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Abstract 

The relation between mean first passage times T and transition rates F in noisy dynamical 
systems with metastahle states is investigated. It is shown that the inverse mean first passage 
time to the separatrix of the noiseless system may deviate from twice the rate not only because 
in general the deterministic separatrix is not the locus in the state space from which a noisy 
trajectory goes to either side with equal probability. A further cause of a deviation from the 
often assumed relation FT = 1/2 between rates and mean first passage times is given if the 
noisy dynamics is discontinuous, i.e. shows jumps with finite probability. Then the value of 
the splitting probability at the separatrix does not fix the value of F T  since the system need 
not visit the separatrix during a transition from one to the other side. Most important, for 
discontinuous processes the deviation from the FT = ½ rule survives even in the weak noise 
limit. A mathematical relation for the product of the rate and the mean first passage time is 
proposed for Markovian processes and numerically confirmed for a particular one-dimensional 
noisy map. 

                                             
                                                                                          
                       

I. Introduction 

The noise-induced escape from a deterministically stable state is a problem encoun- 
tered in many different fields of natural sciences [ 1-3].  In many cases of practical 
interest, the strength of the noise is sufficiently small such that a separation of time 
scales applies, i.e., the typical escape time is much larger than any other characteristic 
time scale of the problem. The rare escape events then happen randomly with an expo- 
nential probability distribution in time. Thus, a meaningful rate exists and completely 
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characterizes the statistics of the escapes. Various analytic and numeric methods to de- 
termine escape rates have been developed, most notably Kramers' flux over population 
method and the reactive flux method, see [1] for a review. All of them require the 
knowledge of  the (quasi-) invariant density inside the deterministic basin of attraction 
under study. While in equilibrium systems one can utilize the Boltzmann distribution, 
the determination of this density becomes a highly non-trivial task for systems far from 
thermal equilibrium, for instance in the notorious colored noise problem [4]. 

Instead of characterizing the escape process by a rate one may also invoke mean first 
passage time (MFPT) concepts [1]. In this case, the average time which is needed to 
reach a prescribed boundary around the deterministically stable state from a given seed 
inside this boundary is determined. If the boundary is chosen sufficiently far outside 
the deterministic basin boundary (deterministic separatrix) and the seed sufficiently far 
inside, then the MFPT will coincide with the inverse rate for asymptotically weak 
noise. Alternatively, one may choose that particular boundary from which the system 
either falls back to the initial state or directly reaches the final state with the same 
probability, the so-called stochastic separatrix [5,6]. In the limit of vanishing noise it 
coincides with the deterministic separatrix. In systems which move continuously, e.g. 
diffusion processes in continuous time, the rate is given by the inverse of twice the 
MFPT across the stochastic separatrix [5-7] .  

In the present paper we demonstrate that this "one-half" rule no longer holds, but 
rather the rate exceeds the inverse of twice the MFPT across the stochastic separatrix 
for a large class of systems exhibiting discontinuous jumps during their time evolu- 
tion. For these systems the one-half rule is also not recovered in the asymptotic limit 
of weak noise. We propose a general relation that connects the MFPT to an almost 
arbitrarily chosen boundary with the escape rate of the considered state. In view of the 
considerable complications of the MFPT concept in the context of colored noise [4], 
we restrict ourselves to white noise. We further mention that though the determination 
of the (quasi-) invariant density is seemingly avoided in the above-mentioned methods 
to derive the rate via the MFPT across an appropriate boundary, the actual technical 
difficulties turn out to be comparable or even more subtle both for equilibrium and 
non-equilibrium systems. 

An example for the above-mentioned class of systems with a discontinuous-time 
evolution are processes driven by shot noise. Such processes are of importance for the 
description, e.g., of photomultipliers and other electronic devices [8,9]. The energy of 
a molecule in a dilute gas also changes discontinuously due to random collisions with 
other gas molecules. This represents an important, often rate-determining process in 
gas-phase reactions [10]. Yet another example, for which a discontinuous-time evolution 
arises automatically, are noisy dynamics in discrete time. For instance, for a periodically 
driven noisy system, the map that relates the actual state of the system with the state 
after one period of the driving force defines such a noisy dynamics in discrete time in a 
natural way [11,12]. In contrast to their continuous time counterparts, such systems are 
generically far from equilibrium already in one dimension [13]. Correspondingly, they 
share many characteristic features with higher-dimensional non-equilibrium systems in 
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continuous time but are often easily tractable both analytically and numerically. For 
noisy one-dimensional maps, rates have been determined by the same methods which 
are known for continuous-time processes. In particular, the flux over population method 
[12, 14-16], the reactive flux method [17], and the MFPT concept [18,19] have been 
successfully adapted. 

The paper is organized as follows. In Section 2 we formulate the above-mentioned 
general relation between the rate and the MFPT across an arbitrary boundary in terms 
of the so-called splitting probability and the density of exit points that applies for both 
continuous and discontinuous escape processes. For the sake of simplicity, we will ex- 
plicitly deal here only with one-dimensional overdamped systems, but generalizations 
are immediate. For the common thermally driven overdamped escape problem in con- 
tinuous time a proof of the proposed relation is given in Appendix A. In the remainder 
of the paper we focus on discrete time systems. Section 3 outlines the theoretical means 
which are needed to determine the various quantities entering the proposed relation for 
a one-dimensional Markov process in discrete time. In Section 4, for a particular noisy 
map numeric results are compared with approximate analytic expressions for these 
quantities. Finally, the proposed relation is numerically confirmed within an expected 
range of validity. The observed deviations are exponentially small in the Arrhenius 
factor entering the rate. Appendix B reviews the continuous-time limit of noisy maps. 
The paper closes with a summary in Section 5. 

2. A relation between the rate and the mean first passage time to a dividing point 

We consider an overdamped Brownian particle with coordinate x under the simulta- 
neous action of a deterministic force field with two stable and one unstable fixed points 
and of a weak fluctuating force that is white (independent of the past) and additive 
(independent of the actual time and position x). In continuous time t such a process 
is governed by a Langevin equation of the form 

~ ( t ) =  - U ' ( x ( t ) ) + ~ ( t ) ,  (2.1) 

where U(x) is a bistable potential with two wells (local minima) at x = a < 0 and 
x = b > 0 and a barrier (local maximum) at x = 0. An example is the quartic potential 
U(x) = x4 /4 -  x2/2. The white noise ¢(t) may for instance be 6-correlated Gaussian 
fluctuations, (~(t)~(s)) = 2D 6 ( t -  s), of a strength D that is small in comparison with 
the potential barrier height. Another possibility would be shot noise, i.e., ~(t) consisting 
of a string of random, say, positive f-spikes compensated on an average by a constant 
negative bias. Both the amplitudes of and the time between successive spikes have an 
exponential distribution. The noise is small if either the average amplitude is small or 
the average time between the spikes is large. Note that any other white noise ¢(t) in 
continuous time can be composed by a suitable superposition of white Gaussian and 
shot noise "building blocks" [20]. 
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Turning to discrete time, the Brownian particle is governed by the Langevin equation 

x,+l = f ( x , )  + ~,, (2.2) 

where n denotes the time. The deterministic map f ( x )  is monotonically increasing with 
a single unstable fixed point at x = 0 separating the basins of attraction of the stable 
fixed points at x = a and x = b. The white noise {n is given by independent, equally 
distributed random numbers with a probability distribution P({). A common choice is 
the Gaussian distribution 

P( {) = (~ze)-l/2 e-{2/e, (2.3) 

where e measures the noise strength and is assumed to be small. The discrete-time 
escape problem for more general distributions P({) has been treated, e.g., in Refs. 
[21-23]. 

Due to the weak noise assumption, a Brownian particle [Eq. (2.1) or (2.2)] spends 
most of its time in close neighborhoods of the deterministic attractors at x = a and 
x = b. Occasionally, it undertakes excursions out of these regions, ending either again 
close to the initial attractor (unsuccessful escape attempt) or close to the opposite one 
(successful escape attempts). As pointed out in Section 1, successful escapes from a 
to b can be characterized by a rate ffa that equals the inverse MFPT Tb(a) which the 
particle needs on average to get from a to b 

ra = Tb(a) -1. (2.4) 

Similarly, backward transitions from b to a occur at a rate Fb = Ta(b) -1. The crucial 
ingredient for the subsequent discussion is the observation that for sufficiently small 
noise strength the typical duration of a single-escape attempt (successful or not) is 
negligibly short in comparison with the sojourn times close to one of the deterministic 
attractors between two successive attempts [24]. 

Next we introduce a dividing point q that satisfies 

a < q<~b (2.5) 

and does not belong to the neighborhood of a where the particle initially resides. The 
particle needs the MFPT Tq(a) on average to cross q for the first time. The position 
x E [q, m )  of the particle immediately after having crossed the dividing point q is char- 
acterized by a probability distribution Pa,q(X), the so-called density of exit points. For a 
process with continuous trajectories (e.g. Eq. (2.1) with Gaussian white noise {(t)) the 
density of exit points is a Dirac a-function, Pa, q(X) = 6(x - q). For any other kind of 
Markovian process [Eq. (2.1) or (2.2)] the density of exit points Pa, q(X) is non-trivial, 
see Section 3.1 and 4 for a more detailed discussion of an example in discrete time, 
according to Eq. (2.2). From any point x>~q where the particle has entered the in- 
terval [q, c~) for the first time it will proceed with a certain probability rc,,,b(X) into 
the close neighborhood of b without returning into the vicinity of a before. This so- 
called splitting probability [25] na, b(X) is 1 for x>~b but non-trivial for q<~x < b, see 
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Sections 3.2 and 4, for an example. Since we assumed white noise ~(t), the proba- 
bility that a particle reaches the vicinity of b once it has crossed the dividing point 
q equals f~"~ dx Pa, q(X)7ta, b(X), independent of the particle's past. Taking into account 
once more that the duration of each escape attempt is negligible, we arrive at our 
central relationship 

f f  a = Tq(a)  -1  / dx Pa, q(X)l~a,b(X) . (2.6) 
q 

For the backward rate Fb we expect an analogous relation to hold. Because of the 
normalization of the probability of exit points, the integral in Eq. (2.6) is larger than 
or equal to the minimum of the splitting probability within the range of integration. 
Both for the continuous processes defined by Eq. (2.1) and discrete time processes 
[Eq. (2.2)] with additive noise and monotonic maps f(x) the splitting probabilities 
appearing in the integral [Eq. (2.6)] are minimal at the lower limit x = q. This yields 
the following inequality: 

F a >1 rCa, b ( q ) T q ( a )  -1  . (2.7) 

In particular, the product of the rate and the MFPT to the stochastic separatrix is at 
least 0.5, since then we have rta, b(q) = 0.5 by definition. 

As already mentioned, for a process with continuous trajectories the density of exit 
points shrinks to a g-function at the exit point and Eq. (2.6) yields 

Fa = 7Za, b ( q ) T q ( a )  - l  (2.8) 

In particular, if q lies on the stochastic separatrix, the inverse rate is twice the MFPT to 
this point. In the case of a continuous Markov process, Eq. (2.1), i.e. a one-dimensional 
Smoluchowski process, Eq. (2.8) can be verified by inspection, see Appendix A. In 
the sequel we closely investigate Markovian processes in discrete time which always 
have discontinuous trajectories. 

3. The discrete-time model 

We exemplify in more quantitative detail the general arguments from the preceeding 
section for a discrete-time dynamics [Eq. (2.2)] with weak Gaussian white noise [Eq. 
(2.3)]. Because of the independence of the random force ~n at different times n the 
resulting process xn is Markovian and, hence, completely determined by an initial 
density Wo(x) of finding the particle at time n = 0 at x, and the conditional density 
P(x, nly) of finding the particle n time-steps later at x if it started exactly at y. The 
time evolution of the conditional density can be described equally well by the forward 
equation, i.e., 

O O  

P(x,n + l ly)  = / dzP(x[z)P(z, nly) (3.1) 
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or the backward equation 

O(3 

P(x,n + l ly)  = / dzP(x, nlz)P(zly). 
- - 0 0  

(3.2) 

The initial condition complementing these recursion relations in n is given by 

P(x, Oly ) = 6(x - y).  (3.3) 

The single-step transition probability P(xly) = P(x, l ly ) follows from Eq. (2.2) and 
(2.3) as 

P(xly) = (rc~) -1/2 exp{-(x  - f(y))Z/e}. (3.4) 

In terms of this transition probability one readily sees that the MFPT across an arbitrary 
boundary q when starting from any x < q satisfies the following integral equation [19]: 

q 

Tq(x)- 1 = f dy Tq(y)P(ylx ) . 
- -  0 0  

(3.5) 

Choosing either q = 0 or q = b gives integral equations for the MFPT across the 
unstable fixed point (deterministic separatrix) or the inverse escape rate, respectively, 
see Eq. (2.4). In order to verify our central relationship, Eq. (2.6), we first have to 
address in more detail the density of exit points Pa, q(X) and the splitting probability 
na, b(X), which is done in the following two subsections. 

We close with the remark that the noisy map dynamics, Eq. (2.2) and (2.3) ap- 
proaches a continuous time dynamics, Eq. (2.1), with Gaussian white noise when the 
time steps z between iterations shrink to zero and at the same time the deterministic 
map approaches a continuous dynamics and the noise strength e decreases proportion- 
ally to z (for details see Appendix B). Apart from a special case treated in Section 4, 
it is only in the limit z ---* 0 that analytic progress for the MFPT from Eq. (3.5) seems 
possible, see also [19]. 

3.1. Density of exit points 

In order to determine the density of exit points of particles starting at a point y 
beyond a separating point, q > y, we modify the original process by making the part 
of the x-axis with x/> q absorbing. In this way the particle is hindered to continue 
moving once it has crossed q. The density of exit points then coincides with the 
density of particles sticking on the interval [q, oe) when all particles have escaped 
from ( -c~ ,q) .  The conditional density Pq(x,n[y) of finding the particle, which starts 
at y, after n steps at a value x < q obeys a forward equation similar to Eq. (3.1) with 
the only difference that because of the absorption of the interval [q, cx~) the integral 
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extends only over the remaining part of the x-axis. In other words 
q 

t ~  

Pq(x,n + l ly ) -- / dzP(xlz)Pq(z, nly) (3.6) 
- - O O  

with the initial condition, Eq. (3.3). At each time n + 1 the following fraction pq(X, n + 
1 lY) of particles reaches a position x > q: 

q 

pq(X,n -[- l ly ) ---- / dzP(xlz)Pq(z, nly). (3.7) 

Once the particle has left the interval (-ocD, q) it sticks forever where it has entered 
[q, e~) and contributes to the density of exit points at the point x 

py, q(X) =- Z pq(x,n q- l l y )  
n=O 

q 
t ~  

= / dzP(xlz)gq(z,y), (3.8) 
- - O O  

where we interchanged the order of integration and summation and introduced the 
function gq(x, y) reading 

0<3 

gq(X, y) = ~ Pq(x, nly). (3.9) 
n=0 

In order to determine the density of exit points py, q(X) from Eq. (3.8) and (3.4) we 
are left to calculate gq(X, y). Summing the forward Eq. (3.6) over all n we obtain the 
following equation for gq(x, y) from Eq. (3.9): 

q 
g ~  

- 6(x - y) = / dzP(xlz)gq(z,y ) . (3.10) gq(x, y) 
- -  0 0  

Eq. (3.10) allows two interpretations of the quantity gq(x,y): First, gq(x,y) is the 
Greens function belonging to the forward Eq. (3.6), and second, it is the stationary 
solution of the process defined by the noisy map Eqs. (2.2) and (2.3) with an absorbing 
interval [q, oo) and with a source of particles at y that compensates the loss due to the 
outflow over the point x = q. In passing we mention that the MFPT Tq(y) coincides 
with the x-integral of go(x, y) over the negative x-axis [1,26] 

q 
/ ,  

Tq(y)= / dxOq(X,y). ( 3 . 1 1 )  

This expression for the MFPT can be interpreted as the ratio of the population to the 
flux which both follow from the flux carrying density gq(X, y). Note that with the total 
source strength also the flux over the point x = q is unity. 
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In view of Eq. (3.11) it is clear that the solution of the integral Eq. (3.10) for 
gq(X, y)  is not easier than the original MFPT problem, Eq. (3.5). While there is little 
hope for a general analytic solution, the limiting case of continuous time is worth a 
closer look both from analytic and numeric viewpoints. In the limit of continuous time 
z ~ 0, the integral Eq. (3.10) approaches the boundary value problem, Eq. (B.10), see 
Appendix B. The latter has the following solution: 

q 

g(q°)(x' Y) = D--z -D " 
max{y,x} 

(3.12) 

For finite z this solution may serve as a first approximation from which a systematic 
improvement can be obtained by tuming Eq. (3.10) into an iteration and using g(q°)(x, y)  
as starting point. The nth iteration step then reads 

q 

g~n)(x,y) = a(x - y)  + f dzP(xJz)g(qn-l)(z,y). 
- -  0 0  

(3.13) 

One can show that the iteration converges towards the uniquely defined solution of the 
integral Eq. (3.10) [27]. We note that though the starting function g(q°)(x,y) vanishes 
by construction at x = q, all iterations yield a finite value there, see also [19]. 

3.2. Splitting probability 

The splitting probability ~a,b(X) gives the fraction of all those particles that start at 
x E (a,b) and leave the interval at b without having visited a before. One obtains 
rCa, b(X) by adding up the outgoing flux through the point b for all times n 

oo oo b 

lra'b(X) = Z / dY / dzP(ylz)Pa'b(z'njx) (3.14) 

where Pa, b(Z, nix) denotes the conditional density of the process with absorbing exterior 
of the interval (a, b). It obeys the following backward equation 

b 

Pa, b(Z, n + l Jx) = f duea, b(Z, nlu)P(u[x ) . 
a 

(3.15) 

The absorbing parts ( -oo,  a] and [b, oo) hinder the particles which have left (a,b) 
to come back in the interval. In this way, multiple counting of the same particle is 
excluded. 

From the definition of the splitting probability, Eq. (3.14), and the backward 
Eq. (3.15) one obtains the following inhomogeneous integral equation for the 
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splitting probability: 

oo b 

n~,b(x)- f dyP(ylx)= /dyna, b(y)P(y[x). (3.16) 
b a 

For the bistable noisy map, Eq. (2.2), where a and b are locally stable points sepa- 
rated by an unstable fixed point at x = 0 this equation can be further simplified in the 
weak noise limit. When the noise is weak a particle almost behaves according to the 
deterministic map; the typical deviations from the deterministic dynamics are small and 
large deviations are exponentially rare. In the present case that means that within the 
domain of attraction of the point a most of the noisy trajectories directly approach the 
point a except those which start in the vicinity of the unstable point x = 0 and may 
also go to b with some probability. Analogously, trajectories starting with a positive 
coordinate first reach the point b, again with the exception of trajectories starting near 
x = 0. Hence, the splitting probability is almost zero between a and 0 and almost unity 
between 0 and b. Within a small vicinity of 0 it continuously changes its value between 
these extremes. The smaller the noise strength the smaller is the region where Zta,b(X) 
strongly varies. Within this region, the deterministic map as it enters the transition 
probability in Eq. (3.16) can be linearized and, moreover, the inhomogeneity in Eq. 
(3.16) can be neglected since it is exponentially small. The such simplified equation 
for the splitting probability in the vicinity of the unstable point x = 0 reads 

(2X) { s, o,x,2} 7~a,b(X ) ~- --~Zra, b(y ) exp ~ , 
--00 

(3.17) 

where f ' ( 0 )  denotes the derivative of the deterministic map at 0. We have extended 
the limits of integration to +oe since for the relevant small ]xl-values large ]yl-values 
contribute only with an exponentially small weight to the integral in Eq. (3.17). The 
solution of Eq. (3.17) satisfying the required asymptotic behavior for large positive 
and negative x reads [19]: 

7~a,b(X) = 1 ( 1  At- erf(x/l~)) , (3.18) 

where erf(z) = 2r~-l/2fodtexp{-t2 } denotes the error function, and l~ = 

V/e / ( f ' (0 )  2 - 1) the noisy length-scale at the unstable fixed point x = 0. This expres- 
sion is a reliable approximation of the exact solution of Eq. (3.16) if the non-linear 
contributions of the map f(x) can be neglected on a distance of a few l~ about x = 0. 
Corrections can be obtained by means of a perturbation theory for Eq. (3.16) in an 
analogous way as finite barrier corrections in the Kramers rate problem in continuous 
time [7]. 
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4. Piecewise linear noisy maps 

As particular examples of  discrete-time dynamics of  noisy maps we consider 
Eqs. (2.2) and (2.3) with symmetric piecewise linear maps having stable fixed points 
at a = - b  = - 1  given by 

s x -  (1 - s )  forx-N< - - X m ,  

f ( x ) =  ux for -Xm<~X<~Xm, 
sx + (1 - s) for X m <<.X, 

(4.1) 

w h e r e  + x  m with Xm = (1 - s ) / (u  - s)  denote the matching points of  the linear pieces 
of  the map. The stability properties of  the fixed points and the monotonicity of  f ( x )  
require u > 1 and 0~<s < 1, see Fig. 1. 

For the present class of  maps an analytic expression is known for the escape rates 
F_ I  = F1 = F for arbitrary fixed values of  u and s in the asymptotic limit o f  small 
noise [14,17], 

F = ~ e  -~#  , (4.2) 

where ~b is given by 

t~ = (U 2 --  1)(1 - s2) / (u  2 - s2) .  (4.3) 

On the contrary, there exist no analytic expressions for the MFPT to the unstable fixed 
point at x = 0 except for values of  the parameters u and s close to unity, i.e., in 
the neighborhood of  the limiting case of  continuous time, see Ref. [19], and another 
extreme case with s = 0 and u = co. In the latter case, the integral Eq. (3.5) has a 
degenerate kernel [27] and can readily be solved. One finds for arbitrary q and x ~< q 

f ( x ) '  

1 

I 

0 1 x 

Fig. 1. Piecewise linear map as given by Eq. (4.1) with s = 0.2 and u = 1.8. 
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Fig. 2. The product rr of the transition rate Fa given by Eq. (2.4) and the MFPT To(-1 ) obtained from 
numerical solutions of the integral Eq. (3.5) with q = b and q = 0, respectively, for a piecewise linear noisy 
map, Eqs. (2.2,2.3,4.1) with s = 0 as a function of u (solid line). The noise strength ~ is chosen such that 
the Arrhenius factor is kept fixed at ~b/e = 5; see Eq. (4.3). The broken line shows the integral expression 
rp, see Eqs. (2.6,4.5). The value of rp is slightly larger than that of rr because in Eq. (2.6) the duration 
of escape attempts has been neglected. 

that 

(m7 / -1 Tq(x) = dy e_(y+l)2/e O(-x) 
in{q,0} 

( f dY e - ( y - 1 ) 2 / ~ - l o  V ~  / + 1 - ] O(x), (4.4) 

where O(x) denotes the theta-function. Note that the rate resulting from Eq. (4.4) coin- 
cides in leading order in the noise strength e with the expression given by 
Eq. (4.2). Further note that the MFPTs with negative x do not depend on the di- 
viding point q provided q >10. Consequently, for u = c~, the product of  the rate and 
the MFPT to a point q ~> 0 is one. For u --~ 1 this product approaches the value o f  the 
splitting probabili ty at x = q which is 1/2 for q = 0 because of  the symmetry of  the 
considered maps. 

We numerically solved the integral equations (3.5) for q = 0 and q = 1 by means 
o f  the Nys t r rm method [28]. As a result, the ratio rr = To(-1)/Tl(-1) = F _ I T 0 ( - 1 )  
is shown in Fig. 2 for maps with s --  0 as a function of  the other map parameter 
u. The noise strength e was chosen such that the Arrhenius factor ~b/e has a constant 
value. The deviations from the value ½ set in strongly for values o f  u which differ 
only slightly from unity. For large values of  u the ratio gradually approaches one. 

Using the same numeric method we solved the integral Eq. (3.10) for the Greens 
function and compared it for small t ime-steps z to the continuous-time result, 
Eq. (3.12), and the first iteration o f  Eq. (3.13), see Fig. 3. As an independent control 
we integrated the numeric solution of  the integral Eq. (3.10) over all x<<.q and found 
within the numeric accuracy perfect agreement with the MFPT time to q in accordance 
with Eq. (3.11). 
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Fig. 3. Green function 90(x,- 1 ) obtained as numerical solution of Eq. (3.10) (solid line), the continuous-time 
approximation Og°)(x,-1), from Eq. (3.12) (broken line), and the first iteration 9gl)(x,-1) of Eq. (3.13) 
(dotted line) for the piecewise linear noisy map, Eqs. (2.2), (2.3) and (4.1) with s = 0.8, u = 1.2, e = 0.04 
and ~ = 0.2 corresponding to D = 0.05, see Eqs. (B.I) and (B.2). The inset shows a magnification of the 
same three functions near the boundary at x = 0. 
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Fig. 4. Distribution of exit points resulting from the numerically exact Green's function 90(x,-1) (solid (]) line), the continuous-time approximation 9~°)(x,-1) (broken line), and the first iteration g0 (x , -1)  by 
means of Eq. (3.8) (dotted line) for the same parameter values as in Fig. 3. The two functions g(o°)(x,-1 ) 
and g~l)(x,- 1 ) have been multiplied by factors 2.458 and 1.677, respectively, in order that they are properly 
normalized to one. 

A s  a next  step, the dis t r ibut ion o f  exit  points was numer ica l ly  de te rmined  by  means  
o f  Eq. (3.8)  f rom the numer ica l ly  exact  G r e e n ' s  function and its var ious  approxi -  
mat ions ,  see Fig.  4. It turns out, that  the dis t r ibut ions resul t ing f rom the approx imate  
G r e e n ' s  funct ions are not  p roper ly  normal ized  to one. If, however ,  this is done  b y  hand,  
good  agreement  wi th  the numer ica l ly  exact  results  is achieved.  W h e n  the approx imate  
G r e e n ' s  funct ions are renormal ized  by  the same factor  a much  bet ter  agreement  wi th  
the numer ica l ly  exact  Green function results  in the re levant  region near  the boundary  
at x = 0, see Fig.  5. It is a typical  feature o f  a rate process  that  the form o f  a current  
car ry ing  dis t r ibut ion as is the Green  funct ion is much  faster  approached  than its total  
equi l ibr ium populat ion.  
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Fig. 5. Same as in Fig. 3 with the only difference that the approximate Green's functions are renormalized 
by the same factors that give normalized distributions of  exit points. 
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Fig. 6. Splitting probability n-l,~(x) resulting from a numerical solution of  the integral Eq. (3.16) 
(solid line) compared to the approximation, Eq. (3.18) (broken line) for the noisy piecewise linear map 
Eqs. (2.2), (2.3) and (4.1) with s = 0.8, u = 1.2 and e = 0.05. For the same s and u but the smaller 

- 0.02 the numerically exact and approximate curves fall on top of  each other (dotted line). 

In Fig. 6 the approximation of the splitting probability by an error-function, 
Eq. (3.18) is compared to a numerically exact solution of the integral Eq. (3.16), 
again obtained by means of the NystrSm method. The numerically exact splitting prob- 
ability, somewhat slower, approaches the asymptotic values 0 and 1 for large negative 
and positive x-values, respectively, than the error-function, Eq. (3.18). In the vicinity 
of the unstable point x = 0 the agreement of the numerically exact and the approximate 
solution of Eq. (3.18) is very good. 

Using the numerically exact distribution of exit points and splitting probability we 
calculated the following integral: 

OG 

rp -=-- / dx p - l , q ( X ) T t - l , l ( X ) .  (4.5) 
q 

In Fig. 7, rp is  compared to the respective expressions obtained from the approximate 
expressions of p-l,q(X) and rt_l.l(x) for small time steps ~ at a fixed value of D as 
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Fig. 7. (a) Integral expression rp calculated with the numerically exact splitting probability and density of 
exit points (solid line) and with the approximation, Eq. (3.18) for the splitting probability (broken line) for 
the noisy piecewise linear map, Eqs. (2.2), (2.3) and (4.1) for D = e/(4z) = 0.05, ~ = u - 1, and s = z + 1 
as a function of u, see also Appendix B. The resulting Arrhenius factor ~p/g = 5(1 -z2/4) is almost constant 
for small z. (b) Numerically exact integral expression rp (solid line) and the same integral with the product 
of the exact splitting probability and the distribution of exit points as it results after proper renormalization 
from the Smoluchowski equation (broken line) and from the first iteration of Eq. (3.13) (dotted line) for 
the same parameter values as in (a). 

a function o f  u, see Appendix B. The largest deviation is obtained i f  the renormal- 
ized continuous-time approximation, Eq. (3.12) o f  the Green 's  function is used. The 
first iteration according to Eq. (3.13) leads to a considerable improvement. The error 
function approximation leads also to a very good approximation of  rp. 

In Figs. 2 and 8 the ratio o f  the MFPTs r r  and the integral rp are compared with 
each other. According to the proposed relation, Eq. (2.6), r r  and rp should coincide. 
The observed deviation is indeed small. The relative deviation between rp and r r  is 
shown in Fig. 9 for fixed map parameters u and s as a function o f  the Arrhenius factor 
~b/e. We find that the error is positive and down to an Arrhenius factor o f  1.5 it is 
exponentially small in the Arrhenius factor. Both these observations are in accordance 
with the neglect o f  small t ime contributions in Eq. (2.6). This means that within the 
realm of  rate description the proposed relation, Eq. (2.6), between rates and MFPTs is 
exact. 
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Fig. 8. Ratio of numerically exact MFPTs rT (solid line) and the numerically exact integral expression rp 
(broken line) for the same map as in Fig. 7 as a function of u. 
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Fig. 9. The logarithm of the relative deviation of rp and rT for the noisy piecewise linear map, Eqs. (2.2), 
(2.3) and (4.1) for s = 0.8 and u = 1.2 as a function of the Arrhenius factor ~b/e. Note the straight line 
down to $/e = 1.5 with a slope of 1. 

5. Summary 

We investigated escape rates of metastable states and their relation to MFPTs of 
separating points located between the initial and final state for one-dimensional Markov 
processes. Even if the probabilities are equal to go from the separating point to either 
of the two metastable states, the product of the rate and the MFPT is, in general, larger 

i In other words, the fraction of successful crossings of a separating point q is in than ~. 
general larger than the splitting probability at this point. Only for continuous processes 
the two are the same. 

In the weak noise limit the deterministic and stochastic separatrices become identical. 
So, for continuous processes the MFPT across the deterministic separatrix approaches 
! the inverse rate. For discontinuous processes, however, this well known "one-half" 2 
relation is violated even in the weak noise limit. Prominent examples for this class of 
processes include shot noise driven dynamics, kinetics of gases, and noisy systems in 
discrete time. 
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We proposed that the product of the rate and the MFPT is given by the integral 
over the product of the splitting probability and the density of exit points. This relation 
is based on the two assumptions that the process is Markovian and a rate description 
is appropriate. The latter assumption implies that the actual time of a typical escape 
event irrespective of being successful or not is much shorter than the sojourn time in 
the vicinities of the metastable states and, hence, can always be neglected. The other 
assumption is crucial since the splitting probability and the density of exit points are 
uniquely defined only if the process is Markovian. Otherwise these quantities depend 
on the past history of the particle before it has jumped over the separating point q 
to x. 

Using a particular class of discrete-time dynamics we numerically demonstrated that 
the proposed relation holds up to exponentially small deviations. They are caused 
by neglecting the short times that the particle needs either to fall back to its ini- 
tial state or to proceed to the other side once it has managed to traverse the di- 
viding point q. Assumptions of this type are inherent in rate theory and most rate 
laws at best are valid up to corrections that are exponentially small in the Arrhenius 
factor. 

For the sake of simplicity we considered only one-dimensional Markovian processes. 
It is straightforward to formulate the proposed relation for general Markovian processes 
having metastable states. We are convinced that it will also hold in these cases. A 
simple generalization to non-Markovian processes is not obvious and even cannot be 
expected. 

Appendix A. The product of rate and MFPT in the continuous-time limit 

The MFPT of a particle moving in continuous time according to the Langevin 
Eq. (2.1) with Gaussian white noise ~(t), (~(t)~(s)) = 2D 6 ( t -  s), reads, see Ref. [1]: 

q / 
tq(a) = D - l  / dx e u(x)/a dye  -U(y)/D , 

a - - C X ~  

(A.1) 

where a is the starting point and q is the dividing point at which the time is taken. 
The double integral in Eq. (A. 1) can be factorized into a product of two integrals if 
the distance of the upper and lower limit of the first integral is much larger than the 
noisy length-scale at the locally stable point a, i.e., if 

q - a >> ~ .  (A.2) 

The MFPT then becomes 
q 

tq(a) = n f dx e v(x)/D 
a 

(A.3) 
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up to exponentially small corrections. Here, n denotes the population of the intial well 
reading 

0 

n = / dxe  -U(x)/D. (A.4) 
- - O O  

Using Eqs. (2.4) and (A.3) we obtain for the product of the rate Fa and the MFPT 
rq(a) 

FaTq(a)  --  f q  dxeU(X)/° (A.5) 
f~ dx e U(x)/D 

The right-hand side of Eq. (A.5) solves, as a function of q, the same boundary value 
problem as the continuous-time splitting probability na, b(q), see Eqs. (B.8) and (B.9). 
For uniqueness reasons, they must exactly coincide and, consequently, Eq. (2.8) is 
proved. Deviations from Eq. (2.8) must be expected when the condition (A.2) is not 
satisfied, i.e. if D is too large, or if D is small but the separating point q is not 
sufficiently remote from a. 

Appendix B. Continuous-time limit 

In this appendix we review the continuous-time limit of the noisy map, Eq. (2.2), 
see Ref. [19]. For this purpose we introduce the time-step z of an iteration and consider 
the limit nz -- t for z ~ 0 and n ~ c~. In order that a meaningful dynamics results in 
this limit, the deterministic part f ( x )  of the noisy map must deviate from the identical 
map only by an amount that is proportional to z, 

f ( x )  = x - zU'(x) , (B.1) 

where U(x) is a potential and the prime denotes the derivative with respect to x. For 
the same reason, the noise strength e has to be proportional to z, i.e. 

= 4Dz, (B.2) 

where D is independent of z. In the limit z -~ 0 the noisy map approaches the Langevin 
Eq. (2.1) with ~(t) being Gaussian white noise, (~(t)) = 0, (~(t)~(s)) = 2D6(t - s). 

For the integrals that enter the equations for the MFPT, Eq. (3.5) and the splitting 
probability, Eq. (3.16) one obtains the following expressions for small ~ and any x c 
(x.x2): 

X2 

f dy h(y)P(ylx ) 
Xl 

= h(x) + zL+h(x) + (9(z2), (B.3) 
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while for x = Xl or x = xz 
X2 

f dyh(y)P(y[x)= ~h(x)+ (9(zl/2), (B.4) 
xl 

where L + is the backward Smoluchowski operator 

L + = - U'(x) + O-~x 2 . (B.5) 

and h(x) an arbitrary smooth function on (xi,x2). Using (B.3) we recover from 
Eq. (3.5) the equation for the MFPT time of a continuous-time process reading 

L+tq(X) = -1  for x E (-cxz, q) ,  (B.6) 

where tq(X) = zTq(x) is the MFPT time measured in physical units. Taking x = q and 
using Eq. (B.4) we find the usual absorbing boundary condition for the MFPT, i.e. 

tq(q) = 0.  (B.7) 

The inhomogeneity f ~ d y P ( y [ x )  of the equation for the splitting probability, 
Eq. (3.16), vanishes exponentially fast with T ~ 0 for all values of x which are 
different from b. At x = b the inhomogeneity has the value 1/2. Hence, we recover a 
homogeneous backward equation for the splitting probability 

L+~a,b(X) = 0 (B .8 )  

with the following boundary conditions: 

l"Ca, b ( a ) = O  and ~a,b(b)= 1. (B.9) 

Using the same kind of arguments we obtain from Eq. (3.10) the continuous-time 
limit of the equation for the Green's function reading 

LG(x,y) = -fi(x - y) for x ,y  E ( -oo ,  q) ,  
G(q,y) = 0,  (B.10) 

where G(x,y) = zg(x,y) is the properly scaled Green's function in continuous time 
and 

L = -~xU'(x) +OQx 2 (B.11) 

denotes the forward Smoluchowski operator. 
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