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Chapter 1

Introduction

Performing accurate forecasts for financial assets is not only a very recent topic in

light of the ongoing financial crisis, but one of the great challenges of statistics and

economics in general. In the past years, increased computing power and the availability

of novel data sources lead to a wide range of new methodologies and increased the

awareness for the necessity of high dimensional models, as most applications in asset

and risk management require both, uni- and multivariate forecasts.

Predictability of asset returns has long been one of the most prominent topics in

empirical finance, arising vivid debates as to which extent it violates the efficient market

hypothesis (Fama, 1995) and random walk theories (Bachelier, 1900; Cootner, 1964).

Short-term return forecasting is mostly viewed as impossible or at best difficult, see

Christoffersen and Diebold (2006); Cenesizoglu and Timmermann (2012). At longer

horizons time-varying risk premia or low frequent time series movements are sometimes

used as an explanation for theoretical return predictability, see Barberis (2000); Ferreira

and Santa-Clara (2011). Lettau and Nieuwerburgh (2008) provide an overview on the

topic, pointing out, that changes in the mean of the return process pose a problem for

prediction. While a general consent on the topic has not been reached, the dependence

and variability of asset returns, usually captured by the covariance matrix, has been of

rising interest in recent years. Motivated by studies of univariate volatility, in which

the evidence on predictability is large (e.g. Andersen and Bollerslev (1998a); Forsberg

and Ghysels (2007)), similar results were obtained for the multivariate case, see amongst

others Engle (2002); Barndorff-Nielsen and Shephard (2004b); de Pooter et al. (2008).

Sophisticated methods that directly estimate and forecast the latent volatility process

have spread since the availability and improved accessibility of high-frequency data. Re-

search was, amongst others, initially triggered by Olsen (2011) and Dacorogna (2001).

Particularly, the use of squared returns to estimate volatility has become a standard

method in empirical finance. Originating from stochastic calculus, where Doléans-Dade

(1967) showed that the sum of squared returns is a consistent estimator for the quadratic
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Chapter 1. Introduction 2

variation and Jacod (1994) derived the corresponding limit theory, the concept was soon

applied in econometrics. There, the working assumption of the price process being a

semi-martingale could be justified under no-arbitrage assumptions (Andersen et al.,

2003). For both, the uni- and multivariate setting, the corresponding asymptotic theory

was derived by Barndorff-Nielsen (2002) and Barndorff-Nielsen and Shephard (2004a).

The obtained measures are so called realized volatilities and its multivariate counter-

part realized covariances, which can be refined and robustified by various estimation

methods, see Zhang et al. (2005); Zhang (2006); Jacod et al. (2009); Zhang (2011). The

advantage of these realized measures lies in them being observable time series and as

a result, a large variety of approaches for modeling and forecasting their dynamics has

developed. Since empirical applications, such as asset pricing, portfolio optimization

and evaluation of risks are mostly implemented in the multivariate case, forecasts of the

required covariance matrix are a crucial ingredient and represent the central topic of

this thesis.

On the one hand, multivariate volatility forecasting bears the same difficulties as

its univariate counterpart, where a main focus lies on modeling so called stylized facts

(see Andersen, Bollerslev, Christoffersen, et al. (2006)), such as long-memory, cluster-

ing, leverage effects and mean reversion. On the other hand, matters are complicated

by the requirement of the forecasted covariance matrix to be symmetric and positive

semi-definite. In chapter 2 the Cholesky decomposition, a widely used method to guar-

antee both properties is studied. A special focus lies on its often neglected pitfalls

and possible solutions in empirical application. Additionally, understanding, measuring

and forecasting the dependence structure in the multivariate context is vital. As the

interconnectedness of economies has strongly increased in recent time, financial assets

become more dependent particularly during extremely negative economic phases and

asset market volatility linkages tighten during periods of financial turmoil, as Cappiello

et al. (2006) highlight. This asymmetric dependence has important implications, e.g.

for portfolio allocation, as the variance of a financial portfolio return depends not only

on the variances of the individual assets but also on the correlations between the assets.

To advance from the strict Gaussian framework to more flexible structure, dependence

is commonly studied using the concept of copulas (Joe, 1997; Nelsen, 2006), which are

also suitable for capturing the interdependencies between asset volatilities (Mendes and

Accioly, 2012). Chapter 3 introduces a new model for forecasting multivariate volatility

that utilizes vine copulas to account for nonlinear dependence and asymmetry. The

models predictive accuracy is compared to conventional models using statistical as well

as economic measures.

Another often discussed topic is the role of external factors and variables in fore-

casting volatility, see e.g. Andersen and Bollerslev (1998b); Engle and Patton (2001).

Traditionally, volatility is a measure of uncertainty of market participants regarding the
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current and future state of the market. Chapter 4 analyzes the benefits of using a simi-

larity based model, comparing current volatility characteristics and investors attention

to the stock market for forecasting univariate volatility. The general ideas and findings

of the articles, which constitute the main part of this dissertation are shortly described

in the remainder of this introduction.

1.1 Decompositions of the realized covariance matrix

A major complication in forecasting multivariate volatility is the requirement of sym-

metry and positive semi-definiteness of the predicted covariance matrix, while preserving

parsimony in the modeling procedure. In the literature, two alternative methods are usu-

ally applied. Restrictions on the model parameters or a decomposition of the covariance

matrix. While the first one is easily applicable, model parsimony suffers especially in

large dimensions. Hence, the latter approach is preferred in the literature, where a vari-

ety of decompositions exist, each of them with specific advantages and disadvantages. A

typical modeling procedure starts with a measure of multivariate volatility, e.g. a time

series of realized covariance matrices. At each point of time, the time series is decom-

posed and the resulting vector or matrix of the decomposition is modeled and forecasted

using uni- or multivariate time series models. In the last step, the decomposition is

reversed and ideally leads to a forecast of the realized covariance (RCOV) matrix, which

is symmetric and positive semi-definite.

One of the most prominent methods is the Cholesky decomposition (CD), which has

previously been applied by Halbleib and Voev (2011); Chiriac and Voev (2011); Becker

et al. (2010). Despite its popularity, it suffers from the drawback that a change in the

order of the elements in the original covariance matrix leads to a different decomposition

and as a result influences modeling and forecasting. The problem is well known in the

literature on vector autoregression (VAR), see Keating (1996), where some authors,

e.g. Klößner and Wagner (2014) suggest a brute force approach, combining the results

from potentially all orderings of the elements. However, as the number of elements

increases, the number of possible orderings grows in a factorial sequence. Consequently,

this approach gets computationally burdensome even in relatively small dimensions.

The goal of the first article of this dissertation in chapter 2 is to analyze the impact

of the ordering on forecasts for the RCOV matrix, if a CD is used in the modeling

approach. For each of the 720 possible permutations of an exemplary six dimensional

data set of asset returns ranging from January 1, 2000 to July 30, 2008, a modeling

procedure as mentioned before is performed: First, the CD is applied at each point of

time on the RCOV belonging to the corresponding permutation. Second, the time series

of Cholesky elements are modeled based on the heterogeneous autoregressive (HAR)

model of Corsi (2009) and one-step ahead out-of-sample forecasts are generated. Third,
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the decomposition is reversed to obtain a forecast of the RCOV matrix. Due to the

nonlinear transformation in the last step, a bias is induced, which we study using a

bias correction similar to Chiriac and Voev (2011) and Bauer and Vorkink (2011). To

evaluate predictive accuracy, the multivariate mean squared error and quasi likelihood

loss functions are calculated for each permutation and across time. Analyzing the loss

distributions, we find differences of up to 18% in predictive accuracy between the average

loss of the best and worst model. Yet, the best and worst models are not consistent over

time, so that a clear recommendation to which order to use for the next point of time

based on previous performance is not at hand.

A detailed analysis of the loss differences based on the model confidence set (MCS)

framework of Hansen, Lunde, and Nason (2011) reveals that the forecasts of the order-

ing with the smallest average loss are indeed significantly better than the forecasts of

the ordering with the largest average loss. Hence, choosing an arbitrary and possibly

“wrong” ordering may lead to misjudgment of the models forecasting ability in general.

Furthermore, we show that an ex-ante analysis of the correlation structure of the assets,

as it is sometime proposed in the VAR literature, does not yield significantly better

forecasting results. In case of applying a bias correction for the forecasts, the differ-

ences between best and worst model even worsen. While the bias correction in general

improves forecasting accuracy, the loss distribution over all permutations widens and

differences between largest and smallest average loss increase for both loss functions. A

possible solution to the ordering problem comes in the form of another decomposition,

the matrix exponential transformation (MET), which was first applied in forecasting

multivariate volatility by Bauer and Vorkink (2011). On the one hand, the MET suffers

from biased forecasts, similar to the CD. On the other hand, the elements of the MET

are not explicitly linked to the elements of the matrix it is applied on, making the MET

order invariant. Comparing forecasts of both decompositions, we find that after bias

correction, predictive accuracy does not significantly differ between the CD with the

smallest average loss and the MET. Thus, for empirical application, two conclusions can

be drawn. If a reasonable order can be imposed on the elements of the covariance matrix

or if the connections between the elements of the decomposed covariance matrix are of

interest, the CD is a rational choice. Otherwise, the application of the MET together

with a bias correction is advised, be it for comparative reasons or simply to avoid the

time consuming process of estimating all possible permutations of the CD.
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1.2 A vine copula approach for predicting multivariate re-

alized volatility

While the article in the previous section pointed out drawbacks from using the CD in

forecasting the RCOV matrix, the decomposition is still irreplaceable if the structure and

interconnectedness of its entries is of importance. As pointed out in section 1.1, RCOV

matrices are often modeled and forecasted using a step-wise procedure, where different

time series models are applied on the whole matrix, its individual elements or a favorable

decomposition. Directly modeling the components of the RCOV matrix with univariate

processes is possible (e.g. as described in Andersen, Bollerslev, Christoffersen, et al.

(2006)), but does not guarantee positive definite forecasts and dynamic linkages among

the series, such as volatility spillovers, might be neglected (Voev, 2008). Latest multivari-

ate approaches that ensure symmetry and positive semi-definiteness of the RCOV matrix

include the Wishart autoregressive (WAR) model proposed by Gouriéroux et al. (2009)

and its dynamic generalization, the conditional autoregressive Wishart model (CAW) by

Golosnoy et al. (2012). Chiriac and Voev (2011) choose the way of RCOV transformation

and base their vector autoregressive fractionally integrated moving average (VARFIMA)

model on a CD of the covariance matrix. Bauer and Vorkink (2011) instead transform

the covariance matrix by using the MET and a factor model approach for the individual

components. Disadvantages of these multivariate approaches are the lack of flexibility in

the parameters and the inability to conveniently model non-Gaussianity and conditional

heteroskedasticity in the volatility series itself. In contrast, the univariate framework

offers a wide range of possibilities to tackle these problems, for example models based on

fractionally integrated ARMA (ARFIMA) (Andersen et al. (2003)) or HAR processes

(Corsi, 2009) can be estimated under skewed error distributions and various general-

ized autoregressive conditional heteroscedasticity (GARCH) augmentations (see Engle

(2002); Corsi et al. (2008)). In combination with a CD modeling procedure, symme-

try and positive semi-definiteness of the forecasts of the RCOV matrix can be ensured.

Additionally, applying the CD bears the advantages of naturally interconnected entries

within the matrix. Due to the nature of the decomposition, the relation between the

elements is not linear and characteristic dependence patterns can be observed. As An-

dersen et al. (1999) point out, these patterns are subject to the high correlation between

realized correlations and realized volatility, which can be attributed to the increased

interconnectedness of economies. Copulas are a convenient and meanwhile established

way to account for a variety of nonlinear dependence patterns among the realized co-

variances (see Mendes and Accioly (2012)). However, the choice of multivariate copulas

is limited. In contrast, the bivariate case offers a rich variety of different copulas with

flexible dependence patterns, based upon a steadily growing literature especially in the
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GARCH framework, see e.g. Aas and Berg (2009); Liu and Luger (2009); Fischer et al.

(2009).

A corresponding dynamic framework for modeling and forecasting RCOV matrices

using vine copulas to account for more flexible dependencies between assets is studied

in the second article of this dissertation, see chapter 3. Using the same six-dimensional

data set as in section 1.1, we introduce a stepwise modeling procedure based on various

time series models, such as the ARFIMA and HAR model. Similar to the previous

article, we apply these models on the individual elements of the CD of the RCOV

matrix to guarantee symmetry and positive semi-definiteness of the forecasts. Following

Corsi et al. (2008), we extend the models by including a GARCH component to account

for the so called “volatility of realized volatility”. As shown in Bai et al. (2003), the

common GARCH with Gaussian innovations is not able to account for very high values

of kurtosis of the dependent variable, as it is only controlled by two parameters, the

kurtosis of the error distribution and the persistence of the GARCH itself. Hence,

observing excess skewness and kurtosis in our data, we estimate the models based on

the class of skewed generalized error (SGED) distributions (see e.g. Fernandez and Steel

(1998)). To select an appropriate vine structure for the elements of the CD, or more

precisely for the i.i.d. residuals of the elements after marginal time series filtering, the

correlation pattern between the elements is studied. We compare two different structural

models, for which we estimate various bivariate copulas covering both tail dependence

and tail asymmetry. Given the problem of the ordering of the assets as pointed out in

section 1.1, we repeat the modeling procedure for all 720 possible orderings. Due to the

computational burden, we focus on the ordering with the highest average log likehood

over all time series for further analysis. Analogously, we choose the vine structure which

performs best compared to an arbitrary structure, which is selected and fitted according

to the maximum spanning tree principle as proposed by Dißmann et al. (2013). While

we find that tail asymmetries as implied by Clayton and Gumbel copulas are present,

preliminarily deciding to use only Gaussian or Student’s t copulas significantly simplifies

the model selection step and only slightly decreases the model’s log likelihood. Finally,

the models can be applied in an one-day ahead out-of-sample forecasting exercise. After

performing the same bias correction procedure as in section 1.1, we assess the usefulness

of our method, comparing it to recent types of models for the RCOV matrix based on

a MCS approach. However, as Laurent et al. (2013) point out sometimes the model

with the smallest statistical loss function may not be the one preferred in the evaluation

by economic consideration. Hence, we also focus on economic evaluation by means

of conventional portfolio optimization and Value-at-Risk (VaR) forecasting. We find

that using a vine structure leads to significant improvements for HAR models regarding

statistical loss, mean-variance efficient portfolios and VaR predictions. For ARFIMA

based vine models, results are not as unambiguous except for forecasting daily VaRs.
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There, compared to conventional models, the vine structure leads to smaller capital

requirements while providing significantly more accurate forecasts and avoiding large

exceedances of the forecasted VaR. These results are in line with the vine models ability

to model tail events due to their assumption of non-normality. Hence, especially in

combination with easily applicable conventional models, such as the HAR, our modeling

approach offers a flexible and promising way of using the advantages of copulas for

forecasting multivariate realized volatility.

1.3 Investor attention and stock market volatility

While the previous sections introduced models based on the autoregressive nature of

volatility, a large amount of research includes exogenous variables to form predictions

for its future, as asset prices are most likely dependent on other factors, see Engle and

Sheppard (2001). While Andersen and Bollerslev (1998b) analyze the impact of news

announcements of US macroeconomic data and its influence on volatility, more recent

studies, such as Barber et al. (2009), directly focus on the interest investors take in the

market. Traditionally, so called investor attention is measured by indirect proxies like

volume, turnover and news. While volume might be the natural candidate for forecast-

ing purposes, several studies, e.g. Brooks (1998) and Donaldson and Kamstra (2005)

suggest that it does not improve the accuracy of volatility predictions. News as an al-

ternative measure are mostly irregular and may underly a considerable publication lag.

Recent publications use internet message postings (S.-H. Kim and D. Kim, 2014), Face-

book users sentiment data (Siganos et al., 2014) or search frequencies (Vozlyublennaia,

2014) to assess the influence of retail investors attention on the stock market. Several

studies, among them Da et al. (2011), Vlastakis and Markellos (2012) and Andrei and

Hasler (2015), suggest that Google search volume is a driver of future volatility. While

most of the previous studies focus on analyzing the in-sample relationship of volatil-

ity and investor attention, the last article in this dissertation explicitly concentrates on

predictability in an out-of-sample forecasting framework.

We suggest including Google search data (via Google Trends) in the framework of

empirical similarity (ES) introduced by Gilboa et al. (2006), augmenting an autoregres-

sive (AR) model by a time-varying coefficient determined by the empirical similarity

between last periods Google data and realized volatility. This approach has previously

been suggested by Lieberman (2012) and resembles an autoregressive process with dy-

namic parameters. As a result, the model is able to depict stationary, non stationary

and explosive behavior, which can often be found in time series of realized volatilities,

see Chen et al. (2010); Hansen and Lunde (2014). The unique assumption behind the

model is, that investors seek information about the market before they actively trade,
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which allows us to draw inference for different states of investor attention and volatil-

ity. For example, if investor attention is high and volatility is low, future volatility is

expected to rise due to increased participation of investors in the market. On the other

hand, if the previous level of volatility was high, low attention indicates a change point

of volatility dynamics, meaning investors are losing interest in the market. In this case,

due to decreased participation, future volatility should decrease, too. Based on weekly

realized volatility of the Dow Jones Industrial Average (DJIA) ranging from January 16,

2004 to October 18, 2013, we find that the model shows significantly better performance

compared to traditional models in an in-sample comparison as well as an out-of-sample

forecasting study. By including two alternative time-varying models, we highlight that

forecasting performance is indeed driven by the use of Google Trends data in combina-

tion with the ES framework. Furthermore, we test the robustness of the out-of-sample

study by using the realized kernel suggested in Barndorff-Nielsen, Hansen, et al. (2008)

as an alternative proxy for volatility.

Our results confirm the findings of Vlastakis and Markellos (2012) and Vozlyublennaia

(2014), who state that investor attention is a driver of volatility on short horizons. As

described by Andrei and Hasler (2015), this relationship is strongest in phases of high

volatility, where investor attention tends to be high. Additionally to evaluating the fore-

casts based on a MCS approach, we highlight the practical application by predicting the

weekly VaR. Here, the ES model produced significantly better VaR forecasts in terms

of overall accuracy and required capital, while providing an adequate number of VaR

violations. Furthermore, the inclusion of Google Trends data as simple additive term

in classical realized volatility models, such as the ARFIMA and HAR model, did not

improve forecasting accuracy. Hence, while linear models can be useful for assessing

the correlation of volatility and investor attention and studying their dependence in an

in-sample framework, these models are not flexible enough when it comes to forecasting.

However, one drawback of our model is the availability of Google Trends data. Google

standardizes the data and restricts the access for daily data to windows of 90 days,

which cannot be merged into one meaningful time-series. Other issues include the lack

of search data for certain assets or the problem that certain search terms are ambiguous.

Nevertheless, given a certain quality of the data, our model of empirical similarity is easy

to interpret, parsimonious and shows superior predictive ability, which makes the model

attractive for economic reasoning as well as practical application
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Article 1: Pitfalls of the Cholesky

decomposition for forecasting

multivariate volatility

Abstract This paper studies the pitfalls of applying the Cholesky decomposition

for forecasting multivariate volatility. We analyze the impact of one of the main issues

in empirical application of using the decomposition: The sensitivity of the forecasts

to the order of the variables in the covariance matrix. We find that despite being

frequently used to guarantee positive semi-definiteness and symmetry of the forecasts,

the Cholesky decomposition has to be used with caution, as the ordering of the variables

leads to significant differences in forecast performance. A possible solution is provided

by studying an alternative, the matrix exponential transformation. We show that in

combination with empirical bias correction, forecasting accuracy of both decompositions

does not significantly differ. This makes the matrix exponential a valuable option,

especially in larger dimensions.

Keywords: realized covariances; realized volatility; cholesky; decomposition; fore-

casting
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2.1 Introduction

Forecasts of the covariance matrix are a crucial ingredient of many economic appli-

cations in asset and risk management. The concept of using realized covariances as a

proxy for the unobservable volatility process has largely spread since the availability and

improved accessibility of high-frequency data in finance. Recent approaches to forecast

the realized covariance (RCOV) matrix are based upon uni- or multivariate time series

models. To ensure mathematical validity of the forecasted RCOV matrix, such as sym-

metry and positive semi-definiteness, either parameter restrictions or decompositions are

used. The latter one is preferred to guarantee parsimony, especially if dimensions are

large.

Latest multivariate approaches that ensure symmetry and positive semi-definiteness

of the RCOV matrix include the Wishart Autoregressive (WAR) model proposed by

Gouriéroux et al. (2009) and its dynamic generalization, the Conditional Autoregressive

Wishart by Golosnoy et al. (2012). Chiriac (2010) shows that the WAR estimation

is very sensitive to assumptions on the underlying data, causing degenerate Wishart

distributions and affecting the estimation results. Consequently, Chiriac and Voev (2011)

choose the way of transformation and base their Vector Autoregressive Fractionally

Integrated Moving Average (VARFIMA) model on a Cholesky decomposition (CD) of

the covariance matrix. Bauer and Vorkink (2011) instead transform the covariance

matrix by using the matrix exponential transformation (MET) and use a factor model

approach for the individual components. Andersen, Bollerslev, Christoffersen, et al.

(2006) and Colacito et al. (2011) modify the Dynamic Conditional Correlation (DCC)

model of Engle (2002), splitting up variances and covariances in the modeling process.

A similar approach is implemented in Halbleib and Voev (2014). The authors suggest a

mixed data sampling method based on low-frequent estimators for the correlations.

Usually, the choice of the method can be motivated by the unique properties of the

respective decomposition. For example, while the elements of the CD are explicitly

linked to the entries of original RCOV matrix, this is not the case for the MET. On

the other hand, both, CD and MET, do not separate variances and covariances. This

can be achieved by applying a DCC type decomposition, allowing for more flexibility in

the modeling process. Moreover, as Halbleib and Voev (2014) point out, high-frequency
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estimators for the whole covariance matrix are often noisy and simple methods to reduce

microstructure noise, such as sparse-sampling (see Andersen, Bollerslev, Diebold, et al.

(2003)), are not applicable in large dimensions. Overall, due to its simplicity, the CD

remains the most frequently used method in the literature, beside the problem that each

permutation of the elements in the original matrix yields a different decomposition. The

problem is well known in the literature on Vector Autoregression (VAR), where the VAR

is usually identified using the corresponding CD to derive the dynamic response of each

variable to an orthogonal shock (see e.g. Sims (1980)). Keating (1996) show, that the

ordering of the variables is crucial to obtain structural impulse responses, which is only

possible if the system of equations is partially recursive. The gravity of the problem

for VAR based approaches has also been pointed out by Klößner and Wagner (2014),

who analyze the extent to which measuring spillovers is influenced by the order of the

variables.

In this paper, we focus on the impact of the ordering of the assets in the origi-

nal covariance matrix on the forecasts, if a CD is used. Since the amount of possible

permutations grows very fast with increasing number of assets, it is computationally bur-

densome to calculate and compare forecasts from each ordering. Therefore, we evaluate

the predictive accuracy of all 720 permutations based on a small data set of six assets.

Analyzing the loss distributions of two established loss functions, we find differences of

up to 18% between the average loss of the best and worst model. Using the Model

Confidence Set framework of Hansen, Lunde, and Nason (2011), we show that these loss

differences are indeed statistically significant, meaning that an arbitrary ordering may

result in suboptimal forecasts and hence poor model choices. Furthermore, the applica-

tion of an ex-ante analysis of the correlation structure of the assets to obtain a specific

ordering, as it is sometime proposed in the VAR literature, does not improve forecasting

results significantly. Additionally, we take a look at the impact of a simple empirical bias

correction, as the forecasts from both, CD and MET are biased by construction. We

show, that using the ordering invariant MET and applying the bias reduction provides

a possible solution to the ordering problem, as forecasts are not significantly different

from the best CD.
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2.2 Decomposition of the realized covariance matrix

Let Rt be the N × 1 vector of log returns over each period of T days. For a portfolio

consisting of N stocks:

Rt = p(t)− p((t− 1)),

p(t) = (p1t, . . . ,pNt) being the log price at time t ∈ [1, . . . ,T ].

Assume, there are M equally spaced intra-day observations, the i-th intra-day return

for the t-th period is:

ri,t ≡ p((t− 1) + i
1

M
)− p((t− 1) + (i− 1)

1

M
), (2.1)

with i = 1, . . . ,M . According to Barndorff-Nielsen and Shephard (2002), the N × N

RCOV matrix for the t-th period is then defined as

Yt =
M∑
i=1

ri,tr
′
i,t, (2.2)

which is a consistent estimator for the conditional variance-covariance matrix of the log

returns, V ar [Rt|Ft−1] = Σt. The estimator can be refined to reduce market microstruc-

ture noise (e.g. Hayashi and Yoshida (2005); Zhang et al. (2005)) and account for jumps

(Christensen and Kinnebrock, 2010). The issue of asynchronicity of the data can be

addressed by methods such as linear or previous-tick interpolation (Dacorogna, 2001)

and subsampling (Zhang, 2011), which are easy to implement in empirical work. More

complex procedures are often based on the use of multivariate realized kernels (see e.g.

Barndorff-Nielsen, Hansen, et al. (2011)). However, as Halbleib and Voev (2014) point

out, these methods are still limited in application as they may lead to data loss or do

not guarantee positive definiteness.
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2.2.1 Cholesky decomposition

The CD, decomposes a real, positive definite1 matrix into the product of a real upper

triangular matrix and its transpose (Brezinski, 2006).

The Cholesky decomposition of the naturally symmetric and positive semi-definite

Yt, with Pt being an upper triangular matrix, yields:

Yt =



y11,t y12,t · · · y1N,t

y12,t y22,t · · · y2N,t

...
...

. . .
...

y1N,t · · · · · · yNN,t


(2.3)

=



p11,t 0 · · · 0

p12,t p22,t · · · 0

...
...

. . .
...

p1N,t p2N,t · · · pNN,t





p11,t p12,t · · · p1N,t

0 p22,t · · · p2N,t

...
...

. . .
...

0 0 · · · pNN,t


(2.4)

= P ′tPt.

The elements pij,t, i, j = 1, . . . , N , i < j are real and can be calculated recursively by

pij,t =



1
pii,t

(
yij,t −

∑i−1
k=1 pki,tpkj,t

)
for i < j√

yjj,t −
∑j−1

k=1 p
2
kj,t for i = j

0 for i > j

(2.5)

In reverse, the realized covolatilities can be expressed in terms of the Cholesky elements

yij,t =

min{i,j}∑
`=1

p`i,tp`j,t. (2.6)

Since in practice, modeling is carried out on the elements of the CD, one of the

problems depicted in equation 2.5 is the influence of the ordering of the variables in

the covariance matrix. Consider for example, that we swap the position of the first and

second asset in the return vector. As a result, the elements in the first and second row

1Or positive semi-definite if the condition of strict positivity for the diagonal elements of the trian-
gular matrix is dropped
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of the matrix in equation 2.3 will change its positions. Due to the recursive calculation

of the elements in Pt , the corresponding Cholesky elements in the first and second row

of Pt will not merely be swapped, but completely change magnitude. Using the CD

for a N × N portfolio, there are N ! possible permutations of the stocks in the matrix,

resulting in different decompositions that are nonlinearly related to each other. Hence,

the resulting time-series of Cholesky elements pij,t differ between the decompositions.

For all model based on the CD, this may lead to varying model choices, parameter

estimates and also forecasts.

Another issue arises in obtaining forecasts for Ŷt+1. Being a quadratic transformation

of the forecast for P̂t+1, the forecast Ŷt+1 may not be unbiased, even if the forecasts for

P̂t+1 are. This problem is further illustrated in section 2.2.4.

Furthermore, a often desirable feature of covariance forecasting, namely the separa-

tion of variances and covariance dynamics can not be achieved by using the CD directly

on the covariance matrix. However, it is possible to first apply a DCC decomposition

approach and a CD on the correlation matrix thereafter. In general, the nonlinear depen-

dence of the elements in the decomposition can also be an advantage, as the dependency

structure between the Cholesky elements can be studied and used for forecasting, see

e.g. Brechmann et al. (2015).

2.2.2 Matrix exponential transformation

For the covariance matrix, the matrix exponential transformation (MET) was intro-

duced together with the matrix logarithm function by Chiu et al. (1996). In mathemat-

ics, both operators are frequently used for solving first-order differential systems, see

e.g. Bellman (1997).

For any real, symmetric matrix At, the matrix exponential transformation performs

a power series expansion, resulting in a real, positive (semi-)definite matrix, in our case

Yt,

Yt = Exp(At) =

∞∑
s=0

( 1

s!

)
As

t , (2.7)

with A0
t being the identity matrix of size N ×N , and As

t being the s-times the standard

matrix multiplication of At.
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In reverse, a real, symmetric matrix At can be obtained from Yt by the inverse of

the matrix exponential function, the matrix logarithm function, logm(·),

At =



a11,t a12,t · · · a1N,t

a12,t a22,t · · · a2N,t

...
...

. . .
...

a1N,t · · · · · · aNN,t


= logm(Yt). (2.8)

Again, a reasonable practical approach would be to model and forecast the elements aij,t,

i, j = 1, . . . , N and obtain valid covariance forecasts by equation 2.7. However, due to the

power series the expansion, the relationship between Yt and At is not straightforward to

interpret (see e.g. Asai et al. (2006)) and similar to the CD in section 2.2.1, covariances

and variances cannot be estimated separately. By applying models to At, therefore doing

the estimation and forecasting in the log-volatility space, the retransformed forecasts for

Yt+1, will be biased by Jensen’s inequality. The problem and possible solutions are

illustrated in section 2.2.4.

Nevertheless, the MET has several advantages, especially related to factor models

where a certain factor structure is analyzed by principal component methods. It can be

shown that under several conditions, as for example in our case symmetry and positive

semi-definiteness of Yt, applying the matrix logarithm function yielding At corresponds

to decomposing Yt into its eigenvalues and eigenvectors (see Chiu et al. (1996)). Hence,

the As
t can be obtained more easily via the eigenvectors than by matrix multiplication

as in equation 2.7. Further, as principal component analysis of the matrix Yt is also

based upon eigenvalue decomposition, restrictions on the structure of the covariance

matrix models can be directly implemented while constructing the As
t , see e.g. Chiu

et al. (1996); Bauer and Vorkink (2011).

2.2.3 HAR model

One of the most simple and yet successful univariate models for volatility forecasting

is the Heterogeneous Autoregressive (HAR) model of Corsi (2009). It is inspired by the



Chapter 2. Pitfalls of the Cholesky decomposition 21

Heterogeneous Market Hypothesis (Müller et al., 1993), which amongst other things

assumes that market participants act on different time horizons (dealing frequencies)

due to their individual preferences, and therefore create volatility specifically on these

horizons. Since in practice, volatility over longer time intervals has stronger influence on

those over shorter time intervals than conversely (Corsi, 2009), the HAR models volatility

by an additive cascade of components of volatilities in an autoregressive framework..

This leads to the following model for the daily realized volatilities xt

xt = c+ β(d)x
(d)
t−1 + β(w)x

(w)
t−1 + β(m)x

(m)
t−1 + εt, εt

iid∼ (0, σ2), (2.9)

where x
(·)
t is the realized volatility over the corresponding periods of interest, one day

(1d), one week (1w) and one month (1m), which are defined as: : x
(d)
t = xt−1, x

(w)
t =

5−1
∑5

i=1 xt−i+1 and x
(m)
t = 22−1

∑22
i=1 xt−i+1.

The main advantages of the HAR are that it is easy to estimate within an OLS

framework, parameters are directly interpretable and it reproduces volatility character-

istics such as long-memory without a fractionally integration component. The latter is

especially interesting, as the long-memory property could also stem from multifractal

scaling2, which can be captured by an additive component model as the HAR, whereas

fractionally integrated models imply univariate scaling (Andersen and Bollerslev, 1996).

Under the HMH hypothesis, multifractal scaling possesses clear economic justification

which is directly interpretable in the HAR framework due to the simple parameter struc-

ture (Corsi, 2009).

Regarding forecasting, standard methods for a general ARMA framework can be

used to produce direct or iterated forecasts of the conditional volatility. In contrast to

the above conventional HAR model, which is directly applied on a time-series of realized

volatilities, we use the model on the time-series of the elements of the CD or the MET,

by replacing the components xt and x
(·)
t with the respective pij,t or aij,t from equations

2.4 and 2.8.

2The underlying process scales differently for various time horizons.
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2.2.4 Forecasting and bias correction

To obtain forecasts for the RCOV matrix Ŷt+1, the forecasts p̂ij,t or âij,t are generated

by the HAR model in section 2.2.3 and retransformed by equations 2.4 respectively 2.7.

This last transformation is nonlinear and induces a theoretical bias. For the CD it

is derived in Chiriac and Voev (2011) and can be expressed by the covariances of the

forecast errors u·,t+1 of the HAR model

E[ŷij,t+1 − yij,t+1] =

max{i,j}∑
`=1

E[u`i,t+1u`j,t+1]. (2.10)

However, since we estimate the models independently of each other, the expression

is not feasible as we cannot consistently estimate the covariance matrix of the forecast

errors. A heuristic approach to obtain unbiased predictions is suggested in Chiriac and

Voev (2011) and further studied in Halbleib and Voev (2011). In the original approach,

due to the larger distortion of volatilities, bias correction is only carried out on the

series of realized volatilities ŷii,t, i ∈ 1, . . . , N . However, as implied by equation 2.10,

all elements of Ŷt+1 will be biased. Hence, an adaption of the approach of Chiriac and

Voev (2011), that corrects volatility and covariance forecasts can be obtained by:

ŷ(corrected),ij,t+1 = ŷij,t+1 ·median

{
yij,t
ŷij,t

}
t=1,...,n

.

Note, that the window length n on which the median is estimated, controls for the

trade-off between the bias and the precision of the correction. Since we are interested

in the general relation between bias correction, we simply estimate the median in the

bias correction factor on a window length equal to our estimation window for the HAR

model in section 2.3.

In case of the MET, the analytical bias correction is more complicated but can be

derived if Ât and the estimated residuals ε̂t are both normally distributed, see Bauer

and Vorkink (2011) for a detailed discussion. However, since normality is empirically

often not satisfied, Bauer and Vorkink (2011) suggest a similar approach to Chiriac and

Voev (2011). Their method decomposes the forecasted matrix of realized covariances

Ŷt+1 into correlations and volatilities, bias correcting the latter ones only and leaving
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the correlations intact. For comparative reasons, we apply our method in equation 2.2.4

which works well in our empirical application for both, CD and MET, see section 2.3.

Note that bias correcting not only the volatilities but also the covariances bears the risk

of the corrected RCOV matrix forecast no longer being positive semi-definite. However,

in our application, this is never the case.

2.2.5 Loss functions and the MCS

According to Patton and Sheppard (2009), two issues are of major importance when

comparing forecasts of the covariance matrix. First, tests have to be robust to noise in

the volatility proxy and second, they should only require minimal assumptions on the

distribution of the returns. Therefore, we rely on the method of Hansen, Lunde, and

Nason (2011) using a model confidence set (MCS) approach based upon different loss

functions to evaluate the multivariate volatility forecasts. This framework fulfills the

requirements of Patton and Sheppard (2009) and has the advantage that we can conve-

niently compare forecasts from many models without using a benchmark. Furthermore,

the MCS does not necessarily select a single best model but it allows for the possibil-

ity of equality of the models forecasting ability. Hence, a model is only removed from

the MCS if it is significantly inferior to other models, making the MCS more robust in

comparing volatility forecasts.

For our approach, we choose two loss functions that satisfy the conditions of Hansen

and Lunde (2006) for producing a consistent ranking in the multivariate case. Consis-

tency in the context of loss functions means, that the true ranking of the covariance

models is preserved, regardless if the true conditional covariance or an unbiased covari-

ance proxy is used (Hansen and Lunde, 2006). For the comparison of forecasts of the

whole covariance matrix, Laurent et al. (2013) present two families of loss functions that

yield a consistent ordering. The first family, called p-norm loss functions can be written

as

L
(
Yt,Ŷt

)
p

=

 N∑
i,j=1

|yij,t − ŷij,t|p
1/p

, (2.11)

where Ŷt is the forecast from our model for the actual RCOV matrix Yt, which we use

as a proxy for the unobservable covariance matrix Σt. The respective elements of the
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matrices are denoted by yij,t and ŷij,t. From this class, we consider the commonly used

multivariate equivalent of the mean squared error (MSE) loss: L
(
Yt,Ŷt

)2
2
.

The second family, called eigenvalue loss functions is based upon the square root of

the largest eigenvalue of the matrix (Yt − Ŷt)
2. We will consider a special case of this

family, the so called James-Stein loss (James and Stein, 1961), which is usually referred

to as the Multivariate Quasi Likelihood (QLIKE) loss function:

L
(
Yt,Ŷt

)
= tr(ŶtYt)− ln

∣∣∣ŶtYt

∣∣∣−N, (2.12)

where N is the number of assets.

While both, the MSE and the QLIKE loss function determine the optimal forecasts

based on conditional expectation, Clements et al. (2009) point out, that compared to the

MSE, the QLIKE has greater power in distinguishing between volatility forecasts based

on the MCS framework. As pointed out in Laurent et al. (2013), the QLIKE penalizes

underpredictions more heavily than overpredictions. West et al. (1993) show, that this is

also relevant from an investor’s point of view, as an underestimation of variances leads to

lower expected utility than an equal amount of overestimation. Hence, for a risk averse

investor, punishing underpredictions more heavily seems to be rationale when evaluating

forecasting accuracy.

For the MCS approach, we start with the full set of candidate models M0 =

{1, . . . ,m0}. For all models, the loss differential between each model is computed based

upon one of our loss functions Lk, k = 1 (MSE), 2 (QLIKE), so that for model i and j,

i,j = 1, . . . ,m0 and every time point t = 1, . . . ,T we get:

dij,kt = Lk

(
Yit,Ŷit

)
− Lk

(
Yjt,Ŷjt

)
. (2.13)

At each step of the evaluation, the hypothesis

H0 : E[dij,kt] = 0, ∀i > j ∈M, (2.14)

is tested for a subset of models M ∈ M0, where M = M0 for the initial step. If the

H0 is rejected at a given significance level α, the worst performing model is removed
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from the set. To give an impression on the scale of rejection, for each loss function and

model, the respective α at which the model would be removed from the MCS can be

computed.

This process continues until a set of models remains that cannot be rejected. Similar

to Hansen, Lunde, and Nason (2011), we use the range statistics to evaluate the H0,

which can be written as:

TR = max
i,j∈M

|tij,k| = max
i,j∈M

∣∣d̄ij,k∣∣√
v̂ar(d̄ij,k)

, (2.15)

where d̄ij,k = 1
T

∑T
t=1 dij,k and v̂ar(d̄ij,k) is obtained from a block-bootstrap procedure,

see Hansen, Lunde, and Nason (2011), which we implement with 10000 replications and

a block length varying from 20 to 50 to check the robustness of the results.

The worst performing model to be removed from the set M is selected as model i

with

i = arg max
i∈M

d̄i,k√
v̂ar(d̄i,k)

, (2.16)

where d̄i,k = 1
m−1

∑
j∈M d̄ij,k and m being the number of models in the actual set M.

2.3 Empirical study

2.3.1 Data and descriptive statistics

The dataset stems from the New York Stock Exchange (NYSE) Trade and Quota-

tions (TAQ) and corresponds to the one used in Chiriac and Voev (2011). It was obtained

from the Journal of Applied Econometrics Data Archive. The original data file consists

of all tick-by-tick bid and ask quotes on six stocks listed on the NYSE, American Stock

Exchange (AMEX) and the National Association of Security Dealers Automated Quo-

tation system (NASDAQ). The sample ranges from 9:30 EST until 16:00 EST over the

period January 1, 2000 to July 30, 2008 and consists of (2156 trading days). Included

individual stocks are American Express Inc. (AXP), Citigroup (C), General Electric

(GE), Home Depot Inc. (HD), International Business Machines (IBM) and JPMorgan

Chase&Co (JPM). The original tick-by-tick data has previously been transformed as
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follows. To obtain synchronized and regularly spaced observations, the previous-tick

interpolation method of Dacorogna (2001) is used.

Then, log-midquotes are constructed from the bid and ask quotes by geometric av-

eraging. M = 78 equally spaced 5-minute return vectors ri,t are computed from the

log-midquotes. Daily open-to-close returns are computed as the difference in the log-

midquote at the end and the beginning of each day.

For each daily period t = 1, . . . ,2156, the series of daily RCOV matrices is constructed

as in section 2.2 by summing up the squared 5-minute return vectors:

Yt =

M∑
i=1

ri,tr
′
i,t. (2.17)

This approach is further refined by a subsampling procedure to make the RCOV esti-

mates more robust to microstructure noise and non-synchronicity (see Zhang (2011)).

From the original data, 30 regularly ∆-spaced subgrids are constructed with ∆ = 300

seconds, starting at seconds 1,11,21, . . . ,291. For each subgrid, the log-midquotes are

constructed and the RCOV matrix is obtained on each subgrid according to equation

2.17. Then, the RCOV matrices are averaged over the subgrids. To avoid noise by

measuring overnight volatilities, all computations are applied to open-to-close data. For

the descriptive statistics and estimation purposes, all daily and intradaily returns are

scaled by 100, so that the values refer to percentage returns.

At each point of time t, we apply either the CD or the MET on the obtained RCOV

matrix. Additionally, we take the logarithm of the elements on the diagonal, to ensure

positivity of the elements of the decomposition when applying the time-series models.

Since the ordering of the assets in the original RCOV matrix is relevant for the CD, we

refer to the basic alphabetic ordering of the individual stocks in section 2.3.1 for the

initial descriptive analysis of the elements of the CD.

In general, the elements of both decompositions exhibit the same characteristics as

the realized covariances, such as volatility clustering, right skewness, excess kurtosis and

high levels of autocorrelation, see tables A.1 and A.2. All series seem to be stationarity

based on the Augmented Dickey-Fuller test.
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2.3.2 Optimal odering

If the ordering might indeed be crucial for the forecast performance, the question

arises if there is any possibility to determine the optimal position of an asset in the

original return vector before evaluating all permutations. According to equation 2.6, the

forecasts in column j, {ŷij}i=1,...,j only depend on the forecasted entries of the Cholesky

matrix P up to column 1, . . . , j, {p̂`i}i≤j . Hence, if the asset is for example moved from

position i = 1 in the return vector to a position i > 1 the number of forecasted Cholesky

elements that enter calculation of the covolatility forecast increases with every increase

in the position. Intuitively, assets that are more correlated with each other should be

placed after assets that are less correlated so that their dependence is picked up by the

Cholesky elements. Similarly, in the estimation of structural VARs, variables are often

ordered by their degree of exogeneity from most to least exogenuous, see e.g. Bernanke

and Blinder (1992); Keating (1996). However, the CD is only useful for identifying the

structural relationship under rather restrictive conditions, e.g. in case of VAR modeling

if the underlying relationship is recursive. Based on our data set of equity returns we

cannot impose a structural relationship by means of economic theory. Nevertheless, we

analyze the correlation structure of the realized variances of the six assets to identify

possible linkages that might be helpful in ordering the assets. The full-sample correlation

matrix of the time-series of realized variances for the natural alphabetic ordering of the

assets are given in figure 2.1.

On the left side the ordering of the elements in the return vector matrix is used,

while on the right side the correlations are ordered based on the angular positions of

the eigenvectors of the correlation matrix. This method is sometimes called “correlation

ordering” (Friendly and Kwan, 2003) and places similar variables contiguously. The

correlation matrix on the right shows which assets should be grouped together. Note that

the correlations are not sorted by size, eg. from highest to lowest average correlation.

We now proceed to analyze two questions. First, do different orderings indeed yield

significantly different forecasts? Second, does ordering the variables in the returns vector

similar to the rule of correlation ordering produce superior forecasts?
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Figure 2.1: Correlation matrix of the original time-series of realized variances. On
the left, correlations are ordered by the alphabetic order in the return vector. On the
right, correlations are ordered based on the angular positions of the eigenvectors of the
correlation matrix. The estimate of the corresponding correlation coefficient is given
inside the square.

2.3.3 Modeling and forecasting procedure

For each decomposition and permutation of the assets, we apply the HAR model from

section 2.2.3 on each time-series of CD or MET elements. Since the MET is independent

of the chosen permutation, we can use the resulting model as a benchmark model. For

the CD, we obtain 21 different models for each one of the 720 permutations. We retain

the last 200 observations of the dataset for out-of-sample one-step ahead forecasting and

estimate the models based on the a moving window of 1956 observations. Forecasts of

the RCOV matrix are then generated according to section 2.2.4.

First, for each permutation we evaluate the forecasts by means of the multivariate

loss functions from section 2.2.5. For the CD and both loss functions, we take the average

loss over time for each permutation to obtain a distribution of losses, see figure 2.2. The

corresponding descriptive statistics are given in the upper half of table A.3.

The loss density of the MSE is multimodal and left skewed with an average loss

of 271.71. In comparison, the average loss of the MET is 334.21 which is 16% larger

than the maximum MSE loss of the CD. The difference between largest and smallest

average loss is 8%. The QLIKE loss density is more symmetric and only slightly right

skewed, with an average loss of 0.60, compared to an average loss of 0.71 for the MET.

Again, the MET QLIKE loss is 16% larger than the largest QLIKE loss of the CD. The
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Figure 2.2: Average (over time) MSE (left) and QLIKE (right) density for all permu-
tations. Red line is the mean value.

worst best ex-ante ex-ante vs best

MSE “3 2 1 6 4 5” “5 4 3 1 6 2” “5 4 3 1 2 6” 1.002
QLIKE “3 1 5 4 2 6” “6 2 3 4 5 1” “5 4 3 1 2 6” 1.506

Table 2.1: Orderings with the highest and lowest average losses (without bias cor-
rection) based on the respective loss function. Ex-ante gives the order proposed by
the method of correlation ordering. Additionally the average loss of the ex-ante model
relative to the best model is listed.

standard deviation of the QLIKE losses is significantly smaller (p < 0.01) than for the

MSE loss, based on the Brown-Forsythe test. Still, the difference between largest and

smallest average loss is roughly 5%. Ranking the models from best to worst (smallest to

largest average losses over time), we find that the ordering is not consistent across the

loss functions. Evaluating the model performance over time instead of taking averages,

the most frequent best model is identical in 4 of the 200 out-of-sample forecasts for both

loss functions. The most frequent worst model on the other hand differs between both

loss function. For the MSE, one certain ordering is the worst model in 12 out of the 200

forecasts. In case of the QLIKE, the most frequent worst ordering has the highest loss

in 3 out of 200 times.

To come back to the question if the method of correlation ordering in section 2.3.2

is helpful in determining the best model ex-ante, we list the worst and best orderings

based on the average loss for both loss function in table 2.1. To simplify the notation, we

rename the assets by their position in the alphabetic return vector, namely AXP= 1,

C= 2, GE= 3, HD= 4, IBM= 5 and JPM= 6.

Surprisingly, the best model under the MSE loss function nearly coincides with the

model suggested by the method of correlation ordering, with only asset 2 and 6 switching
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positions. For the QLIKE loss, only asset 3 is on the same position in the best model

compared to the ex-ante ordering. Regarding the average loss size, the ex-ante models

losses are only 0.2% larger than the best model based on the MSE loss, whereas for the

QLIKE loss function the ex-ante losses are 50% larger. We statistically evaluate these

differences in section 2.3.4. However, based on the mixed results from both loss functions

we cannot unambiguously establish a link between correlation ordering and forecasting

results. Additionally, as pointed out before, the model ranking is highly time-varying.

Evaluating the model at every point of time reveals that the ex-ante model has the

lowest loss at exactly one point of time for both loss functions. Again, it seems that

neither the ex-ante nor any other ordering is consistently delivering the best forecasts.
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Figure 2.3: Average (over time) MSE (left) and QLIKE (right) density for all permu-
tations with bias correction. Red line is the mean value.

In case of the bias correction, the average loss densities for all permutations are

significantly different (p < 0.01) from the ones without bias correction based on the

Kolmogorov-Smirnov (KS) test. In general, the bias correction does decrease the average

loss, see figure 2.3. Descriptive statistics are given in the lower half of table A.3. Most

notable, the standard deviation does increase for the MSE, while in case of the QLIKE

the distribution becomes more right skewed. As a result, the difference between largest

and smallest average loss increases for both loss functions to 17% (MSE), respectively

18% (QLIKE) percent. The bias corrected average MET loss is 112.64 for the MSE and

0.18 for the QLIKE. Hence, the MET heavily benefits from the bias correction, making

it a possible alternative to the CD to circumvent the ordering problem.

For each permutation, we test the distribution of losses over time of the bias corrected

vs the non-bias corrected forecasts using the KS test. In all cases, the loss distributions

are significantly different at a level p < 0.01 and the mean loss (over time) of the bias
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corrected distribution is smaller than the one of the non-bias corrected. For the MSE,

the worst model with bias correction is also the same as the worst model without bias

correction. Otherwise, we find that the best and worst model are not the same as in

the case of no bias correction. As before, the ranking of the average losses from best to

worst is not consistent across the loss functions. Comparing the losses over time reveals

a similar behavior as before, where the most frequent best and worst model varies across

time.

2.3.4 Statistically testing forecast performance

To evaluate the significance of the loss differences across time, we test the losses of the

permutations using the MCS procedure introduced in section 2.2.5. We are interested

in several questions. First of all, are the forecasts from the models which are best and

worst based upon the average loss significantly different from each other? Second, how

well does the bias adjusted MET model perform compared to the best ordering and

third, is the ex-ante ordering significantly worse than the best model?

Starting with the first questions, we find that for both loss functions the worst

model can be rejected from the MCS at a α = 1% level of significance. In case of bias

correction, α further decreases. As mentioned in the literature the QLIKE is also more

discerning, leading to slightly lower levels of significance in both cases if compared to

the MSE. Comparing the non-corrected vs the bias corrected forecasts, we find that the

bias correction leads to significantly better forecasts for both loss functions (α = 1%).

Overall, since the differences between the forecasts are indeed statistically significant,

choosing the “wrong” ordering may lead to poor forecast performance, no matter which

loss function is chosen.

Next, we only consider the case of bias correction. As we have seen, the MET average

losses where well within the range of the average CD losses. If the MET losses are not

significantly different from the best CD model, the MET with bias correction could be a

valid alternative to avoid the ordering problem of the CD. The MET forecasts can only

be rejected from the MCS at a α = 50% significance level for the MSE and a α = 69%

significance level for the QLIKE. Hence, the forecasts from the best CD model and the

MET are not significantly different from each other at a reasonable level of confidence.
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Comparing the losses of the ex-ante ordering with the best model under the respective

loss function, we find that for the QLIKE the losses are significantly different (α < 1%),

while for the MSE the ex-ante model can not be rejected from the MCS (α = 9%). Hence,

initially deciding upon the ordering does not yield a clear recommendation. The danger

of arbitrarily choosing an ordering that might lead to poor forecasts and hence model

choices cannot be assessed ex-ante based on the methodology of correlation ordering.

2.4 Conclusion

In this paper, we empirically analyzed several issues arising from using the Cholesky

decomposition (CD) for forecasting the realized covariance (RCOV) matrix. We studied

the impact of the order of the variables in the covariance matrix on volatility forecast-

ing, finding that different orderings do indeed lead to significantly different forecasts

based on a MCS approach. Initially deciding upon the ordering based on the angular

positions of the eigenvectors of the correlation matrix does not lead to unambiguously

better results in forecasting. Further, we find that the best and worst models are not

consistent over time so that a clear recommendation to which order to use is not at

hand, even if forecasts are performed stepwise. A frequently used method of bias correc-

tion improves forecasting accuracy, but on the other hand widens the difference between

best and worst model so that the ordering problem worsens. On the other hand, bias

corrected forecasts from another decomposition, the matrix exponential transformation

(MET) show equal predictive ability and do not suffer from the ordering problem. Thus,

for empirical application two conclusions can be drawn. If a reasonable order can be

imposed on the elements of the covariance matrix or if the connection between the ele-

ments of the decomposed covariance matrix are of interest the CD is a rational choice.

Otherwise, the application of the MET together with a bias correction is advised, be it

for comparative reasons or simply to avoid the time consuming process of estimating all

possible permutations of the CD.
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min max mean sd skew kurt pval ADF acf l=1 acf l=2

p11,t -1.31 2.03 0.30 0.58 0.10 2.23 0.01 0.88 0.86
p12,t -0.21 7.63 0.71 0.66 2.83 16.71 0.01 0.76 0.70
p22,t -1.13 2.16 0.20 0.53 0.29 2.33 0.01 0.89 0.87
p13,t -0.50 3.99 0.52 0.43 2.17 11.41 0.01 0.65 0.59
p23,t -0.28 2.68 0.37 0.30 1.99 9.69 0.01 0.61 0.57
p33,t -1.14 1.73 0.04 0.48 0.31 2.40 0.01 0.86 0.82
p14,t -0.7 3.71 0.55 0.46 2.01 9.44 0.01 0.64 0.59
p24,t -0.38 2.40 0.36 0.30 1.77 8.79 0.01 0.46 0.46
p34,t -0.53 2.76 0.28 0.26 1.69 10.30 0.01 0.50 0.45
p44,t -0.97 1.75 0.29 0.42 0.36 2.74 0.01 0.81 0.77
p15,t -0.43 3.09 0.45 0.35 1.96 9.95 0.01 0.53 0.49
p25,t -1.22 4.68 0.31 0.27 3.42 39.36 0.01 0.47 0.39
p35,t -0.43 2.13 0.26 0.22 1.82 10.20 0.01 0.44 0.42
p45,t -0.48 1.71 0.15 0.17 1.36 10.53 0.01 0.18 0.14
p55,t -1.11 1.56 0.00 0.46 0.58 2.88 0.01 0.86 0.82
p16,t -0.29 8.16 0.72 0.66 2.88 18.55 0.01 0.73 0.65
p26,t -0.19 5.77 0.58 0.43 2.26 15.50 0.01 0.64 0.60
p36,t -0.36 2.22 0.22 0.22 1.86 10.20 0.01 0.32 0.30
p46,t -0.91 1.19 0.14 0.18 0.63 6.63 0.01 0.17 0.11
p56,t -0.87 1.37 0.14 0.19 1.25 8.48 0.01 0.18 0.15
p66,t -1.21 2.20 0.14 0.52 0.30 2.39 0.01 0.89 0.86

Table A.1: Descriptive statistics for the time-series of the elements of the (alphabetic)
Cholesky decomposition. Diagonal (log) time-series are written in bold. Additionally,
p-value of the ADF test and magnitude of the first and second autocorrelation coeffi-
cient.
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min max mean sd skew kurt pval ADF acf l=1 acf l=2

a11,t -2.72 3.63 0.32 1.13 0.13 2.19 0.01 0.88 0.86
a12,t -0.35 0.94 0.30 0.16 0.26 3.32 0.01 0.44 0.43
a22,t -2.28 4.35 0.30 1.07 0.33 2.36 0.01 0.90 0.87
a13,t -0.24 0.67 0.24 0.14 -0.08 3.06 0.01 0.28 0.26
a23,t -0.24 0.71 0.27 0.14 -0.02 2.90 0.01 0.38 0.29
a33,t -2.36 3.52 0.09 0.96 0.30 2.43 0.01 0.85 0.82
a14,t -0.34 0.73 0.20 0.13 0.04 3.08 0.01 0.24 0.20
a24,t -0.25 0.66 0.22 0.13 0.07 3.00 0.01 0.25 0.27
a34,t -0.27 0.66 0.22 0.13 -0.09 3.13 0.01 0.30 0.28
a44,t -2.01 3.63 0.65 0.84 0.35 2.77 0.01 0.81 0.76
a15,t -0.34 0.62 0.21 0.13 -0.18 3.27 0.01 0.22 0.18
a25,t -0.28 0.80 0.23 0.13 -0.04 3.17 0.01 0.29 0.23
a35,t -0.19 0.67 0.26 0.14 -0.06 2.79 0.01 0.31 0.29
a45,t -0.31 0.65 0.21 0.13 -0.08 3.18 0.01 0.21 0.17
a55,t -2.21 3.51 0.10 0.91 0.57 2.93 0.01 0.85 0.81
a16,t -0.16 0.99 0.29 0.16 0.55 3.70 0.01 0.45 0.39
a26,t -0.11 1.13 0.42 0.18 0.50 3.50 0.01 0.53 0.51
a36,t -0.32 0.63 0.23 0.13 0.02 2.97 0.01 0.21 0.20
a46,t -0.32 0.75 0.20 0.13 0.05 3.25 0.01 0.24 0.20
a56,t -0.33 0.62 0.21 0.13 0.01 3.07 0.01 0.20 0.17
a66,t -2.35 4.85 0.47 1.07 0.25 2.42 0.01 0.89 0.85

Table A.2: Descriptive statistics for time-series of the elements of the matrix exponen-
tial transformation. Diagonal (log) elements are written in bold. Additionally, p-value
of the ADF test and magnitude of the first and second autocorrelation coefficient.
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Chapter 5

Summary and outlook

The previous chapters of this dissertation outlined several topics in predicting uni-

and multivariate stock market volatility. Based on the improved availability of high-

frequency data and the econometric methods to estimate the volatility process, new

possibilities to study predictability have gained attention in the recent years. Especially

in the multivariate context, where forecasts of the covariance matrix are used in portfolio

and risk management, the requirements of the forecasted covariance matrix to be sym-

metric and positive semi-definite pose a problem. A prominent method of guaranteeing

both properties, the Cholesky decomposition (CD), was studied in chapter 2. Beside

analyzing the main pitfall, namely the influence of the ordering of the variables on the

forecasts, a possible solution for empirical application was suggested. In combination

with a bias correction, the matrix exponential transformation (MET) provided a suitable

alternative to the CD. Being one of the first studies of its kind, several extensions for

further research are still to be assessed. First, we only studied two out of several possible

decompositions. For example, it is possible to model realized covariances (RCOV) in

the popular dynamic conditional correlation (DCC) framework of Engle (2002). Similar

to the MET, a DCC type decomposition is invariant to the order of the variables. Addi-

tionally, it does allow to separate the dynamics of variances and correlations, allowing for

more flexible model specifications, see Halbleib and Voev (2014). Due to computational

efforts to evaluate the forecasts of all possible permutations of the assets, we only studied

the heterogeneous autoregressive (HAR) model of Corsi (2009) in this setting. While the

ordering problem as well as the bias are independent of the model, some approaches are

explicitly linked to a certain decomposition, e.g. the vector autoregressive fractionally

integrated moving average (VARFIMA) of Chiriac and Voev (2011) is usually combined

with the CD. In this case simply changing the decomposition to the MET may not be

applicable, as one of the main advantages of using the CD is the traceability of impulse

responses. Further research is necessary to solve the ordering problem in cases where

a change of the decomposition is either not possible or rational. Additionally, we have
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only analyzed one very simple data driven case of bias correction, which worked well for

our data set and model choice. However, a similar method applied in Halbleib and Voev

(2011) did not lead to improved volatility forecasts for their VARFIMA model. Hence, a

more detailed analysis or sophisticated methods, e.g. simulation based bias corrections

as proposed in Weigand (2014), might be a valuable extension of our study.

A new approach to modeling and forecasting the RCOV matrix based on the CD

was introduced in chapter 3. We proposed a model that makes use of vine copulas to

account for often neglected nonlinearities and asymmetries in conventional models for

multivariate volatility. We showed that using a vine copula structure can lead to sig-

nificant improvements in forecasting, regarding statistical loss, mean-variance efficient

portfolios and Value-at-Risk (VaR). Still, several areas of improvement of the general

framework seem fruitful for further research. First, our initial model requires the esti-

mation of a large number of parameters. Therefore, we applied a successful strategy to

decrease the number of parameters by restricting the choice of copulas without severely

impairing the models performance. For larger dimensions, the model could be extended

by truncation approaches as discussed in Brechmann et al. (2012) to further simplify

the estimation procedure. Second, while the CD is useful for our model as it explic-

itly links the time series of realized volatilities and covariances, the ordering problem

remains an issue. While in sample our analysis revealed that differences based in the

ordering are relatively small, this might not be the case for the out-of-sample forecasts,

as pointed out in chapter 2. An alternative approach of applying vine copulas for multi-

variate volatility modeling could be the use of partial correlations. For Gaussian vines,

there exists a one to one relationship between the partial correlation, which is identified

by the vine, and the correlation parameters of the joint distribution, see Baba et al.

(2004); Kurowicka and Cooke (2006). By modeling realized volatilities and the partial

correlation elements of a Gaussian regular vine, a joint model for the RCOV matrix

can be derived, which guarantees positive semi-definiteness and symmetry without the

drawbacks and restrictions of an initial decomposition. To avoid parameter restrictions

when modeling the partial correlations, a Fisher z-transformation (Fisher, 1915) can be

applied on the time series of partial correlations. The resulting values on the real line can

again be modeled by conventional time series models, similar to our previous approach.

A third extension for the model could be to allow for time-varying effects and jumps.

Several studies (amongst others Patton (2004); Cappiello et al. (2006)) argue, that the

dependence structure between assets is rather time-varying than constant, e.g. to reflect

turmoil periods. Based on a dynamic framework with locally constant parameters, a

more flexible modeling procedure is possible, see e.g. Okhrin et al. (2013). The partial

correlation approach on the other hand could be used to disentangle jump and contin-

uous variation similar to Audrino and Hu (2011), as it can directly be applied on both
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components. For the Cholesky based model, this is not possible due to the fact that the

time series of Cholesky elements is modeled instead of the original realized volatilities.

Chapter 4 approached univariate volatility from a different angle by using Google

search volume as a measure of investor attention to the stock market in the frame-

work of empirical similarity (ES) by Gilboa et al. (2006). We augmented the model of

Lieberman (2012) based on the main assumption that increased search volume leads to

higher participation in the stock market and subsequently rising volatility. While our

model showed superior predictive ability compared to several other volatility models,

we also highlighted that using Google search volume as an additional linear regressor

in standard time series models does not accurately reflect the dynamics of the data.

Based on our approach and results, a number of extensions for further research come to

mind. First of all, the model itself can be extended. Up to now, the level of investor

attention is compared to the contemporaneous level of volatility to perform forecasts

for the subsequent period. However, investors might cause volatility not exclusively on

this frequency, but also on longer horizons. This intuition is consistent with the fractal

market hypothesis of Müller et al. (1997) and one of the basic assumptions of the HAR

model of Corsi (2009). Hence, extending the model by components regarding different

horizons similar to Golosnoy et al. (2014) might give insights in the low frequent trading

patterns of investors and further improve predictability. Second, for simplicity we have

only analyzed the impact of Google search volume in the US on the volatility of the Dow

Jones. Obviously, since investors are not limited to the domestic market and investing

abroad is widely suggested by the theory of diversification, cross country effects of in-

vestor attention on volatility seem plausible. Similar to the work of Dimpfl and Jung

(2012), a structural multivariate model based on the concept of ES and Google search

volume could be estimated equation wise and compared to the conventionally used vec-

tor autoregressive (VAR) framework. Last but not least, the model can be applied to a

variety of other data sets. Similar to Google search volume, other measure for investor

attention, such as household survey data (D. Li and G. Li, 2014), internet message post-

ings (S.-H. Kim and D. Kim, 2014) or Facebook users sentiment data (Siganos et al.,

2014) could be analyzed.

As a conclusion, volatility seems likely to remain a worthwhile and promising field of

research. Including the behavior of investors directly into the modeling process creates

challenges and new opportunities at a time, where the importance of alternative data

sources is slowly recognized. For modeling itself, non normality of the data and devi-

ations from standard approaches can not be disregarded. Meanwhile, basic questions

such as the ordering problem in multivariate volatility models still deserve attention.
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