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Abstract

We present an approximate analytical expression for thapescate of time-dependent
driven stochastic processes with an absorbing boundatyasithe driven leaky integrate-

and-fire model for neural spiking. The novel approximatisrbased on a discrete state
Markovian modeling of the full long-time dynamics with tirdependent rates. It is valid

in a wide parameter regime beyond the restraining limits @fkvdriving (linear response)

and/or weak noise. The scheme is carefully tested and yégltkdlent agreement with three
different numerical methods based on the Langevin equatt@enFokker-Planck equation

and an integral equation.
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1 Introduction

Although the solution of the stationary and unbounded @inst/hlenbeck pro-
cess has been found long ago, it is not yet possible to givenalytaec exact ex-
pression that includes time-dependent driving and absgttoundaries [1,2]. Yet,
such processes with a linear restoring force an a perioawingrwhich termi-

nate at a prescribed threshold are widely used as modelsufoerus physical
effects. Examples range from rupturing experiments on oubds [3] where the
time-dependence is introduced as linear movement of therlibg boundary up
to totally different models like the leaky integrate-ane{iLIF) model for neuronal
spiking events [4,5,6,7,8]. The latter is the applicatianprimarily think of in this
paper. The stochastic variable stands for the cell somecsréd potentiak(¢) that is

changing due to a great many incoming signals from otherameuit is thus cus-
tomary to employ a diffusion approximation for the stociadiynamics ofz(t).
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The driven abstract LIF model assumes the non-stationamgéan dynamics (in
dimensionless coordinates)

i(t) = —x(t) + Acos(wt + ¢) + V2D £(t) (1)

where the process starts at tithe- 0 atz(0) = z, and fires when it reaches the
threshold voltager = a = 1. £(t) is white Gaussian noise. Here, a sinusoidal
stimulus has been chosen for the sake of convenience. Tibe/iiag analysis may
easily be extended to general periodic stimuli. The dynamithe process(t) is
equivalently described by a Fokker-Planck (FP) equatiothf® conditional proba-
bility density function (PDFp(z, t | 2o, 0) in a time-dependent quadratic potential,

Uz, t) = (az — Acos(wt + ¢))2/2, reading

0 0 0?

—p=1L = — (U D— 2
5 P = Lt = o (U'(z,t)p) + 522 P 2)
with the absorbing boundary and initial conditions
pla,t|xo,0) =0 foralltandzxg (3)
p(z,0]x0,0) = 0(x — o). (4)

After firing the process immediately restarts at the ingta@bus minimum of the
potential.

The set of egs. (1-4) defines our starting point for obtaitiegfiring statistics of
this driven neuron model. Our main objective is to develo@ecurate analytical
approximation that avoids certain restrictive assumjgtioinprior attempts. Those,
in fact, all involve the use of either of the following linmity approximation schemes
such as the limit of linear response theory (i.e. a weak stimd < 1) [7,9]
or the limit of asymptotically weak noise [10,11,12,13,1@ur scheme detailed
below yields novel analytic and tractable expressions béytbe linear response
and weak noise limit; as will be demonstrated, this noveesoh indeed provides
analytical formulae that compare very favorably with psecnumerical results of
the full dynamics in egs. (1, 2—4). The arguments given feragreement of the
first-passage time distribution also hold for the residetimoe [15] which is not
further considered here.

2 Reduction to a discrete model

The periodicity of the external driving with the periéd= 27 /w allows one to rep-
resent the time-dependent solutief, ¢) of the Fokker Planck equation in terms
of Floquet eigenfunctions and eigenvalues of the FokkanéX operatory;(x, t)



andy;, respectively, [10,16]

_%Uz('rat) +L(t)UZ(x7t) = ,uZ'Uz(x7t)7 (5)
where the eigenfunctions are periodic in time, integrable from —oo to a, and
fulfill the absorbing boundary condition at= a

vi(a,t) = 0. (6)

The time-dependent PDF can be written as a weighted sum dfltioiet eigen-
functions

p($, t) = Z Ci Ui (xv t) eXp(:uit) (7)

where the coefficients are determined by the initial PDF. Note that because of the
absorbing boundary condition at= « the total probability is not conserved and
therefore all Floquet eigenvalues have a non-vanishingthegreal part.

The first main assumption that we impose concerns the valdleeopotential at
the boundary: The minimum of the potential must always bglonthe “allowed”
region left of the threshold, and, moreover, the poteniiétnce between thresh-
old and minimum, denoted XU (¢), must always be larger than at least a fBw
i.e. AU(t)/D > 4. This assumption implies an exponential time-scale sépara
between the average timg in which the threshold is reached from the minimum
of the potential compared to the timeof the deterministic relaxation towards the
potential minimum. In the dimensionless units used here- 1. For the Floquet
spectrum this implies the presence of a large gap betweefirsheigenvalue:,
which is of the same order asl /7, and the higher ones which are of the order
—1 or smaller. After a short initial time of the ordérall contributions from higher
Floquet eigenvalues can be neglected and only the first aneves:

p(SC, t) ~n (SC, t) eXp(:ult) (8)

In general, the Floquet eigenfunctions and the correspgreigenvalues are diffi-
cult to determine. A formal expansion in terms of the instiaBbus eigenfunctions
Wi (x,t) of L(t) fulfilling

L) (x,t) = A (t)Yn(x, 1) )
is always possible though not always helpful

The periodicity ofv;(z, t) andyy(z,t) implies that the coefficientd;,(¢) also are
periodic functions of time. Expansion (10), together wik Floguet equation (5),
yields a coupled set of ordinary differential equationgifier coefficientsl;; () [17]



: 0
di(t) — (AR(t) — ) di(t) = dil(t)<580k(t)7 ¢l(t)>a (11)
l
where o (z,t) denotes the instantaneous eigenfunction of the backwaedaep
tor L7 (¢) belonging to the eigenvalueg,(t)

The eigenfunctions,(x, t) andpy(z, t) constitute a bi-orthogonal set of functions
that always can be normalized such that

(@i(t), Yr(t)) = om. (13)

Here, the scalar producf, ¢) is defined as the integral over the real axis up to the
threshold: "

(f.0)= [ _da fla)g() (14)
With our second assumption we require that the driving feagyw is small com-
pared to the relaxation rate in the parabolic potential. éJrttlis condition, the
matrix elements0p(t)/0t, 1 (t)) that are proportional to the frequencyare
also small and may be neglected to lowest order in the equeafar the coeffi-

cientsd;(t) [17]. The resulting equations are uncoupled and readilyesbio yield
with the periodic boundary conditions

t
due(t) ~ duexp( [ dt \u(t) = jut), (15)

whereu, = %fOT A1 (t) dt follows from the periodicity ofd;;(¢). Together with
egs. (8) and (10) we obtain for the long-time behavior of tbéP

oz, 1) ~ exp ( /0 "t Al(t’)> i@, 1), (16)

Note, that the first Floquet eigenvalue has canceled. Thedbwstantaneous eigen-
functionsy (z,t) andy; (x, t) are related by

¢1(xvt) = gOl(:E,t)po(:E,t), (17)

where
po(z,t) o exp(—U(x,1)/D). (18)
For the corresponding eigenvalyg(t) we find from (9)

_ ffoo dx Y1 (xv t)L<t)901 (SC, t)pO(SC, t)
fgoo dx @%(ffat)PO(%t)

An explicit expression, valid for high potential differees; can be given after lin-
earization ofU abouta

e1(x,t) =1— exp((:p —a)U'(a, t)/D) (20)

A1 (t)

(19)



which gives for);(¢)

AU(t) 1—erf( AU(t)/D)

A(t) = — : 21
1(t) D 1—exp(—AU(t)/D) (21)
whereerf(z) is the error function.
The waiting-time probability [18] can be expressed as
a t
P(t) = /m dz o1 (z, ) plx, 1) = exp(/o at' M (t') - (22)

Therefore, the eigenvalug (¢) coincides with the negative of the time-dependent
escape rate(t).

With the expression (21) for the escape rate we can calctilatproperty of inter-
est, namely the PDF for the first-passage time (FPT) of thacithg "integrating”
state that covers the domaino < z(t) < a. The FPT-PDF is given by the nega-
tive rate of change of the waiting time probability, i.e.

g(t) = —%gt) = r(t) exp(—/(;t/f(t') dt') : (23)

The guantitative validity of these expressions for an ed¢ehparameter regime
will be checked next.

3 Numerical analysis

We implemented three different numerical methods to ohaith the FPT-PDF

and the rate in order to have a reliable basis for comparistntiae analytical ex-

pression (21). The first method performs explicit time-stepthe Langevin equa-
tion (1). We used an elaborate technique for the time-iatggn of the fluctuating

force {(t). For points away from the thresholdit is sufficient to take a normal
distributed random variable for the displacement dugt. Quite the contrary in

the vicinity of the absorbing boundary. Here, the integfal(0) rather behaves like
a Wiener process with absorbing boundary, as illustratédignl. The appropriate
transition distribution, is known analytically as the wetligd difference between
two normal distributions [1]

p(ZL‘H_l, t + 5t | Zi, t) = Nl(xi—i—la 5t | i, 0) — NQ(I‘H_l, 5t | i, 0)

24
= N1(IEZ‘+1, ot | L, 0)(1 - Pout($i+1, L, 5t)) (24)

The multiplication on the right-hand side stands for a lagisND that leads to a
correction step in the algorithm. First, a new positign; is proposed according



to the normal distribution density;. With the probability Poy(z;11, z;, 0t) the
trajectory has already crossed the boundary during this-8tapt from x; to z;,,
and, therefore, is to be ended. The explicit formsgvpfand N, give

N. 1
Pou(iv1, i, 0t) = ﬁ = exp(—D—ét(a — 1) (a — xl)> ) (25)
1

The same formula has been given by [19] but with a differeasoaing.

In order to get the correctly normalized FPT-PP#) we counted the number of
trajectories hitting the absorbing boundary within theeiagl ¢, ¢ + 6t). The FPT-
PDF is then estimated by this number divideddyand by the total number of
trajectories. The rate is given by

r(t) = g(t)/ P(1), (26)

T a
Fig. 1. The transition probabilities(z;11,t + ot | z;,t) (black line) andNy (z;41,t + 5t |
x;,t) (dashed line) from; for a single time-step, with and without the absorbing baumd
respectively. The vertical line indicates the boundary.
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Fig. 2. First-passage time densigyt) (upper) and rate:(¢) (lower plots) as functions
of time. Displayed are all three numerical methods we usedtdsting (solid lines)
and the approximation based on (21) (dashed lines). Thangaeas in the left plots,
AU(t)/D € [5,8] andw = 0.05, are chosen to yield a very good approximation of the
rate by (21). The right plots display extreme parametai$(¢)/D € [3,8] andw = 0.5,
where no good approximation of the rate can be expected.tmdases) = 0.



wherel — P(t) is estimated by the number of trajectories that have escapé¢ol
timet, divided by the total number of trajectories.

For the second numerical method we have solved the FP egu@jousing a
Chebychev collocation method to reduce the problem to aledugystem of or-
dinary differential equations [13,20]. This givEst) as the integral of(z, t) from
—oo to a. The FPT-PDF in the figures is then calculated according 1§23}, and
the rate again by (26).

The third method solves Ricciardi’s integral equation tog FPT-PDF and is de-
tailed in [21,22]. For employing his algorithm the proceassirbe transformed into
a stationary Ornstein-Uhlenbeck process with a moving rélrsg boundary

S(t)=a— cos(wt + ¢) + wsin(wt + @) — e | . (27)

A
1+ w?
All three methods provide practically identical resultsas be seen in Figs. 2 and
3. The results for the FPT-PDF and for the rate all collapse ame single line.
Differences between the numerical methods, e.g. fluctstio the histogram of
the Langevin equation method are visible only in the plotshef relative errors
(Fig. 3 middle and lower rows).

Figure 2 shows that the FPT-PDF is extremely well approxathdtty expression
(21) for the rates(¢). In the left plots we used quite a high barrier with quite slow
driving compared to the time-scate of the process. Good agreement is thus ex-
pected. In the right plots we show the situation with extrgraemeters. The lower
barrier heightAUp,n/ D goes down t& where a rate-description is unlikely to suf-
fice. Moreover, the driving is faster, = 0.5. The system cannot follow the driving
instantaneously, and we find a shift in the maximum of the PPF to later times.
Under these conditions it is impressing how good the novpt@pmation still
works.

A more delicate measure for the errors of the approximatierttee rate:(t) itself
and its relative deviation from the three numerically ctdted rates. Both can be
seen in Fig. 3. The upper row of plots shows the approximatioor of the rate
for the same two parameter sets as in Fig. 2. Especially antbemum the rate
is over-estimated. This leads to a faster decay of the FPH-®RDBich is scarcely
visible in Fig. 2. Also, the shift of the maxima (indicated ¥srtical lines) can be
observed. It is negligibly small fav = 0.05 but more pronounced fay = 0.5.

In the middle row of Fig. 3 a systematic error of the approxiorabecomes vis-
ible. The relative error with respect to the numerical rssbehaves roughly si-
nusoidally with a phase-shift of/2 relative to the driving and with an additional
constant offset. For the instantaneous rate expressignd1$e valid it is neces-
sary that the driving signal is sufficiently slow. If this aagption is violated then
a rate can still be defined if the barrier is sufficiently higut in addition to the



leading termd;(¢) in (10) the higher instantaneous eigenfunctions must bentak
into account. The coupling to the coefficients (¢) is induced by the matrix ele-
ments(¢y(t), 1i(t)), see eq. (11), containing a time derivative that introdumes
adiabatic corrections to the rate and, consequently, tettiestics of the FPT.

It is quite astonishing, that the huge relative error in igatrmiddle plot of Fig. 3
leads to such a good result in Fig. 2. The explanation for ithithat the FPT-
PDF (23) uses the time-integrated rate. Therefore, errergrgortant only where
the rate is large. A closer look on the plot shows that arobediaxima of the rate
the relative error is comparably small. Because the ermar$irgear in time around
the rate’s maxima they cancel out when integrated over tim(@3). The same is
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Fig. 3. Comparison of the numerical rates and the novel ajpiadion from eq. (21). The
respective parameters in the left/right plots are the sasnim &ig. 2. Upper plots: The
numerically determined rates are displayed as solid lihaegevin equation simulations
(black); Fokker-Planck equation (blue); Ricciardi’s imtal equation (green). The theoret-
ical approximations(t) from eq. (21) is displayed as the red dashed line. Middlesplot
Relative error of the approximation(t) with respect to each numerical ratg(t) (with
the same color coding as above). Lower plots: Errors of tlearical rates with respect to
each other. The thin vertical lines indicate the positioihe numerical rates’ maxima.
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Fig. 4. Relative error and relative time-shift of the raté)(2\s the basis of comparison we
used the rater|c obtained by solving Ricciardi's integral equation [21] meést > 7,
where it has become periodic. Upper plots: The error raddtvsr c evaluated at the max-
ima of kric. Shown are data fofAUnmax/D — AUmin/D) € (0.1,1,2,3,5), from top to
bottom with the colorgred greenblue cyan magenta, and the phase < (0,7/2,7)
with the symbolg x, O, +). In the left panel the driving is slow; = 0.05, in the right

it is fast,w = 0.5. Note that the relative error is of the same order of magsitiod slow
and for fast driving. A dependence on the phaseannot be observed. Lower plots: The
difference of the maxima’s position akc and rate (21) in units of the peridd, again for

w = 0.05 (left panel) andv = 0.5 (right panel). Color and symbol codings are the same as
above.
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Fig. 5. Relative error and relative time-shift of the maxiem a function ofv. For all
data pointsAUmin/D = 5. The color and symbol codings fakUnax/ D and ¢ are the
same as in Fig. 4. For fast driving the relative error stagisethding on the interval length
of AU(t)/D.



valid for the residence time whose PDF also contains integifahe rate [15,23].

Figure 4 shows this relative error eft) at the maxima of the numerically obtained
rate as a function of the barrier height. Again, two différérving frequencies are
given. In both cases the relative error has the same ordelaghitude, and thus
explains why both parameter sets in Fig. 2 yield good apprakons.

Finally, we would like to point the reader’s attention to timitations of the linear
response approximation. For linear response the paramagierd /D needs to be
small. In our validating example in Fig. 2 (left plots) it tkon the valuel/D =
1.5. Thus, our approximation scheme is valid beyond the linegponse limit.

The time-scale of the driving force is mainly restricted Ime trelaxation time-
scaler, and much less by the magnitude of the rate itself. There iseswiction
on the relative magnitudes afand7". Instead, bothv andx have to be sufficiently
small. Fig. 5 indicates that both the relative error and itihhe{shift of the maxima’s
positions are modest far < 0.1.

4 Conclusions

By reference to aiscreteMarkovian dynamics for the corresponding full space-
continuous stochastic process we succeeded in obtainiagatical approxima-
tion for the time-dependent escape rate which can be usecafoulating first-
passage time statistics. This result is valid beyond thieaiesng limits of linear
response or asymptotically weak noise and of adiabatissdly driving.

We checked our findings using simulations of the Langeviragqn (1) and nu-
merical solutions of the equivalent FP equation in (2) anthefintegral equation
in [21]. We found an impressive agreement for the first-pgessene density and a
good match for the rate which is the more delicate propertgdonparison.

Finally, we note that our method is not restricted to a pecidéorcing but applies
also to arbitrary drive functions. However, in the oscdlgtcase some of the ap-
proximation errors cancel out. This leads to useful resultsxtreme parameter
regimes where agreement cannot be expegyedori.

This work has been supported by the Deutsche Forschungsgsahaft via project
HA1517/13-4 and SFB-486, projects A10 and B13.
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