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Abs t rac t .  A unifying view on several astonishing effects induced by state depen- 
dent, uncorrelated fluctuations (multipficative white noise) is presented. The main 
emphasis of our introductory discussion is put on the basic physical mechanisms 
at work in a white noise driven "pulsating ratchet", noise-induced non-equilibrium 
phase transitions, and their synthesis in the form of coupled Brownian motors. 

1 I n t r o d u c t i o n  

Can one get work out of fluctuations? Of course, one can! Tha t  is obvious in 
the case of (almost) periodic fluctuations: Think of all the rectifiers, mechan- 
ical, electrical and others, that  allow a device to move only in one direction 
and hence build up energy. One of the long-known examples in the case of 
random fluctuations (unbiased on average but  still correlated in time) is the 
wind-mill. The self-winding wristwatch is a more modern version that  works 
especially well with native Italian speakers. But even unbiased fluctuations 
without any appreciable correlation in t ime (white noise) can be exploited to 
do useful work, as we will show below. 

The above examples refer to macroscopic fluctuations. For microscopic 
fluctuations, the situation is more subtle. Indeed, we know from the second 
law of thermodynamics that  it is impossible to get work in a repetitive cyclic 
manner  from a single heat bath at equilibrium. The fact that  rectifiers will not 
work in this situation is nicely illustrated in the ratchet-and-pawl example 
discussed by Feynman, Leighton, and Sands 1963 (see also the critical discus- 
sion by Parrondo and Espanol 1996 and a much earlier account of very similar 
ideas, that  may have inspired Feynman, by Smoluchowski 1912). But  noth- 
ing forbids the appearance of Maxwell demons, or Brownian motors  (Vale 
and Oosawa 1990, Ajdari and Prost 1992, Magnasco 1993, Astumian and 
Bier 1994, Doering, Horsthemke, and Riordan 1994, Bartussek, H/inggi, and 
Kissner 1994), to use a more benign nomenclature, in the case of nonequilib- 
rium fluctuations (for reviews see also HEnggi and Bartussek 1996, Astumian 
1997, Jiilicher, Ajdari, and Prost 1997). Indeed, Feynman's  ratchet-and-pawl, 
as well as many other kinds of "heat-engines", if properly connected with two 
heat baths at different temperatures,  do produce work, and this nota bene 
out of practically uncorrelated microscopic fluctuations. We further mention 
that  biological systems are typically operating far from equilibrium and the 
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small scale of the intracellular processes implies that  fluctuations may play 
a significant role. In fact, Brownian motor  models have been proposed as a 
possible mechanism for intracellular t ransport  processes by Vale and Oosawa 
1990, Ajdari and Prost 1992, Magnasco 1993, Astumian and Bier 1994, Do- 
ering, Horsthemke, and Riordan 1994, Astumian 1997, Jiilicher, Ajdari, and 
Prost 1997. It is remarkable and little known that  directed t ransport  induced 
by unbiased driving forces in periodic structures with broken spatial symme- 
try (ratchets) has also been investigated theoretically and experimental ly in 
the context of photovoltaic and photorefractive effects in noncentrosymmet-  
ric ferroelectrics such as BaTi03 already for several decades, see the reviews 
by Belinicher and Sturman 1980 and by Sturman and Fridkin 1992. Like- 
wise, directed current (or, equivalently, a finite voltage under open circuit 
conditions) emerges in s y m m e t r i c  periodic structures when driven by unbi- 
ased harmonic mixing signals, E ( t )  = E1 cos(f2t) + E2 cos(2K2t), due to the 
nonlinear static response of nonvanishing odd higher moments  of order n > 3, 
see Breymayer, Risken, Vollmer, and Wonneberger 1982, Wonneberger and 
Breymayr  1984. These voltages have been observed experimentally as early 
as in 1978 by Seeger and Maurer. 

To introduce the specific type of Brownian motor  that  will interest us, 
namely the "pulsating ratchet",  we start  with an amusing discrete version 
that  shows how Maxwell demons can make money (J.M.R. Parrondo, pri- 
vate communication; related models, but formulated in a physical context,  
have been studied by Sokolov and Blumen 1997 and by Schimansky-Geier, 
Kschischo, and Fricke 1997). We consider two fair games, cf. Fig.1. The first 
one is coin tossing. When head comes up, the demon's capital increases by 
one, and yours decreases by one, and vice versa for tail. The other game is 
slightly more complicated: the demon wins with a probabili ty of 2/3 when 
his capital is equal to 1 or 2, modulo 3, and only with a probabili ty of 1/5 
in the other cases, when his capital is 3, modulo 3. The most convincing 
way of showing to the layman that  this game is fair is by trying it out: on 
average gains and losses cancel exactly. A physicists way to check it is by 
remembering the historic paper by Onsager 1931 on detailed balance, show- 
ing that  micro-reversibility implies for a circular reaction at equilibrium, cf. 
Fig.l ,  the result that  the product  of forward and backward rates should be 
equal: ~+~+~+ = k ~ k 2 k  3 .  For the (discrete-time) Markov process corre- '~1 '~2 '~3 
sponding to our game, this condition of detailed balance is indeed fulfilled: 
2 2 ~ 1 1 4 One can easily verify that  any transition between adjacent states 
is then equally likely to occur in both directions. 

Let us now pIay these games. After some time, one gets bored with game 
1 and switches to game 2. As one keeps on switching randomly between 
the two games, it will become clear that  the demon is making money and 
you are losing it. Switching at random between fair games is no longer fair! 
In fact, even after modifying the single games slightly in your favor, the 
demon will continue to win! To understand intuitively what is happening 
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F ig .  1. Schematic representation of two fair games, and the corresponding circular 
chemical reaction for the second game in the spirit of Onsager. As detailed in the 
main text,  random switching between the two fair games leads to a game tha t  is 
no longer fair since the property of detailed balance is lost. 

we t u r n  to  a c o n t i n u u m  ana logue  of  the  two games ,  see Fig .2 .  T h e  first  
g a m e  is j u s t  an  unb iased  r a n d o m  walk,  which we rep lace  by  p la in  diffusion 
(free Brownian  m o t i o n ) .  T h e  second one can  be  represen ted  by  B r o w n i a n  
m o t i o n  in a s a w t o o t h  po t en t i a l .  T h e  sma l l  s lope,  favor ing  m o t i o n  to the  
r ight ,  ex tends  over a longer  in te rva l  t h a n  the  large  slope,  which  favors  m o r e  
s t rong ly  the  m o t i o n  to the  left.  T h e  cond i t ion  for de t a i l ed  ba lance ,  . imply ing  
the  absence  of  a s y s t e m a t i c  m o t i o n  to the  r ight  or left,  requires  here t h a t  
the  overal l  p o t e n t i a l  is not  t i l t ed :  the  t o t a l  (slow) decrease  of  t h e  p o t e n t i a l  
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over the longer interval has to exactly cancel the total  (fast) increase of the 
potent ial  over the smaller interval. The  fact tha t  this is the right condition 
is maybe  not immediately obvious (it is actually jus t  the point  of Feynman,  
Leighton, and Sands 1963). I t  helps to remember  tha t  statistical mechanics 
predicts Z - l e  -zv°(~:) as steady state distribution for Brownian particles at  
t empera tu re  T (with/3 = 1/kBT) in a potential  Vo(x). Clearly, in the case 
of a tilted potential,  particles would constantly be moving in the direction of 
the decreasing potential.  

! 

x0 x0+L 

~ X  

1. X 

Fig. 2. Continuum analogue of the discrete games: the pulsating ratchet. The figure 
illustrates how Brownian particles, initially concentrated at x0 in the presence of 
the potential V0(x), spread out symmetrically when this potential is switched off, 
but subsequently get captured mostly back in the basin of attraction of x0, but also 
substantially in that of x0 + L. A net current of particles to the right, i.e., (~) > O, 
results. 

Let us now star t  in the presence of the potentiM V0(x), and suppose 
tha t  the Brownian particles are initially located at one of its minima,  say at 
x = x0, and tha t  the thermal  energy kBT is much smaller than  the barr ier  
height. Particles will thus in the presence of V0(x) most ly  remain concentrated 
about  the min imum x0. After switching off the potential  V0 (x), the Brownian 
particles will s tar t  to diffuse symmetr ica l ly  around x0. When switching it 
on again at a later time, most  particles will return to the min imum x0, 
but  a relatively large fraction will be a t t rac ted to the potent ial  m i n i m u m  at 
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the right of x0, cf. Fig.2. Hence a net flux to the right will develop. 1 This 
systematic drift can now be used to perform work. 2 At first, it may seem 
that  the work which can be derived from the systematic drift of the particles 
is extracted from their Brownian motion. But  one has to remember that  the 
Brownian motor  operates thanks to the switching-on and -off of the potential,  
and that  by doing so, one creates nonequilibrium conditions in which there is 
a net work performed on the particles. We may view the switching-on and -off 
of the potential  as a change of the thermal reservoir, with which the Brownian 
particles are in contact, between one at low temperature  (Vo(x) on), and one 
at high temperature  (V0 (x) off). In this presentation, the set-up resembles a 
Carnot engine. In fact, the efficiency of the pulsating ratchet can be calculated 
and is found to be much below Carnot  efficiency. (Efficiency of ratchets have 
been studied by Vale and Oosawa 1990, Magnasco 1994, Jiilicher and Prost 
1995, Parrondo and Espanol 1996, Bier and Astumian 1996, Jiilicher, Ajdari, 
and Prost 1997, Sekimoto 1997, Parrondo 1998a, Parrondo, Blanco, Cao, and 
Brito 1998b, Kamegawa, Hondou, and Takagi 1998.) 

An important  characteristic of the pulsating ratchet for the ensuing dis- 
cussion is that  it involves multiplicative noise: the potential  that  the particles 
feel can be written as V(x, t) = Vo(x)~(t), where ~(t) is a stochastic process 
that  switches at random between the values 1 (V0(x) on) and 0 (Vo(x) off). 
Note that  the amplitude of the noise, V0(x), depends on the location of the 
Brownian particle, hence the multiplicative nature of this noise. In the fol- 
lowing two sections, we will present two surprising effects of multiplicative 
noise, which we will subsequently combine in a model of coupled Brownian 
motors in Sect.4. 

2 W h i t e  N o i s e  R a t c h e t  

A full analytic discussion of the pulsating ratchet subject to diehotomic and 
thermal noise for a general potential Vo(x) is not available (special cases 
have been solved by Astumian and Bier 1994, Doering, Horsthemke, and 
Riordan 1994, Mielke 1995, Reimann and Elston 1996, Zapata, Luczka, Sols, 
and H£nggi 1998, Kula, Czernik, and Luczka 1998). We therefore turn to the 
case of a white noise driven pulsating ratchet V(x,t)  = x / ~  Vo(x) ~'(t), 
where ~'(t) is a Gaussian 3 white noise (in the sense of Stratonovich, see 
also footnote 5 below) and Q characterizes the intensity of the potential  

1 A nice computer animation of this model is available on the internet under 
http://monet.physik.unibas.ch/ elmer/bm/ 

2 The resulting Brownian motor is sometimes referred to as "flashing-" or "on- 
off-ratchet". We think that the name "pulsating ratchet" is more appropriate, 
especially for the modified version of the model we consider below. 

3 White noise driven ratchets with sojourn times between kicks obeying a Pois- 
sonian statistics (white Poisson noise) have analytically been investigated by 
Luczka, Bartussek, and H~inggi 1995 and Luczka, Czernik, and H£nggi 1997. 
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fluctuations (Reimann 1997). The thermal  mot ion of the particles can be 
represented by an additive Gaussian white noise ~ ' ,  independent of  ~1, and 
with strength ~ (in units with kB : 1). The  crucial advantage with respect 
to analytical t ractabi l i ty  of this model is rooted in the well-known simple fact 
tha t  the sum of two independent Gaussian r andom numbers  is equivMent to a 
single one if one adds up the corresponding means and variances. This  readily 
implies that  the combinat ion of independent Gaussian white noises ~' and ~" 
can be replaced by a single Gaussian white noise term: 4 a(x)~' + b(x)~" = 
x/a2(x) + b2(x) ~ . The motion of our Brownian particle is thus governed by 
the following stochastic differential equation (Reimann 1997): 5 

= - V ' ( x ,  t) = - V [ ( x )  + ~/2T + 2Q[V~(x)] 2 ~ , (1) 

where ~ is a Gaussian white noise characterized by its first two moments :  

<~(t)> = 0 , (~(t)~(t')> = 6(t - t') . (2) 

Here we have included for generality also a non-fluctuating contribution V1 (x) 
to the potential.  V0 (x) is the pulsating part  of the potent ial  with ampl i tude  Q, 
and T is the tempera ture  experienced by the Brownian particle. The poten- 
tials Vo(x) and Vl(X) are both assumed periodic with period L. For earlier 
investigations of related problems see also Stratonovich 1969, Ivanichenko 
and Zi l 'berman 1969, Ambegaokar  and Halperin 1969, Bfittiker 1987, van 
Kampen  1988, Landauer 1988, Millonas 1995. A similar model  in the context  
of Josephson junctions has been suggested by Berdichevsky and Gi t t e rman  
1997. 

In view of the perfect periodicity of the system, it is sufficient to consider 
its behavior inside a "unit cell" I-L~2, L/2] with periodic boundary  condi- 
tions. One expects tha t  the distribution of particles will a t ta in  a steady s ta te  
in the long t ime limit with a steady but nonzero particle current. Both the 
steady state  solution P~t(x) and the associated particle current <~> are most  
easily obtained f rom the Fokker Planck equation (Risken 1984) associated to 

4 This is easily verified in the equivalent Fokker Planck equation descrip- 
tion (cf. also footnote 5 and Risken 1984): o-~aa-~aP + o~bo~bP -= 
o ~ ~ ~ x / ~  + b2P. For a(x) = x /~  and b(x) -- x/D -7 constant, this reduces 
to the well known result that the sum of two Brownian motions with respective 
diffusion coefficients D and D' is again a Brownian motion with diffusion coeffi- 
cient D -~- D I. 

5 We are considering here only the overdamped limit, i.e., inertia-effects are if- 
nored, and the viscous friction coefficient has been absorbed into the time unit. 
Considering the white noise as limiting case of a colored noise with a correla- 
tion time that is negligible in comparison with all other relevant time scales of 
the system, it follows that the multiplicative white noise is to be understood in 
the sense of Stratonovich (Wong and Zakai 1965, Wong and Zakai 1969, Risken 
1984). Furthermore, time-arguments have been dropped in this (and the later 
following) stochastic differential equation. 
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the stochastic dynamics (1), with the following results (Stratonovich 1969, 
Ivanichenko and Zil 'berman 1969, Ambegaokar and Halperin 1969, Biittiker 
1987, van Kampen 1988, Landauer 1988, Millonas 1995, Reimann 1997): 

--1 e-C(x) /x-i-L d y - -  

g(x) = ~/T + Q[Vg(x)] 2

¢(x) = dy V~(y)/g2(y) 
(&} = LZ-I[1- e¢(/)] , 

e¢(y) 
g(y) (3) 

(4) 

(5) 
(6) 

~'LI2 pst(x)dx = 1. One con- where Z is a normalization factor such that  J-L~2 
eludes that  not only the magnitude, but also the direction of the flux is a 
complicated function of the characteristics of the system. Note that  the flux 
(6) is zero in the absence of multiplicative noise - in agreement with the 
fact that  detailed balance is then reestablished - or in the case of symmet-  
ric potentials. In general, it is difficult to give an intuitive prediction of the 
flux direction. As an example, consider the case Vl(X) = Vo(x). One easily 
sees from (5,6) that  the direction of (&) is, for large temperatures T, dic- 
tated by the sign of f L/:[Vg(y)]3dy and for small temperatures by that  of 

fi/2/~[Vg(y)]-ldy. One expects that  the two signs will, in many cases, be 
identical. But not necessarily so. In Fig.3, we schematically represent a very 
simple piecewise linear potential that  can display a flux reversal upon vari- 
ation of the temperature  T (Reimann 1997). Moreover, for 7" large, it turns 
out (not shown in the plot) that,  while the majori ty of particles is located to 
the left of the potential minimum, say at x = x0, the flux is directed towards 
the right, in contrast to what happens for dichotomic noise, cf. the discussion 
in the previous section. In other words, on average the particles surprisingly 
prefer to travel from their typical position x < x0 down to the potential  
minimum at x = x0 and then over the full barrier to their right ra ther  than 
to directly surmount the partial remaining barrier that  they typically see to 
their left. 

In conclusion, the white Gaussian noise driven pulsating ratchet will, con- 
t rary to some previous suggestions (Magnasco 1993, Leibler 1994, Mielke 
t995), typically display directed motion. The basic reason is tha t  multiplica- 
tive white Gaussian noise is not equivalent to an (effective) thermal  noise 
and generically breaks the symmetry  of detailed balance. The flux direction 
is a complicated function of the parameters,  including the possibility of flux 
reversals. For a more detailed discussion of this model we refer to Reimann 
1997. 
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Fig. 3. Example of a piecewise linear periodic potential V~ (x) = Vo(x) for which the  
corresponding white noise driven pulsating ratchet (1) experiences a flux reversal 
from (i} < 0 for small T to (~) > 0 for large T. 

3 N o i s e  I n d u c e d  P h a s e  T r a n s i t i o n s  

The pulsating ratchet naturally involves multiplicative noise. Since it has been 
found recently (Van den Broeck, Parrondo, and Total 1994, Van den Broeck, 
Parrondo, Toral and Kawai 1997, and further references therein) that  such 
a multiplicative noise can induce genuine nonequilibrium phase transitions, 
displaying broken ergodicity and symmetry breaking, it is quite natural  to 
investigate this possibility and its implications in the context of Brownian 
motors. To introduce the phenomenon of noise induced phase transitions, 
we turn to the simplest example of multiplicative noise, namely the Malthus 
equation for population growth with a fluctuating birth and death rate: 

(-1 + v/gOe) (7) 

Given an initial condition at time t -- 0, the solution reads: 
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{ /i } x(t) = x(0) exp - t  + V / ~  f ( r )d7  (8) 

Considering again the case of Gaussian white noise, cf. (2), one easily verifies 
that  f0 t @(r)dr, which is nothing but the displacement of a free Brownian 
particle after a time t, is a Gaussian random variable with average zero and 
second moment equal to t. Hence this term is, with probability one, of the 
order of v~ and one concludes that  x(t) approaches 0 in the long time limit 
with probability one. On the other hand, one easily verifies from (8) and (2) 
that: 

(x(t)> = x(0) exp{- t  + Qt} (9) 

so that  the average diverges for Q > 1 ! The fact that  typical and average 
behavior do not coincide is not really a surprise, just because of the multi- 
plicative nature of the noise. Indeed, it is well known that  the process x(t)  in 
(7) gives rise to a probability distribution with a long tail, and the behavior 
of (x(t)) is entirely dominated by the exponentially unlikely realizations in 
the tail. Hence, the obvious conclusion seems to be that  this divergence is a 
mathematical  peculiarity, and it will never (that is, with probability zero) be 
observed in, for example, a numerical simulation of (7). Furthermore, it turns 
out that  the long-time limit of the first moment (9), and also of any higher 
moment, is regularized so as to approach zero by an arbitrarily small "satu- 
ration term", e.g., e x 3, on the right hand side of (7). In other words, nothing 
of interest then happens for any initial condition x(0) and any strength Q of 
the noise. 

The situation is, however, more subtle when one considers a set of N 
coupled elements {xi, i = 1 , . . . ,  N}, each obeying an equation similar to (7): 

N 
: ( - 1  ÷ 

j = l  
(10) 

with independent Gaussian white noises fi. For simplicity, we consider global 
coupling and take the thermodynamic limit N ~ co. In this limit (Desai and 
Zwanzig 1978, Dawson 1983, Bonilla 1987, Strogatz and Mirollo 1991), each 
element xi = x is coupled to the mean field 

N 1 
(x) = g-+oolim ~ E xj  (11) 

j = l  

according to 

= ( - l + v ~ f )  x - K ( x  2 (12) 

from which (x> has to be determined self-consistently. The result of this sim- 
ple analysis (Van den Broeck and Kawai 1998) is that,  for any K > 0, Q = 1 
is now the threshold for a nonequilibrium phase transition between a state 
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of extinction (x(t)) t~_+oo 0 and explosion (x(t)) t~_~ oe. The interpretat ion is 
that  the exceptional members of the ensemble, namely those that  are respon- 
sible for the divergence of the first moment,  become very influential through 
the global coupling and in fact drive the whole system into a new macro- 
scopic state. In contrast to the single particle case, this explosion can now 
be easily seen in a computer simulation, even for relatively small sizes N.  
At first, one might still believe that  the above situation is rather artificial, 
and maybe due to the peculiarities of the model under consideration. But  
it turns out that  the appearance of such a noise-induced phase transition is 
a very robust phenomenon. It persists for nearest neighbor coupling in low 
dimensions (the present model in fact displays this phase transition even in 
d = 1), in the presence of nonlinearities (e.g., a "saturat ion-term" c x~), and 
for other types of parametric perturbations including periodic ones (Van den 
Broeck and Kawai 1998). In fact, it can even appear for nonlinear models that  
have no instability in the absence of noise (Van den Broeck, Parrondo,  and 
Toral 1994, Van den Broeck, Parrondo, Total and Kawai 1997). Typically, the 
phase diagram becomes more complicated, including the appearance of a re- 
entrance phenomenon with respect to the noise intensity and /or  the strength 
of the spatial coupling. 

The situation described in (10) is that  of a pulsating harmonic potential.  
To transform this into a model for Brownian motors, we have to make a few 
modifications. First, we would like to have a periodic potential,  but  in con- 
trast to "conventional" ratchet models, without any spatial asymmetry. This 
is easily achieved by replacing xi by sin xi in the first term on the r.h.s, of 
(10). We will, mostly for the sake of analytic tractability, also assume that  the 
interaction has exactly the same periodicity and make the replacement xi - x j  
by sin(xi - xj). Such a type of coupling appears for example in the planar 
X - Y spin model (Arenas and Vicente 1994) or in models of phase synchro- 
nization of oscillators (Winfree 1980, Kuramoto  1984, Sompolinsky, Golomb, 
and Kleinfeld 1991, Swift, Strogatz, and Wiesenfeld 1992, Hansel, Mato, and 
Meunier 1993). Second, we need to include the thermal motion of the parti- 
cles, which can be done by including an extra independent Gaussian white 
noise ~ ~ acting on each particle. As explained in the previous section, 
the white noises representing the pulsating ratchet and the one representing 
thermal motion can be combined into a single white noise contribution. We 
are thus led to the following model of coupled Brownian motors: 

N 

. - K ~ sin(xi - xj)  (13) xi = - sin xi + v /2T  + 2Q sin 2 xi ~i - -~ 
j=l  

One expects that  the nonequilibrium phase transition out of the "absorbing" 
state (x = 0 modulo 21r) is still present in this system, since sin x = x for 
x small. Furthermore, one expects that  this transition is accompanied by a 
breaking of the x --+ - x  symmetry, thus leading to an effective ratchet poten- 
tial that  produces a flux of particles (Jiilicher and Prost 1995), notwithstand- 
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ing the absence of a system-intrinsic preferential direction in (13). As it turns 
out (Reimann, Kawai, Van den Broeck, and H~nggi 1998), the symmet ry  
breaking indeed takes place, however, without the appearance of a current, 
due to a hidden "accidental" symmetry  in the model (13). We therefore turn,  
in the next section, to the discussion of a white noise driven pulsating ratchet  
in the presence of a somewhat more general pulsating potential  than in (13). 

4 Collective Motion 
by Spontaneous Symmetry Breaking 

As a generalization of both (1) and (13) we consider the following model of 
coupled Brownian motors (geimann,  Kawai, Van den Broeck, and H/inggi 
1998): 

K N 
ici = -V~(xi)  + v /2T  + 2Q[Vg(xi)] 2 4i - -~ E s i n ( x i -  xy) . 

j = l  

(14) 

By exploiting sin(xi - xj) = sin xi cos xj - -COS X i sin xj and with the defini- 
tions: 

N 
lim ~ Ec°sxj = ( c o s x } = c  

N-.-+ oo j = l  
N ( 1 5 )  

lim ~ ~ s i n x j  = ( s i n x }  = s  
N--+ oo j = l  

one sees, similarly as in (10-12), that  in the thermodynamic limit N --+ cx~, 
every Brownian particle x = xi in (14) becomes coupled to a mean field 
(Desai and Zwanzig 1978, Dawson 1983, Bonilla 1987, Strogatz and Mirollo 
1991) characterized by two order parameters c and s: 

= - V / ( x )  + ¢ 2 T  + 2Q[Vd(x)] 2 ~ - K (csin x - s cos x) , (16) 

where we dropped the subscript i and where c and s have to be determined 
self-consistently from the solution P(x)  of (16) with the definitions given in 
(15). Since (16) is a particular case of (1), the "steady state" properties can 
be copied from (3-6) with as only modification the replacement: 

V1 (x) --+ V1 (x) - K (c cos x + s sin x) . (17) 

This makes explicit our earlier statement that ,  for such a model with a perfect 
x --+ - x  symmetry,  a noise-induced symmetry  breaking phase transition im- 
plying the appearance of a value s ~ 0 for this order parameter,  will produce 
an effective asymmetric ratchet potential  through the presence of the s sin x 
contribution in (17), making possible the appearance of a flux (Jfilicher and 
Prost 1995). Again the flux can be copied from the general expression given 
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in (6), and the only remaining difficulty is the solution of the self-consistent 
equations for s and c, cf. (15) together with (3-6) and (17). 

To illustrate the characteristic features of  our coupled ratchet  sys tem (13), 
we concentrate on the following specific model: 

Vo(x) = Vl(x) = - c o s x  - A c o s 2 x  (is) 

Note tha t  for A = 0, we recover the model (13). The addit ional  t e rm in 
cos2x does not break the x -+ - x  invariance, but  it removes the above- 
mentioned "accidental" symmet ry  of the model (13). (Any other modificat ion 
of the lat ter  model will generically break this symmet ry  as well, for instance, 
potential  fluctuations with a finite correlation in time.) As expected f rom 
the discussion in the previous section, the model (14) with (18) undergoes 
a noise-induced symmet ry  breaking phase transit ion with the appearance of 
s ~ 0 solutions. The symmet ry  breaking region was determined numerical ly 
f rom (3,15,17) and is represented in Fig.4. The  dependence of the associated 
flux (6) upon A in this region of spontaneously broken s y m m e t r y  is quite 
interesting: A = 0 turns out to be the point of flux reversal. For A < 0, 
the flux occurs in the same direction as the symmet ry  breaking (i.e., s > 0 
gives a flux to the right, while it is to the left if the symmet ry  happens 
to break to the other side, i.e. s < 0). In contrast,  for A > 0, one has 
symmet ry  breaking and flux with opposite signs. 6 /.From the point of view 
of the mean field description (16), characterized by an asymmetr ic  effective 
ratchet  potential  (17) for s ¢ 0, this result is not really surprising since we 
mentioned before tha t  the flux direction depends sensitively on the details of 
the model  (see Fig.3 and the discussion below (6)). But  since the a s y m m e t r y  
here is produced by the effect of the symmet ry  breaking on the coupling 
term, which is a collective property, it has quite remarkable  consequences 
(Reimann,  Kawai, Van den Broeck, and H/inggi 1998). 

First, we consider the response properties of the system, for A > 0, with 
respect to a constant external force F.  Such a force can be derived f rom an 
extra  potential  contribution - F x  to V1 (x), and is t an t amoun t  to a tilting of 
the potential.  A typical hysteresis curve is reproduced in Fig.5. I t  displays 
a remarkable  anomalous behavior in comparison with the usual hysteresis- 
loops, e.g., in a ferro-magnet,  which can nevertheless be intuitively explained 
as follows. Consider the upper branch with a positive flux (~} > O. As ex- 
pected, this flux increases upon acting with a force F > O. But  at a critical 

6 A computer animation of this phenomenon is available on the internet under 
http://yukawa.phy.uab.edu/research/motor. It is based on simulations of (14,18) 
with N = 1000, T = 2, Q = 4, K = 10, A = 0.15 (cf. also Figs.4 and 5). Out 
of the 1000 particles, 100 are shown as green dots and one "tracer-particle" as 
a red dot. The position x = - l r  is identified with x = rr (periodic boundary 
conditions). The initial particle distribution is symmetric about x = 0. After a 
spontaneous breaking of the symmetry "to the right" (s > 0) an average particle 
current "to the left" ((4) < O) can be observed. 
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Fig. 4. Phase diagram for model 14,18) with T = 2 and A = 0.15 in the thermody- 
namic limit N --+ o% computed according to (3-6,15,17). (~) is the particle current 
and s = (sin x) the order parameter (15) in the steady state. Arrow: asymptotic 
phase boundary for K -+ oo. 

value of this force, the upper branch solution looses stability, and an abrupt  
transit ion to the lower branch, including a reversal of the flux to (2) < 0, 
takes place. Put  differently, given a spontaneous current in one or the other 
direction, we can apply a small additional force F in the same direction 
with the expected result of an increased current in tha t  direction. But  upon 
further increasing F,  the current will, all of a sudden, switch its direction 
and run opposite to the applied force! This astonishing feature clearly can 
only arise for an anomalous hysteresis-loop (Fig.5). To understand what  is 
happening,  we recall tha t  @} > 0 for F = 0 implies tha t  one is in the sym- 
met ry  broken state s < 0, corresponding to a probabil i ty density Pst(x) tha t  
is concentrated in the region x < 0 of the "fundamental  cell" [-L/2 ,  L/2]. 
However, as the potential  is tilted to the right, this solution eventually looses 
its stabili ty and the system switches abrupt ly  to the only remaining s teady 
state solution with s > 0 and a strong flux, due to the specificities of the 
ratchet potential,  to the left (2) < 0. Note that  upon a further increase of 
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F ,  the stabil i ty of  this solution is also eventual ly  compromised  (Fig.5) and  
a t ime-dependent  state,  character ized by oscil lating flux, sets in t h rough  an 
infinite period bifurcat ions (Shinomoto  and K u r a m o t o  1986). 
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Fig.  5. Anomalous hysteresis-loops of the steady state current (k) vs. force F for 
model (14,18) with T = 2, Q = 4, K = 10, A = 0.15. Solid: N -4 oo by solv- 
ing (3-6,15,17). Crosses: simulations of (14,18) for N -= 1024, averaged over 10 
realizations. Interconnected dots: simulations for nearest-neighbor instead of global 
coupling in (14) on a 64*64 square lattice with periodic boundary conditions and 
with modified parameters Q ~ 10, I (  = 20, averaged over 10 realizations. Dashed: 
time averaged current (for N -4 oo) in the regime of an oscillatory long time limit. 

The  mechan i sm explaining the anomalous  hysteresis suggests another  in- 
terest ing question:  can the s y m m e t r y  breaking of  a potent ia l ,  induced by the  
mere  act ion of  an external  force, produce  a ra tchet  with a flux in the  di rect ion 
opposi te  to  the  force? In the case of  a single particle,  one easily concludes  

0A~ f rom (6) by including a te rm - F x  in Vl(Z), t h a t  the  mobi l i ty  b -= 0g f = o  
is always positive, b > 0, provided tha t  the unpe r tu rbed  s i tua t ion  displays 
no flux. Hence a force, applied to  a zero flux si tuat ion,  always induces, as 
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expected, a flux in the direction of F.  Considering however the case of cou- 
pled Brownian particles, it is clear tha t  the effect of an external force is now 
two-fold. An extra te rm - F x  appears in the potential  Vl(x), but  on top of 
tha t  the interaction contribution - K ( c c o s  x + s sin x) in (17) also changes, 
since the presence of F affects the steady state distribution PSt(x) of the 
particles. The following hand-waving argument  turns out to be in agreement  
with a more detailed analysis (Reimann, Kawai, Van den Broeek, and H~nggi 
1998). We consider A > 0, and choose a set of parameters  just  outside the 
symmet ry  broken region. When applying a force, say F ~ 0, the probabi l i ty  
distribution PSt(x) will be deformed with a major i ty  moving in the direction 
of the force, so that  the average of the sin becomes negative: s -- s (F)  < 0. 
As a result, each of the particles now perceives in addition to the s y m m e t r y  
breaking te rm - F x  a second symmet ry  breaking te rm -Ks(F)s in  x. Fm'- 
thermore,  since one is close to the phase transit ion boundary  with s as the 
order parameter ,  one expects the usual divergence of the susceptibility, i.e., 
s(F) -- xF  with X positive and very large, suggesting tha t  the deformat ion 
of the potential ,  - K x s i n  xF, due to the indirect effect of the force on the 
distribution of the particles, is much larger than the the direct external force 
contribution - x F .  The system is thus in essentially the same si tuat ion as 
when it is in the symmet ry  broken region s ~ 0 in the absence of any force. 
But the ratchet mechanism then implies a flux in a direction opposite to s, 
hence opposite to F.  In other words, we expect a negative zero-bias mobility 
which diverges as we get closer to the phase boundary  (of. Fig.4). This aston- 
ishing effect is indeed observed, of. Fig.6. Furthermore,  both the anomalous  
hysteresis and negative mobili ty persist when one replaces the mean field 
coupling by a 2-dimensional nearest neighbor coupling on a square lattice. 
Simulation results for these cases are included in Figs.5 and 6. 

5 D i s c u s s i o n  

Though the ratchet effect, that  is, the conversion of unbiased fluctuations 
into useful work, is a familiar every-day experience in many  respects, in m a n y  
others it is quite unexpected and intriguing. Our simple model f rom Sect.2 
is especially appealing in tha t  it allows a full analytical t rea tment ,  demon-  
strates that  white Gaussian noise sources alone are sufficient, and reproduces 
the main  effects known from more complicated models, as reviewed, e.g., 
in H£nggi and Bartussek 1996, Astumian 1997, Jiilicher, Ajdari, and Prost  
1997./,From those numerous studies it becomes increasingly clear tha t  break- 
ing thermal  equilibrium, or equivalently, breaking the symmet ry  of detailed 
balance, in whatever way in a spatially periodic system, is generically suffi- 
cient for the ratchet  effect to manifest  itself. We thus more and more return 
to Feynman 's  point of view tha t  the absence of directed t ransport  in spite of 
a broken spatial  symmet ry  is the truly astonishing situation. In general, the 
occurrence of a finite current should be the rule rather than the exception. 
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Fig. 6. Same as Fig.5 but for Q = 2, K = 8 (global coupling) and Q = 6, K = 15 
(nearest neighbor coupling). 

In Sect.3 we reviewed a further "minimal  model" for a completely different 
phenomenon induced by multiplicative noise when many  Brownian particles 
are coupled, namely non-equilibrium phase transitions and breaking of er- 
godicity. Much like in a social context, a few very exceptional members  may  
drag, by way of collective mechanisms, the whole system into a completely 
new state. Both, sufficiently strong (multiplicative) fluctuations and coupling 
are indispensable for such a phase transition. 

Combining the ingredients of Sects.2 and 3 we finally came up in Sect.4 
with a model for collective Brownian motors  where, however, the usually 
built-in spatial  a symmet ry  of the system is now subst i tuted by a spontaneous 
symmet ry  breaking via a noise-induced non-equilibrium phase transition. 
Through the coupling, each particle then experiences an effective periodic 
potential  with broken symmet ry  which, in concert with the non-equil ibrium 
fluctuations, give rise to a directed spontaneous particle current in anal- 
ogy to the "conventional" ratchet-effect. We remark that  coupled Brownian 
motors  have been discussed before in the l i terature by Der~nyi and Vicsek 



                        109 

1995, Jiilicher and Prost 1995, Marchesoni 1996, Hgussler, Bartussek, and 
Hgnggi 1997, Csahdk, Family, and Vicsek 1997, Jiilicher, Ajdari, and Prost  
1997. Especially, Jiilicher and Prost 1995 demonstrated in a somewhat dif- 
ferent model of spatially symmetric, globally coupled Brownian motors the 
generation of a directed current by way of spontaneous symmetry  breaking 
and the closely related features of coexisting phases, first-order transitions, 
and normal hysteresis. The model that  we introduced here, however, displays 
anomalous effects in response to an externally applied force that ,  to our 
knowledge, are completely new. Basically, they are the result of a competi-  
tion between the effect of the external bias, favoring current in its direction, 
and the effective ratchet-potential  that  arises as a collective property and 
pumps particles in the opposite direction. 
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