of SQL3 to atomic types of SQL2 by

SQL3

Therefore a smart integration exists, since new preference constructors are not

necessary. As first step, the interleafing of Preference SQL and SQL3 can be instru-

mented by combining SQL3 and Preference SQL in one script materialising the

results of SQL3.

3 An Architecture of Context-aware and Preference-based

Planners

In this section, a generic preference-driven architecture is proposed from a question-

naire as starting point to preference modelling and preference evaluation finally.

 6

3.1 Questionnaire as Starting Point

A starting point of context-aware and preference-driven planners consists of:

 Defining a controlled vocabulary as basics.

 Using this vocabulary to define a questionnaire by getting feedback from users.

Controlled vocabularies base on terms having semantic relations among each other

which are described by thesauri (ANSI/NISO Z39.19 [ANSI], 2005). Thus applica-

tion-specific languages are defined on a solid base. Having technical systems imple-

menting an application, the same model can be used by replacing thesauri with

taxonomies or even ontologies defining classes, individuals, attributes, and relations.

In any case, the closed world assumption (CWA) holds relying on a finite description

of the world. The CWA states that only facts assigned as true are true. The CWA

excludes the emergence of new terms or the use of synonyms known by clients of an

application but unknown to the controlled vocabulary. Thus the open world assump-

tion is preferable in dynamically changing applications. Having a database-oriented

architecture NULL-values are paving the way to tackle this task as described by

Gottlob and Zicari (1988). Preferences can also handle NULLs as demonstrated by

Endres, Roocks, Wenzel, Huhn, and Kießling (2012). Thus the proposed generic arch-

itecture is independent of the closed or open world assumption.

After having defined the controlled vocabulary, it is convenient to gather the feedback

of users through a questionnaire. The questionnaire approach can be applied as a web-

based or traditional interview, in a stand-alone manner or directed by an interviewer.

Interviewed people answer questions formulated in terms of the controlled vocabulary

by evoking their rating. The procedure generates a Likert scale as defined by Likert

(1932). The used terms, as part of the controlled vocabulary, have to be mapped to the

attributes of relations relying on a database-oriented architecture.

Since the Likert terms are a subset of the controlled vocabulary and people do not

necessarily answer all questions of a questionnaire, the problem of how to handle

incomplete feedback arises. Based on the assumption that most terms can be arranged

by taxonomies fulfilling the Liskov substitution principle (LSP) introduced by Liskov

and Wing (2001), the rating of a term is valid until the rating of a more restricted sub-

term got a different rating as shown in fig. 2:

Fig. 2. Incomplete feedback and the consequences of LSP

 7

Any taxonomy of terms is represented by nodes and blue-dotted arrows in a tree as

shown in fig. 2. Nodes with black outlines correspond to the feedback of a user. The

colour of a node is representing a possible class of feedback. If the root of the tree has

not been rated by a user, a default rating has to be assumed (e.g. NULL shown by

blue).

The questionnaire may be used as an

 Input for statistics after having collected a lot of interviews or as a

 Behaviour model of stereotypes.

The behaviour model of a stereotype as illustrated in fig. 2 is defined explicitly by a

domain expert or through an analysis of user feedback from multiple interviews.

Now, preferences come into play by using the rated taxonomy of fig. 2 in this way:

 All items with the same rating constitute a layer.

This procedure directly results in a LAYEREDl-preference as defined by Kießling

(2002).

Assuming five layers, the transformation of the questionnaire may generate the fol-

lowing LAYERED5-preferences:

Fig. 3. Construction of two stereotype-specific LAYERED5-preferences

Each layer of each preference consists only of terms. Trees inside a layer just visua-

lise the provenience. Four empty layers exist in fig. 3. NULL values in blue are

handled e.g. as yellow values. According to Kießling (2005) all items of the same

layer are substitutable. Users are rating all of them as equally good known as regular

 8

SV-semantics stating SV as acronym for substitutable values as shown by the left

preference.

Looking at the provenience, the right preference is evident by introducing finer SV-

classes shown as black rectangles inside layers. Layers and also SV-classes consist of

disjoint sets of items. SV-classes are named by the root of the corresponding subtree.

Specific SV-semantics is shown by the right preference. Now, only members of the

same SV-class are substitutable, but members of different SV-classes are not sub-

stitutable, even if they belong to the same layer as introduced by Kießling (2005).

This construction is favourable having very different semantic concepts in the original

taxonomy. Thus, they are not substitutable and the semantic diversity is obtained by

composing a complex preference as in case of planning. In summary, specific SV-

semantics widens coarse-grained classes to fine grained classes.

Having taxonomies, the importance of the involved taxonomies is reflected by prefe-

rences having

 Equal importance or,

 Having more, or having less importance respectively.

Thus, the complex preference constructors of Kießling (2002) can model user or

system preferences, which are influenced by the stereotypes and the context as shown

in the next section.

3.2 Context-aware Top-k Lists as Basic Set

Already Roocks, Endres, Mandl, and Kießling (2012) have demonstrated a model to

construct context-aware preferences by the prioritisation of context-specific prefe-

rences assigned to each basic preference.

The planning system needs a basic set of at least k elements to generate plans. Thus,

the system relies on the top-k operator of the Preference SQL system, guaranteeing

that the result set has just size k.

3.3 Combinations of Elements of a Basic Set as State Space

From the above mentioned construction, each element of any context-aware result set

is optimal with regard to the underlying preference. Next, combinations of these

optimal elements are generated.

For planning each combination acts like a group subsuming its parts as a whole and

having an appropriate agglomerate function A(.). A combination is a subset of a basic

set aka activities. The order of execution inside the combination is out of interest.

Each node has an assessment by the agglomerate. The state space is characterized by

properties like:

 Repetition of elements of the basic set is forbidden, allowed, or restricted.

 Hard restrictions expressed on state space variables limit the state space size.

 Soft restrictions expressed on state space variables may model user or system pre-

ferences.

 The result of an agglomerate function is subject to a stereotype-specific preference

to get appropriate combinations fulfilling the BMO-property.

 9

 The state space grows exponentially.

According to Chapman (1987) nonlinear planning is sufficient. Thus, a plan is a par-

tial order of operators in which an operator corresponds to an element of a context-

aware top-k list mentioned in section 3.2. Hence, the planning result is always a non-

linear plan which is less prone to re-planning due to changes of context.

Following the principle of hierarchical planning as described by Wilkins (1986) a

plan refinement process is proposed by using the output of a lower abstraction level as

input of a higher abstraction level iteratively until a plan is created.

After the requirements of the planning task are apparent, the projection (part_name,

part_attribute) of the excerpt in table 1 is the basic set in order to generate its power

set as state space (see also its representation as set-valued relation shown in table 2),

depicted in fig. 4.

Fig. 4. Power set as a state space of the basic set {a, b, c}

The nodes are the elements of the power set. The edges reflect all possibilities to

generate the nodes of layer i with the help of the nodes of layer i- 1. The structure is a

lattice. The root of the lattice has per default NULL as value for the considered

attribute, since “any attribute of [doing] nothing” is indetermined. Each application

has to decide whether this state makes sense. Remember the NULL-handling of

Preference SQL (Endres 2012) which maps NULL at runtime to any level or distance

without any change of the underlying model.

{a}
{1}

{ }
{NULL}

{c}
{3}

{b}
{2}

{a, b}
{1, 2}

{a, c}
{1, 3}

{b, c}
{2, 3}

{a, b, c}
{1, 2, 3}

NULL

1 2 3

4 5 6

8

0

1

2

3

Depth:

 10

The blue numbers at the left of each node show the return value of A(.) having the

numbers inside of each node as input. The states and their associated agglomerated

attribute in blue are settled at a higher abstraction level than their components in black

reflecting the structure of table 1. Since the states can be constructed in different ways

by following all paths from the root to the interesting state, a spanning tree shown in

green avoids redundant work while generating the states. Having a database

perspective, only the states and their agglomerated attributes are of interest modelling

aspects at the whole-level. Having a hierarchical / recursive data structure, recursion

of SQL3 generates the desired data structures. Having no a priori knowledge which

states are illegal, the whole state space – a complete lattice – is generated. However,

the use of a spanning tree involves an artificial dependency since children depend on

the existence of their unique father and furthermore on the existence of all their

ancestors. When heuristics (e.g. preferences) come into play at each depth during the

generation process, a spanning tree algorithm is inappropriate, when the heuristics

cannot guarantee monotony. A bad father swept off by the heuristics kills also its

better descendants.

If only states are regarded the independence of its components is implicitly an

assumption. No order is defined. The components behave like a set. Regarding the

agglomerated attribute at the whole-level the function A(.) has to be independent of

the order of the input parameters. No history or a stack trace comes into play. This

feature matches nicely the concept of partial plans having no order (dependency)

defined on its activities. Details like the runtime of generating the power set of

activities as state space are found in the appendix at the section A.7.

Following the principle of self-similarity or hierarchical planning as described by

Wilkins (1986), multi-day plans obey the “part-whole” pattern as shown in fig. 5:

Fig. 5. Hierarchical planning of multi-day plans

MDP
1

Multi-Day Plans

MDP
m
 … Multi-Day Plans (MDP

s
)

Daily Plans (DP
j
)

Activities (A
i
)

DP
1
 DP

d
 …

A
1
 A

a
 …

 11

Elements of a lower abstraction level may be reused several times by elements of a

higher abstraction level indicated by blue arrows issuing a one-to-many relationship.

The reuse of components may be interpreted as “conflict” or “shared resource”. In the

use case of vacation planning, the pragmatics is boredom. A refinement of the plan-

ning architecture is depicted in fig. 7 by reusing the concept of state spaces at

different abstraction levels following the part-whole pattern. Also a preference

evaluation takes place at each abstraction level to receive just the best matching

objects.

Regarding the dichotomy of nodes and edges, another interpretation of fig. 4 is

possible. The set of all paths starting from the root { } as starting point s and having

different length is generated. Now a path p1: s->a->a_c and a path p2: s->c->a_c have

the same endpoint, which means they are equivalent in a node-oriented interpretation.

In an edge-oriented interpretation paths can be handled different with respect to the

agglomerated attribute, which is now associated to a path. The value may depend on

the predecessor.

An equivalent transformation of the state space of fig. 4 into a search space is shown

in fig. 6:

Fig. 6. Equivalent search space of the state space of fig. 4

Each node consists of the triple (activity; nodeAttribute; reuse). Reuse indicates the

maximal count of visiting a node. To each directed edge the attribute “edgeAttribute”

is assigned. For simplicity, blue bidirectional edges use two numbers: one for each

incoming edge. The reuse is constraint to one. Therefore each path contains every

node only once. All paths are generated from the starting point s to the endpoint e.

Since the basic set {a, b, c} has three members, the path length ranges from 1 to 4.

Each path now encodes the order of generation resulting in a total plan of activities.

The count of total plans vastly exceeds the count of partial plans.

Following a path, the function A(.) is defined by:

 SUM(edgeAttribute) + SUM(nodeAttribute).

E.g. the path s->a->b->c->e has the agglomerate A(.)= 1+ 1+ 2+ 1+ 3+ 1+ 0+ (-1) = 8

which corresponds to the state {a, b, c} with A(.)= 8 in fig. 4. The “empty” activity

(a;1;1)

(s;0;1)

(c;1;1)

(b;1;1)

(e;-1;1)
NULL

1
2 3

0

1

1 3

2
3

2

0
0

 12

encoded as path s->e has the agglomerate A(.)= NULL -1 = NULL which is handled

by the NULL handling of preferences in Endres (2012).

Details like the runtime of generating the power set of a multiset of activities are

found in the appendix at the section A.8.

As a special case of fig. 6, predefined graphs can be interpreted as an abstraction of

maps. Having specified a starting point s and an endpoint e, the recursion takes care

of the predefined transition relation of the graph to generate all paths from s to e

obeying some conditions and preferences. Suitable routes are the outcome of this

planning process.

3.4 Preference-based Evaluation of a State Space

As proof of concept the relation “top100” was created as set of (id, attribute)-tuples

ranging from 1 to 100. By creating a view, any top-k list with k<= 100 can be created

as the basic set of experiments by creating different state spaces and by evaluating

preferences on these state spaces.

First, we assume no repetition of elements. Thus the power set of the basic set having

k elements is the desired state space.

Table 3. Execution time [s] of generating the power set based on k elements

k Execution time [s]

5 0,138

10 0,144

15 1,057

20 28,567

Regarding table 3, an Intel i7-3540M notebook with 3.0 GHz and 16 GB was used.

Obviously, smaller values of k fulfil the soft time constraints to generate the power

set.

Second, we release the hard restriction of having no repetitions. A multiset is a repre-

sentation of the state space whereupon the count of an element states the maximum of

repetitions of this element. A power set is clearly a specialization of a multiset. The

execution time of smaller multisets is similar to that of power sets shown in table 3.

Preference queries are executed on these state spaces whereupon state space variables

may be involved and interpreted by the application as shown in section 4.

 13

4 Use case - Vacation Planner from Backend to Frontend

Having a database with relations like tours, points of interest (POIs), offers, and taxo-

nomies of activities or POIs, the vacation planner constructs partial plans as sugges-

tions of activities and delivers the result through a user-interface (UI) as illustrated in

fig. 7. The resulting timetable of the vacation planner considers the stereotype

assigned to the user, the region, and the situational context of users with the weather

situation clearly having the most important impact.

Fig. 7. Software architecture of a vacation planner from backend to frontend

Top-k preference queries (oval) are used to get the k-best results based on the input

relations and the context-aware and stereotype-specific preferences. The preference

queries are refined in the following section 4.2, 4.3, and 4.3. Some transformations

Context-aware, stereotype-specific top-k list

Equivalence classes of top-k list

State space of (equivalence classes of) top-k list

4.2 Top-k preference query

4.3 Top-k preference query

Top-k list of daily plans

State space of top-k list of daily plans

4.4 Top-k preference query

Top-k list of multi-daily plans

Fig. 8 UI: timetable

Tours, pois, offers, regions, stereotypes, context

Preference

SQL

Postgres

9.3

Preference

SQL

Postgres

9.3

Preference

SQL

 14

(grey) like the building of equivalence classes to reduce the state space, as well as the

following generation of state spaces, are necessary to construct input relations for

successive preference queries. Three stages corresponding to Hierarchical Planning

(Wilkins 1986) are pipelined to generate multi-day plans of which one is delivered to

the customer per UI.

4.1 Questionnaire

Analysing the database of outdooractive.com, the richness of its semantics is expres-

sed by following numbers of concepts (see table 4). The value of 1 for depth of taxo-

nomy indicates that no hierarchy of concepts exists.

Table 4. Size and kind of Controlled Vocabulary

Semantics Count of concepts Depth of Taxonomy

POIs 654 4

Activities 68 4

Offers 112 3

Relations 162 1

Annotations 194 1

Next, concepts and stereotypes have to be matched by bias and aversion i.e. prefe-

rences. Influenced by the stereotypes described by Gibson and Yiannakis (2002), each

semantic concept is rather explicitly denoted by numbers between 1 and 5 according

to our model-driven approach and using a Likert scale.

Context is modelled by

 Weather (good / bad) and

 Season (summer / winter).

The weather forecast obtained through the outdooractive.com API is valid for three

days and structured in time intervals of three hours. Changes of weather require and

trigger the re-planning of vacation plans according to the new conditions. At the

moment of planning, the actual forecast is used and the weather conditions serve as

guards of integrity to be checked.

The region of any POI, activity, and offer is delivered by some of the above men-

tioned semantic relations.

Stereotype, region, and context act as keys to retrieve the context-aware and stereo-

type-specific top-k lists and are generated by a preference composition as shown next.

 15

4.2 Preference Composition

Having an application-specific view, those tours, attractions, and offers are preferable,

which fulfil the following properties best:

 Since each stereotype has rated the available activities and they are convenient

with respect to season and weather, only those activities were preferred which are

better rated by its associated questionnaire.

 Activities are as important as POIs.

 Following the same principle as for activities, the hierarchy of POIs is transformed

to a hierarchy of layers. Thus, those activities are preferred, which guarantee more

attractive POIs than others.

 The knowledge of the provider is encoded in a ranking for each touristic object. Its

experience is as important as activities or POIs.

The above specification creates the following, syntactically reduced, preference ex-

pression:

PREFERRING

activity LAYERED ($best, $good, $equal, $bad, $worst) AND

((count_of_best_pois HIGHEST PRIOR TO

 count_of_good_pois HIGHEST PRIOR TO

 count_of_equal_pois HIGHEST) PRIOR TO

 (count_of_worst_pois LOWEST PRIOR TO

 count_of_bad_pois LOWEST)) AND

ranking HIGHEST

The result set consists of objects of the types “tours”, “pois”, and “offers” and it con-

tains the prerequisites as keys to deliver the context-aware and stereotype-specific

best objects as top-k lists. The terms “$best”, … , “$worst” are Preference SQL-speci-

fic macros which substitute the macro names by sets of concepts resulting from ade-

quate queries to get just those concepts of the questionnaire with a specific rating. The

middle term of the above expression in brackets is a priority chain and generates an

ordered result list. The resulting specific top-k lists are used as basic set to generate

daily plans.

4.3 Daily Plan as a Parametric Component of Total Duration

After generating a context-aware and stereotype-specific relation per region, the

BMO-property of preferences guarantees the optimality of each tuple. Thus, the task

consists of finding appropriate combinations of tuples to fill the time slots of a daily

plan.

The attribute “duration” of type “float” is evaluated for all activities such as tours,

POIs, and offers - i.e. activities. The combination of activities requires an agglomerate

to obtain a total duration. Since transfer times were excluded to reduce the complex-

ity of the initial prototype, the implemented agglomerate generally assumes 1 h as

transport time between the activities that are suggested for. Clearly, each single acti-

vity may be used to generate the state space of its power set but often the basic set is

already too large. Thus, equivalence classes of activities having n hours of duration

are used to avoid the complexity of the state space. Since the equivalence classes may

 16

contain several elements, a multiset is used as state space. This discretization nicely

corresponds to time slots of a timetable shown at UI. A finer discretization generates

more equivalence classes. The present prototype hints that a lower bound of ½ hour is

computationally manageable.

With regard to different weather conditions during a day, the total duration is handled

as a parameter. Like a target function to be maximised, we formulate the specification

that the total duration should be para_duration. It is always more agreeable if the dur-

ation is shorter than longer. The according preference looks like:

PREFERRING

(total_duration LESS THAN $para_duration PRIOR TO

 total_duration AROUND $para_duration) AS duration_preference

These heuristics yields the desired behaviour of “good” daily plans. The name of the

preference is duration_preference. According to the BMO-property tourists get per-

fect plans just having a total duration of para_duration or, alternatively, shorter ones.

Since Preference SQL contains the WHERE-clause of SQL, the total duration is re-

stricted by 24 hours reducing the size of the state space.

The resulting plans are nonlinear plans (Chapman 1987). There is no order of execu-

tion inside a combination of activities. Also the starting time is out of the scope hav-

ing stereotypes and no individuals. The arrangement of activities is left to users at UI.

At the end, the involved equivalence classes and their count of use are mapped to the

atomic activities.

The above preference may be enriched for the stereotype “young & fun” by adding a

bias of diversity having the same importance:

PREFERRING

duration_preference AND

count_activity HIGHEST

In summary, the algorithm generates context-aware and stereospecific daily plans of a

region and presents them as a vacation planner timetable for tourists.

4.4 Multi-Day Plan as a Parametric Component by Number of Days

As shown in the previous section, the preference-driven approach generates a set of

optimal daily plans with respect to the total duration. The size of this set may be

controlled by a TOP-k clause. The parameter of the next planning stage is the number

n of days. Regarding the reliability of weather forecasts, the number of days is set to 3

per default, without loss of generality.

The repetition of the same activity is termed as a conflict to avoid that tourists are

bored by a repeating suggestion. At this abstraction level, the state space offers the

concepts of:

 Number of conflicts and

 Average distance of conflicting parties.

The specification demands a minimal number of conflicts. In case of conflict, a con-

figuration of daily plans should maximise the average distance between the con-

 17

flicting parties. Consequently, the target function is translated in the following

preference:

PREFERRING

conflict_count LOWEST PRIOR TO

average_distance_among_conflicts HIGHEST

Following the self-similarity of our design the BMO-property once more guarantees

the optimality of the result set. It contains all optimal context-aware and stereotype-

specific multi-daily plans per region to be displayed by a timetable at UI.

Finally, a linear timetable is constructed according to the extension theorem of

Szpilrajn (1930). For every strict partial order, the generated (multi-)day plan is

contained into a total order as shown in fig. 8:

Fig. 8. UI as timetable of the stereotype “Family” in the region Allgäu

 18

The timetable is a marketing vision of outdooractive. The itinerary offers context-

aware and stereotype-specific suggestions to tourists. It provides an interactive

interface to arrange activities and to augment the plan with social events, meals, etc. It

is evident that all activities follow the weather timeline of the forecast generating

blocks of parametric total length (sub-daily plans).

4.5 Implementation and Performance

Details of the implementations are found in the appendix. The implementation relies

on Preference SQL and SQL3. Both systems are running on Postgres databases. The

run-time of the entire planning process is about one second for typical examples. Note

that this process is not even a time-critical task.

The reactivity of the prototype already fulfils the soft time constraints of the applica-

tion. Further runtime improvements are surely achieved if the Preference SQL proto-

type is exchanged by EXASolution 5.0. This preference implementation is supplied

by the world’s fastest analytic database of www.exasolution.com as proven in the

TPC-H contest. The preference implementation of EXASOL AG is due to the project

P-SOL in conjunction with the department of Prof. Kießling at the University of

Augsburg. This project has also been funded by Bayerisches Staatsministerium für

Wirtschaft und Medien, Energie und Technologie (grant no. IUK-398/002). Mandl,

Kozachuk, Endres, and Kießling (2015) show the performance of skyline queries in

EXASOL’s distributed server farm by scaling the data volumes of the TPC-H

benchmark
1
. Thus this preference implementation may pave the way for huge state

spaces and their preference evaluation.

5 Summary and Outlook

Similar to suggestions given in tourism information centres or provided by local

residents, the proposed preference-based architecture uses a database and Preference

SQL to generate appropriate activity suggestions for tourists as daily plans or even

multi-day plans. The prototype implements a generic planning architecture by defin-

ing a controlled vocabulary, and then by deriving a questionnaire. Stereotypes and

context are associated to the questionnaire. The feedback of the questionnaire is after-

wards transformed into preferences. They are composed to complex preferences at

different abstraction levels. The preferences are further enriched by soft requirements

of the application modelled as preferences, too.

The preference theory guarantees the correctness, completeness, and optimality of the

result. This BMO-characteristic reduces also the size of the result of an abstraction

level to be delivered as input to the next stage. For the whole chain of queries, there

are evidently no unnecessary, missing, or even better results!

The inclusion of hard constraints, such as opening hours, vacancies or the availability

of tickets, will be the next step to extend the prototype with the option to also book

1
 http://www.tpc.org/tpch/spec/tpch2.17.0.pdf

file:///C:/Users/huhnalfo/Desktop/TSMP/ENTER2016/www.exasolution.com

 19

offers. In addition, the transfer times between starting points and endpoints of sub-

sequent activities have to be integrated to generate more realistic time schedules.

While preferences in the current version of the prototype are solely based on context

and stereotype that each user is assigned to, embedding individual preferences will

further improve the quality of plans generated for each user in the future. Personalisa-

tion can be then improved by adding sequential or temporal preferences, for example

the preferred time to have lunch, or personal habits of doing activities in a specific

order.

References

ANSI/NISO Z39.19 (2005). Guidelines for the Construction, Format, and Management of

Monolingual Controlled Vocabularies.

Burkard, R., Dell’Amico, M. & Marello S. (2012). Assignment Problems. Society for Industrial

and Applied Mathematics.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence 32 (3): 333-377.

Chomicki, J. (2003). Preference formulas in relational queries. ACM Transactions on Database

Systems 28(4): 427-488.

Döring, S. & Preisinger, T. (2008). Personalisation and Situation Awareness of the Search

Process in Tourism. In P. O’Connor, P., Höpken, W. and Gretzel, U. (Eds.),

Information and Communication Technologies in Tourism 2008: Proceedings of the

International Conference in Innsbruck, Austria. Springer Vienna: 497-598.

Endres, M., Roocks, P., Wenzel F., Huhn, A., & Kießling, W. (2012). Handling of NULL

Values in Preference Database Queries. 6th Multidisciplinary Workshop on Advances in

Preference Handling in conjunction with ECAI 2012. Montpellier, France.

Ghallab, M., Nau, D. & Traverso, P. (2004). Automated planning theory and practice. Morgan

Kaufmann Publishers.

Gibson, H. & Yiannakis, A. (2002). Tourist roles, needs and the life course. Annals of Tourism

Research 29: 358-383.

Gottlob, G., & Zicari, R. (1988). Closed World Databases Opened Through Null Values. In F.

Bancilhon and D. J. DeWitt (Eds.), VLDB ’88 Proceedings of the 14th International

Conference of Very Large Data Bases. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA: 50-61.

Kießling, W., Hafenrichter, B., Fischer, S. & Holland, S. (2001). Preference XPath: A Query

Language for E-Commerce. In H. U. Buhl, A. Huther and B. Reitwiesner (Eds.),

Information Age Economy. Physika-Verlag: 427-440.

Kießling, W. (2002). Foundations of Preferences in Database Systems. In P. A. Bernstein, Y. E.

Ioannidis, R. Ramakrishnan and D. Papadias (Eds.), VDLB ’02: Proceedings of the 28th

International Conference on Very Large Data Bases. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA: 311-322.

Kießling, W. & Köstler, G. (2002). Preference SQL – Design, Implementation, Experiences. In

P. A. Bernstein, Y. E. Ioannidis, R. Ramakrishnan and D. Papadias (Eds.), VDLB ’02:

Proceedings of the 28th International Conference on Very Large Data Bases. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA: 900-1001.

Kießling, W. (2005). Preference Queries with SV-Semantics. In J. R. Haritsa and T. M.

Vijayaraman (Eds.), Advances in Data Management 2005 - Proceedings of the 11th

International Conference on Management of Data. Computer Society of India: 15-26.

Kießling, W., Endres, M. & Wenzel, F. (2011). The Preference SQL System – An Overview. In

J. R. Haritsa and T. M. Vijayaraman (Eds.), Bulletin of the Technical Committee on

Data Engineering 34(2): 11-18.

 20

Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology 140:

1-55.

Liskov, B. H., & Wing, J. M. (2001). Behavioral Subtyping Using Invariants and Constraints.

In: H. Bowman and J. Derrick (Eds.), Formal Methods For Distributed Processing: A

Survey of Object-Oriented Approaches. Cambridge University Press New York, NY,

USA: 254-280.

Mandl, S., Kozachuk, O., Endres, M. & Kießling, W. (2015). Preference Analytics in

EXASolution. 16. Fachtagung Datenbanksysteme für Business, Technologie und Web

(BTW 2015), Hamburg, Deutschland.

Roocks, P., Endres, M., Mandl, S. & Kießling, W. (2012). Composition and Efficient

Evaluation of Context-Aware Preference Queries. In S. Lee, Z. Peng, X. Zhou, Y.

Moon, R. Unland and J. Yoo (Eds.), Database Systems for Advanced Applications –

Proceedings of the 17th International Conference DASFAA 2012. Springer Heidelberg

Dordrecht London New York: 82-96.

Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel. Fundamenta Mathematicae 16: 386-389.

Wilkins, D. E. (1986). Hierarchical Planning: Definition and Implementation. In J. B. H. du

Boulay, D. Hogg and L. Steels (Eds.), Advances in Artificial Intelligence II,

Proceedings of the 7th European Conference on Artificial Intelligence, ECAI 86. North-

Holland: 659-671.

Zhang, X. & Chomicki, J. (2011). Preference Queries over Sets. In Proceedings of 27th

International Conference on Data Engineering (ICDE), IEEE: 1019-1030.

Acknowledgements

The project TSMP has been funded by Bayerisches Staatsministerium für Wirtschaft

und Medien, Energie und Technologie (grant no. IUK-1307-0004). Thank students

Emanuel Huber, Uli Schweikl, Johannes Kastner, and Natalia Odolad in chrono-

logical order for implementation support in TSMP.

 21

A Appendix: Runtime Measurements of a Preference-Driven

Planner

A.1 Configuration and Software Architecture

Table 5. Preference SQL Server and Preference SQL Client

 Preference SQL Server Preference SQL Client

CPU Intel(R) Xeon(R)

CPU E5540

Intel i7-3540M

RAM 74 GB 16 GB

Frequency 2.53 GHz 3.0 GHz

Hard Disk 2000.4 GB 1 GB

Database Postgres 8.4.13 Postgres 9.3.5

Name Server (ursamajor) local

Fig. 7. Software architecture of Vacation Planner from backend to frontend

Context-aware, stereotype-specific top-k list2

Equivalence classes of top-k list3

State space of (equivalence classes of) top-k list4

Top-k preference query1

Top-k preference query5

Top-k list of daily plans6

State space of top-k list of daily plans7

Top-k preference query8

Top-k list of multi-day plans9

UI: timetable10

Tours, pois, offers, regions, stereotypes, context0

Preference

SQL

Postgres

9.3

Preference

SQL

Postgres 9.3

Preference

SQL

 22

A.2 Basic Relations of the Outdooractive Database

The planner relies on following basic relations and their tuples:

 oa_tours # 343248

 oa_poi # 591957

 oa_offer # 2841

 oa_tourismarea # 667

Concepts are related to each other by a semantic net which is implemented by the

relation:

 bc_relationrole # 14420831

All relations have indices with regard to the primary key. A typical SQL query uses

the semantic net to establish a semantic relation between concepts like activities and

regions as follows:

SELECT t.oa_category_id, ta.pid

FROM oa_tour t, bc_relationrole r, oa_tourismarea ta

-- TourIsInTourismArea (26122)

WHERE t.pid = r.source_id and r.relationtype_id = 26122 and r.target_id =

ta.pid and t.state = 1 and ta.state = 1

Table 6. Runtime of SQL queries relying on bc_relationrole

 Server Runtime I/O

bc_relationrole ursamajor 8.502 0.090

All joining attributes are indexed. Nevertheless, in a pre-processing stage the semantic

net was eliminated by creating new relations which dispose of foreign keys referring

the involved relations.

A.3 Taxonomies

The planner relies on activities which are modelled by the attribute “category_id“ in

the relations “oa_tour“, ”oa_poi“, and “oa_offer“ having the semantics of doing

something. Activities, points of interests (POIs), and offers are arranged in just one

taxonomy:

 bc_category # 76990

Starting with any concept as root, more specialised concepts which area modelled as

children point to their unique father and so forth until no more children exist. The

resulting tree is implemented within a relational schema. Since Preference SQL is

incapable of handling hierarchical data structures as Preference XPath (see Kießling,

Hafenrichter, Fischer and Holland, 2001), “flat” relations were created by a SQL3

query as e.g.

 23

WITH RECURSIVE category(extended_name, id, niveau) AS (

SELECT cast (name as text), pid, 1

FROM bc_category

WHERE pid = 2002 -- root

UNION

SELECT c.extended_name || '/' || bcc.name, bcc.pid, c.niveau +1

FROM bc_category bcc, category c

WHERE bcc.parent_id = c.id

)

SELECT *

FROM category

ORDER BY extended_name;

Table 7. Runtime of SQL3 query flattening the hierarchical relation “bc_category”

 Server Runtime I/O

bc_category ursamajor 0.483 0.005

The attributes pid and parent_id have indices.

The semantic analysis of the outdooractive database is summarised by table 8:

Table 8. Size and kind of Controlled Vocabulary

Semantics Count of concepts Depth of Taxonomy

POIs 654 4

Activities 68 4

Offers 112 3

Relations 162 1

Annotations 194 1

The terms of the controlled vocabulary are only partially used in queries and all

queries are self-contained by having eliminated the vast ua_relationrole relation and

relying on indexed foreign keys.

A.4 Top-k Query to Generate the Basic Set for Planning

The planner needs a basic set of activities which are optimal with regard to a choosen

stereotype and the actual context. Consider fig. 7 and the step indexed by 1.

 24

To achieve this goal a preference is generated having the following generic structure:

modelled by

 activity PARETO poi_asssessment PARETO ranking

The Preference SQL query is

SELECT sta.*, level(p_activity) as level_activity, level(p_ranking) as

 level_ranking

FROM stereotype_tour_assessment sta

PREFERRING

(activity_layer lowest 1,1 as p_activity)

and

((poi_count_of_layer_1 highest prior to poi_count_of_layer_2

 highest prior to poi_count_of_layer_3 highest prior to

 poi_count_of_layer_5 lowest prior to poi_count_of_layer_4

 lowest) as p_poi)

and

(ranking between 80, 100, 20 as p_ranking)

Table 9. Runtime of a top-k query for generating the basic set of activities

The sterotype_tour_assessment relation is a further condensed relation of tours and

POIs having 1644 tuples. The region is Allgäu and the stereotype is athlete having

good weather conditions. The preference is evaluated by BNL.

By pre-processing the underlying database, the context-aware preferences are

evaluated for each configuration defined by context and stereotype. These parameters

are stored together with the result set of the context-aware preference evaluation.

Later on, they are used as filters to get the correct result set for any context. The

context-aware result set defines the basic set to generate combinations of its set

elements as nodes of an abstract state space as shown in the next steps of fig. 7.

A.5 Generation of Equivalence Classes

After having generated the basic set of the planner, the most interesting attribute is

duration being of type FLOAT. All values of this attribute are transformed to INT by

CEIL(anyAttribute/divisor)::int equivClass_ID and counted per the discretised

attribute. These tuples (anyDiscreteAttribute, count) are a representation of a multiset

used as input to a state space of equivalence classes. Consider fig. 7 and the step

indexed by 3.

 Server Runtime [s] I/O [s] # Tuples

BMO ursamajor 0.648 0.000 5

Top 10 ursamajor 0.632 0.002 10

Top 20 ursamjor 0.695 0.001 20

Top 100 ursamajor 0.703 0.015 100

 25

Following query is used:

SELECT discreteDuration as equivClass_ID, count(*)

FROM (SELECT ceil(duration/60)::int4 as discreteDuration -- n hours

 FROM stereotype_tour_assessment

) as tmp

GROUP BY discreteDuration

The costs of this transformation are negligible. The equivClass_ID is the primary key

of a new relation and acts as filter by

 WHERE anyAttribute > equivClass_ID - 1 AND anyAttribute <= equivClass_ID

in order to identify all members of an equivalence class in the original relation.

A.6 Generation of a State Space for Daily Plans

The combination of top-k elements of the basic set is modelled by a state space. Any

attribute of the basic set may be agglomerated:

 Duration total duration of combination

 Multilevel overall quality

E.g. the duration attribute is used.

A.7 Power Set of a Set of Activities

A power set guarantees that each element of the basic set appears only uniquely in

each combination. Consider fig. 7 and the step indexed by 4.

The basic structure of the query is:

CREATE temp sequence seq;

CREATE table ua_day_statespace as

WITH RECURSIVE stateSpace (ancestors, ego, agglomerate, iteration, id, resources)

AS (

SELECT ARRAY[0::int4] as ancestors, t.id as ego, t.duration as

agglomerate, 1 as iteration, nextval('seq') as id,

cast(2 ^ (t.id-1) as bigint) as resources

 FROM basic_set t

 WHERE t.id <= 5 -- parameter: 5, 10, 15, 20, …

 -- AND t.duration <= 24 -- restriction

 UNION

 26

SELECT array_cat(s.ancestors, ARRAY[s.ego]) as ancestors, t.id as

 ego, s. agglomerate + t.duration as agglomerate,

s.iteration +1 as iteration, nextval('seq') as id,

resources | cast(2 ^ (ego-1) as bigint) as resources

 FROM basic_set t, stateSpace s

 WHERE t.id > s.ego

 -- AND s. agglomerate + t.duration <= 24 -- restriction

 AND t.id <= 5 -- parameter: 5, 10, 15, 20, …

)

SELECT *

FROM stateSpace

UNION

 -- NULL-Element nach Bedarf

SELECT NULL, NULL, 0, 0, 0, 0

ORDER BY iteration, ancestors, ego

Table 10. Runtime of generating the state space of a set of activities

A.8 Power Set of a Multiset of Activities / Equivalence Classes

A multiset allows the reuse of any element in the basic set several times in each com-

bination. For each element the maximal reuse is constricted as individual parameter.

Consider fig. 7 and the step indexed by 4.

The basic structure of the query is:

CREATE temp sequence seq;

-- ALTER SEQUENCE seq RESTART WITH 1;

Size of basic set: k Server Runtime [s] I/O [s] # Tuples

5 local 0.062 0.000 32

10 local 0.194 0.000 1024

15 local 0.657 0.000 32768

17 local 2.238 0.000 131072

20 local 23.985 0.000 1048576

 27

CREATE table ua_day_statespace

AS

WITH RECURSIVE stateSpace (id, ancestors, agglomerate, iteration,

 freedom_degree)

AS (

 WITH

para AS (

 SELECT 5 as cardinal_number --Parameter: 5, 10, 15, 20

),

 restriction AS (

 SELECT ARRAY (select 1 -- constant 1 = Power set

 FROM basic_set t, para p

 WHERE t.id <= p.cardinal_number

 ORDER BY id) as init

) -- WITH restriction_init

SELECT nextval('seq') as id, array_cat(ARRAY[0::int4],

ARRAY[t.id::int4]) as ancestors, t.duration as

agglomerate,

1 as iteration, array_cat(array_cat(r.init [1:t.id-1],

ARRAY [r.init[t.id] -1]),

r.init [t.id +1:array_length(r.init, 1)]) as freedom_degree

FROM basic_set t, restriction r, para p

WHERE t.id <= p.cardinal_number

 -- and t.duration <= 24 -- restriction

UNION

 28

SELECT nextval('seq') as id, array_cat(s.ancestors,

 ARRAY[t.id::int4]) as ancestors,

s. agglomerate + t.duration as agglomerate,

s.iteration +1 as iteration,

 -- DEC() after use

array_cat(array_cat(s.freedom_degree [1:t.id-1],

ARRAY [s.freedom_degree[t.id] -1]),

s.freedom_degree [t.id +1:array_length(s.freedom_degree,

1)]) as freedom_degree

FROM basic_set t, stateSpace s, para p

WHERE t.id <= p.cardinal_number -- Parameter

 -- AND s. agglomerate + t.duration <= 24 -- restriction

 AND s.freedom_degree[t.id] > 0 -- restriction of reuse

 -- only 1 representant

 AND t.id >= s.ancestors[s.iteration+1]

)

SELECT *

FROM stateSpace

UNION

 -- NULL, if necessary

SELECT 0, ARRAY[0::int4], 0, 0, init

FROM

(SELECT ARRAY (select 1 -- constant 1 = Power set

 FROM basic_set t

 WHERE t.id <= 5 -- Parameter

 ORDR BY id) as init

) as restriction

ORDER BY iteration, ancestors;

 29

Table 11. Runtime of generating the state space of a multiset of activities /

equivalence classes

The reuse of elements is restricted to 1. Thus a power set is generated in order to

compare the runtime of both generation algorithms, easily.

A.9 Restrictions of State Spaces

Normally, every application implies hard constraints which cut the state space.

Creating a daily plan with hourly activities, the total duration is always less equal 24

hours. The hard constraint is:

 WHERE agglomerate <= 24

This restriction is valid for a power set based on a set (S) as well as based on a

multiset (MS). The queries of g) and h) contain this restriction as comment.

Table 12. Runtime of generating a restricted state space

Activities are discretised to get half-hour or hourly activities as equivalence classes.

Clearly, a finer discretisation achieves a greater state space and therefore a longer

runtime.

Size of basic set: k Server Runtime I/O # Tuples

5 local 0.129 0.000 32

10 local 0.172 0.000 1024

15 local 1.029 0.000 32768

17 local 3.345 0.000 131072

20 local 28.657 0.000 1048576

Size of basic set: k Server # Tuples Reduction Runtime

[s], S

Runtime

[s], MS

5 local 32 0.00% 0.099 0.104

10 local 394 61,52% 0.109 0.126

15 local 676 97,94% 0.121 0.132

20 local 751 99,43% 0.146 0.185

25 local 762 99,93% 0.136 0.143

 30

A.10 Generation of Daily Plans by Preference Evaluation

Consider fig. 7 and the step indexed by 5. Following two preferences are of interest:

1) PREFERRING

(total_duration LESS THAN 8 , 1 PRIOR TO

 total_duration AROUND 8, 1) AS duration_preference

2) PREFERRING

(activity_count HIGHEST) AS alternation_preference

The agglomerated attribute corresponds to the total duration. It is handled as a para-

meter depending on stereotype and context.

The preference query P1 with 1) is:

CREATE TABLE ua_daily_plan_1dim

AS

SELECT id, agglomerate, level(duration_preference)

FROM ua_day_statespace

PREFERRING

(agglomerate LESS THAN 8 , 1 PRIOR TO

 agglomerate AROUND 8, 1) AS duration_preference

The preference query P2 with 1) PARETO 2) is:

CREATE TABLE ua_daily_plan_2dim

AS

SELECT id, agglomerate, iteration, level(duration_preference),

 level(alternation_preference)

FROM ua_day_statespace

PREFERRING

(agglomerate LESS THAN 8 , 1 PRIOR TO

 agglomerate AROUND 8, 1 AS duration_preference)

AND

(iteration HIGHEST 100, 1 AS alternation_preference)

 31

Table 13. Runtime of two instances of the preference evaluation of the same state

space for daily plans defined on basic sets of different size k

BMO is the number of the best matching objects of a preference P. # is the count of

daily plans. With regard to preference P1 all plans are perfect because they all have a

total duration of 8 hours.

A.11 Generation of a State Space for Multi-Day Plans

Consider fig. 7 and the step indexed by 7. Now combinations of daily plans are con-

structed. The basic set of the state space generation for multi-day plans is the result

set of the best suitable daily plans generated by a top-k preference query.

Following query generates the state space of multi-day plans as power set, since each

outcome of a daily plan is unique:

CREATE temp SEQUENCE seq;

-- ALTER SEQUENCE seq RESTART WITH 1;

CREATE TABLE ua_week_statespace

AS

WITH RECURSIVE stateSpace (weeklyplan_id, ancestors, agglomerate, iteration)

AS (

WITH init_wp

AS (

 SELECT DISTINCT id AS dailyplan_id, agglomerate

 FROM ua_daily_plan

)

SELECT nextval('seq') as weeklyplan_id, ARRAY[w.dailyplan_id]

as ancestors, agglomerate, 1 as iteration

FROM init_wp w

Size of basic set: k Server P1: BMO of #,

Runtime [s]

P2: BMO of #,

Runtime [s]:

5 local 3 of 32, 0.089 4 of 32, 0.077

10 local 6 of 394, 0.166 5 of 394, 0.132

15 local 6 of 676, 0.115 5 of 676, 0.219

20 local 6 of 751, 0.187 5 of 751, 0.088

25 local 6 of 762, 0.150 5 of 762, 0.085

 32

UNION

SELECT DISTINCT nextval('seq') as weeklyplan_id,

array_cat(ARRAY[w.dailyplan_id],

s.ancestors) as ancestors,

s. agglomerate + w. agglomerate as agglomerate,

s.iteration +1 as iteration

FROM init_wp w, stateSpace s

WHERE w.dailyplan_id > s.ancestors[1] --StateSpace=PowerSet

)

SELECT *

FROM stateSpace

ORDER BY iteration, ancestors

The runtime behaviour is similar to table 10, since a power set is generated as state

space. The result size of the underlying top-k query with TOP LEVEL = 0 ranges

from 3 to 6 as shown in table 13, therefore 0.2 sec seems to be an appropriate upper

limit of the runtime.

A.12 Assignment of Quality by Counting Conflicts

Consider fig. 7 and the step indexed by 8. Now adequate combinations of daily plans

are needed. Adequateness is modelled by following preference:

 PREFERRING count_of_conflicts LOWEST

A conflict is defined as the repetition of an activity to avoid ennui of tourists.

The number of conflicts is associated to each state of the state space as a quality

assignment by following query:

CREATE TABLE ua_week_conflicts

AS

WITH para

AS (

SELECT 3 as count_of_days

),

 33

 -- WP => {DP} => {Activity}

partner

AS (

SELECT weeklyplan_id, dailyplan_id, activity

FROM

(

 SELECT weeklyplan_id, dailyplan_id,

 unnest(d.ancestors) as activity

 FROM ua_day_statespace_10 d,

 (

 SELECT w.weeklyplan_id,

unnest(w.ancestors) as

dailyplan_id

FROM ua_week_statespace_1dim_10

w, para

-- WHERE w.iteration =

para.count_of_days

--Parameter: Size of time table

) as wp2Ndp

 WHERE dailyplan_id = d.id

) as wp2Ndp2Nactivity

 WHERE activity <> 0

),

 34

-- relation graph per WP

pairing

AS (

SELECT wp1.weeklyplan_id as weeklyplan_id,

wp1.dailyplan_id as dailyplan_id_1,

wp1.activity as activity_1,

wp2.dailyplan_id as dailyplan_id_2,

wp2.activity as activity_2

FROM partner wp1, partner wp2

 -- upper triangular matrix (symmetry)

WHERE wp1.weeklyplan_id = wp2.weeklyplan_id

AND wp1.dailyplan_id < wp2.dailyplan_id

UNION

 -- Plus combinations of ONE element

SELECT weeklyplan_id as weeklyplan_id,

dailyplan_id as dailyplan_id_1, activity as activity_1,

null as dailyplan_id_2, null as activity_2

FROM partner

WHERE weeklyplan_id IN

 (SELECT weeklyplan_id

 FROM ua_week_statespace_1dim_10

 WHERE iteration = 1)

),

 35

-- conflict graph

conflict_graph_per_wp

AS (

SELECT weeklyplan_id, dailyplan_id_1, dailyplan_id_2,

 activity_1, activity_2,

CASE WHEN activity_1 = activity_2

 THEN 1 -- conflict

 ELSE 0

END AS conflict

FROM pairing

),

agg_conflict_graph_in_wp

AS (

SELECT weeklyplan_id, dailyplan_id_1, dailyplan_id_2,

sum(conflict) as agg_count_conflict_in_days

FROM conflict_graph_per_wp

GROUP BY weeklyplan_id, dailyplan_id_1, dailyplan_id_2

)

SELECT weeklyplan_id, sum(agg_count_conflict_in_days)

as count_conflict_of_wp

FROM agg_conflict_graph_in_wp

GROUP BY weeklyplan_id

ORDER BY weeklyplan_id;

 36

Table 14. Runtime of counting conflicts of a 3-day plan

A.13 Preference Evaluation of Multi-Day Plans

Consider fig.7 and the step indexed by 8, again. Now all information is available to

appraise the adequate combinations of daily plans. Adequateness is modelled by

following preference:

 PREFERRING count_of_conflicts LOWEST

The following preference query minimises the count of conflicts:

CREATE TABLE ua_weekly_plan

AS

SELECT w.*, level(p_conflict) AS conflict_level

FROM ua_week_conflicts c, ua_week_statespace w

WHERE c.weeklyplan_id = w.weeklyplan_id

-- Parameter: number of days in the weekly plan / time table

AND w.iteration = 3

PREFERRING

c.count_conflict_of_wp LOWEST 0 , 1 AS p_conflict

GROUPING iteration

-- TOP 10;

Size of basic set: k Server Runtime [s]

 5 local 0.143

10 local 0.139

15 local 0.187

20 local 0.203

25 local 0.151

 37

Table 15. Runtime of preference evaluation in a state space for multi-day plans

defined on a basic set of size k

If the k-parameter of the top-k-operator is greater than 10, sufficiently many alter-

natives exist to avoid conflicts. The number of days in the time table was restricted to

3, but the state space also disposes of combinations having less or even more than 3-

day timetables.

If conflicts exist, the shared activities should have a maximal distance between their

occurrences.

A.14 Total Runtime as Summary

To measure the total runtime, a consistent use case was defined by:

 Size of basic set = 10

 Size of best activities for 1 day = 10

 Maximal size of alternative multi-day plans = 10

 Maximal days = 5

TOP 10 as part of Preference SQL achieves the above requirements. The planner is

parameterised by a hard constraint of having <= 5 days.

Table 16. Total Runtime of the use case

The total runtime of about 1 second is sufficient to achieve the runtime requirements

of a planning application on pre-processed data of the Alpstein database.

(Size of initial basic set,

optimal daily plans)

Server Runtime

[s]

Conflicts |BMO|

(5, 3) local 0.080 3 1

(10, 6) local 0.101 0 5

(15, 6) local 0.109 0 5

(20, 6) local 0.099 0 5

(25, 6) local 0.103 0 5

Query SQL3 PSQL Response time

h) + i) Restricted power set of daily activities 0.200

j) Preference wrt. daily total duration (P1) 0.185

k) Power set of daily plans 0.240

l) Quality assessment by count of conflicts 0.101

m) Preference wrt. minimal conflicts 0.315

Total runtime of component 0.541 0.500

Total runtime of application 1.041

 38

Caveat

The spreading of multiple measurements may surpass 10 percent of the minimal

measurement.

