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Abstract

This report summarises and integrates two different tracks of research for the purpose of
envisioning and preparing a joint research project proposal.
Soft- and hardware systems have become increasingly complex and act “concurrently”,
both with respect to memory access (i.e. information flow) and computational resources
(i.e. ”services”). The software development metaphor of cloud-storage, cloud-computing
and service-oriented design has been anticipated by artificial intelligence (AI) research
at least 30 years ago (parallel and distributed computation already dates back to the
1950’s and 1970s). What is known as a “service” today is what in AI is known as the
capability of an agent ; and the problem of information flow and consistency has been a
headstone of information processing ever since. Based on a real-world robotics application
we demonstrate how an increasingly abstract description of collaborating or competing
agents correspond to a set of concurrent processes.
In the second part we review several approaches to the theory of concurrent systems. Based
on the different kinds of program semantics we present corresponding logical and algebraic
means for the description of parallel processes and memory access. It turns out that
Concurrent Kleene Algebra (CKA) and its related graphlet metaphor appears to deliver a
one-to-one matching formal description of the module structures developed in the first part.
The problem of snapshotting system states in order to receive (partial) traces of a running
system seems to be well describable by a Temporal Logic of Actions (TLA). Finally, the
different types of subsystems and their mutual requirements such as exclusiveness etc. seem
to be best describable in a separation-logic like approach.
We conclude with a list of research questions detailing some of the many promising issues
raised in the report.



Contents

1 Robots, Programs, Processes 4
1.1 Data, Programs, Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Products, Fabrication, Factories . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Glitches, Faults and Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Programs and programming languages . . . . . . . . . . . . . . . . . . . . . 6

2 Information processing 9
2.1 Semantics of sequential programs . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Specification and verification . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Different flavours of semantics . . . . . . . . . . . . . . . . . . . . . . 11

Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Denotational semantics . . . . . . . . . . . . . . . . . . . . . . . . . 13
Axiomatic semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Assemblies of processes and concurrency . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Behaviour by design vs. behaviour by collaboration . . . . . . . . . 18

The creationist approach . . . . . . . . . . . . . . . . . . . . . . . . 18
The evolutionary approach . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Programs without semantics . . . . . . . . . . . . . . . . . . . . . . 20

3 Embodiments of processes 21
3.1 ACME: Autonomous Complex Module Structures . . . . . . . . . . . . . . . 21

3.1.1 The general idea behind ACME . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Observing a system by collecting snapshots . . . . . . . . . . . . . . 23

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A one-instruction two-variable process. . . . . . . . . . . . . . 23
Control loops, sensors and actuators. . . . . . . . . . . . . . . 24

3.2 Relational models of modules and channels . . . . . . . . . . . . . . . . . . 25
3.2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



3.2.3 Modules at work: Concurrency . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Graph interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Identification of substructures . . . . . . . . . . . . . . . . . . . . . . 33

4 Logic and Algebraic models of concurrent processes 36
4.1 Concurrent Kleene Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Composing complex programs from simpler ones . . . . . . . . . . . 37
Dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Sequential composition. . . . . . . . . . . . . . . . . . . . . . 37
Concurrent composition . . . . . . . . . . . . . . . . . . . . . 38
Parallel composition . . . . . . . . . . . . . . . . . . . . . . . 38
Alternation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Concurrency and Separation Logic . . . . . . . . . . . . . . . . . . . 39
4.1.3 The Temporal Logic of Actions (TLA) and distributed snapshots . . 41

5 Current and future work 42
5.1 Evolution until failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Modelling Concurrent Systems . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Learning about concurrent systems . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.1 Learning about concurrency . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Specification recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Approximate verification by comparing abstractions . . . . . . . . . 48
5.3.4 Local learning by global feedback . . . . . . . . . . . . . . . . . . . . 49
5.3.5 Explaining a system’s behavior . . . . . . . . . . . . . . . . . . . . . 51

5.4 Learning concurrently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1 Learning logical and relational sentences about state descriptions . . 53

Specification by propositions over snapshots. . . . . . . . . . 54
Snapshots and logic and relational sentences for specification. 54
Learning across means to learn dependencies . . . . . . . . . 55

5.4.2 Learning about dependencies between modules . . . . . . . . . . . . 56
Information flow along predicates by unification of variables. . 56
Refinement, reordering and abstraction of logic programs. . . 57
A higher-level logical analysis of induction. . . . . . . . . . . 58

5.4.3 Distributed Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion 61

2



Preliminary Remark

This is a memorandum — a collection of premature work.

It summarizes and refers to a large set of related research. This memo does
not follow a strict notational convention which is due to the many different
formalisms and their respective idioms.

This article includes a large number of simple but clear and vivid examples
to generate an intuitive understanding of each topic’s importance for our re-
search proposal. Formal details of the theories that we refer to are intentionally
omitted so as not to veil the “big picture” of the article.

This memo is not to state or even prove a set of well-defined theorems. The pur-
pose is rather to identify relevant research directions and pave the way towards
finding a suitable formalism and then formulate and examine the phenomena
of specifications and verification of collaborative and concurrent robots, agents
and processes.
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Chapter 1

Robots, Programs, Processes

In this chapter, we give an informal introduction in the general setting of our research.
We show that robots (or agents), programs and processes all suffer from similar problems
concerning information flow—the only difference is what one considers as “information” or
“token” that is passed from one processing “unit” to another.

1.1 Data, Programs, Computers

Concurrent and distributed data and information processing have become key technologies
in computer science. The early steps of informatics were based on batch-organized com-
putation on locally stored data. They were followed by mainframe architectures with one
central computing unit and many time-sharing client terminals. With the advent of work-
stations, computational power became distributed in the sense that processor time was
rather shared between processes than between users. Also, workstations provided local
storage.
The specification and analysis of linear programs with exclusive memory access allowed
verification of sequential processes, [27, 29]. After single processor, single process/thread,
and local storage computers, first storage became distributed; i.e. a combination of file
servers and local storage systems were available over a network for exclusive or concurrent
access. With that many computational units connected to each other, where each of it was
capable of processing multiple processes, the last step was to distribute the computational
resources so that processes could be delegated to different manchines, should the local
processor not provide enough computational power. The most recent fundamental change
was to move both computational resources and data into the “cloud”.
Of course, many different approaches have evolved in between these six “generations” of
computing paradigms; some of them silently went extinct (massive parallel local com-
putation, transputers, RISC), others were incorporated into new paradigms (preemp-
tive/collaborative timesharing, ARM, FPGA) or were re-discovered in later generations
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(thin clients, server farms providing thousands of processor nodes for massively parallel,
distributed processing).

1.2 Products, Fabrication, Factories

Similar to the evolution of informatics, the methods of production (in an industrial sense)
have changed. The individual artisan manufactured a product from raw material; one
product after another. This method may have evolved into an “episodic” workflow where
several products were produced “simultaneaously” by repeating an episode of the process
for each item until moving to the next sequence of production steps. A natural optimiza-
tion of this procedure is to run all the episodes in parallel by several workers, each one
specialising in one production episode. Since every episode requires supply, in- and output
of each episode needs to be passed sequentially, and full productivity can only be achieved
by external (global) timing. The ultimate result of this process refinement led to assembly
lines where the batch size of passed products is exactly one item and each episode is broken
down into as few steps as possible so as to maximise the global timing frequency.
Other important inventions of industrial production are platform or module designs where
components of complex products could be mutually exchanged: one component could be
used in several models and one and one model could be built using different components.
This method offered “production buffers” at the price of storage required for the modules
in stock. Also, it became more likely for some workshops specialized to a certain episode
within the production processes to idle because either their output storage was full or the
required supply was exhausted.

The idea behind “industry 4.0” is that

[...] businesses will establish global networks that incorporate their machin-
ery, warehousing systems and production facilities [...]. [They] comprise smart
machines, storage systems and production facilities capable of autonomously
exchanging information, triggering actions and controlling each other indepen-
dently. [...] Smart products are uniquely identifiable, may be located at all
times and know their own history, current status and alternative routes to
achieving their target state. [39]

One needs to understand that products knowing their own history are the key issue here:
it is not the production plan that organizes the production processes but it is the product-
to-be that triggers production processes to act upon them. Hence, the specific properties
mentioned in the context of such production paradigms are interoperability, decentraliza-
tion, real-time capability, service orientation, and modularity, [25]. In fact, it is a one-to-one
correspondence to what we identified as “cloud computation” in the previous section.
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1.3 Glitches, Faults and Failure

A glitch is some kind of local irregularity that does not (significantly) impair its surrounding
processes and that can locally be repaired and does not require or cause a stir. A faulty
process delivers products that do not conform to the specification and hence fail a quality
test or cause a further fault or failure when ignored. Hence, faults can result in significant
impairments of both the production process itself and the final product. They do cause a
stir as they are recognised externally, but it usually only requires local repair to remove
them. In order to avoid further faults or follow-up glitches (by trying to “adapt” to faulty
supplies) the fault and its correction must be announced and documented. Ideally, glitches
should be announced and documented as well but since their impact is closely confined
and they are debugged before causing external stir, they usually remain undocumented.
Failure is some kind of a global fault. It occurs when the entire system and usually all
of its components come to a halt because one or several parts produced or encountered a
faulty result. Failure is easy to detect as it usually causes immediate breakdown. But it
is not as easy to repair because the causing fault (or even glitch) needs to be identified.
Undocumented glitches are nearly impossible to detect, while faults can be detected (and
even avoided) by verifying the processes against their specification. The latter are hard
to come by when not or only insufficiently documented, and, in the worst case, a “dead”
system cannot be analysed at all for this would require the performance of the running
system.
The problem of glitches and faults leading to failure is well known, as they may result
in fatalities (Therac-25, Chinook engine control, Chinese Airbus A300 crash, Airbus 320
airshow crash, Iran Air Flight 655 shooting by USS Vincennes, London Ambulance Service
Dispatch software, etc) critical situations (Intel bugs, Ariane 5 satellite launcher, H.M.S.
Sheffield sinking after Exocet misclassification and Aegis problems, numerous manned and
unmanned space missions, telecommunication breakdown, nuclear powerplant incidents,
etc) or huge economic loss (Y2K, Airline reservation software and baggage routing, em-
bedded automotive software, public transport breakdown, etc).

1.4 Programs and programming languages

Basically all mentionend generations of paradigms of computing correspond to program-
ming paradigms, where it is not always obvious whether the former inspired the latter
or vice versa (sometimes, they were developed in close cooperation but usually became
extinct due to their proprietry character, e.g. LISP and the LISP machine or occam and
Transputers).
The first and simplest programming languages are GOTO languages with their equivalent
WHILE programs already gaining a benefit by allowing to easily specify iterative algo-
rithms. Any such algorithms performs all its actions on a memory using variables that
are globally accessible and, due to the purely sequential execution of the program, can be
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safely read and changed at any discrete point in time of execution. But the bigger the
problems, the more complicated the algorithm and the resulting program codse that grew
into large, monolithic pieces of specialised software with many redundancies in software
development.
Replacing iterative concepts by recursive ones gave rise to the question of how to manage
different variable instantiations during the execution of a recursive process and the recovery
of earlier instantiations.
Both, the programming paradigms and the software engineering, required modularisation.
What appears trivial from the point of view of a functional language becomes more so-
phisticated at the level of procedural languages where call-by-reference and call-by-value
together with random access memory and mixed local and global variable spaces made
it very easy to generate memory leakage and overflow as well as incorrect computations
caused by programming mistakes or unintendend side-effects.
Having decomposed a huge algorithm into a set of many smaller ones it is quite natural to
try and execute those that are mutually independent in parallel. Of course this is possible
as soon their variable spaces (or memory access) are disjoint, which requires much discipline
in software development (variable access) and algorithm design (side effects).
Hence, the next step was to encapsulate parts of a program into safe and isolated places
which then were required to receive input from and send output to other components;
i.e. they needed to communicate. Together with multi-threaded processors and time-
sharing operating systems with shared and reserved memory per process and thread,
things became quite complicated because integrity had to be maintained throughout space
(i.e. memory) and time (i.e. concurrent program execution).
Two programming paradigms emerged: object-oriented programming offers a high-level
language to the software designer and frees him from thinking about memory management
and process interdependencies — at the price of leaving the former to a garbage collector
and the latter to a virtual machine with exception handling for fault handling.
The programming paradigm that best fits into the metaphor of cloud computing would
be (not surprisingly) a rather old method that was known as blackboard architectures,
[24, 14, 13]: whoever needs access to information, reads from a blackboard the data required
and writes the result to the blackboard so as to present it to anyone who might need
it later. No-one needs to know who provided the required information nor who might
rely on the results; all one needs is some agreement on the semantics of the blackboard
message language. Should there be not enough information available, a single process
would simply wait for it or, in enhanced versions, announce to the blackboard that it
requires some information to trigger another process that can provide it. It is basically
equivalent to the tuple-space memory model of concurrent programming as, e.g., realized
by Linda, [17, 15]. Abstracting from the idea of one local blackboard to a decentralised
communication network with information request message broadcasting and delivery the
result is what today is known as distributed shared memory (DSM).
Either way, all programming paradigms share one fundamental property. It is that a
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program, when executed, initiates and performs a sequence of actions that depend on
input data and deliver output data where the correctness of this process with respect to
the supplied information relies on the fact that no other process interferes with it.
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Chapter 2

Information processing

In this chapter, we generalise from the different levels of details that were presented in
Chapter 1. From now on, we will speak of processes only and, since such processes are usu-
ally described by algorithms written down in a specified language, we call them programs.

2.1 Semantics of sequential programs

The semantics of a program basically is, what it does:

1. A program takes some input and delivers a corresponding output; hence its semantics
can be described by a relation (usually, a function).

2. A program performs sequences of operations each of which somehow alter internal
memory in the process of transforming the input to the output; hence, a log of all
internal state changes can be considered one form of the program’s semantics.

3. A program starts off with an initial memory (and variable assignments) representing
the input and stops (if it stops) on a final memory state where all of its intermediate
steps preserve the required specification; hence such a specification is the program’s
semantics if it is satisfied all time during and after execution.

4. Considering the program itself and a description of the initial memory to be just
a complex syntactical expression, this expression can be decomposed systematically
until an atomic level or a normal form is reached; hence the definition of the process
of deriving this normal form is another form of the program’s semantics.

Obviously, semantics is linked to what a program actually does; and a specification is a
description of what a program is supposed to do. To avoid failure, we want to avoid that
the semantics does not match the specification.
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2.1.1 Specification and verification

A specification describes the desired behaviour of a system. It should be complete, i.e. it
should cover all situations in which the system is expected to live and all behavioural
responses the system can exhibit, and correct, viz. it should exactly describe how to react
in a certain situation. Having in mind a rational and goal-directed behaviour one usually
implicitly expects a system to behave deterministically which requires a specification to be
a functional (more specifically, bijective) description.
Left totality of a specification function requires the ability to describe all possible situations
in their entirety, meaning that the model of the world the system lives in is complete and
correct, too (cf. the frame problem of artificial intelligence, [49]) and right totality requires
equivalence of specification and implementation with respect to the model. Completeness
without inconsistencyis, in general, impossible to satisfy which is why it is simply assumed
to be true (with the AI’s open world assumption versus closed-world-assumption, [74, 23]).
To prove the latter one has to verify the program by proving that it behaves exactly as
prescribed by the specification. Hence, verification is always relative to the specification
rather than the model, let alone the real world.
The language of specification needs to be chosen wisely. Being a logic, we want its structural
rules and their interpretations to correspond to the programming language, the compiler
or interpreter and the actual execution of the program. Hence, a specification language
must be powerful enough to describe the behaviour of the process that is to be specified
and its interpretation must comply with all consequences that arise from building complex
programs of the chosen programming language, compiler or interpreter and the actual
machine it is running on. For as process descriptions (i.e. programs) are elements of
programming languages one seeks to give a semantics for the language such that any
actual, real process (or program execution) is fully “predictable” (presupposing correctness
of compilers and machines) from its abstract specification. Hence, to (provably) avoid
glitches, faults and eventual failures, we need a thorough specification to which a program’s
semantics can be compared. Especially,

1. the more complex a system, the more important it is to specify it and

2. the more complex a system, the more important it is to verify it.

Yet, there are several special properties that may or may not be important to the programs
under consideration: Sequentiality requires processes to be composable by executing them
one after another; compositionality refers to the principle of defining the meaning of com-
plex expressions by way of the meaning of its components; concurrency means to describe
processes in a system running in parallel (in time and/or space; i.e. the environment or
memory). Also, different programs behaving equally should have the same meaning—but
most specifications do not require there is exactly one program that is correct.
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2.1.2 Different flavours of semantics

The meaning of a program can be described in several ways (which, the other way round,
also impose requirements onto the specification language). What is common to all kinds
of semantics is that a semantics assigns a meaning to an expression (from a language).
Hence, the meaning of a variable X occurring in a program depends on its value, that is,
the (current) content of a memory cell to which the name (or “pointer”) X refers to, and
the meaning of a program is its operating on the meanings of these variables in terms of
the syntax of the programming language and the semantics of its complex expressions.

The following three sections provide a short and informal overview illustrating the common
characteristics and differences of the “most popular” types of semantics.

Operational semantics

is a rather one-to-one mapping of programming language constructs to term-rewriting rules
that are designed in a way to decompose a complex program into one large term consisting
of atoms only. It works for ground terms and rule schemes like add(p, q) ::= (p + q) such
that, e.g.

add(p, q)

|: Semantics of outer add expression

` (p + q)

|: p is another addition directive

` (add(X, Y) + q)

|: Semantics of inner add expression

` ((X + Y) + q)

|: Resolve the variable pointers

` ((x+ y) + q)

|: Use the current memory state ...

` ((1 + 2) + q)

|: ... to determine result
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|: ... to determine result

` (3 + q)

|: q is just a variable

` (3 + Z)

|: Resolve the variable pointer

` (3 + z)

|: Use the current memory state ...

` (3 + 4)

|: ... to determine result

` 7.

where ` denotes term replacement.
Note that the final result may depend on operator precedence rules or term tree traversal
method. Hence, the semantics of r := add(add(X, Y), Z) is the (partial) function mapping
{〈X, x〉 , 〈Y, y〉 , 〈Z, z〉} ∪ V 7→ {〈r, x+ y + z〉} ∪ V ′. Operational semantics calculus can be
extended by any arbitrary memory model, too, such that with its explicit management we
can also describe much more complex program contructs (one usually adds a stack memory
model to model UPN-arithmetic). One could also assume every variable name in a program
to represent a fixed memory address and functions get(m) : Var→ D delivering the value
stored at an address and put : (Var × D) → M where m is one of all possible memory
configurations M . For the ease of reading, we simply write X to refer to get(m)(X) and
m[X←[ Y ] to show that the memory content for X has changed to Y : put(X, Y ). Then every
rule needs not only to take into account the structural term rewriting but also memory
access associated to every rule application:

〈m, add(X, Y)〉 =⇒ 〈m[X←[ X + Y ], X〉
states that the add-command stores the result of the addition of its arguments at the
memory address of its first argument and also “returns” this address (i.e. it evaluates to
the term stored at the corresponding address). With corresponding rules, one can derive

〈m, R := add(add(X, Y), Z)〉 ` 〈m[X ← [ X + Y ], R := add(X, Z)〉
` 〈m[X ←[ X + Y,X ←[ X + Z], R := X〉
` 〈m[X ←[ X + Y,X ←[ X + Z,R←[ X], R〉
` 〈m[R←[ X + Y + Z], R〉 .

So with appropriate rules defining the semantics of a programming language, we can “trace”
a program by stepwise execution of its commands and the continuous updating of the
memory. This way, operational semantics corresponds to a state transition system with M
being the set of states and the rules defining possible transitions between them.
As an example, consider the program
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while B 6= 1 do

MR := SL ;
ML := SR ;
read(B);

od;
MR := 0 ;
ML := 0

which shall describe a two-wheeled robot’s wandering behaviour: Reading from two light
sensors SL and SR on the left and right front of the robot, their values (representing light
intensity) are used to control the motors MR and ML. This control program is supposed to
result in a phototactical behaviour of the robot unless its front bumper B reports collision.
A (partial) derivation of the program’s semantics with m′′(MR) = m′′(ML) = 0, m′′(B) =
m′(B) = 0, and m′′(SL/R) = m′(SL/R) is

〈m,while B 6= 1 do MR := SL; ML := SR; read(B); od; MR := 0; ML := 0.〉
|: Let C = MR := SL; ML := SR; read(B);

` 〈m, if B 6= 1 then C; while B 6= 1 do C else skip fi od; MR := 0; ML := 0.〉
|: We assume B 6= 1 evaluates to 1 on m

` 〈m,C; while B 6= 1 do C else skip fi od; MR := 0; ML := 0.〉
|: We assume the execution of C leaves us with m′ where

(∗) |: B = 0 and ML = m(SR),MR = m(SL).

`
〈
m′,while B 6= 1 do C else skip fi od; MR := 0; ML := 0.

〉
|: Since B = 0,

`
〈
m′′, skip

〉
.

The reason we chose this example will become clear later; it is important to understand
that this program behaviour crucially depends on the environment specifying the current
value of B (see line (∗)).

Denotational semantics

is a method to describe a program’s meaning by grounding its syntactical elements and
structures in mathematical functions which, atthis abstract level could be composed so as
to construct the meaning of a complex program in terms of compositions of denotations,
[87] and [81, 82]. Such a semantics requires some extra effort in comparison to operational
semantics: Domains and methods to access them. The most important one is the store
σ (or memory) which is just a vector of n arguments each of which represents a memory
cell holding a natural number (σ = N0

n). Σ is the countable set of all stores; i.e. the set
of all memory configurations. get delivers the value for a variable Xi by picking the i-th
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component from σ (get(e)(Xi, σ) := π(e(i))(σ)) and put(e)(Xi, v, σ) = σ′ defines the store
resulting from updating the i-th component of σ by the value v ∈ N0. Both functions are
parametrized by environments e which allow different interpretations of a variable name
(i.e. one and the same variable name Xi may refer to different storage cells depending on
the environment e). This allows binding variables to different values which means that
with regard to the context (i.e. environment) a variable’s value may vary by the different
memory cells the pointers refer to in different environments.
As an example, we demonstrate the idea behind this approach along the same example
as above (again, we skip the details including the different interpretation functions for
expressions and commands or even the least fixed point interpretation of a terminating
loop).
The syntactical operation of term replacement “`” is now replaced by equality of interpre-
tations �p�eσ which denote the sets of environments e and variable bindings σ that are valid
models of the program.
Note that the value of B is not determined by a read operation that delivers the value
get(m)(B) as in operational semantics. Here, the environment e determines the set of
satisfying assignments � B �eσ= π(e(b))(σ) where we assume B to be stored in the b-th
component of σ:

�while B 6= 1 do MR := SL; ML := SR; od; MR := 0; ML := 0�eσ
|: We assume the bumper does not report a collision: �B�eσ= 0

= �MR := SL; ML := SR; while B 6= 1 do MR := SL; ML := SR; od; MR := 0; ML := 0�eσ
|: After assignments, MR and ML have the values of SL and SR

= �while B 6= 1 do MR := SL; ML := SR; od; MR := 0; ML := 0�eσ′

|: We assume the bumper reports a collision: �B�e
′
σ′= 1

= �MR := 0; ML := 0�e
′
σ′

|: After assignments, MR and ML have the values 0

= �skip�e
′′
σ′′

which leaves us with a full stop in e′′. Since

π(e′(b)(σ′)) = 1,

the following assignment sets both motor values to 0:

π(e′(l)(σ′′)) = π(e′(l)(σ′[ML ←[ 0])) = 0

and the same for r and MR, respectively.
Note that once B delivered the value 1 at the time of evaluating the loop condition, the
program will always bring the robot to a complete halt and then terminate. Even if during
the assignments of 0 to ML and MR the environment e′ is changed to e′′ with

π(e′′(b)(σ′)) = 0,
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the robot won’t start moving again even if the bumper contact is released.
On the other hand, e demonstrates the problem of concurrent memory access: If there
was another program, it might have caused a change on e′′ resulting in different versions
of σ′′ at, say, l. Then, the signal to the left motor is determined by the environment or
conflicting program rather than by our program (forcing the left motor to stop).
This example appears only to be a syntactical variant of operational semantics, but here
we have the “history” of all variable values given by the set of all environments and, much
more important, the value of B depends on the environment rather than some expected
interaction by read. Therefore, any other program working on the same memory cells
(and not the cells that variable names point to) may alter (if not even control) a program’s
behaviour.

Axiomatic semantics

finally gives us a tool to derive a correct program along a first order logic specification of
its desired behaviour and a method to verify that a given program actually does what it
is supposed to do. The core idea are so-called Hoare-triples {|Pre |}C {|Post |} where Pre
and Post represent conjunctions of first order logic formulae with equality describing the
pre- and postconditions of executing a command C. We describe the method using our
our example code again. The arabic-numbered lines contain the program code and the al-
phabetically labelled lines are “comments” containing the required pre- and postconditions
that hold between the program instructions.
Note that this formalisation does not require states σ or functions e on them. Program
variables like B are interpreted by variables B and free variables are treated as universally
quantified (i.e. B = X means that whenever the program runs across this requirement, B
must evaluate to the same value as X).
The initial setting for our program shall be that the bumper is released, the sensors have
a zero reading, and the motors are stopped. We also require for this version of the control
program that the values for sensors and motors always add up to integer multiples of 100:

ϕ ≡ MR = SL ψ ≡ ML = SR
χM ≡ (MR +ML)(100) = 0 χS ≡ (SR + SL)(100) = 0

To emphasize the difference to the previous methods of specifying a semantics, we here
use a function poll to read a variable’s value. It locks the variable’s memory cell for write
access until it is explicitly released.

a {|B = SL = SR = ML = MR = 0, ϕ, ψ, χS , χM |}
1 while B 6= 1 do
b {|B 6= 1, χM |}
2 poll SR, SL |: Variable update
c {|χS , χM |}
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3 MR := SL; {|ϕ |} release SL;
4 ML := SR; {|ψ |} release SR;
e {|χM |}
5 od
f {|B = 1, χM |}
6 MR := 0;
g {|B = 1 |}
7 ML := 0;
h {|B = 1, χM , ξ |}

where ξ ≡MR = ML = 0.
Obviously, (a) holds due to the memory initialisation. Also, (b) is true because the loop
body is entered only if B 6= 1. For the same reason B = 1 holds in (f)-(h) and χM , ξ are true
in (h) because MR = ML = 0 ≡ ξ after execution (6) and (7) and (0 + 0)(100) = 0 ≡ χM .
The loop body is a bit more tricky: We assume (the reason will become clear later) that
ML/R can only be changed by the commands in (3)-(4) and (6)-(7). SL/R and B can
be overwritten by some other process, i.e. can change their values at any time except for
while executing the poll command in (2): it returns the current and possibly altered values
for SL/R and B but guarantees that SL and SR together sum up to 100 and “locks” the
variables against other process activities unless they are released.
Let us suppose, that χM is true when entering the loop. Then it stays true until (3) where
MR is assigned a new value but ML still carries the old one. But since polling in (2) ensures
that χS holds true, χM is true after assigning the new value of SR to ML. Note that ϕ
and ψ are true only at the very beginning and in lines (3) and (4) between assignment and
release. Hence, χM is true before and after a loop execution, hence it is an invariant.
Skipping (6)-(7) we find that at the very end we have MR = ML = 0, hence χM and ξ are
true (note also, that we had lost χM between (6) and (7).
So while the program is running, the values of ML/R may change constantly but, as a result
of the characteristics of SL/R (namely χS) also satisfy χM most of the time. The program
comes to an end only if at some point somehow the value of B changes to 1 and then the
program always terminates with ML/R = 0 no matter what the values of SL/R are.
Obviously, after termination, our memory holds the following values for our variables:
B = 1,ML = 0,MR = 0. The first one is due to the fact that the loop condition must
have failed (otherwise the program would not have come to a halt); and the latter ones
are result of the two assignments at the end of the program. By convention, the memory
is initialised with all cells set to 0, which is why at the beginning T = 0. Hence, we could
state that

{|T = 0 |}while T 6= 1 do C od ;D {|T = 1,ML = 0,MR = 0 |}

where T is the loop condition, C the loop body, and D the block of assignments at the
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end. The values of ML/R are unspecified before execution of D such that we could write

{|T = 0 |}while T 6= 1 do C od {|T = 1 |}.

Imagine now that SL and SR are two variables that are affected by some external process
but that their values always add up to 100 whenever their values are asked for during
execution of commands. Let us further assume that SL and SR cannot be altered while
executing the loop body (this is a very strong assumption; especially in combination with
the possibility of external processes changing their values). At the same time, we want ML

and MR to deliver 100 as a sum.
This can be formulated by

χ := SL + SR(100) = 0 and ξ := ML +MR(100) = 0

Due to memory initialisation, we have that ϕ0 := B = SR = ML = 0 and ψ0 := B = SL =
MR = 0 are true.
A weakened condition is that, upon first loop entry, ϕ := B = 0∧SR = ML and ψ := B =
0 ∧ SL = MR are true and, therefore, B = 0 ∧ ϕ0 =⇒ ϕ and B = 0 ∧ ψ0 =⇒ ψ.
Hence, ϕ∧ψ also holds after each execution of C (but not neccessarily within C) such that

{|B = 0, ϕ ∧ ψ |}while T 6= 1 do C od {|B = 1, ϕ ∧ ψ |}.

Note that validity of ϕ ∧ ψ in the precondition is because of initialisation whereas in the
postcondition it is because of the two assignments.

These are just simple examples for three popular types of semantics to motivate the follow-
ing: The crucial thing behind program behaviour are events that change the environment.
Every such event is the result of some process computing some value it communicates
by publishing the result in a variable. Taking into account a number of processes with
concurrent access to memory, we have deduced the metaphor of communicating processes
(including all the problems by interference).
Also, we have seen that the semantics of a program is required for and can be used for
in two general directions: we can prove or disprove that a program behaves well w.r.t. a
specification and we can use a specification to derive a program from it.

A nice, informal comparison of the three different types of semantics in the context of
non-deterministic programs is given in [28].

2.2 Assemblies of processes and concurrency

Following the observation described in the introduction, an embodiment of a process would
be a physical entity that receives (sensory) input from the environment and acts on it,
leaving behind an environment that has changed due to the effects of his acting. Such an
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entity is called an agent. According to this definition, agents can be virtually anything
in our real world that somehow interfere with the environment. With their (common)
environment being the input space they also deliver output by acting: Simple machines,
software agents, robots, any kind of functional component involved in a complex system
such as an assembly line or operating system.
This approach to analysing processes can be applied to nearly arbitrary levels of detail: An
entire production process can be decomposed into business and design processes, software
design and implementation, then running different programs (each of which again may con-
sist of several such modules), on different computers (also built from modules) controlling
robots with modules for sensory input processing etc.

2.2.1 Behaviour by design vs. behaviour by collaboration

Distributed artificial intelligence and multi-agent systems offer a similar interpretation of
interacting and cooperating individual agents that together attain a common goal or exhibit
a desired behaviour, [90].
The “creationist” approach is to thoroughly specify, design and carefully implement the
individual components to deterministically perform the desired actions in appropriate sit-
uations. This also requires to design the entire assemblage of cooperating agents in order
to guarantee deterministic behaviour. Complex systems cannot be formally specified to a
sufficient extent; and even if they were, the verification would require far too much effort.
Furthermore, a true verification still cannot avoid nondeterministic behavior: In reality,
something always goes wrong. Hence, the second (“evolutionary”) approach is to build
primitive modules (without too much functionality and, hence, semantics and conditions)
which together by their interaction act as one large process (with a complex functionality).

The creationist approach

is in principle able to deliver systems that behave exactly in the same way they are sup-
posed to do; both on microscopic as well as a macroscopic level — and both with respect to
the functional correctness of each individual component and their pairwise interaction. Its
drawback is that specification is tedious and development hardly ever correct w.r.t. spec-
ifications, so that the actual behaviour is not guaranteed to be the same as intended by
the specification (especially in non-isolated environments that impose a certain degree of
nondeterminism on the system components). Correcting (“debugging”) a system, its com-
ponents and communication methods is a task that comes close to an entirely new system
design which may resolve previously encountered problems but may be fallible just as before
— only for perhaps different reasons.
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The evolutionary approach

on the other hand is a process that constantly refines a system of simple, atomic modules or
processes. Assuming some kind of monotone and continous change a constant refinement of
the system components may allow maintaining at least a certain degree of reliability (mod-
ulo short lags during readjustments). The fundamental disadvantage is that “twiddling
with black boxes” usually happens undocumentedly, i.e., the system and its components
may change over time whereas its specification doesn’t (or even does not exist at all).
Also, with changing functionality of modules one might miss to adapt communication, too
(resulting in buffer overflows, type inconsistencies etc).
Finally, all more or less discrete components only allow tweaking up to a certain degree
at which a turning point is reached: Then, a system breakdown is also nearly impossible
to fix without entire reimplementation — but for a different reason: Due to the constant
refinement during runtime without any documentation, the actual functional meaning of
isolated modules and, let alone, components of modules, has become totally unclear.
Creationism is bound to fail due to nondeterminism of the environment whereas evolution
is bound to fail due to determinisim of specification.

2.2.2 Agents

Agents are one of the most recent metaphors for goal-directed (i.e. rational, [1]) processes
that interact with their environment, [91, 90]. While agents of these kind are themselves
already complex software systems, simplest processes and machines (i.e. “modules”) can be
thought of as being agents, too: Small and simple electronic or mechanical parts comprising
a complex machine, small and simple (cognitive, here: rational) processes that together
form “intelligent” behavior and simple computational units that by suitable connections
allow universal function approximation, [41, 6, 48, 78].
Assemblies of agents together may or may not follow an individual or general plan. They
act in a shared environment and they usually perform a collaborative effort—whatever that
is (even if not intended or seemingly “counterproductive”).
The resulting system behaviour is then predetermined or at least close to the intention
([1, 7, 72]) or freely emergent [10, 12]. Hence, an entire set of modules with its collabo-
rative performance can be thought of being another, atomic module at a higher level of
abstraction.
With the environment being a collection of information and agents accessing, transforming
and aggregating information, blackboards, developed in the early 80’s [13, 14, 24] and
distributed shared memory models such as in Linda (from the mid-80’s, [17, 15]) have now
gained new interest as a memory model under the name of tuple spaces, [77], in object or
service oriented models.
The fundamental problem that we come across when dealing with increasingly complex
software or hardware systems nowadays is:
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1. The more complex a system, the more difficult it is to specify it.

2. The more complex a system, the more difficult it is to verify it.

Therefore, increasing need for specification and verification comes with increasing difficul-
ties; hence there is a strong need for simple models and simple logics in order to overcome
these difficulties.

2.2.3 Programs without semantics

Brooks’s paper entitled “Intelligence Without Reason”, [12], tries to give a belated vin-
dication of his earlier work on “Intelligence without representation” by a constructivist
approach to intelligent behaviour.
On the one hand, the recent rediscovery of problem solving by emerging behaviour of
collaborating agents advocates the approach of cooperating and independently interacting
modules. On the other hand it is a fact that most systems nowadays are missing the
“reason” in the sense that the knowledge the developers have put into the design has been
lost for several reasons (the system requirements were never specified at all, the specification
has been lost, the system has been constantly “refined” without adapting the specification
or verifying the changes, see section 2.2). In other words, the intention of the programmer
cannot be recovered from the representation.
Most systems that fail need to be analysed “post mortem”. Analysis is nearly impossible,
if there is no specification. But in most cases the failure is due to a weak specification and,
hence, the system does something similar to what one wants, but it is missing a proper
semantics. It is, so to say, a “program without semantics”.
Motivated by Brooks’s subsumption architecture and experience from cognitive robotics
experiments, we developed a more abstract model called “asynchronous complex module
environments” [61]. This model is able to describe nearly any kind of processes that
somehow interact in a common environment. The goal is to induce hypotheses about
what the entire system is meant to do: From observing what it does and from its general
architecture we want to infer hypotheses about a suitable specification.
This hypothesis can be checked for obvious errors or statements that evidently contradict
assertions about the desired program behaviour. And this way, one might be able to find
the reason for the system failure more efficiently.
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Chapter 3

Embodiments of processes

This chapter describes previous work that, in its origin, was focused on a real-world im-
plementation framework for multi-agent systems. With all agents arranged in an assembly
line, the set of agents forms a sequentially composed system of processes. When break-
ing up the sequential design or taking out a global clock timer, some components may
act independently from others whereas others (mutually) depend directly or indirectly on
each other. Such a set of task-cooperative or resource-competing agents is a system of
concurrent processes.

3.1 ACME: Autonomous Complex Module Structures

ACMEs, see [61], resulted from the need for a formal framework to describe cognitive
agent and cognitive robot environments. In the course of the PARIA (Platform for Au-
tonomous Robots and Intelligent Agents) project, [60, 26, 37] running from 2005-2008
at the University of Augsburg and from 2009-2010 at the University of Applied Sciences
Bonn-Rhein-Sieg, we developed an integrated framework for both virtual agents and real
robots that cooperate and compete in a common environment. The original setting was to
enable Lego-RCX robots to compete in a Robo-Rally-like game. Over several generations
of continous improvements we finally ended up with embedded Linux controlled robots
communicating via WLAN and exchanging information using a blackboard server. Using
the benefits of TCP/IP communication, Linux device file systems and multi-threaded pro-
cesses, one could easily implement arbitrary agents that act locally, or design systems of
agents (or rther modules) in a Brooks-like manner, [38, 83, 22]. In other words, an increas-
ingly robust framework for embodied agents (i.e. robots running processes) naturally led
to an increasingly abstract description of process communication.

21



3.1.1 The general idea behind ACME

The last section concluded with the description of a program’s semantics in terms of events,
messages (communication) and environments. The same holds true for “real life” processes
that interact within a common environment. Therefore, at a certain level of abstraction
we can identify the following classes and the equivalences between their different interpre-
tations according to their field of application:

• The I/O-behaviour of a program, required resources and produced results by a ma-
chine, sensory data and actions of a robot, read/write access to memories, etc.

• Interface variables of a program/procedure as a part of the global memory, messages
on a blackboard, global (external) events changing the environment in which a robot
acts, etc.

• Processes executing programs, robots acting according to their models (and goals),
processors running processes, etc.

• State transition graphs for simple automata, logical descriptions of world models,
plans and actions for robots and agents, functions for denotational specifications,
etc.

• Behaviour of agents and robots, traces of events, state sequences generated by tran-
sitions, snapshots by memory maps, etc.

Since we shall use ACMEs to describe the abstractions of the different readings, we will
from now on use the following terminology that, depending on the scenario we work in,
can be translated into the corresponding idiosyncratic notation.

• A specification is a high-order description of what a process shall do. It requires a
specification language with a well defined semantics.

• A program is an algorithm defined in a specific programming language. Its purpose
is to give a recipe of how to compute a function.

• A module is an entity that takes a program and executes it in a (global) environment
from which it takes information and into which it infuses information. A module
usually is equipped with some “inner life” which, according to it, is part of the
environment, too. Since it is invisible to others,we shall call it local or interior
environment (since there is no such word as invironment).

• A system is a set of modules sharing a common environment.

• A snapshot is an instantaneous image of the environment together with all its modules
and their states at a certain point in time.
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• A process is a sequence of events where each event is any change in the environment.
Sets of events may form complex events.

• A trace is a sequence of footprints of a process, it is a (ordered) set of snapshots.

• If an event can occur only if the snapshot satisfies certain properties, then the process
depends (on the environment).

• If a certain snapshot is a result of an event, we say that the event brings about (a
certain environment).

3.1.2 Observing a system by collecting snapshots

Observation over a period of time means to collect data produced by the system’s states
as well as how data changes over time and during the system’s behaviour. Hence, the
system behaviour determines the structure of collected data—but given data, we need not
neccessarily be able to draw valid conclusions about the processes, let alone the involved
programs or even the specification.

Examples

A one-instruction two-variable process. Let us a assume the simplest case first: The
system S consists of only one module m running a program p that implements an algorithm
to compute a total function f : D → D. The argument and result are stored in separate
variables; the variable names in the program are mere pointers to memory in the (global)
environment. Let us also assume that m performs one execution of p. Every execution
of p creates one process P which becomes visible as the one and only event in a trace.
For f(x) = x + 1 (implemented as p = y := x + 1) we think of P as being the process of
computing the successor of x and storing it in y. A trace depends on the range of the
snapshot and the actual environment. So if the environment only provides two memory
cells, one for x (called “x”) and one for y (“y”), and the former holds the value 4, then the
latter will have the value 5 after the execution. The trace in this configuration would be

[{〈x, 4〉 , 〈y, 〉} , {〈x, 4〉 , 〈y, 5〉}] .

Note that y is “known” in the first step of the trace already since we assume the snapshot
range to be constant w.r.t. the variable names and since we assumed the range to cover
the entire memory of only two cells (named x and y).1 With many such traces, one
might discover that every event generated by this process leaves us with an environment
E ⊆ {〈x, x〉 , 〈y, x+ 1〉}. Since E may provide many more memory cells than just the ones

1For later, it is worth mentioning that x denotes one and the same memory cell all the time. It can
be considered a physical memory address but not a pointer. Hence we can only implement call-by-value
programs on global variables.
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P works on, it is quite a challenge to identify x and y as being “characteristic” for P . But
if we discovered such a dependency (see, e.g. [62]), we could also analyse a trace

[E0, . . . , Ei, Ei+1, . . . , En−1]

with many values i ∈ n such that

〈x, x〉 ∈ Ei and 〈y, x+ 1〉

and identify P as the process that adds 1 to x. This way, one would have induced the
semantics of p from the trace it leaves when executing P .

Control loops, sensors and actuators. Looking at agents or robots (or in general
any program acting on arbitrary input and output variable spaces), we need to add special
modules to poll or publish values. For reasons of simplicity, we assume all variables to be
of the same type; that is, all of its possible values to be from the same domain D.
First, we add modules acting as sensors. Sensors collect input from the unobservable
(external and internal) environment such that the “sensing function” can be identified
with its value s :→ D. The system also contains a set of modules mj : D → D where each
module implements a function fi : D → D by a program pi. This definition can easily be
extended to modules, programs and functions which take several arguments and deliver
several output values (we restrict ourselves to unary endofunctions only for reason of a
simpler notation). Note that here every module may have an individual signature and,
of course, domains and codomains can also consist of more complex structures (products
to model n-ary functions). Examples for more complex modules are logic gates and :
2 × 2 → 2, vending machines m : Money × ProductCode → PurchasedItem × Change,
simple control circuits (see below), or an industrial robot assembling several parts into a
product. Obviously, sensors are assumed independent in the sense that they simply take
information from the outside and provide them to the system, whereas all other modules
depend on existing input values of the right type and within the specified range. Taking a
more general view, we can distinguish three special types of modules that depend on the
signature of the implemented functions. The normal case is a function f : D → C where
D and C are products of domains (types). If D = ∅, f simply provides values from C.
If C = ∅, then the module implementing f has no influence on any other modules. We
call them initial and terminal modules and in terms of robotics, we could also call them
sensors and actuators. Then, indeed, they do not affect other modules directly, but they
do affect the environment through side-effects and, hence, have an indirect influence on
the behaviour of other modules (and the entire system).
We now consider the case of a robot implementing a phototactical behaviour as in Chapter
2 again; but this time from the point of view of multi-agent system design: Two initial
modules sL and sR provide integer values representing the light intensity recorded by
two photo diodes on the left and right side of a robot’s body. A third initial module, b,
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holds the value of a binary bumper switch that is 1 if the robot’s front is in contact with
an obstacle and 0 else. Two terminal modules mL and mR translate incoming integer
values into electric current driving the left and right wheels. In between there is a module
implementing a function drive, that simply redirects output from sL and sR to mR and
mL, resp. If the bumber b signals contact it stops the entire robot by setting the input
values of the terminal modules to 0 whatever the inputs from the initial modules are. For
example, one could specify drive as as a function on 8-bit integers and a Boolean bumper
signal as

drive : 28 × 2× 28 → 28 × 28 with drive(R,B,L) = 〈L,R〉
which would result in the desired phototaxis behaviour of a two-wheeled robot. The re-
sults are interesting; especially with many such robots sharing one common (real world)
environment: Should there be just one light source in an otherwise dark room, the robots
will gather around around this light source; should every robot carry its own light (which
itself is unable to see), the robots will tend to follow each other in a meandering pro-
cession. Note that in this case the environment is, in fact a non-deterministic real-world
environment rather than a closed system of processes with concurrent access to memory.
This means that we may encounter unpredictable (and unwanted) interference between
processes, especially when this environment is also inhabited by additional processes that
are not part of our specification.

An industrial robot can assemble products only if it receives all necessary parts; if properly
programmed it won’t start assembling the parts if there is one missing but it could fail, if
some parts are of the wrong type. With all parts available in an admissible version, the final
result of assembly may differ depending on the input (e.g. differently coloured parts). Also,
more “intelligent” robots might be able to combine several programs and execute different
assembly steps depending on different types of parts. The entire production process might
fail with “rogue” robots interfering with the otherwise correctly behaving robots.

So far, we have modelled abstract modules that perform a certain task individually as a
simple “black box”. But the most important thing is to link them together such that one
produces the input for another.

3.2 Relational models of modules and channels

Using a channel (or, simply, an arrow) we connect a module’s output component to a
modules input where (in allusion to network protocols) the different components of the
function signatures are called ports. Since

• several modules can connect to one and the same destination port,

• every module has its own runtime behaviour,

• due to channel congestion or lags,
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• modules may receive no, not sufficient or inconsistent input data,

the entire system’s behaviour is far more complex (and far more difficult to specify) than
just the set of its components. Just as in verification, communication is what makes the
difference and causes most problems (also in real life).

Brooks’s layered architectures ([10, 11]) consisted of sets of computable functions f :
(28)n → 28 called modules and (branching) channels to pass one function’s value to other
functions. Higher level-layers included channels that allowed for blocking or overwriting
channel communication at lower levels and, in the topmost layer, channels connecting
functions and channels, thus modifying the behaviour of channels (i.e. message passing).
With ACMEs, this concept was taken to a further level of abstraction where the architec-
tures are described relationally. The strict level architecture has been weakened to a “flat”
structure with all different types of channels implemented by modules. Since Brooks’s ar-
chitectures were designed for implementing systems with minimal (hardware) requirements
in behaviouristic environments only, ACMEs also include a more sophisticated method for
storing and recording variable/value changes over time. This enables one to record “traces”
as sequences of system states that are proven means for describing the semantics of a system
(see section 2.1.2) and also deliver factual data from which one can induce logic descriptions
of a system (see, e.g., [58]).

3.2.1 Modules

Let there be a finite set S of total, computable functions fi each of which takes mi ≥ 0
arguments from possibly different sets and delivers as a result ni ≥ 1 values (also, from
possibly different sets). Each function

fi : I1 × · · · × Imi → O1 × · · · ×Oni (3.1)

is implemented by a program and runs as its own process. We assume all Iki , Olj to be
well-defined subsets of our domain. We can also depict fi as a “black box”:

I1 O1
... fi

...
Imi Oni

(3.2)

Two functions in(f) and out(f) deliver domain and codomain for single functions f ; for sets
of functions, in(S) and out(S) deliver the disjoint union of in(f) and out(f) for all f ∈ S.
Note that the values of in and out are actually products or sets of products. The observable
(“external”) memory space a set of memory cells, one for each element in in(S)∪̇out(S).
The state space is determined by all the possible values and value combinations; a single
state is

σ ∈×
f∈S

in(f)× out(f).

Verifying such a system by checking all possible configurations is clearly infeasible.
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3.2.2 Channels

To “connect” two different modules, we simply draw an arrow from one module’s out-ports
to another module’s in-ports such that for two unary functions f and g their composition
g(f(x)) would become x −→ f −→ g . This connection represents a sequential
information processing procedure; we could also write f ; g to indicate that first f is carried
out and then g where the information passed along the arrow is stored and accessed by
global variables (see section 2.1.2). Note that the arrow notation does not explain how
the value of f(x) is passed to g; nor do we take into account anything about the runtime
behaviour of the modules implementing f and g.

As an example we again construct a system that shall exhibit a phototaxis behaviour (see
figure 3.1). As already described in earlier sections, this system consists of two sensors
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Figure 3.1: Phototaxis by ACMEs

(initial modules), two actuators (terminal modules, motors) and a computational unit that
simply maps the input value from the left sensor (q) to the right motor (g).
This structure can be interpreted as a graph with channels a, b, c, d being the edges and all
ports being the vertices. We write the i-th inport of f as 〈i|f and the j-th outport of g as
|j〉g.
Hence, the input to the right motor g is determined by

〈1|g = |1〉f = f(〈1|f, 〈2|f) = f(|1〉p, |1〉q).

If we understand this equation as equality between values, it means that channels them-
selves also model equalities. This is, of course, not true when taking into account runtime
and signal travel time. As a result, the structural description of such a system system
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would be false most of the time. This, again, motivates that each channel actually repre-
sents a single variable (or, rather, memory cell) and ports as pointers thereto. In Figure
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h

1

1

b

1

1

1

q 1

2

a c d

2

Figure 3.2: A memory based model

3.2, |1〉p → a � 〈1|f means that both |1〉p and 〈1|f are pointers to a memory cell with
address a. This figure also shows the internal structure of f : |1〉f := 〈2|f and |2〉f := 〈f |1.
Substituting these assignments in the equation above, we have

g = 〈1|g = [[c]] = 〈2|f = |1〉f = [[b]] = |1〉q = q

and the analogue for p and h (where [[a]] denotes the content of the memory cell a). The
problem here is that a memory cell can hold only one value at a time which means that
at every time, the value of the left sensor q is the same as the value of the right motor g.
This is, of course, not the case: The sensor p may update a at a higher frequency than f
can compute the values of c and d. Also, while it is computing an output, the motor g is
running at a previously set speed. Or, to put it into a simple phrase: Were the equation
correct, the right sensor’s signal would always be the same as the left motor’s input voltage
which is physically impossible on a practical level (by clock timing) and theoretical level
(because of signal travel time). Considering a concurrent interpretation, the problem of
(in-) consistency becomes even clearer.

3.2.3 Modules at work: Concurrency

The next problem is the following: Imagine f currently computes the values for an input
a = 12 and b = 33. The result is c = 33 and d = 12. But while f was computing the
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output, p updated a with a new value; say 17, such that the memory configuration at this
point in time would suggest that f(33, 17) = 〈12, 33〉—which is wrong (even though the
implementation of all components might be perfectly correct). The next problem is that of
message transmission timing: We assume a channel to be any kind of connection, be it a
memory cell, a pointer (i.e. a variable) or even a TCP/IP channel. It is clear, that messages
need some time to travel and (as evident in the case of TCP/IP) the information packets
may be delayed due to any kind of reason or get queued before a bottleneck and then
flushed at a higher frequency than the sender originally had sent them (which might result
in the receiver skipping many packets). One extreme case would be where p measures a
value a1, its last measurement output was a2, a3 is “in the queue”, a4 is the current input
value for f , the value f is just working with is x, f ’s last output was d1, d2 is in the
queue, d3 is the current input to h and h is currently running at d4. If we can describe
the system by a sequential process with call-by-value procedures and global variables only,
this simple model would be sufficient but, as we have seen, it is not sufficient for more
advanced programs or concurrent systems.
Another problem is that, adding the third bumper sensor to the system, three different im-
plementations of the entire system come to mind all of which seem to act equally: The emer-
gency stop signal from r can be duplicated and sent to both inputs quasi-simultaneously,
they can be sent to the motor actuators directly by circumventing f or we could add a
third input to f . The former versions both suffer from synchronisation problems (motors
might stop with some differential time delay), the second one also from the fact that a
direct stop signal with fast travel time might be overwritten by f afterwards (resulting
in a short stop followed by new accelaration due to light sensor information dating back
from before perception of a bumper signal), and the third one from a delayed stop due to
additional computation time by f (see figure 3.3). A first simplification is based on the fact
that we cannot distinguish between the current environment and our perception. Hence,
we would disregard the possible difference between a1 and a2. Similarly, we shall only take
into account the actual change we perform but not the last one (since we chose the action
based on our perception of the environment)2, such that we assume d3 to coincide with d4.
To resolve these problems (channel delay and local inconsistency), [61] already suggested
a buffer model where every port has two memory cells associated: One that continously
receives new input values and a “shadow” copy holding the value of the port when the
function was called/completed the last time. This way, any memory snaphot of shadow
copies always consists of variable assignments that gurantee local consistency: Every in-
port consists of two memory areas: One is an “anytime” write memory cell and the second
one is a discrete time poll copy of it. We write 〈i|f for the anytime part of an inport and
[i|f for its local copy; for outports we write |j〉f and |j]f . All anytime in- or outports are
globally accessible addresses and together form an interface.

The behaviour of f is as follows:

2A history-sensitive behaviour can be realised by (delay) feedback channels.
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Figure 3.3: Three alternative implementations

1. First, f copies the contents of all 〈i|f into its local memory as the i-th arguments of
the function call of f .
The fact that copying an entire list of values (one after another) may result in a
local copy xi := 〈i|f at time t but [x|j := 〈j|f at time t′ such that the local input
vector copy is not “time consistent”. This does not matter here since our entire
system is assumed to consist of unsynchronised, concurrent components anyway and
all functions f are required to be robust against resulting information flow delays.

2. Once a new copy of an entire input vector has been loaded into the private memory,
the program to compute f(x1, . . . , xn) is started. Memory required during computa-
tion is entirely local and invisible to the outside.
Channels may at any time access the interface variables and overwrite the contents
of 〈i|f .

3. After computation, the original input that was copied in the first step is copied
back to the second, protected, part of the input buffer: [i|f := xi. The result of
f(x1, . . . , xn) = 〈y1, . . . ym〉 is copied componentwise to the protected part and from
there to the volatile output buffer: |j〉f := (|j]f := yj)
During this step, any other (reading) access to these memory cells is prohibited as it
may contain inconsistent value tuples.

4. Now, 〈[i|f〉1≤i≤n and 〈|j]f〉1≤j≤m represent a locally consistent and specification-
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correct input/output pair: f([1|f, . . . , [n|f) = 〈|1]f, . . . , |m]f〉 whereas 〈i|f may al-
ready have been altered by some other process during step 2.
Then, f may start again at step 1.

So if we want to record the I/O behavior of f we take a snapshot of the shadow copies
(and while taking such a snapshot, f may not alter them as in step 3). The safest way to
do so is to add a special channel (or interrupt) signalling all modules to communicate their
shadow copies to the snapshotting process where each module may listen for this interrupt
signal during any of the steps 1, 2, and 4.
Still, the shadow port values connected through channels need not be the same due to signal
travel time and because some module may still be busy with computing old input values.
Therefore, there is no “global consistency”. A first idea to overcome this problem would
be to propagate the interrupt signal through the entire system over the ordinary channels
together with their corresponding values. But this does not suffice as one can see in the
following, more complex example in figure 3.4: Module f receives such a signal twice; once
directly from p (with a corresponding value from p) and also from g after processing the
input and signal from p. Therefore, depending on the signal runtime along b, the snapshot
would either contain the value from p (via k) or g (via d).

p
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Figure 3.4: A non-trivial module architecture

3.2.4 Aggregates

As shown in figure 3.4, we can compose larger modules or subsystems of modules by
analysing their I/O behaviour: p and q, r are intitial and terminal modules and f and g
interior modules. The modules f and g appear to work “together” for two reasons: First,
they share common inputs from p and second, they are connected to each other (via d).
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Therefore they constitute a subsystem (or higher-level module) H with three inputs (via
c, k and b) and three outputs (via a, h and e) such that, by some abuse of notation, we
may conclude:

in(f) = {b, d, k} and out(f) = {a}
in(g) = {c} and out(g) = {d, h, e} .

For H, we have

in(H) =
⋃
m∈H in(m) = {b, c, k}

and

out(H) =
⋃
m∈H out(m) = {a, e, h}

Channel d appears in both inset and outset—but actually is an internal channel (the
labelling does not appear on the bounding box around H). This means that (since the
outport 1 of g has no target outside H), d can b considered an internal channel and the
variable holding the value of the outport 1 of g as a local variable visible within H only.
This analysis, however, is based on the topology of the system rather than on an analysis
of global data snapshots.

Graph interpretations

ACMEs can (evidently) be represented as graphs with the set S of modules being the
nodes and the set of channels the set of edges. To be precise, the set of nodes N is the
set of all ports with the set of channels C being a subset of Nout ×Nin where the indices
indicate whether the corresponding node is an inport or an outport. C can be considered
a heterogenous relation C : Nout ⇁ Nin or, alternatively, both sets of nodes together and
the resulting graph to be bipartite. The modules themselves establish a family of relations
Mi : Nin ⇁ Nout, one relation Mi for each module fi ∈ S. The specification of a module
fi is a function Mfi :×(domD) →×(codC) with domD and codC being the respective
sets of values of elements of domains and codomains of Mi (or, as in section 3.2.1 , in and
out).
In such a graph, we may observe different properties of the system architecture:

• The graph is bipartite, dividing the set of memory cells into those ones holding values
of inports and those of outports.

• Channels connect ports, but do not identify port values.

• We assume (though in reality not always satisfied) any pair of nodes to be connected
by at most one arrow (i.e. there is no “backup line” where travelling signals may
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suggest a time warp due to different delays in different channels): 〈p, p′〉 ∈ C ∧
〈q, q′〉 =⇒ (p 6= q ∨ p′ 6= q′).3

• A channel |p〉f 7→ 〈q|g for which there is no module such that q ∈ domMg = in(Mg)
or p ∈ codMf = out(Mf ) has “loose ends”.
This notion will become important when discussing interfaces to module system sub-
structures

• Terminal modules do not have outports and initial modules do not have inports.

Identification of substructures

The most interesting property of such a system is to find substructures. We call H =
〈S′, C ′〉 an aggregate (or subsystem) where S′ ⊂ S and C ′ ⊆ C is the set of channels that
are connected to ports in S′:

C ′ =
{
c : c = |p〉f = 〈g|q and Mf ∈ S′ ∨Mg ∈ S′

}
.

If both Mf and Mg are elements of S′, then any channel c ∈ (in(f)× out(g)) ∪ (out(g)×
in(f)) is called a H-internal channel and an interface channel otherwise. If Mf /∈ S′,
then the port q of Mg is an H-inport and p is an H-outport, if Mg /∈ S′. Ports connected
by internal channels are called internal ports; note that internal ports can also be in- or
outports. Analysing such systems one will discover three basic types of aggregates:

1. Any set of modules forms an aggregate (including the empty set or singletons).

2. A chain is an aggregate H with two modules M,N ∈ H where all H-inports are
M -inports and all H-outports are N -outports.
Aggregates can be transformed into chains by introducing new interface modules
bundling all in- and outchannels.

3. A sequence is a chain H = {Mi : i ∈ n}, such that there exists a permutation p : n→
n such that for all channels c = |p〉f 7→ 〈q|g ∈ C ′:

f /∈ H ⇐⇒ g = Mp(0), g /∈ H ⇐⇒ f = Mp(n−1), f = Mp(i) ⇐⇒ g = Mp(i+1)

This means that for any module there is a unique “successor” module.

4. A bottleneck is a (small) set H ′ that together with two other (larger) aggregates H
and H ′′ forms a sequence HH ′H ′′. It means that all messages from H need to pass
through H ′ before information flow reaches H ′′.
Interfaces designed in the course of transforming aggregates into chains are bottle-
necks.

3However, it is very well possible that f is connected to h directly (fCh) and via a third function g.
Then, fCg and gCh also imply f C #C h.
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5. Concurrent tracks are aggregates that share bottlenecks as interfaces.
Any two modules of two different concurrent tracks may be connected through a
channel.

6. Parallel tracks are concurrent chains with identical in- and out-sets.

While these properties can be formalised clearly, they will hardly ever occur in real-world
applications but only as weaker versions. For example, two tracks can be “nearly” parallel,
if they share only “few” modules.
Furthermore, a system can be decomposed into many different aggregates (in principle, 2|S|)
where every single module or aggregate plays different roles. In figure 3.5, the subsystems
have several properties which are summarised in table 3.1.
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Explanation

B ©X ©X trivial.
©X for C1 and C2.⊗ ⊗

C1

⊗
in(C1) = in(g2) but out(G1) 6= out(C1) 6= out(g2).⊗ |p〉g1 7→ 〈k|g1.⊗
trivial.⊗ ⊗
in(C2) 6= in(C1) because of |p〉g1 7→ 〈f |f1.

C2 ©X ©X in(f1) = in(C2) and out(f2) = out(C2).⊗
trivial.

©X ⊗
with C1.

P1 ©X Via t and B = {`}.⊗
Since C1, C2 ⊆ P1 are concurrent.⊗
Since P1, P2 are parallel.

©X With initial and terminal modules being bottlenecks
©X Concurrent without interaction.

P2

⊗ ⊗ ⊗
Since, e.g., |r〉h1 7→ 〈k|e1 and |q〉h2 7→ 〈j|e1.

©X ©X concurrent to P1 without interaction, and t and e1 being
bottlenecks.

Table 3.1: Properties of Subsystems
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Chapter 4

Logic and Algebraic models of
concurrent processes

In this chapter we finally present several formal approaches to describing concurrent sys-
tems. We point out several rather evident parallels between algebraic and logic descriptions
of a program’s semantics and the module representation in chapter 3. We also discuss how
these methods might be useful to overcome the obvious limitations of the semantics and ver-
ification method described in chapter 2. Finally, we will formulate several concrete open
questions that require further research towards devising a suitable theory for analysing
module structures in a well-defined formal framework.

4.1 Concurrent Kleene Algebra

Similar to our considerations about the different pros and cons of different flavours of
program semantics, [35] in their introduction motivate a generalisation of concurrent Kleene
Algebra (CKA, see also [31, 33, 34, 36]).
The foundation of CKA is the notion of events from a set E (i.e. changes of the environment
as a result of a program or program instruction). Here, by environment, one refers to the
memory (state) specifying the variables’ values that a program operates on. A program
that “triggers” events hence changes this environment by assigning (different) values to
variables; i.e. by accessing memory. The set of events triggered by a program forms a
program trace (sequentiality is obtained by time-indexing the elements of a trace). Vice
versa, a program (or rather its extensional semantics) is a set of (all) such traces. For
the remainder of this rather informal summary of CKA, we will not distinguish between
a program P and the set of its traces; but we use p to denote an element of P ; that is, a
single trace which is an “instance” of P .
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Figure 4.1: Independence conditions in CKA

4.1.1 Composing complex programs from simpler ones

Given (WHILE-) programs P,Q,R, . . . , one defines several operations on them (resp. on
individual traces p, q, r from their trace sets) to construct more complex ones (cf. modules
and systems of modules).

Dependency. Just as in any other environment consisting of several individual processes
or agents, the flow of information, data, control or goods depends on the overall (logic of)
computation or construction. Cars and motorcycles can be built in parallel but both
depend on steel, and steelmills can be operated in parallel to both car and motorcycle
factories—as long as at any time there is a sufficient supply of steel. In the assembly of a
distinct car, the drivetrain and the chassis are built in parallel until they are joined but
in building the drivetrain, first the clutch is attached to the gearbox and then the gearbox
to the engine, and the painting of the chassis first requires a priming coat, then a coat of
lacquer and finally a coat of varnish.
Hence, a process q depends on a process p, if q requires some output of p in order to work.
More formally, dependency is an irreflexive relation “→”. Since programs and, hence, traces
and process can be composed it is reasonable to take into account the transitive closure
→+ of dependency: If p → q and q → r, then p →+ r models “indirect” dependency
(no matter whether r depends directly on p, too). it seems reasonable to consider the
transitive closure + of →. In ACMEs, the assumption of irreflexivity is violated because
there no restriction on the “channel direction”: Loops are allowed—which implies that p
may depend on p.
[34] use a bilinear independence relation p 6← q to state that p does not depend on q and
define aggregates of P and Q by p ∪ q. Using the bilinearity property, one then concludes
that an aggregation of two programs P and Q is independent of R iff both P and Q are
independent of R: p + r 6← r ⇐⇒ p 6← r ∧ q 6← r. The different kinds of aggregation
correspond to the according composition operators. An example is shown in figure 4.1.

Sequential composition. P #Q is the program that first executes P and then Q. Note
that on trace level, p ∈ P ∧ q ∈ Q 6=⇒ pq ∈ P #Q since there might be quite many
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traces ending in a state on which q is unable to continue or successfully terminate. As an
example, consider P to be a program that decrements a variable y until its value becomes
0 and Q to be a program that computes the quotient x/y. Hence, p; q is a trace of the
sequential composition P #Q if no event in p depends on any event in q, where dependence
is a transitive relation −→: E ⇁ E that indicates data or control flow “from” one event
“to” another. Should, in this example, an event in p depend on an event in q, this would
require to execute q before p which is impossible as the sequential composition requires P
to be computed before Q. In other words, at any time, all events are determined by events
of the past only. In concurrent programming, programs cannot only be executed one after
another but also in parallel and, whenever carried out in parallel, they may or may not
interfere.

Concurrent composition P ∗Q does not require mutual independence of p and q such
that p ∗ q is simply the set of all pairwise disjoint unions of traces p∪̇q.

Parallel composition P‖Q requires a different kind of mutual disjointness. P and Q
can be executed in parallel if neither one depends on the other; i.e. some p is in p‖q, if no
event in p depends on any event in q and vice versa.

Alternation is the third kind of mutual exclusiveness: p?q ∈ P?Q, if either p = ∅ or
q = ∅. It simply means that either P or Q comes to execution but not both of them.

With its origin in Kleene algebra, one focuses on the algebraic formulation of program
properties using operations on programs such that the elements of the base set that we
talk about are sets of traces.
The algebraic consequence is that one requires, for example, annihilators w.r.t. sequential
composition. The program false is defined as the empty set of traces {} and the program
skip, is the set of exactly one trace which is empty: {{}}. Hence, false does not have
any trace which means that it is impossible to execute. skip can be executed since it
has a trace, but this trace does not contain even a single event. Therefore, skip can be
successfully executed with the result that nothing happens (for the execution of something
would always result in at least one event).
Similarly, P‖Q denotes the parallel composition where P and Q may be or are executed
concurrently without any further restrictions or hidden fallacies since P and Q are assumed
to be independent (i.e. there is no data flow from P to Q or vice versa).
Things are a bit different with P ∗ Q, the concurrent composition allowing dependencies
between P and Q. The semantics of the different operators are defined in terms of corre-
sponding trace composition operations: P ∗ Q is the set of all unions of P - and Q-traces
that do not share common events, P ;Q is P ∗Q restricted to those traces where the P -part
does not depend on Q, P‖Q is P ;Q restricted to those traces where q does not depend on
p, and so on (see [33, 34]).
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Intuitively, the resulting diagrams already suggest a strong connection to our notion of
bottlenecks defining starting- and endpoint of parallel sequences (see figure 3.4). Similar
diagrammatic definitions and proofs were also used in [88].
Non-trivial laws of CKA include the obvious fact that P ;Q =⇒ P ∗ Q, P ; (Q ∗ R) =⇒
(P ;Q) ∗R and the exchange law (P ∗Q); (R ∗S) =⇒ (P ;R) ∗ (Q;S). Here, the implication
arrow =⇒ is used for an easier intuitive understanding: Any trace of a program in the
premise is also a trace of the program in the conclusion (in [34], “=⇒” is defined as the
natural order ≤ on the semiring underlying the definition of CKA).
What appears counterintuitive at a first glimpse can be explained quite clearly by ACMEs:
If it is possible to concurrently (in terms of ACMEs, i.e. interaction is allowed) run P and
Q and then concurrently run R and S, then there is also a way to concurrently run the
sequences P ;R and Q;S. Note that (P ∗ Q); (R ∗ S) means that there is a sequence of
changes of an initial environment such that we end up in some final environment. P,Q,R
and S satisfy the laws of CKA in the above sense, if for every such possible pair of initial
and final environments there is a corresponding sequence of changes of environments such
that (P ;R) ∗ (Q;S) also “accepts” this pair as initial and final environments.
However, the connections between CKA and ACMEs are not as clear in their entirety as
suggested by intuition; for example when taking into account (nondeterministic) message
passing (that is, event sequences and, hence, traces) this clear and sharp algebraic definition
cannot be transferred to ACMEs one-to-one.
The more recent developments in CKA, [35], eventually lead to an interface model by
abstracting from traces and using a representation based on graphlets and statelets which
roughly correspond to module structures and connections between them.
Similar to the ACME-paradigm of interfaces as links between in- and out-ports, arrows
in graphlets are described by their source and target events; similar to the ACME-notion
of information flow within the boundaries of an aggregate, we have internal arrows; and
similar to the ACME definitions of different types of aggregates, we can define dependencies
and combinability of sets of events (i.e. modules) and, subsequently, give a clear definition
and semantics of sequential and concurrent composition.

4.1.2 Concurrency and Separation Logic

[65] describe the close connection between CKA and a logic for reasoning about concurrent
processes called (concurrent) separation logic (CSL), [9, 75].
One of the most important characteristics of separation logic is that it distinguishes between
the valuation of “global” and “local” variables (to speak in terms of ACMEs). Formally,
the Hoare-calculus is endowed with an additional rule

{|p |}P{|q |} {|r |}Q{|s |}
{|p ∗ r |}P‖Q{|q ∗ s |} (Concurrency rule)

where ∗ denotes the separating conjunction: p ∗ r is satisfied if there are two disjoint mem-
ory regions hp and hr holding the values of variables occurring in the expressions p and
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r such that each of them can be satisfied on one of the corresponding memory regions.
So whenever P and Q do not touch any common variables, or if the variables touched
by both are irrelevant with respect to the satisfying conditions of p and r, the system is
“safe” in the sense that there are no interfering memory access operations while executing
P and Q concurrently. This, however, is not the case in reality and in particular, is even
intentionally violated by the idea behind Acmes. [66] write: [...] in less simple situations,
such as when [...] data is referred to indirectly via addresses, or when resources dynami-
cally transfer between program components, correct separation is more difficult to maintain.
Such situations are especially common in low-level systems programs whose purpose is to
provide flexible, shared access to system resources. Also, [t]he essential point is that [a
standard workaround] does not cope naturally with systems whose resource ownership or
interconnection structure is changing over time. This will play an important role in section
5.3.1. The beauty of separation logic is grounded in the fact that all requirements on pro-
gram behaviours are hidden; i.e. the above rule presupposes P and Q to be implemented
in a way that avoides interference. If we imagine a bank to be a module that maintains
storage (accounts), a single customer (client) is not allowed to access an account directly
(by tampering with the data describing his assets) but needs to ask the bank for a money
transfer action (i.e. rewriting the contents of two accounts). This way, it is only the bank
that has access to the variables although any client may ask the bank for performing the
action he would like to execute himself if he had the right to do so. This requirement
contradicts the fundamental idea behind ACMEs: an ansynchronus, concurrent and mutu-
ally independent access to shared data without any warranties or obligations. One simple
example demonstrating the problems of using CSL to describe Acmes is the

{|p |}P {|q |}
{|p ∗ r |}P {|q ∗ r |} (Frame Rule)

stating that if P satisfies p and q to be valid pre- and postconditions, P also satisfies p
and q when monotonically increased by some r. With P having side effects (like results
not observed by q, e.g. P2 affecting |i〉 e2 in figure 3.5) or a non-deterministic behaviour
due to weak synchronisation (like g1 in C1 writing to 〈k| f1 which eventually leads to
conflicting access to 〈j| l and 〈k| l by C1 and C2), the frame rule obviously does not hold.
Similar considerations apply to the mutation statement “:=” where for two concurrent
(“‖”) mutations on the same memory cell there does not exist a sufficient precondition at
all.
Yet, the requirements on P and Q can be expressed in terms of hypotheses (correspond-
ing to the presupposed behaviour). Adding descriptions of program and environment
behaviour and coping with them within the calculus syntactically, results in a huge in-
crease of notational complexity. This contradicts the idea behind hiding side-effects and
the clean formalism and also hampers manual or automated inferencing. Preliminary work
on explicit encoding of hypotheses or extended annotations by Dang and Möller has been
suspended due to the questionable added value of overly syntactical complexity.
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4.1.3 The Temporal Logic of Actions (TLA) and distributed snapshots

Lamport’s Temporal Logic of Actions (TLA), [43], offers a method to cope with such
effects through the notion of valid actions that applies to actions (or predicates specifying
modules) and pre- and post-states whatever the variable instantiations are.
In other words, it gives us a logical description of the semantics of an action—which is
exactly what we are in search for when trying to understand Acmes without a proper
specification.
The problem here is to understand which (parts of a) state are to be monitored and when.
Even though different in details of formalisation, [44] give a definition for (global) states
of distributed systems that allows treating the problem of validating stable properties. The
underlying model of distributed systems and channel (wiring) is much simpler than Acmes,
but takes into account queuing of messages in channels. In addition to this, events occurring
in a component may affect at most one of the outward channels which (trivially) connects
to at most one other component. As a result, messages cannot be lost for two reasons:
They are stored within a channel until read by the receiver (who then may decide whether
to work with it or discard it), and it is easy to implement a token-based synchronisation
method that guarantees the inputs of a component to form a valid and well-synchronised
input pattern.
The idea of taking snaphots in Acmes was based on locally keeping copies of valid input-
output pairs in each component (satisfying “local consistency”) as elements of global snap-
shots (triggered by an interrupt). Still, this did not guarantee global consistency (for the
different components might have different histories of processed input data). In Lamport’s
approach, global consistency can at least be determined by verifying that all module and
channel states “agree” on a common state of communication flow: State descriptions of a
component and an outgoing channel can only live together in a consistent global state, if,
roughly speaking, the number of messages that left the component equals the number of
messages that entered the channel. The reverse case holds for incoming channels; and to-
gether, both requirements form a snapshot policy of a “snapshot” token traveling through
the network to ensure a snapshot without “time warps” in it, which is implemented as
a marker -based global state detection algorithm. Examining permutations of component
execution sequences allows to determine which resulting consistent states then satisfy a
stable property; in terms of Acmes, a possible system specification is a property that is
satisfied by (most) snapshots (and by all globally consistent snapshots should there be
any).
What has been observed at a rather low system level has, among other reasons, finally led
to the introduction of so-called stuttering steps in [43]’s temporal logic of actions. Its modal
logic description, together with the formulation of liveness and fairness, eventually leads
back to our ideas of formalising Acmes in concurrent Kleene algebra and thus completes
the picture of the proposed project.
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Chapter 5

Current and future work

The general picture which we consider to motivate future work is that of a complex sys-
tem of proccesses evolving over time. Figure 5.1 shows an example of system changes
over time and the changes of available specifications (lower case letters) of involved pro-
cesses (uppercase letters). The task ahead is to explain the final system failure where
several specifications were lost and components of the system have been replaced without
documentation or intermediate verification.

5.1 Evolution until failure

Figure 5.1 illustrates several common phenomena that occur in long-term application and
evolution of complex systems.
Initially, the system was entirely specified (a, b, c and s) and correctly implemented (A,B,C
and S). The system behaviour was as intended, as expected and as specified.
The first change during S’s lifetime was when glitches occurring in B (for example by wear)
were locally fixed. The resulting D (seemingly) worked within b’s allowance. At the same
time, the specification a for A was lost.
Second, C has been replaced by E. A common reason is that, for example, C is a component
supplied from an external company (like libraries in the case of software engineering or
machines for which consumable supplies are not deliverable any more) and requires a
replacement. The supplier delivers a guarantee that E’s behavior is equivalent to that of
C but does not deliver a specification (e.g. due to licenses) or source code. It is unclear,
whether the equivalence of E to C is local or with respect to s. However, due to the
promise of E’s correctness, the specification c is discarded.
A third stage is reached, when due to occasional global errors, E gets replaced by F but a
backup copy of E is retained
Finally, S delivers unpredictable output and ends up in an entire system failure. An even
worse case includes the loss of s: Since S “more or less” behaved in the “usual” way, it
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Figure 5.1: Evolution of a complex system of processes

seemed unnecessary to keep s because routine and the long-term observed correct I/O-
behaviour of S is taken as a sufficiently precise specification.

5.2 Modelling Concurrent Systems

5.2.1 Theoretical Foundations

Chapters 3 and 4 described and exemplified the similarities between a practical and real-
world driven view on concurrent processes (ACMEs) and recent theoretical approaches
towards the algebraic specification and verification of concurrent processes (CKA).
However, it remains to rigorously formalize and represent ACMEs within CKAs. Having
done so, the next step is to formulate all rather informal module and system properties (such
as “bottlenecks”, “interfaces”, “aggregates”) in CKA. Finally one would like to implement
several example ACMEs in CKA:

1. A first experiment is to formulate a simple and strictly sequential architecture such
as FBDs, (see section 5.2.2).

2. Based on first experiences, the next step is to model a simple concurrent example
like the phototaxis example from section 3.2.2 and figures 3.1, 3.3,
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// a // b

��
d //

// c

77

// a // b

��
// c // d //

Both diagrams are translated into the program a; b; c; d.

Figure 5.2: Programming PLCs

3. Eventually, more complicated structures, where the one in figure 3.4 can be regarded
a rather advanced example already, shall be considered.

Recent work of Hoare et al. on unified models and laws for concurrency and distributed
processes is directed at a more abstract description of concurrent systems. It aims at
a graph-based understanding of dependencies between processes and generalizes previous
work on graphlet-based representations of program traces, [33, 34, 32], offering a closer
linkage to CKA.

5.2.2 Applications

Phototactical agents and groups thereof can be simulated, [42], and have been successfully
implemented using real small robots [37, 26, 38, 83]. Every single robot can be considered
an isolated process of a concurrent system.
Also, in [18], the authors describe an approach to verification of programmable logic con-
trollers (PLCs) using an interactive theorem prover (KIV, see [73]). PLCs can be pro-
grammed using a variety of different languages; one of the most prominent is a graphical
programming language (FBD, Functional Block Diagrams, see [5]) similar to our diagrams
for specifying ACMEs. The most prominent difference is that logic gate data flow is strictly
serialized during compilation into machine code. Also, diagrammatic specifications may
not contain loops (due to serialization). Serialization is achieved by translating the data
flow chart into a clocked sequence of a gate-by-gate evaluation. Compilation always ensures
independence (cf. section 4.1.1) by a simple trick: The “development tool” is a graphical
interface that only allows connecting gates from left-to-right and top-down (see figure 5.2).
Hence, loops cannot be designed by syntactical restrictions. Yet each such program defines
a single “cycle” as it is repeated over and over with register variable contents preserved
from one execution cycle to the next.
The authors already point out an extension of their FBD-restricted approach to other pro-
gramming languages as well as an upscaling of the programs considered. Model checking
for verification of modern PLCs is clearly infeasible due to the state space explosion (no
matter whether one deals with single-chip-PLCs or more powerful systems). With increas-
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ing complexity of the program one might like to consider state logic for programming and
a model in modal (temporal) algebra for verification.
Concluding, simple autonomous agents and cooperating robots controlled by PLCs in a
concurrent setting appear to be an interesting real-world application for ACMEs at the
microscopic (embedded, “on-chip” concurrent processes) and macroscopic level (cooperat-
ing agents and robots).

5.3 Learning about concurrent systems

In most cases, model checking, see [47, 2], is out of the question as a method for verification
of complex or even concurrent systems. But being a method based on “systematic search
for faulty behaviour” it is well accepted in areas where a system is considered to be correct
as long as no error is observed. Then, testing or partial model checking is considered a proof
of correctness unless an error occurs. For small finite problems, verification in the strong
sense can be achieved by model checking: A system is correct, if every model (possible
system state) is consistent with the system’s specification.
Model checking has been applied for verification of PLC programming using a wide variety
of model checkers such as Uppaal, [84], NuSMV, [68], [mc]Square (now Arcade), [80] and
SPIN, [89], using proprietary specification languages (Uppaal, PROMELA) or the PLC
programming language IL directly. Most results report that verification by exhaustive
state space exploration is possible, some even state that feasibility is scalable. Still, as [89]
write in their conclusion, state space size “can” explode. Considering the simplest PLC
(for example one of the Simatic series), its capabilities exceed the requirements for the
example applications in the publications mentioned above by far so it is quite likely that
state space will soon expand beyond feasability. Clearly, the same consideration applies to
any other system of autonomous agents or robots.
Apart from the approach to developing verified software from scratch (see section 5.2), the
real world task is to discover components or configurations in which errors occur. According
to sections 1.3 and the general layout of ACMEs as described in section 3.2.4, we want to
infer logic specifications of running systems that produce unwanted failures.
By observing and collecting data about an agent’s or robot’s behavioural data one estab-
lishes a sample from which machine learning techniques try to infer more general descrip-
tions. In our context it is reasonable to consider logic based approaches, [58, 71, 51, 52, 55],
rather than statistical, probabilistic or evolutionary ones, for what we are aiming at is a
logic or relational abstract description of the observed data. The data used to build a
sample for successful hypothesis induction has to meet several requirements that depend
on the chosen method. Nearly all methods are vulnerable to noise.
At a very abstract level, noisy data is the result of an observation that does not comply
with the event. The usual understanding of the term “noise” is based on

• the presence of outliers (given that the method for identification of outliers is com-
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patible with the model),

• erroneous labelling of observations due to external errors (such as wrong sensor read-
ings),

• the presence of data supporting a wrong assumption about system.

The latter phenomenon is actually needed for two reasons: The first reason is that overly
precise data may lead to overly precise, so-called overfit, hypotheses unless one spends effort
in artificially weakening the observed data (which again creates bias). The second reason
is that we want wrong hypotheses. If an analysis of induced systems descriptions reveals
characteristics that contradict the intended system behaviour we have found exactly what
we were looking for: A candidate for causing the system failure.
For this, one requires a delicately well-balanced amount of “suitable” noise in the sam-
ple. This is an unsolvable problem, because we would need to know the right incorrect
hypothesis in order to guarantee the suitability of the sample in advance.
As a consequence, we want to create data samples statisfying different consistency criteri-
ons. Hence, we shall explore how to combine Lamport’s theory of distributed snapshots [44]
and its logic [43] with separation logic and, especially recent developments in concurrent
models of concurrent program models and its treatment in Kleene Algebra, [35, 67].

Research tasks

We conclude and summarize the most interesting tasks ahead:

1. Complete existing approaches for a uniform and compatible relational specification
of ACMEs.

2. Find an embedding functional description of ACMEs in CKA.

3. Examine approaches of Separation Logic and Temporal Logic of Actions .

4. Augmenting Separation Logic with additional annotations describing pre- and post-
conditions of ACME-modules.

5.3.1 Learning about concurrency

The term “concurrent learning” has two different interpretations both of which give rise
to open research questions:

1. How can one express and learn about concurrent processes?

2. How can one concurrently learn about such processes?
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The first one adds to learning what concurrency adds to sequential processes: Sequence
learning has been in the focus of machine learning research from the late 1990s on. The
word “sequence” has two meanings in machine learning: The first one refers to a temporal
arrangement of single observations whereas the second one refers to a spatial arrangement
of atoms that together form a single observation.
Most methods employed for temporal sequence learning HMMs, probabilistic approaches,
recurrent artificial neural networks or windowing techniques, [86], in order to find finite
(small) models for describing and predicting (infinite) sequences of observations.
In addition to HMMs, Bayesian methods and artificial neural networks have been used for
the discovery of structural similarities of subsequences (or “strings”). Also, support vector
machines have shown great potential, e.g. [85, 3] (in contrast to temporal sequence learn-
ing). Massively parallel approaches, mostly inspired by evolutionary computing, [19], have
been employed to find (regular) patterns and induce suitable pattern matching methods
to solve the so-called alignment problems, [63, 46].

In this section, we shall treat the question how one can discover knowledge about concurrent
systems. Concurrent approaches to knowledge discovery will be dealt with in section 5.4.
In the following, a variable X is used to denote a single module or process; ~X denotes the
arguments to the function fX computed by X and ~X its output. Lowercase letters x refer
to X’s specification and 〈R| ~X and |R〉 ~X describe modules that directly deliver or receive
values from isX as specified by a dependency relation R. For the sake of readability we do
not distinguish between a variable and its value as long as clear from context. Sampling
means to collect a series of snapshots over time. If we consider S to be the set of all modules
Xi with i ∈ n, then a complete snapshot would be a recording of all current values of〈

~X0, ~X0, ~X1, ~X1, . . . , ~Xn−1, ~Xn−1

〉
.

Depending on the number n of modules and their respective arities, a single snapshot may
already consist of a significant amount of data—which also requires a significant amount
of time to be recorded (during which at least parts of the system if not the entire system is
forced to pause current processes). For two modules U and V , the I/O behaviour of U ;V

is described by the tuple
〈

~U, ~V
〉

. However, this cannot be observed in a setting described

above: If the snapshot is consistent with respect to the modules, then fU ( ~U) = ~U and
fV ( ~V ) = ~V , and if the snapshot is consistent with respect to communication presupposing
instantaneous signal travelling, ~U = ~V but not necessarily fU ( ~U) = ~U .
Assuming that U delivers at least some input to V (“~U ∩ ~V 6= ∅”) the question is to which
extent V ’s output relates to or is based upon U ’s output. The result of analysing a sample
over ~U × ~V can be taken as a hypothesis for the semantics of an operator “U ;−V ” or its
dual −; describing extremal conditions on the value ranges.
Finally, if we assume U delivers to V and V to W , a sample on ~U× ~W delivers an “external
view” on V . Since most modules will take and deliver to several models this simple view
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would be to narrow and one would have to consider snapshots of all modules that are
connected to V . This requires knowledge about the dependency relation (by specification
or by system analysis). On the other hand, it also offers the possibility of identifying
redundancy in the system: If |R〉 ~U ∩ ~V ⊆ (

⋃
i∈m |R〉Xi) ∩ ~V the information supplied

by U to V is already included in the information that V takes from Xi. Hence, U is Xi-
dispensable with respect to V (for the notion of relative dispensability by redundancy in
information systems, see [59]).

Having collected data describing the actual behaviour of a (faulty) system, the next task is
to infer hypothetical specifications of the system and its components. The approximation
of a function implemented by a certain process corresponds to the traditional machine
learning setting:

5.3.2 Specification recovery

In our example, no-one ever observed that A has been changed which is why we would
assume that A actually is the same program or process that was originally developed to
implement a. The specification a was lost very early such that one would like to learn a
specification a′ of A. Since we need a′ to reason about A and its behaviour within S, we
need to use a logic based knowledge discovery method. The data required to learn a′ is a
sample of A’s behavior:

sA ⊆
{〈

~A, ~A
〉

: ~A ∈ dom fA, ~A ∈ cod fA, fA( ~A) = ~A
}
.

The quality of sA depends on the sampling method: Should an example be recorded by
a memory snapshot, where some memory cells used for storing ~A have been accessed by
another process while the memory for ~A remained untouched, it could be that the values
do not correctly represent fA’s behaviour. Hence, the method of snapshotting determines
the kind and amount of noise present in the sample.

5.3.3 Approximate verification by comparing abstractions

The replacement of B with D took place “locally” and “gradually”. D is not explicitly
documented and it is even unknown to S that B has been replaced by D. It is assumed
that D behaves “correctly”: Not any component has ever observed a situation in which
D’s output caused an error (including D itself). Instead of proving that D satisfies b, we
apply the same method as for learning a specification for A: From sD, we induce d. Should
d ≤ b (where ≤ means refinement), we may infer D is most likely correct with respect to
b. However, if the sample is too precise, the hypothesis d may be overfit, too. Therefore it
seems reasonable to force further generalisation of d by adding examples to sD that have
not been observed but which still comply with b.
Similarly, if b < d, we cannot safely deduce that D does not comply with b, because d
could be an overgeneralisation caused by a noisy sample.
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On the other hand, being a propor specification, b should clearly describe the weakest
precondition forB to perform correctly and it should also describe a strongest postcondition
for the results that B delivers. Therefore it has to be evaluated, whether they can be used
to define upper and lower bounds for enlarging a sample in order to avoid overfitting and
de-noisifying a sample in order to avoid erroneous overgeneralisation. Then,

sD(b) ⊆ sD |: original sample

∪ (〈b| × cod fD) |: all ”situations” satisfying the weakest precondition of b
∪ (dom fd × |b] ) |: all ”results” satisfying the strongest post condition of b

− (〈b| × cod fD) |: all invalid situations

− (dom fd × |b] ). |: all invalid results

This training sample generation is a “verified” version of what otherwise is known as co-
training, [4]. With too little training data, one learns several classifiers on even less data.
Obviously, the results are weak hypotheses and, due to their disjoint and very small training
sets, unstable. This justifies an application of both boosting and bagging techniques, [79, 8].
Actually, co-training combines them by selecting a “best” predictor learned from the small
sample sets and then use this to generate more, artificial data on which the entire process
is iterated.
[57] outlines an approach to suitable sample decomposition using a relational analysis.

5.3.4 Local learning by global feedback

The replacement of C with E combines the former two phenomena: First, c has been
discarded as well, so that a verificiation of E against c as in section 5.3.3 is impossible.
Also, C has been deleted, so that there is no chance for a comparative run-time analysis
of C and E. However, it is possible to learn a specification hypothesis e as described in
section 5.3.2. But as e is induced from E’s behaviour, it cannot be used to verify E.
A further effect is that S produces occasional errors. We assume that these errors are due
to the latest system change and they are independent from A, B and D. This is a strong
assumption for several reasons. For example,

1. in the context of ageing systems errors may be caused by any of the involved com-
ponents at any time, so that the co-occurrence of an error with the introduction of
E is pure coincidence and the error is caused by any of the other components.

2. when observing an error of a system S′′, it may well be that the cause occurred in S
or S′ already; i.e. the error does not all relate to S′′.
Suppose that A in S produces output that is processed by B and, in S′, by D.
Assume further, that D reads A’s output from a queue much more slowly than new
data is added to the queue by A. Now, in S′′, C is replaced by E but it is data that
A sent in S or S′ already to B or D and that only now causes an error in in S′′.
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Though very strong, the assumption is justified as it reflects the real-world: Recent changes
that coincide with errors are usually assumed to be the cause. Furthermore, in our example,
we have no evidence that A has been tampered with and we are guaranteed that D is correct
w.r.t. b, hence there appears to be no other explanation for an error of S′′ other than by
E.
As already mentioned above, the method described in section 5.3.2 may deliver e′. This
hypothesis can only be compared to b or s if E is somehow connected to D or S′′.
Hence, this situation is very hard to cope with as there is nothing left that we could use
as a reference to validate E. A bail-out procedure might be constructed as follows: We
observe all those snapshots covering all modules and variables that E is connected to; either
directly or through (several) other modules(s); including ~S and ~S. Any snapshot that does
not satisfy s is an element of an error-sample. On this error-sample, we test (here: A) or,
if possible, verify (here: D) the correctness of all involved modules ecxept E. If all other
modules perform correctly or if the recorded data is covered by the specification, we assume
this snapshot to carry information about an error caused by E. A weaker constraint is that
a snapshot captures a possible failure of E if it cannot be shown that other modules do not
perform correctly. The weakest support for an error of E is given by a snapshot that also
carries evidence for failure of other modules. Then, we can “co”-learn a description when E
creates errors. Should this error-hypothesis cover (nearly) all elements of the unrestricted
error sample, we know that whenever S′′ produces an error, E produces an error, too. As
the reverse implication cannot be inferred, we cannot reliably identify E as the error source
but assuming D is correct with respect to b and A never has changed, we have at least
strong evidence.
Being just a “bail-out” solution it seems to be overly complicated and it is questionable
whether the amount of effort invested pays off. Similar to our sample descriptions in the
previous sections, we want to give a brief impression of the sample construction process
described above. For this purpose, assume that 〈S′′| ~E denotes all modules whose outgoing
connections are incoming connections to E; let |S′′〉 ~E denote the set of subsequent modules
that directly receive input from E. Then, the memory cells from which we have to sample
is

M = 〈S′′| ~E ∪ |S′′〉 ~E.

We then collect only those instances, for which
〈
~S
′′
, ~S′′
〉
/∈ s; i.e. where we observe a system

error in an error sample serr(S′′). From this sample, we delete all examples that describe
an error of any module other than E and obtain a sample serr(E). Note that if we end up
with too few instances, we already have strong evidence for E not being the sole source
of error. Should we have only few but not too few instances the sample can be enlarged
by weaking the constraints of deletion (see above). We then induce a “co”-specification ẽ
from serr(E) and compare it to s, should ẽ explain some instantiations of s we have found
evidence for E causing S′′ to fail.

50



5.3.5 Explaining a system’s behavior

Finally, we discuss the case when the specification s is lost. In addition, further modules
may have been replaced (here: E by F ). The entire system S′′′ fails: it is still running, but
it produces unpredictable results. The possibilities of collecting snapshots of S′′′ depends
on several circumstances:

• Should the modules still be accessible, it is possible to collect local samples. Con-
sistency of the samples that can be used to induce module specifications depends on
the snapshotting method applied to the respective modules.

• Global samples of (parts of) the entire system may reveal common memory access
and, hence, dependencies between modules (c.f. [35] and ongoing work).

The first task corresponds to the standard learning setting already mentioned above. The
second one offers many more opportunities for a deeper system analysis.
Channels. Equal values in modules ~X and ~Y indicate that Y depends on X. Similarly,
but according to the weakening of equality to equivalence, a dependency can be assumed
if there exists a bijection between partitions of arguments of ~X and ~Y . Both require
snapshots that are consistent on at least a subset of all modules from which one then
chooses pairs X and Y of modules. Under the assumption of consistency it is unlikely to
discover transitive extensions of dependencies, for this would require a value and the result
of applying a function on this value to be visible at the same time.
Information flow in space and time. With a low sampling rate even the assumption of
consistency does not ensure that temporally dependent events cannot be observed simulta-
neously. On the other hand, should two subsequent events appear in the same snapshot it
means that their observation requires spatial dependency. As a consequence, learning from
such samples might result in a two-dimensional dependency relation as proposed in [30] but
here, temporal dependency may occur as spatial dependency and vice versa: should the
same event be observed several times in one snapshot, it means that this event travelled
too fast for the “exposure time” of the snapshotting procedure such that it was recorded
twice.
Discovery of dependency and interfaces. Knowledge about the dependency between
modules is a neccessity for understanding a system’s behaviour. Should we know about
the information flow (i.e. spatial data travel or temporal data persistence) across pro-
cesses (where across means “between” for spatial dependency and “over” for sequences of
processes), we are able to induce hypotheses of the involved modules on the information
processing (i.e. their semantics). If we don’t, the problem is to identify “infemes” (which
would be the information theoretic analogon to phonemes or graphemes). They are small-
est and indivisible units of system’s entire information process. With no knowledge of
a system, the system itself comprises its only infeme as it is a “black-box” that receives
input from some initial modules and produces output to terminal ones. Sampling the inner
states may help identifying smaller black boxes (of a slightly lighter shade of black) inside.
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That is, the system is broken into several subsystems each of which again is considered
indivisible at this degree of analysis. The subsystems themselves are connected to what
they consider their “outside” through their respective initial and terminal modules. These
modules (or channels as well) are, of course, internal to the big system. More importantly,
they also play the role of such connecting modules of other subsystems and can be called
interfaces. Hence, by learning from the behaviour and internal states of a system one can
induce a refinement of the systems’ specification.
Concurrency. Concurrent memory access and resulting inconsistencies may occur when-
ever two modules deliver to one and the same module. Repeated occurrence of values
y ∈ ~U ∩ ~C is only a weak evidence; should the same value appear in some ~W whenever
it occurs in ~U and ~V we have stronger support support of the hypothesis that U and
V are both writing to W . Again, this observation requires an instantaneous and consis-
tent snapshot. On the other hand, concurrency expresses the nondeterministic (but not
necessarily disjoint) choice. Hence, a collection of snapshots over time suggesting that
y ∈ ~W −→ y ∈ ~U ∪ y ∈ V is a more reliable indicator for concurrency. In combination,
the more often we observe for as many as possible arguments (w)i in ~W the fact that its
values (y)i coincide with values of arguments (u)j from ~U and (v)k from ~V the more likely
it is that U and V concurrently deliver values to W .

5.4 Learning concurrently

Machine learning for knowledge discovery emerged from the induction of logic programs and
was a “late hot spot” of AI research in the 1980-90’s. Approaches based on the paradigm
of neural networks, [78], date back to the 1950’s, [50, 76] and [41], but they always suffered
from their inability to explain induced hypotheses.
With growing data and increasing amounts of unstructured data there emerged the need
for (quick) data analysis which resulted in the paradigm of “data mining”. As the amount
of data increased faster than available computing power, simple but quick statistical and
probabilistic approaches became more popular. In the late 1990’s for a short period, data
visualisation even appeared to be the more useful method for data analysis. Knowledge
discovery still remained in areas that put a strong focus on the scrutability of induced
hypotheses such as in drug or protein analysis or user modeling.
Now, with petabytes of heterogenuous data constantly and automatically harvested, the
question is not “do we have data about x” any more but rather “what data do we have”
and “what can we extract from all this data”. Recently, [20] have put the 90’s approach
to knowledge discovery by inductive logic programming into the modern context. They
also mention the ideas that we have already explored in this report so far; for example
SAT/SMT solvers may be used for a greater variety of specification induction using the
machine learning setting with labelled examples as input rather than complete formal
specifications.
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The challenges they note are

1. Can partial specifications be learned more efficiently and then composed into a spec-
ification of the entire system?

2. Can large sets of examples be decomposed in order to induce hypotheses in parallel
on each set?

3. How can one handle noisy data?

4. Can one possibly learn hypotheses that are easier to understand than those formu-
lated as (logic or functional) programs?

They conclude with a review of Lau’s proposition, [45], that has been well-known ever since
in user modelling, e.g. [56]: Data to learn from is hard to come by when relying on explicit
(human) user interaction.
All of these challenges correspond to the aims of our project proposal:

1. Partial specifications shall be induced for parts of the entire system,

2. sample data should be partitioned to enable a bagging-like exploration of system
behaviour,

3. noise is an issue that we shall deal with in the context of snapshotting,

4. scrutability of hypotheses is implied by our relational formalisation.

Lau’s proposition does not apply in our case because the availability of data is guaranteed
by collectiong snapshots of running systems.

5.4.1 Learning logical and relational sentences about state descriptions

The noun “sentence” in this section’s heading has been chosen for two reasons: First,
we want the propositions that together form a specification to be (nearly) as easy to
understand as natural language. Second, system specifications require well defined formal
(domain-) languages to which one assigns a suitable semantics hence yielding a logic. One
such language that we shall deal with is the language of relation algebra; the other one is (a
subset of) first order logic. And, at the same time, Horn logic is the subset of FOL that is
used as programming language in logic programming, hence the name (e.g. Prolog). Also,
Horn logic plays an important role in axiomatizability of (mathematical) theories (such as
Relation and Kleene algebras).
We now give a brief impression on how to interpret logic learning as search for theory
axiomatization. The next two paragraphs deal with the induction of classification rules
from factual observations (as applicable to learning specifications of single modules). The
third paragraph of this section sheds some light on how to learn across and about factual
knowledge. Again, the formal presentation is kept very shallow. For the algebraic and logic
foundations, we refer to [16] as an introduction and [69, 21], whereas details concerning
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machine learning and inductive logic programming in particular can be found in [71] and
[58].

Specification by propositions over snapshots. As already pointed out in the sectin
about ACMEs, modules are implementations of computable functions mapping input values
(x)i to output values (y)j with i ∈m and j ∈ n. With f being such a function, a module
M is correct w.r.t. to f iff

~x·M = ~y =⇒ f((x)i) = (y)j

for ~x = g((xi)) and ~y = h((yj)) with computable functions g, h mapping the arguments of
f on memory contents. Assuming g, h to be defined such that ~x and ~y do not overlap (see
section on separation logic), and g and h can be composed into one function val : V →
(T → U) that for any variable in (x)i∪(y)j ⊆ V represents its content y ∈ V at the current
time t ∈ T . Hence, assuming consistency of memory snaphots, the correctness condition
from above yields for a given point t in time(∧

i∈m
xi(t) = vi

)
−→ ~y(t) = f(~v)

which obviously is a Horn clause. Therefore (note that vi in the premise corresponds to
~v in the conclusion), f is a model of all memory snapshots if M is correct w.r.t. f . The
connection to a relation algebraic formulation is obvious.

Snapshots and logic and relational sentences for specification. With a given M
but unknown specification f , the task is to find some set Φ of Horn clauses for which

∀t ∈ T : 〈~x, ~y〉t ∈ Cn(Φ).

In addition, Φ should be

• as general as possible, i.e. Th(Φ) should be as big as possible,

• consistent.

Expressing generality in terms of theory size is not really helpful as constructions of re-
cursive terms always allow infinitely many instantiations. Consistency is a bit tricky to
deal with: Φ is inconsistent, if both f((x)i) = (y)j and f((x)i) 6= (y)j are deducible for
some instantiations of (x)i and (y)i. But since f is unknown, this fact cannot be deter-
mined unless the corresponding tuple is an element of the set of collected snapshots. In
machine learning one usually assumes a target classifier to be a total function; in the sim-
plest case, a characteristic function. This means that starting off with a sample, one may
create a sample of obviously wrong classifications called a sample of negative examples.1

1In simple classigfication tasks, cod f = 2 is a characteristic function such that y ∈ {0,1}. In such cases,
one is usually equipped with examples for both target values of f .
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We write a “complemented” pair 〈~x, ~y〉 to indicate that f((x)i) 6= (y)j .
2 Then, the notion

of consistency may be weakened to

Φ is consistent :⇐⇒ CnΦ ∩ {〈~x, ~y〉t : t ∈ T} ∩
{
〈~x, ~y〉t : t ∈ T

}
= ∅. (5.1)

meaning that the hypothesis Φ must not enable one to infer positive and negative evidence.
Finally, we explicitly want Φ to be incomplete for a similar reason: As we are dealing with
large margins of vagueness there are (infinitely) many propositions for which do not at all
have sufficient knowledge justifying the validity of either ϕ or ¬ϕ. Apart from the formal
logic properties of such theories, there is one that links the considerations above to practical
machine learning: One accepted measure of learnability is that of compression. Hence, the
smaller Φ, the more compressed the knowledge. Sadly, this cannot be mapped one-to-one
onto the task of finding minimal axiomatisations, because a stronger compressed Φ′ may
still be more suitable even if Th(Φ) 6= Th(Φ)′.

Learning across means to learn dependencies Using local knowledge “in” variables
is not sufficient for learning about dependencies bewtween variables. Therefore learning
about the semantics of a function expressing the relationship between several variables’
values requires more. Consider the observations

{〈〈2, 4〉 , 1〉 , 〈〈3, 1〉 , 0〉 , 〈〈2, 5〉 , 0〉 , 〈〈3, 6〉 , 1〉}

as instances for snapshots 〈~x, ~y〉 of a function f . The hypothesis

f((x0, x1)) =

{
1, if x1 = 2x0
0, else

requires more than just the functions delivering the values of involved variables:

x0(t) = v0 ∧ x1(t) = v1 ∧ g(v0, v1) −→ y(t) = 1

and x0(t) = v0 ∧ x1(t) = v1 ∧ ¬g(v0, v1) −→ y(t) = 0.

First, we either need to have a proper definition of g in our vocabulary of the logic we use
to express our specification or we must be able to invent such a new predicate. Second, the
latter formula is not a Horn clause as it contains an additional positive literal: the negated
predicate ¬g in the premise. Defining a weaker version of negation as failure (which is
compatible with not requiring completeness) simply means that our axiomatisation satisfies

f((x0, x1)) = 1 /∈ Cn(Φ) whenever x1 6= 2x0.

As already pointed out, one needs a predicate symbol g with a suitable semantics such as

g(x, y) :⇐⇒ 2x = y ⇐⇒ 2x ≤ y ∧ 2x ≥ y
2In context of binary classification tasks, 〈~x, y〉 = 〈~x, y〉; see footnote 1.
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which can be expressed equationally and can be assumed to be predefined in our theory.
Things are different with unknown predicates whose definitions turn out to be recursive:

{〈〈2, 4〉 , 1〉 , 〈〈1, 3〉 , 1〉 , 〈〈2, 5〉 , 0〉 , 〈〈3, 6〉 , 0〉}

supports the hypothesis g(x0, x0 + 2), or

g(x0, x1)⇐⇒ (x0 = 0 ∧ x1 = s(s(0))) ∨ (x0 = s(v0) ∧ x1 = s(v1) ∧ g(v0, v1)).

Hence, g(x0, x1) is true, if it is included in

Cn

({
x0 = 0 ∧ x1 = s(s(0)) −→ g(x0, x1),

g(v0, v1) ∧ x0 = s(v0) ∧ x1 = s(v1) −→ g(x0, x1)

})
(5.2)

which, written as a Prolog program, is

g(0, s(s(0)). g(s(X), s(Y )) : −g(X,Y ).

This is equivalent to the much more compressed theory

{g(x0, s(s(x0)))}

given that the value of x0 is restricted to N. However, correctness of our hypotheses is
guaranteed only if there are no other clauses with a head literal g of the same arity in our
theory, as this might allow to infer further, incorrect, instances. What appears to be just a
minor issue will turn out to be a challenge when considering concurrent theory construction
where parts of a specification of a module are defined in separate and independent theories
by mutually ignorant inductive processes.

5.4.2 Learning about dependencies between modules

Information flow along predicates by unification of variables. Assume three mod-
ules f, g, h and three logic programs P,Q,R as their respective specifications and predicates
p, q, r implementing the functions as logic programs:3

If f(~x) = ~y then p(~x~y) is provable

that is, P ∪{¬p(~x~v)} (where ~v is a sequence of free variables) leads to a contradiction with
an instantiation ~y for ~v.

3The uppercase letters P,Q,R denote Horn theories with arbitrary (additional) clauses; for example
definitions of other auxilliary predicates. The lower case predicates p, q, r can be considered the interfaces
or C-like main-routines. As a conrete example, the theory Reverse would export a predicate reverse and
might include the additional definition of append.
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Let us further assume that in our system S, g is executed on values computed by f only;
i.e. then instantiation of ~x in

q(~x~y) (5.3)

is entirely determined by the variable bindings of ~v.4 Then, the clause

h(~x~w) : −p(~x~U), q(~y~v)

can be proved if

1. p(~x~u) can be proved with an assignment ~y for ~u,

2. q(~y~v) can be proved with an assignment ~z for ~v,

3. and ~z unifies with ~w.

Refinement, reordering and abstraction of logic programs. Reverting the argu-
ment from above, one changes to an inductive point of view: Consider a sample s ={〈
~e,~t
〉
i

: i ∈ n
}

. Supposing a suitable learning method, a possible result would be

h(~a~w) : −A, p(~x~u), B, q(~y~v), C. (5.4)

where A,B,C are sequences of predicates such that A determines ~x using values ~a; B
together with p and A determines ~y; A, p,B, q together determine ~v; and A, p,B, q, C
finally determines ~w.
B can be moved inside the definition of p or q transforming the hypothesis to

h(~a~w) : −A, pB(~x~uB), q(~y~v), C. (5.5)

such that A and C can be considered pre- and postconditions that pB, q needs to satisfy
in order to describe h.5

Most of the program transformation operators described informally so far, have been de-
scribed to greater detail as refinement operators in inductive logic programming. For
example, the concept of determinacy (equation (5.3)) has been dealt with extensively in
[54] and then in [70] to express the amount of information carried along a certain variable.
The fact that B as in equation (5.5) can also be moved to the outside of pB to yielding
the clause in equation (5.4) forms the basis for the so-called intra-construction refinement
operator that additionally includes a generalisation operator on the definition of B which
has been introduced in [53] already.

4Note that the attribute “determinate” differs from the attribute “deterministic”: variables ~y are deter-
mined by q and ~x if it delivers a possible instantiation for ~y but not that this instantiation is necessarily
the only one.

5Proving {|A |} pB , q {|C |} requires the procedural semantics pB #q of the declarative program pB , q.
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The biggest problem remains that of identifying the subsets of relevant variables carrying
the important information. Apart from determinacy measures, usual methods are language
restrictions or predicate schemes (similar to rely/guarantee-conditions). The connection
to the frame rule is evident: If p does not depend on or is not determined by variables U ,
then

{|ϕ(~x~y) |} p {|ψ(~x~y) |}
{|ϕ(~x~y) ∗ Γ(U) |} p {|ψ(~x~y) ∗ Γ(U) |}

where ϕ and ψ describe the pre- and postconditions and Γ is a set of formulae on variables
U . The disjointness condition of free variables in U and the set of variables touched by p
is implemented by the notion of determinacy or dependency.

A higher-level logical analysis of induction. Equations (5.1) and (5.2) already cap-
ture the idea behind theory induction quite well. The usual notion (in logic machine
learning) would be that given a background theory Φ, a set E+ of theorems one has to be
able to prove and one set E− one must be able to disprove, the task is to find the “best”
theory H such that

Φ ∪H |= E+ and Φ ∪H |= ∼E− (5.6)

where ∼E− = {¬ϕ : ϕ ∈ E−}. This is usually weakened to

Φ ∪H ` E+ and Φ ∪H 6` E− (5.7)

because of the intractability of semantic entailment and the fact that negations of Horn
clauses are not Horn any more.6 It remains to define which H is better than another
H ′. Again, checking entailment H |= H ′or vice versa is, in general out of the question.
Cheaper versions are syntactical measures, compression or description length measures or
accuracy/coverage tests on validation samples. If v denotes such a partial order between
theories that preserves entailment, and the declarative semantics of a logic program inter-
prets the comma “,” (i.e. # ) as ordinary conjunction ∧, one can define extremal versions
of H by using residual operations:

H = ΦE+ (5.8)

means that H is the v-maximal set satisfying the left part of equation (5.7). In Heyting-
Algebras, this coincides with the E+-relative pseudocomplement to Φ. At the same time,
we want H to generate a largest deductive closure not containing any element of E−:

H = Φ∼E− or H = E−�Φ̃ (5.9)

where Φ̃ denotes non-derivability from Φ (ψ ∈ Cn(Φ̃) :⇐⇒ ψ /∈ Cn(Φ)).

6Unless they are unary clauses; i.e. facts. Hence, many if not most approaches require the elements of
a sample to be factual although this need not be the case for the theory behind program refinement.
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Also, it appears quite natural to postulate

Cn(E+) ⊆ Cn(∼E−) and Cn(E−) ⊆ Cn(∼E+) (5.10)

Three further paradigms deserve a deeper investigation at this point: Logic programs have
both a declarative and a procedural semantics, where the former one corresponds to a test.
Therefore, examples E+ and E− are tests that must or must not be satisfied when adding
H to Φ and logic programs that together with Φ are consistent or inconsistent with H.
A hypothesis H is a test, specification and implementation w.r.t. Φ and examples leading
to > or ⊥ respectively. Finally, Φ can be considered a partial specification. The second
paradigm is based on the notion of Hoare triples that, omitting the requirement of extremal
weakness or strength, allows relating Φ, H and examples as follows:

{|Φ |}H {|E+ |} {|H |}Φ {|E+ |} {|Φ ∪H |} ∼E+ {| false |} (5.11)

Finally, weakest preconditions are well known as box and diamond operators; i.e.

〈E+|Φ ≤ H (5.12)

which is also motivated by the residual based representation in equations (5.8,5.9).7

5.4.3 Distributed Learning

Ensemble learning methods like boosting and bagging, [79, 8], were originally developed in
the context of statistical or entropy-based learning methods. [57] presents an interpretation
in the context of modal logics and relational knowledge discovery.
In this short and concluding section we motivate a view on knowledge discovery as a
distributed process itself but restrict ourselves to a bagging-like distribution.
Bagging is a method that relies on splitting the sample data and then aggregates the
hypotheses induced on each of them. A partitioning of snapshots (i.e. its division into
disjoint subsets) appears a natural first step, but is anything but a wise choice: The
hypotheses induced for every such partition are likely to be overfit on the entire sample.
Things are even worse, if a partition is taken to be a set of positive instances and the union
of all other partitions as negative examples. Hence, overlaps in the sense of deliberate
noise (see introductory paragraph of section 5.3) are required. A suitable definition of such
required overlaps is an open question though. The next issue in bagging is the definition
of a potent aggregation function. With hypotheses being partial theories

Hi = ΦE+
i with i ∈ n (5.13)

there are no efficiently computable operations ⊕, ⊗ or � known solving the problems

H = ΦE+ = ( ΦE+
0 )⊕ ( ΦE+

1 )⊕ · · · ⊕ ( ΦE+
n−1 ) (5.14)

H = ΦE+ = Φ(E+
0 ⊗ E+

1 ⊗ · · · ⊗ E+
n−1) (5.15)

7Aside, box and diamond operators motivate a modal extension of logic programs (see, e.g. [64]).
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for a given decomposition of E+, or

Φ� E+ =
{
E+
i : i ∈ n

}
(5.16)

to compute such a decomposition to satisfy equations (5.14, 5.15).
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Chapter 6

Conclusion

In this memo, we gave a broad yet shallow overview of several disciplines sharing common,
open research questions:

1. How can autonomous, distributed systems be observed in order to draw conclusions
about their components’ or entire system behavior?

2. What is needed for a satisfactory theory of distributed, concurrent processes with
shared memory?

3. Can we, by way of observation as in 1., induce a concrete theory in terms of 2., that
specifies a given system and can we even detect possible reasons for failure?

We also collected and pointed out connections between previous and ongoing work such
that the questions above can be specified to the following, tentative, programme for further
research:

1. The preliminary relational formalisation of ACMEs needs to be completed.

2. ACMEs can be implemented at several levels of detail (see section 5.2.1) and in
several settings:

(a) Available simulation environments (PARIA) can be used; a very simple but
versatile simulation environment would be to use simple shell scripts as described
in section 3.1.

(b) Small autonomous robots implementing behaviour as in section 3.2.3 would
provide a bridge between the real world and purely theoretical project work

(c) Two further thinkable applications are possible in co-operation with PLC- and
industrial robot suppliers and user companies.
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In a next step, the then-relation algebraic translation of ACMEs shall be adjusted so as to
fit in the CKA-based description models of concurrency.
A large portion of the work will be concerned with data collection:

1. Implementations of ACMEs are needed to gather real snapshots and test different
techniques of snapshotting.

2. The many different goals in system specification knowledge discovery require sophis-
ticated sampling and snapshotting:

(a) Can we use results from TLA (see section 4.1.3) to formulate the needed re-
quirements on the snapshots?

(b) Are they compatible and expressible in CKA?

3. Also, in anticipation of subsequent goals, we shall examine whether these require-
ments can be formalised in separation logic.

All approaches so far aim at describing concurrent processes and the conditions under
which they can safely live together in a common environment. However, they all have a
slightly different flavour depending on what their primary goal is: some are focused on
states, others on actions; some on control flow, others on data flow; some message passing
along channels, others on concurrent memory access. Hence, the work on any of these tasks
should be closely connected to ongoing research concerning unified theories of concurrent
processes.
This also includes the third and last block of topics. Chapter 5 gives a detailed description
of many concrete, open questions; most of them motivated by the question how to learn
about a system once its specification is unknown. We therefore only briefly recollect the
most important questions without going into much detail since they depend on the findings
expected from the work on the questions listed above.

1. Learning specifications of programs with known I/O-behaviour has been dealt with
for decades. The first question here is: How can we determine suitable (spatial) parts
of a set of snapshots that suffice to describe a single module’s behavior?

2. Given large snapshots or sets of (overlapping) spatial parts of snapshots, how can we
identify interfaces and groups of semantically grouped modules? — How does this
relate to the notion of interfaces of concurrent processes and refinement of sets of
processes?

3. Snapshots take a certain “exposure” time during which data may travel through
space. As we focus on learning declarative hypotheses, time is a source of noise. On
the other hand, if snapshots are collected by the distributed processes themselves,
their aggregation is inherently inconsistent. How can we ensure time- or memory-
space consistent data to learn from?
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4. Dependency between processes is easy to detect if their specifications reveal that one
passes to another. How can we detect the dependency between processes without
knowing which memory region represents an interface between them?

Finally, it would be interesting to optionally investigate how the methods for knowledge
discovery (that up to know were implicitely taken to be fixed) themselves can be improved.
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Support Vector Machines and Kernels for Computational Biology. PLoS Computa-
tional Biology 4, 10 (October 2008).

[4] Blum, A., and Mitchell, T. Combining Labeled and Unlabeled Data with Co-
Training. In COLT’ 98 Proceedings of the eleventh annual conference on Computa-
tional learning theory (1998), ACM, pp. 92–100.

[5] Bolton. Programmable Logic Controllers, 4 ed. Newnes, 2006, ch. 11. Ladder and
Functional Block Programming, pp. 454–.

[6] Braitenberg, V. Vehicles: Experiments in Synthetic Psychology. The MIT Press,
1986.

[7] Bratman, M. E. Intention, Plans, and Practical Reason. CSLI - Stanford Publica-
tions, 1999. Reprint of 1987.

[8] Breiman, L. Bagging Predictors. Machine Learning 7, 2 (August 1996), 123–140.

[9] Brookes, S. A semantics for concurrent separation logic. Theoretical Computer
Science 375 (2007). Festschrift for John C. Reynolds’s 70th Birthday, 2007. Extended
version of paper from CONCUR 15.

[10] Brooks, R. A. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation 2, 1 (March 1986), 14–23.

[11] Brooks, R. A. Intelligence without representation. Artificial Intelligence 47 (1987).

[12] Brooks, R. A. Intelligence Without Reason. Tech. rep., MIT AI Laboratory, 1991.

64



[13] Carver, N., and Lesser, V. Evolution of blackboard control architectures. Expert
Systems with Applications 7, 1 (1994).

[14] Corkill, D. D. Blackboard Systems. AI Expert 6, 9 (1991).

[15] Douglas, A., Wood, A., and Rowstron, A. Linda implementation revisited.
In Proc. of the 18th World Occam and Transputer User Group (1995), IOS Press,
pp. 125–138.

[16] Enderton, H. B. A mathematical introduction to logic, 2nd ed. Academic Press,
2001.

[17] Gelernter, D. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7, 1 (1985), 80–112.

[18] Glück, R. L. J., and Krebs, F. Towards Interactive Verification of PLC Programs
using MKA and KIV. In Kahl et al. [40].

[19] Goldberg, D. Genetic and evolutionary algorithms come of age. Communications
of the ACM 37, 3 (1994), 113–119.

[20] Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S. H.,
Schmid, U., and Zorn, B. Inductive Programming Meets the Real World. Com-
munications of the ACM 58, 11 (November 2015), 90–101.

[21] Hardin, C. How the Location of * Influences Complexity in Kleene Algebra with
Tests. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2004)
(2005), F. Baader and A. Voronkov, Eds., vol. 3452 of LNCS, Springer.

[22] Haubrich, T. Simulation and Visualisation of Swarms and Flocks (orig. German).
Master’s thesis, Bonn-Rhein-Sieg University of Applied Sciences (BRSU), 2011.

[23] Hayes, P. J. The Frame Problem and Related Problems in Artificial Intelligence.
n 0, Stanford University, 0, 0 1971.

[24] Hayes-Roth, B. A blackboard architecture for control. Artificial Intelligence 26, 3
(1985).

[25] Hermann, M., Hentek, T., and Otto, B. Design Principles for Industrie 4.0
Scenarios: A Literature Review. Tech. Rep. 01/2015, Faculty of Engineering, Technical
University Dortmund, 2015.

[26] Hielscher, F. Entwicklung einer Roboterplattform für kognitive, autonome Systeme.
Master’s thesis, Universität Augsburg, 2008.

65



[27] Hoare, C. A. R. Communicating Sequential Processes. Communications of the
ACM 21, 8 (1978), 666–667.

[28] Hoare, C. A. R. A Theory of Programming: Denotational, Algebraic and Opera-
tional Semantics. November 1999.

[29] Hoare, C. A. R. Communicating Sequential Processes. 2004. First published as [27].
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