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Abstract

The global behavior of a dynamical system can be described by
its Morse decompositions or its attractor and repeller configurations.
There is a close relation between these two approaches and also with
(maximal) chain recurrent sets that describe the system behavior on
finest Morse sets. These sets depend upper semicontinuously on pa-
rameters. The connection with ergodic theory is provided through the
construction of invariant measures based on chains.
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1. Introduction

This paper elaborates on some notions and results in the theory of dynam-
ical systems in continuous time, due to C. Conley. We stress the relations
between chain transitivity, Morse decompositions and attractors. While
many of the individual results in this paper are known, they have not been
presented in a unified way that explores all the connections. The paper is
mostly self-contained (except for a few topological results), and presents
several examples to stress the core concepts of global behavior. It is an
extended version of Appendix B in [7].

In Section 2 we recall some basic properties of compact metric spaces.
Section 3 discusses the basic concepts of continuous flows on compact metric
spaces with time in the real line R. Sections 4, 5, and 6 analyze the rela-
tions between Morse decompositions and attractors, Morse decompositions
and chain recurrence, and chain recurrence and attractors, respectively.
Section 7 is devoted to the construction of invariant measures based on
chains. The final Section 8 considers families of dynamical systems and
shows that maximal chain transitive sets depend upper semicontinuously
on parameters.

Conley’s theory of flows on compact metric spaces also allows the con-
struction of generalized Lyapunov functions outside of the chain recurrent
set. For an elaboration of this point of view, see Robinson [22, Section 9.1]
or Easton [11].

2. Metric Spaces

This paper considers continuous dynamical systems on compact metric
spaces. For these, we recall a few basic concepts and theorems.

Definition 2.1. A metric space (X, d) is a set X together with a distance
function d : X ×X → R such that for all points x, y, z ∈ X the following
holds: (i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y, (ii) d(x, y) =
d(y, x), and (iii) d(x, z) ≤ d(x, y) + d(y, z).

A metric space X is compact if every sequence in X has a convergent
subsequence. This is equivalent to each of the following conditions (cp.,
e.g., Pedersen [19, Theorem 1.6.2 ]):

(i) Each cover X =
S
α Vα by open subsets Vα with α in some index set

has a finite subcover.
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(ii) If ∆ is a family of closed subsets of X, such that no intersection of
finitely many sets in ∆ is empty, then the intersection of all sets in ∆ is
nonempty.

Note that condition (ii) implies, in particular, that every decreasing
(with respect to set inclusion) family of nonempty closed subsets of X has
nonvoid intersection.

A metric space X is compact if and only if it is complete (i.e., each
Cauchy sequence has a limit) and it is totally bounded; this property means
that for every ε > 0 there are finitely many points x1, ..., xn ∈ X such that

X =
n[
i=1

{y ∈ X, d(y, xi) < ε}

(see, e.g., Engelking [12, Theorem 4.3.29]). Furthermore, every compact
metric space has a countable basis of its topology, i.e., there are countably
many open sets Vn, n ∈ N , such that every open set V can be written as
the union of sets Vn.

Theorem 2.2 (Baire). The countable intersection of open and dense sub-
sets in a complete metric space is dense.

A proof is given, e.g., in Pedersen [19, Proposition 2.2.2.] or Engelking
[12, Corollary 3.9.4].

Theorem 2.3 (Blaschke). The set of nonvoid closed subsets of a com-
pact metric space becomes a compact metric space under the Hausdorff
distance

dH(A,B) = max

½
max
a∈A

∙
min
b∈B

d(a, b)

¸
, max
b∈B

∙
min
a∈A

d(a, b)

¸¾
.(2.1)

In fact, one can verify that this space is complete and totally bounded
and hence compact.

3. Flows

We start with some basic concepts and properties for continuous dynamical
systems on compact metric spaces with an emphasis on Conley’s theory [8],
[9]. For a thorough analysis see, in particular, Akin [1], Robinson [22], and
Katok and Hasselblatt [15]. For generalizations to the case of noncompact
metric spaces, see Rybakowski [24] and Hurley [14].
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Definition 3.1. A flow or continuous time dynamical system on a metric
space X is given by a continuous map Φ : R × X → X that satisfies
Φ(0, x) = x and Φ(t+ s, x) = Φ(t,Φ(s, x)) for all x ∈ X and all t, s ∈ R.

In the following we frequently use the suggestive notations x·t := Φtx :=
Φ(t, x) for t ∈ R and x ∈ X. The orbit of a point x ∈ X is then {y ∈ X,
there is t ∈ R with y = Φ(t, x)} = x ·R.

Definition 3.2. The ω-limit set of a subset Y ⊂ X is defined as

ω(Y ) =

(
y ∈ X,

there are tk →∞ and yk ∈ Y
such that yk · tk → y

)
=
\
t>0

cl (Y · [t,∞)) .

Similarly

ω∗(Y ) =

(
y ∈ X,

there are tk → −∞ and yk ∈ Y
such that yk · tk → y

)
=
\
t>0

cl (Y · (−∞,−t]) .

Note that, in general, ω(Y ) will be larger than the union of all ω(y), y ∈
Y , see Example 3.3. If the space X is compact, the sets ω(Y ) are nonvoid,
compact, and invariant. They are connected if Y is connected. The ω∗-
limit sets (often denoted as α-limit sets) are the ω-limit sets for the time
reversed system Φ∗(t, x) := Φ(−t, x), t ∈ R, x ∈ X. A point x ∈ X is
called recurrent if x ∈ ω(x).

Example 3.3. Consider the ordinary differential equation

ẋ = x(x− 1)(x− 2)2(x− 3)

on the compact interval X := [0, 3]. The solutions ϕ(t, x) of this equation
with ϕ(0, x) = x are unique and exist for all t ∈ R. Hence they define a
dynamical system Φ : R × [0, 3] −→ [0, 3] via Φ(t, x) := ϕ(t.x). The limit
sets of this system are of the following form: For points x ∈ [0, 3] we have

ω(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} for x = 0
{1} for x ∈ (0, 2)
{2} for x ∈ [2, 3)
{3} for x = 3.

Limit sets for subsets of [0, 3] can be entire intervals. E.g., for Y = [a, b]
with a ∈ (0, 1] and b ∈ [2, 3) we have ω(Y ) = [1, 2], which can be seen as
follows:
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Obviously, it holds that 1, 2 ∈ ω(Y ). Let x ∈ (1, 2), then limt→−∞Φ(t, x) =
2. We define tn := n ∈ N and xn := ϕ(−n, x) ∈ (1, 2) ⊂ Y . Then
Φ(tn, xn) = Φ(n,Φ(−n, x)) = x for all n ∈ N , which shows that ω(Y ) ⊃
[1, 2]. For the reverse inclusion let x ∈ (0, 1). Note that limt→∞Φ(t, a) = 1
and for all y ∈ [a, 1) and all t ≥ 0 we have d(Φ(t, y), 1) ≤ d(Φ(t, a), 1), where
d(·, ·) is the metric on [0, 3] inherited from R. Hence for any sequence yn
in [a, 1) and any tn → ∞ one sees that d(Φ(tn, yn), 1) ≤ d(Φ(tn, a), 1) and
therefore limn→∞ d(Φ(tn, yn), 1) ≤ limn→∞ d(Φ(tn, a), 1) = 0. This implies
that no point x ∈ (0, 1] can be in ω(Y ). The same argument applies to
x = 0, and one argues similarly for x ∈ (2, 3].
Furthermore, the limit set of a subset Y can strictly include Y , e.g., for
Y = (0, 3) it holds that ω(Y ) = [0, 3]:
We show that 0, 3 ∈ ω(Y ), the rest follows easily. Let x ∈ (0, 1). Define
yn := Φ(−2n, x) and xn := Φ(−n, x), then Φ(n, yn) = Φ(n,Φ(−2n, x)) =
Φ(−n, x) = xn and limxn = 0. Hence with tn := n and yn as above we
have Φ(tn, yn) → 0. The argument is similar for proving that 3 ∈ ω(Y ),
and for points in (0, 3).

Example 3.4. Consider the following dynamical system Φ inR2\{0}, given
by a differential equation in polar form for r > 0, θ ∈ [0, 2π), and a 6= 0:

ṙ = 1− r, θ̇ = a.

For each x ∈ R2\{0} the ω-limit set is the circle ω(x) = S1 = {(r, θ), r = 1,
θ ∈ [0, 2π)}.The state space R2\{0} is not compact, and α-limit sets exist
only for y ∈ S1, for which we have ω∗(y) = S1.

Example 3.5. For dynamical systems in R2 we have: A non-empty, com-
pact limit set of a dynamical system in R2, which contains no fixed points,
is a closed, i.e. a periodic orbit (theorem of Poincaré-Bendixson, see, e.g.,
[22]). Any non-empty, compact limit set of a dynamical system in R2 con-
sists of fixed points, connecting orbits (such as homoclinic or heteroclinic
orbits), and periodic orbits.

Definition 3.6. A flow on a metric space X is called topologically tran-
sitive if there exists some x ∈ X such that ω(x) = X; the flow is called
topologically mixing if for any two open sets V1, V2 ⊂ X there exists T > 1
such that

V1 · (−T ) ∩ V2 6= ∅.
Proposition 3.7. If a flow on a complete metric space is topologically
mixing, it is topologically transitive and {x ∈ X, ω(x) = X} is residual,
i.e., it contains a countable intersection of open and dense subsets.
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Proof. Topological mixing implies that for any two open sets V1, V2 ⊂ X
there exists a sequence tk →∞ such that

V1 · (−tk) ∩ V2 6= ∅.

Thus for all open V ⊂ X the set
S
t≥0 V · (−t) is dense in X, because

otherwise there would exist open sets V1 and V2 with
³S

t≥0 V1 · (−t)
´
∩V2 =

∅. Now for a countable basis Vn of the topology and m,n ∈ N the sets
Vn · (−m) are open. Then the sets

Xm,n :=
[
t≥m

Vn · (−t) =
[
t≥0
(Vn · (−m)) · (−t)

are open and dense. Hence, by Baire’s theorem (Theorem 2.2), the intersec-
tion

T
m,n∈N Xm,n is nonvoid. We claim that for every x in this set ω(x) =

X. It suffices to show that the closure of every basis set Vn has nonvoid in-
tersection with ω(x). Clearly, x ∈ Tm,n∈N Xm,n ⊂

T
n∈N

S
t≥m (Vn · (−t)).

This shows that x · tm ∈ Vn for a sequence tm →∞. 2
We note that related but different concepts of topological transitivity

and topological mixing are, e.g., discussed in [15]. The next result due to
Banks et al. [3] shows that a topologically transitive flow with a dense set
of periodic points also has sensitive dependence on initial conditions. Thus
it is chaotic in the sense of Devaney [10].

Definition 3.8. A flow Φ on a metric space X has sensitive dependence
on initial conditions if there is δ > 0 such that for every x ∈ X and every
neighborhood N of x there are y ∈ N and T > 0 such that d(y ·T, x·T ) > δ.

Proposition 3.9. Consider a flow Φ on a metric space X that is not a
single periodic orbit. If the flow is topologically transitive and has a dense
subset of periodic points, then it has sensitive dependence on initial points.

Proof. First observe that there is a number δ0 > 0 such that for all
x ∈ X there exists a periodic point q ∈ X whose orbit is a distance at
least δ0/2 from x. Indeed, choose two arbitrary periodic points q1 and q2
with disjoint orbits q1 · R and q2 · R. Let δ0 denote the distance between
the compact sets q1 · R and q2 · R. Then by the triangle inequality, every
point x ∈ X is a distance at least δ0/2 from one of the chosen two periodic
orbits. We will show that Φ has sensitive dependence on initial conditions
with sensitivity constant δ = δ0/8.
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Let x be an arbitrary point in X and let N be some neighborhood of x.
Because the periodic points of Φ are dense, there exists a periodic point p
in the intersection U = N ∩Bδ(x) of N with the open ball Bδ(x) of radius
δ centered at x. Let T denote the period of p. As we showed earlier, there
exists a periodic point q ∈ X whose orbit is a distance at least 4δ from x.
Set

V =
\

0≤t≤T
(Bδ(q · t) · (−t)) .

By continuous dependence on the initial value, the set V is open and non-
void because q ∈ V . Consequently, because Φ is topologically transitive,
there exist y in U and τ > 0 such that y · τ ∈ V .

Now let j be the integer part of τ/T + 1. Then 0 ≤ jT − τ ≤ T and,
by construction, one has

y · (jT ) = (y · τ) · (jT − τ) ∈ V · (jT − τ) ⊂ Bδ(q · (jT − τ)).

Now p · (jT ) = p, and so by the triangle inequality d(p·(jT ), y · (jT )) =
d(p, y · (jT ))
≥ d(x, q · (jT −τ))−d(q · (jT −τ), y · (jT ))−d(p, x). Consequently, because
y · (jT ) ∈ Bδ(q · (jT − τ)), one has

d(p · (jT ), y · (jT )) > 4δ − δ − δ = 2δ.

Thus, using the triangle inequality again, either d(x · (jT ), y · (jT )) > δ or
d(x · (jT ), p · (jT )) > δ. In either case, we have found a point in N whose
image after time jT is more than distance δ from the image of x. 2

Remark 3.10. The proof of Proposition 3.9 is adapted from discrete to
continuous time from Banks et al. [3].

4. Morse Decompositions and Attractors

The global behavior of flows on compact metric spaces can be described via
Morse decompositions, which are special collections of compact invariant
subsets. A set K ⊂ X is called invariant if x · R ⊂ K for all x ∈ K; a
compact subset K ⊂ X is called isolated invariant, if it is invariant and
there exists a neighborhood N of K, i.e., a set N with K ⊂ intN , such
that x ·R ⊂ N implies x ∈ K. Thus an invariant set K is isolated if every
trajectory that remains close to K actually belongs to K.
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Example 4.1. Consider the dynamical system discussed in Example 3.3.
Invariant sets for this system are the sets of the form {x∗}, where x∗ is
a fixed point, all closed intervals with fixed points at the boundaries, and
disjoint unions of these two types. Note that ’invariant’ means forward
(for t ≥ 0) and backward (for t ≤ 0) in time, hence this flow has no other
invariant sets. It is easily proved that all invariant sets of this system are
isolated invariant.

Example 4.2. Consider on the interval [0, 1] ⊂ R the ordinary differential
equation

ẋ =

(
x2 sin(πx ) for x ∈ (0, 1]

0 for x = 0.

Invariant sets for the associated flow include again sets of the form {x∗}
where x∗ is a fixed point. But the set {0} is not isolated invariant: Let
U(0, ε) be the ε−neighborhood of 0 in [0, 1]. Then there exists x ∈ U(0, ε)
with sin(πx ) = 0, i.e. x is a fixed point and hence Φ(t, x) = x ∈ U(0, ε) for
all t ∈ R.

Definition 4.3. A Morse decomposition of a flow on a compact met-
ric space is a finite collection {Mi, i = 1, ..., n} of nonvoid, pairwise dis-
joint, and isolated compact invariant sets such that:(i) For all x ∈ X one

has ω(x), ω∗(x) ⊂
n[
i=1

Mi. (ii) Suppose there are Mj0 ,Mj1 , ...,Mjl and

x1, ..., xl ∈ X \
n[
i=1

Mi with ω∗(xi) ⊂Mji−1 and ω(xi) ⊂Mji for i = 1, ..., l;

then Mj0 6=Mjl . The elements of a Morse decomposition are called Morse
sets.

Thus the Morse sets contain all limit sets and “cycles” are not allowed.
As an easy consequence of this definition we obtain the following equivalent
characterization.

Proposition 4.4. A finite collection {Mi, i = 1, ..., n} of nonvoid, pair-
wise disjoint, and isolated compact invariant sets is a Morse decomposition
if and only if condition (i) holds, ω∗(x) ∪ ω(x) ⊂ Mi implies x ∈ Mi, and
the following relation “¹” is an order (satisfying reflexivity, transitivity and
antisymmetry):
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Mi ¹Mk if
there are Mj0 =Mi,Mj1 , ...Mjl =Mk and x1, ..., xl ∈ X
with ω∗(xk) ⊂Mjk−1 and ω(xk) ⊂Mjk for k = 1, ..., l.

(4.1)

We enumerate the Morse sets in such a way that Mi ¹Mj implies i ≤ j.

Proof. The no-cycle condition (ii) in the definition of Morse decomposi-
tions is equivalent to the stated property of the limit sets and the antisym-
metry property of the order ¹. Transitivity is clear and reflexivity follows
from invariance of the Morse sets. The numbering is always possible, but
it need not be unique. 2

Note that i < j does not imply Mi ¹ Mj and that it does not imply
the existence of x ∈ X with ω∗(x) ⊂ Mi and ω(x) ⊂ Mj . Morse decom-
positions describe the flow via its movement from Morse sets with lower
indices toward those with higher ones.

A Morse decomposition {M1, ...,Mn} is called finer than a Morse de-
composition {M 0

1, ...,M
0
n0}, if for all j ∈ {1, ..., n0} there is i ∈ {1, ..., n} with

Mi ⊂M 0
j . The intersection of two Morse decompositions {M1, ...,Mn} and

{M 0
1, ...,M

0
n0} defines a Morse decompositionn

Mi ∩M 0
j , i, j

o
,

where only those indices i = 1, ..., n, j = 1, ..., n0 with Mi ∩M 0
j 6= ∅ are

allowed. Note that, in general, intersections of infinitely many Morse de-
compositions do not define a Morse decomposition. In particular, there
need not exist a finest Morse decomposition. The intersection of all Morse
decompositions for a flow need not be a countable set. It may form a Can-
tor set; see [1, p.25] (and use Theorems 4.16 and 6.4). If there exists a
finest Morse decomposition, it is unique.

Example 4.5. Consider the dynamical system discussed in Example 3.3.
This flow has, e.g., the following Morse decompositions [1, 3] ¹ {0}, {0} º
{1} ¹ [2, 3], {0} º [1, 2] ¹ {3}, {1} ¹ {0} ∪ [2, 3], and others. It also has a
unique finest Morse decomposition {0} º {1} ¹ {2} ¹ {3}.

Example 4.6. Consider the dynamical system defined in Example 4.2.
Morse decompositions of the associated flow are, e.g., the setsMn := {{ 1n},
[0, 1

n+1 ] ∪ [
1

n−1 , 1]} for n ∈ N . Note that
T
Mn = {{0}, { 1n} for n ∈ N}

is not a Morse decomposition. This system does not have a finest Morse
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decomposition, since all the individual sets { 1n} for n ∈ N would have to
be included as Morse sets.

Morse decompositions can be constructed from attractors and their
complementary repellers. We will now define these rather intricate objects.

Definition 4.7. For a flow on a compact metric space X a compact invari-
ant set A is an attractor if it admits a neighborhoodN such that ω(N) = A.
A repeller is a compact invariant set R that has a neighborhood N∗ with
ω∗(N∗) = R.

We also allow the empty set as an attractor. A neighborhood N as
in Definition 4.7 is called an attractor neighborhood. Every attractor is
compact and invariant, and a repeller is an attractor for the time reversed
flow. Furthermore, if A is an attractor in X and Y ⊂ X is a compact
invariant set, then A ∩ Y is an attractor for the flow restricted to Y .

Example 4.8. Consider again the dynamical system discussed in Example
3.3. This system has, besides ∅ and the entire space [0, 3], three attractors,
namely {1}, [1, 2], and [1, 3]. The fact that these sets are indeed attractors
follows directly from the limit sets discussed in Example 3.3. To see that
there are no other attractors one argues as in Examples 3.3 and 4.1. Simi-
larly, the nontrivial repellers of this system are seen to be {0}, [2, 3], {3},
{0} ∪ [2, 3], and {0} ∪ {3}.

Example 4.9. Consider the complete metric space S1, the 1−dimensional
sphere, which we identify here with R/2π. On S1 the differential equation

ẋ = sin2 x

defines a dynamical system. For this flow, the only attractors are ∅ and
S1: Let A ⊂ S1 be an attractor, i.e. there exists a neighborhood N(A)
with ω(N) = A. For each point x ∈ S1 the limit set ω(x) contains at least
one of the two fixed points 0 or π, which implies that each attractor has
to contain at least one of the fixed points. Consider the point π and let
N(π) be any neighborhood. We have [π, 0] ⊂ ω(N) ⊂ A. Repeating this
argument for the fixed point 0, we see that [0, π] ⊂ A, and hence A = S1.

We note the following lemma.

Lemma 4.10. For every attractor neighborhood N of an attractor A there
is a time t∗ > 0 with cl (N · [t∗,∞)) ⊂ intN .
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Proof. Wemay assume thatN is closed. Suppose that there are tn →∞
and xn ∈ N with xn·tn /∈ intN . Hence we may assume that xn·tn converges
to some element x /∈ intN . This contradicts the assumption ω(N) = A.
2

Lemma 4.11. For an attractor A, the set A∗ = {x ∈ X, ω(x) ∩A = ∅}
is a repeller, called the complementary repeller. Then (A,A∗) is called an
attractor-repeller pair.

Proof. Let N be a compact attractor neighborhood of A. Choose t∗ > 0
such that cl (N · [t∗,∞)) ⊂ N and define an open set V by

V = X \ cl (N · [t∗,∞)).

Then X = N ∪ V . Furthermore V · (−∞,−t∗] ⊂ X \ N and therefore
V is a neighborhood of ω∗(V ) ⊂ X \ N ⊂ V . Hence ω∗(V ) is a repeller.
Furthermore, by invariance ω∗(V ) ⊂ A∗. The converse inclusion follows,
because A is isolated invariant. 2

Note that A and A∗ are disjoint. There is always the trivial attractor-
repeller pair A = X, A∗ = ∅.

Example 4.12. Consider again the dynamical system discussed in Exam-
ples 3.3 and 4.8. The nontrivial attractor-repeller pairs of this system are
A1 = {1} with A∗1 = {0} ∪ [2, 3], A2 = [1, 2] with A∗2 = {0} ∪ {3}, and
A3 = [1, 3] with A∗3 = {0}.

A consequence of the following proposition is, in particular, that in the
time reversed system the complementary repeller of A∗ is A.

Proposition 4.13. If (A,A∗) is an attractor-repeller pair and x /∈ A∪A∗,
then ω∗(x) ⊂ A∗ and ω(x) ⊂ A.

Proof. By definition of A∗ it follows that ω(x) ∩ A 6= ∅. Thus there
is t0 > 0 with x · t0 ∈ N , where N is a neighborhood of the attractor A
with ω(N) = A. Hence there cannot exist a point y ∈ ω(x) \A, and hence
ω(x) ⊂ A. Now suppose that there is y ∈ ω∗(x) \A∗. Thus by definition of
A∗ one has ω(y)∩A 6= ∅. Using continuous dependence on the initial value
one finds that there are tn → ∞ with x · (−tn) → A, and thus for n large
enough, x · (−tn) ∈ N . Clearly x · (−tn) · tn → x and hence ω(N) = A
implies that x ∈ A, contradicting the choice of x. Thus ω∗(x) ⊂ A∗. 2

Trajectories starting in a neighborhood of an attractor leave the neigh-
borhood in backwards time.
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Lemma 4.14. For a flow on a compact metric spaceX a compact invariant
set A is an attractor if and only if there exists a compact neighborhood N
of A such that x · (−∞, 0] 6⊆ N for all x ∈ N \A.

Proof. The necessity of the condition is clear because x · (−∞, 0] ⊂ N
implies x ∈ ω(N). Conversely, let N be a compact neighborhood of A such
that x · (−∞, 0]N for all x ∈ N \ A. Thus there exists a t∗ > 0 such that
x · [−t∗, 0]N for all x ∈ N ∩ cl(X \N). Now choose a neighborhood V of A
such that V · [0, t∗] ⊂ N . Then V · [0,∞) ⊂ N and hence ω(V ) = A and A
is an attractor. 2

This implies the following characterization of attractor-repeller pairs.

Lemma 4.15. Let (x, t) 7→ x · t be a flow on a compact metric space
X. Then a pair A, A∗ of disjoint compact invariant sets is an attractor-
repeller pair if and only if (i) x ∈ X \A∗ implies x · [0,∞)∩N 6= ∅ for every
neighborhood N of A, and (ii) x ∈ X \ A implies x · (−∞, 0] ∩N∗ 6= ∅ for
every neighborhood N∗ of A∗.

Proof. Certainly, these conditions are necessary. Conversely, suppose
that (i) holds and letW be a compact neighborhood of A withW ∩A∗ = ∅.
Then (ii) implies that x · (−∞, 0]W for all x ∈ W \ A. By Lemma 4.14
this implies that A is an attractor. Moreover, it follows from (i) that
ω(x)∩A 6= ∅ for all x ∈ X \A∗. Hence A∗ = {x ∈ X, ω(x)∩A = ∅} is the
complementary repeller of A. 2

The following result characterizes Morse decompositions via attractor-
repeller sequences (it is often taken as a definition; cp. Rybakowski [24,
Definition III.1.5 and Theorem III.1.8], Salamon [25], or Salamon and Zehn-
der [26].

Theorem 4.16. For a flow on a compact metric space X a finite collection
of subsets {M1, ...,Mn} defines a Morse decomposition if and only if there
is a strictly increasing sequence of attractors

∅ = A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ An = X,

such that

Mn−i = Ai+1 ∩A∗i for 0 ≤ i ≤ n− 1.
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Proof. (i) Suppose that {M1, ...,Mn} is a Morse decomposition. Define
a strictly increasing sequence of invariant sets by A0 = ∅ and

Ak = {x ∈ X, ω∗(x) ⊂Mn ∪ ... ∪Mn−k+1} for k = 1, ..., n.

First we show that the sets Ak are closed. Clearly, the set An = X is closed.
Proceeding by induction, assume that Ak+1 is closed and consider xi ∈ Ak

with xi → x. We have to show that ω∗(x) ⊂ Mn ∪ ... ∪ Mn−k+1. The
induction hypothesis implies that x ∈ Ak+1 and hence we have ω

∗(x) ⊂
Mn ∪ ... ∪Mn−k. Because ω∗(x) ⊂ Mj for some j ∈ {1, ..., n}, either the
assertion holds or ω∗(x) ⊂Mn−k. In order to see that the latter case cannot
occur, let V be an open neighborhood of Mn−k such that V ∩Mj = ∅ for
j 6= n − k. There are a sequence tν → ∞ and z ∈ Mn−k such that
x · (−tν) ∈ V and d(x · (−tν), z) ≤ ν−1 for all ν ≥ 1. Hence for every ν
there is a mν ≥ ν such that xmν · (−tν) ∈ V and d(xmν · (−tν), z) ≤ 2ν−1.
Because ω(xi)∪ω∗(xi) ⊂Mn∪ ...∪Mn−k+1 for all i, there are τν < tν < σν
such that xmν · (−σν) and xmν · (−τv) ∈ ∂V and xmν · (−t) ∈ cl V for all
t ∈ [τν , σν ]. Invariance of Mn−k implies that tν − τν → ∞ as ν → ∞.
We may assume that there is y ∈ ∂V with xmν · (−σν) → y for ν → ∞.
Then it follows that y · [0,∞) ⊂ cl V and hence by the choice of V one has
ω(y) ⊂Mn−k. Because Ak+1 is closed and invariant, we have y ∈ Ak+1 and
so ω∗(y) ⊂ Mn ∪ ... ∪Mk−n. The ordering of the Morse sets implies that
y ∈Mn−k, contradicting y ∈ ∂V .

If Ak is not an attractor, Lemma 4.14 implies that for every neigh-
borhood N of Ak there is x ∈ N \ Ak with x · (−∞, 0] ⊂ N. Then there
is j ≥ n − k + 1 with ω∗(x) ⊂ Mj . On the other hand x /∈ Ak implies
ω∗(x)Mn ∪ ... ∪Mn−k+1, hence ω∗(x) ∈ Mi for some i < n − k + 1. This
contradiction implies that Ak is an attractor.

It remains to show that Mn−i = Ai+1 ∩ A∗i . Clearly, Mn−i ⊂ Ai+1.
Suppose that x ∈ Mn−i \ A∗i . Then ω(x) ⊂ Ai and therefore ω(x) ⊂ Mj

for some j ≥ n − i + 1. This contradiction proves Mn−i ⊂ Ai+1 ∩ A∗i . If
conversely, x ∈ Ai+1 ∩A∗i , then ω∗(x) ⊂Mn ∪ ... ∪Mn−i. From x ∈ A∗i we
conclude

ω(x) ∩Mn ∪ ... ∪Mn−i+1 ⊂ ω(x) ∩Ai = ∅
and hence ω(x) ⊂ M1 ∪ ... ∪Mn−i. Now the definition of a Morse decom-
position implies x ∈Mn−i.

(ii) Conversely, let the sets Mj , i = 1, ..., n, be defined by an increasing
sequence of attractors as indicated earlier. Clearly these sets are compact
and invariant. If i < j, then Mn−i ∩Mn−j = Ai+1 ∩ A∗i ∩ Aj+1 ∩ A∗j =
Ai+1 ∩ A∗j ⊂ Aj ∩ A∗j = ∅; hence the sets Mi are pairwise disjoint. It
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remains to prove that for x ∈ X either x ·R ⊂Mj for some j or else there
are indices i < j such that ω∗(x) ⊂ Mn−j and ω(x) ⊂ Mn−i. There is a
smallest integer i such that ω(x) ⊂ Ai, and there is a largest integer j such
that ω∗(x) ⊂ A∗j . Clearly i > 0 and j < n. Now ω(x)Ai−1, i.e., x ∈ A∗i−1.
Thus by invariance x · R ⊂ A∗i−1 and ω(x) ⊂ A∗i−1. On the other hand,
ω∗(x)A∗j+1 and we claim that x ·R ⊂ Aj+1. In fact, otherwise x · t /∈ Aj+1

for some t ∈ R. If now x · t /∈ A∗j+1, then ω∗(x) ⊂ A∗j+1, a contradiction,
thus x · t ∈ A∗j+1 and so ω(x) ⊂ A∗j+1, again a contradiction. Hence indeed
x ·R ⊂ Aj+1.

Now j ≥ i− 1, because otherwise j + 1 ≤ i− 1 and thus Aj+1 ⊂ Ai−1,
which implies x ·R ⊂ A∗i−1∩Ai−1 = ∅. If j = i−1, then x ·R ⊂ A∗i−1∩Ai =
Mn−i−1. If j > i− 1, then ω(x) ⊂ A∗i−1 ∩Aj+1 ⊂ A∗i−1 ∩Ai =Mn−i+1 and
ω∗(x) ⊂ A∗j ∩Aj+1 =Mn−j . This proves the claim. 2

Corollary 4.17. Let {Mi, i = 1, ..., n} be the finest Morse decomposition
of a flow on a compact metric space, with order ¹. Then the maximal
(with respect to ¹) Morse sets are attractors, and the minimal Morse sets
are repellers.

Proof. The results follows directly from Proposition 4.13 and Lemma
4.14. 2

Example 4.18. We illustrate Theorem 4.16 by looking again at Example
3.3. For this system a strictly increasing sequence of attractors with their
corresponding repellers is A0 = ∅ ⊂ A1 = {1} ⊂ A2 = [1, 2] ⊂ A3 =
[1, 3] ⊂ A4 = [0, 3],
A∗0 = [0, 3] ⊃ A∗1 = {0} ∪ [2, 3] ⊃ A∗2 = {0} ∪ {3} ⊃ A∗3 = {0} ⊃ A∗4 = ∅.
The associated Morse decomposition is

M4 = A1 ∩A∗0 = {1}, M3 = A2 ∩A∗1 = {2},
M2 = A3 ∩A∗2 = {3}, M1 = A4 ∩A∗3 = {0}.

Example 4.19. Consider the dynamical system defined in Example 4.9.
According to Theorem 4.16 its only Morse decomposition is the trivial one
M = {S1}. This can also be seen directly from Definition 4.3 of a Morse
decomposition: The union of the Morse sets needs to contain all limit sets
of individual points x ∈ S1. In this example we have

ω(x) =

(
{π} for x ∈ (0, π]
{0} for x ∈ (π, 0].
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and

ω∗(x) =

(
{0} for x ∈ [0, π)
{π} for x ∈ [π, 0).

Assume that there are two Morse setsM1 andM2, with 0 ∈M1 and π ∈M2.
This violates the no-cycle condition (ii) of Definition 4.3. Hence the points
0 and π are in the same Morse set and the only Morse set is M = S1.

5. Morse Decompositions and Chain Recurrence

We will now introduce the concept of chain recurrence and elaborate its
relation to Morse decompositions.

Definition 5.1. For x, y ∈ X and ε, T > 0 an (ε, T )-chain from x to y is
given by a natural number n ∈ N , together with points

x0 = x, x1, ..., xn = y ∈ X and times T0, ...Tn−1 ≥ T,

such that d(xi · Ti, xi+1) < ε for i = 0, 1, ..., n− 1.

Note that the number n of ”jumps” is not bounded. Hence one may
introduce ”trivial jumps”. Furthermore, as the notation suggests, only
small values of ε > 0 are of interest.

Definition 5.2. A subset Y ⊂ X is chain transitive if for all x, y ∈ Y and
all ε, T > 0 there exists an (ε, T )-chain from x to y. A point x ∈ X is chain
recurrent if for all ε, T > 0 there exists an (ε, T )-chain from x to x. The
chain recurrent set R is the set of all chain recurrent points.

Note that we do not require in this definition that the considered (ε, T )-
chains lie in Y . It is easily seen that R is closed and invariant.

Example 5.3. Consider again the dynamical system discussed in Example
3.3. Obviously, all fixed points are chain recurrent points: just pick any
tn > 0 and any ε > 0 and consider chains of the type xn = Φ(tn, xn−1)
with x0 = x. In this example, there are no other points with this property,
which can be seen as follows: Consider a point x ∈ [0, 3] that is not a fixed
point and let δ := min d(x, x∗), where x∗ is a fixed point. Let ε := 1

3δ
and a := lim

t→∞
Φ(t, x). Let T := min{t > 0, d(Φ(t, x), a) = ε}. Fix ε, T

and consider (ε, T )−chains starting in x: x0 = x, y1 = Φ(t, x) for some
t ≥ T , then d(y1, a) ≤ ε, since convergence of Φ(t, x) to a is monotone.
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Pick x1 ∈ U(y1, ε) the ε−neighborhood of y1. Then d(x, x1) > ε and there
are two possibilities: (a) x1 /∈ {Φ(t, x), t ≥ 0}, in this case d({Φ(t, x1),
t ≥ 0}, x) ≥ 3ε. (b) x1 ∈ {Φ(t, x), t ≥ 0}, in this case d(Φ(t, x1), a)) ≤ ε
for all t ≥ T . Repeating the construction for y2 := Φ(t, x1) for some t ≥ T
and x2 ∈ U(y2, ε) we see that for all n ∈ N it holds that d(xn, x) > ε,
and hence there is no (ε, T )−chain from x to x. The key to this example
is that trajectories starting from x ’move away’ and cannot return, even
using jumps of size ε, to x or ω∗(x), because of the topology of the state
space [0, 3]. This is different in the following example.

Example 5.4. Consider the dynamical system defined in Example 4.9. In
this case we have R = S1: Let x ∈ S1 and ε, T > 0 be given, assume
without loss of generality that x ∈ (0, π]. Since limt→∞Φ(t, x) = π there
is t1 > T with d(Φ(t1, x), π) <

ε
2 . Pick x1 ∈ U(π, ε2) ∩ (π, 0). Because of

limt→∞Φ(t, x1) = 0 there is t2 > T with d(Φ(t2, x), 0) <
ε
2 . Furthermore

limt→−∞Φ(t, x) = 0 and hence there is t3 > T with x2 := Φ(−t3, x) ∈
U(0, ε2). Now x = x0, x1, x2, x3 = x is an (ε, T )-chain from x to x.
In a similar way one constructs for any ε, T > 0 an (ε, T )-chain from x to y
for any two points x, y ∈ S1, showing that this dynamical system is chain
transitive, and hence chain recurrent on S1.

The next proposition shows that in R only the existence of a positive
lower bound for the times in (ε, T )-chains is important.

Proposition 5.5. Consider y ∈ R and x ∈ X and let τ > 0. If for every
ε > 0 there exists an (ε, τ)-chain from x to y, then for every ε, T > 0 there
exists an (ε, T )-chain from x to y with all jump times equal to T .

Proof. We first claim that for every ε > 0 there is an (ε, 2τ)-chain
from x to y. By compactness of X the map Φ is uniformly continuous
on X × [0, 3τ ]. Hence there is δ ∈

¡
0, ε2

¢
such that for all a, b ∈ X and

t ∈ [0, 3τ ]:
d(a, b) < δ implies d(a · t, b · t) < ε

2
.

Now let a (δ, τ)-chain x0 = x, x1, ..., xm = y with times τ0, ...., τm−1 ≥ τ
be given. We may assume that τi ∈ [τ, 2τ ]. We may assume that m ≥ 2,
because we may concatenate this chain with a chain from y to y. Thus
there are q ∈ {0, 1, ...} and r ∈ {2, 3} with m = 2q + r. We obtain an
(ε, 2τ)-chain from x to y given by points

y0 = x, y1 = x2, y2 = x4, ..., yq = x2q, yq+1 = xm = y
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with times

T0 =
1X

i=0

τi, T1 =
3X

i=2

τi, ..., Tq =
mX

i=2q

τi.

This follows by the triangle inequality and the choice of δ. A consequence
of this claim is that for all ε > 0 and all T > 0 there is an (ε, T )-chain from
x to y. It remains to show that all jump times can be adjusted to Ti = T .

Consider an (ε/2, T )-chain ζ from x to y and a periodic (ε/2, T )-chain
ξ given by z0 = y, z1, ..., zm = y through y. For the concatenation of ζ and
ξ the same arguments as above show that one can adjust all jump times to
Ti = T except for the last one Tn−1 ∈ (0, T ). Observe that there is σ > 0
such that for all z ∈ X and all t ∈ [0, σ]

d(z,Φ(t, z)) < ε/2 .

Thus we can shift the jump points zi to Φ(σ, zi). Going repeatedly through
the periodic chain we can successively shift the jump points such that at
the end also the final time can be taken as T (cp. Szolnoki [28] for an
explicit construction). 2

Remark 5.6. For a discrete time dynamical system given by a homeomor-
phism f one defines ε-chains by requiring that the distance d(f(xi), xi+1) <
ε for all i (Easton [11]).The preceding proposition shows that the chain re-
current set of a flow Φ coincides with the chain recurrent set of the time−T
map f := Φ(T, ·), for any T > 0.

Theorem 5.7. The flow restricted to a maximal (with respect to set inclu-
sion) chain transitive subset of the chain recurrent set R is chain transitive.
In particular, the flow restricted to R is chain recurrent.

Proof. Let y, y0 ∈ Y ⊂ R, where Y is a maximal chain transitive set
in R. For every p ∈ N there is an (1/p, 1)-chain in X from y to y0, say
with x0 = y, x1, ..., xnp = y0 ∈ X and times T p

0 , ..., T
p
np−1 ∈ [1, 2]. Define

Kp =
Snp
i=0 {xi · [0, T

p
i ]}. By Blaschke’s theorem (Theorem 2.3), there exists

a subsequence ofKp converging in the Hausdorffmetric dH to some nonvoid
compact subset K ⊂ X with y, y0 ∈ K. We claim that for all x, z ∈ K and
all q ∈ N there is an (1/q, 1)-chain in K with times T q

0 , ..., T
q
nq−1 ∈ [1, 2]

from x to z. In particular, this implies K ⊂ Y and hence the assertion
follows.
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The claim is proved as follows. The flow is uniformly continuous on the
compact set X × [0, 2]. Hence there is a number δ > 0 such that

d(a, b) < δ implies d(a · t, b · t) < 1

3q
for all t ∈ [0, 3] .

Choosing p ∈ N with p > max
©
3q, δ−1

ª
and dH(Kp,K) < δ one can con-

struct a (1q , 1)-chain from x to z in K as required. 2

Proposition 5.8. A closed subset Y of a compact metric space X is chain
transitive if it is chain recurrent and connected. Conversely, if the flow on
X is chain transitive, then X is connected.

Proof. Suppose first that Y is chain recurrent and connected. Let
x, y ∈ Y and fix ε, T > 0. Cover Y by balls of radius ε/4. By compactness
there are finitely many points, say y1, ..., yn−1 ∈ Y such that for all z ∈ Y
there is yi with d(z, yi) < ε/4. Define y0 = x and yn = y. Because Y is
connected the distance between the points yi is bounded below by

3
4ε. Now

use that by chain recurrence of the flow there are (ε/4, T )-chains from yi
to yi for i = 0, 1, ...n− 1. Appropriate concatenation of these chains leads
to an (ε, T )-chain from x to y. Hence chain transitivity follows.

Conversely, let the flow on X be chain transitive. If X is not connected,
it can be written as the disjoint union of nonvoid open sets V andW . Then
these sets are also closed, hence compact and

ε0 := inf {d(v, w), v ∈ V, w ∈W} > 0.

Hence for ε < ε0/2 there cannot exist (ε, T )-chains from an element of V
to an element of W . 2

We obtain the following characterization of the connected components
of R.

Theorem 5.9. The connected components of the chain recurrent set R
coincide with the maximal chain transitive subsets of R. Furthermore, the
flow restricted to a connected component of R is chain transitive.

Proof. By Theorem 5.7 we know that the flow restricted to a maximal
chain transitive subset R0 of R is chain transitive. Hence by the second
part of Proposition 5.8 R0 is connected and thus contained in a connected
component of R. Conversely, the first part of Proposition 5.8 implies that
every connected component of R is chain transitive, because it is closed,
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chain recurrent, and connected. Hence the first assertion follows. The
second claim is an immediate consequence. 2

The connected components of R are called the chain recurrent compo-
nents.

Example 5.10. Consider again the dynamical system discussed in Exam-
ples 3.3 and 5.3. For this example, the components of the chain recurrent
set, i.e. the chain recurrent components are {0}, {1}, {2}, and {3}.

Example 5.11. An example of a flow for which the limits sets from points
are strictly contained in the chain recurrent components can be obtained
as follows: Let M = [0, 1] × [0, 1]. Let the flow Φ on M be defined such
that all points on the boundary are fixed points, and the orbits for points
(x, y) ∈ (0, 1) × (0, 1) are straight lines Φ(·, (x, y)) = {(z1, z2), z1 = x,
z2 ∈ (0, 1)} with limt→±∞Φ(t, (x, y)) = (x,±1). For this system, each
point on the boundary is its own α- and ω-limit set. The α-limit sets for
points in the interior (x, y) ∈ (0, 1) × (0, 1) are of the form {(x,−1)}, and
the ω-limit sets are {(x,+1)}. The only chain recurrent component for this
system is M = [0, 1]× [0, 1], which is also the only Morse set.

We also note the following simple lemma, which indicates a uniform
upper bound for the total time needed to connect any two points in a chain
recurrent component.

Lemma 5.12. Let R0 be a chain recurrent component and fix ε, T > 0.
Then there exists T̄ (ε, T ) > 0 such that for all x, y ∈ R0 there is an (ε, T )-
chain from x to y with total length ≤ T̄ (ε, T ).

Proof. By assumption, one finds for all x, y ∈ R0 an (
ε
2 , T )-chain from

x to y. Using continuous dependence on initial values and compactness,
one finds finitely many (ε, T )-chains connecting every x ∈ R0 with a fixed
z ∈ R0. One also finds finitely many (modulo their endpoints) (ε, T )-chains
connecting z with arbitrary elements y ∈ R0. Thus one ends up with finitely
many (ε, T )-chains connecting all points in R0. The maximum of their total
lengths is the desired upper bound T̄ (ε, T ). 2

6. Chain Recurrence and Attractors

We proceed to analyze the relation between chain recurrence and attractors,
leading to the main result in Theorem 6.4.
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Definition 6.1. For Y ⊂ X define the chain limit set

Ω(Y ) =

(
z ∈ X,

there is y ∈ Y such that for all ε, T > 0
there is an (ε, T )-chain from y to z

)
.

Furthermore, for ε, T > 0 define

Ω(Y, ε, T ) = {z ∈ X, there are y ∈ Y and an (ε, T )-chain from y to z} .

One easily sees that ω(Y ) ⊂ Ω(Y ).

Proposition 6.2. For Y ⊂ X the set Ω(Y ) is the intersection of all at-
tractors containing ω(Y ).

Proof. Note that Ω(Y ) =
T
ε,T>0Ω(Y, ε, T ), and for ε, T > 0 defineN :=

cl(Ω(Y, ε, T )). Then ω(N) ⊂ Ω(Y, ε, T ) ⊂ intN , where the second inclusion
follows because Ω(Y, ε, T ) is open and contained in N . Now let z ∈ ω(N).
Then there are tn →∞ and xn ∈ N with xn ·tn → z. Choose n0 ∈ N , δ > 0
and p ∈ Ω(Y, ε, T ) with d(p,xn0) < δ, tn0 > T, and d(xn0 · tn0 , z) < ε

2 ,
d(zn0 · tn0 , xn0 · tn0) < ε

2 for all z with d(z, xn0) < δ. By definition of p there
is an (ε, T )-chain from some y ∈ Y to p and we obtain

d(p · tn0 , z) ≤ d(p · tn0 , xn0 · tn0) + d(xn0 · tn0 , z) <
ε

2
+

ε

2
= ε.

Thus concatenation yields an (ε, T )-chain from y to z.

We have shown that A := ω(N) is a closed invariant set with neigh-
borhood N , hence an attractor. By invariance of Ω(Y ) we have A =
ω (cl(Ω(Y, ε, T ))) ⊃ Ω(Y ) ⊃ ω(Y ). Direct inspection shows that Ω(Y ) =
ω(Ω(Y )) in fact equals the intersection of these attractors containing ω(Y ).

Now suppose that A is any attractor containing ω(Y ). Let V be an open
neighborhood of A disjoint from A∗ and let t > 0 be such that cl V · t ⊂ V .
Let

0 < ε < inf {d(y, z), y ∈ V and z /∈ cl V · t} .

Choose T > t such that Y · T ⊂ clV · t. Then every (ε, T )-chain from Y
must end in V . Therefore, if ω(x) ⊂ A, then also Ω(x) ⊂ A and hence
Ω(Y ) is the intersection of all attractors containing ω(Y ). 2

This proposition implies, in particular, that a chain transitive flow has
only the trivial attractor A = X, because for every Y ⊂ X one has that
Ω(Y ) = X.
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Example 6.3. Consider again the dynamical system discussed in Example
3.3. For this dynamical system we have for any subset Y ⊂ [0, 3] that
ω(Y ) = Ω(Y ). The proof is a combination of Examples 3.3 and 5.3. But
Example 5.11 shows that strict inclusion may hold.

We obtain the following relation between the chain recurrent set and
attractors.

Theorem 6.4. The chain recurrent set R satisfies

R =
\
{A ∪A∗, A is an attractor} .

In particular, there exists a finest Morse decomposition {M1, ...,Mn} if and
only if the chain recurrent set R has only finitely many connected com-
ponents. In this case, the Morse sets coincide with the chain recurrent
components of R and the flow restricted to every Morse set is chain tran-
sitive and chain recurrent.

Proof. If A is an attractor and x ∈ X, either ω(x) ⊂ A or ω(x) ⊂ A∗.
If x ∈ R, then, by Proposition 6.2, x is contained in every attractor, which
contains ω(x). Hence x ∈ A ∪ A∗. Conversely, if x is in the intersection,
then x is in every attractor containing ω(x). Hence x ∈ Ω(x), that is x ∈ R.
If there exists a finest Morse decomposition, then the flow restricted to a
corresponding Morse set must be chain transitive, hence the Morse sets
are connected components of R. Conversely, the connected components
Mi of R define a Morse decomposition, because they are isolated invariant
sets ordered by (4.1). In fact, this is the finest Morse decomposition: Us-
ing the characterization of Morse decompositions via increasing attractor
sequences, one sees that a finer Morse decomposition would imply the exis-
tence of an attractor A such that A∩Mi is a proper subset of Mi for some
i, and hence this would be an attractor of the flow restricted to Mi. This
contradicts chain transitivity of Mi. 2

Remark 6.5. There are at most countably many attractors, cp. [1, Chap-
ter 3, Proposition 8] or [22, Lemma 9.1.7.].

Finally, we show chain transitivity of the flow restricted to a limit set.

Proposition 6.6. If the flow is topologically transitive, then it is chain
transitive. In other words, a flow restricted to an ω-limit set ω(x) with
x ∈ X is chain transitive.
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Proof. Because ω-limit sets are connected, it suffices by Proposition 5.8
to show that the flow restricted to ω(x) is chain recurrent. Define a flow
(y, t) 7→ y · t on [−1, 1] by the equation ẏ = 1− y2. On X× [−1, 1] define a
flow by (x, y) 7→ (x · t, y · t). Then Z = cl ((x, 0) ·R) is a compact invariant
set. By Theorem 6.4 the chain recurrent set contains all ω-limit sets, and
hence the chain recurrent set of the flow restricted to Z is

R(Z) = ω∗(x)× {−1} ∪ ω(x)× {1}.

By Theorem 5.7 the flow restricted to R(Z) is chain recurrent and the con-
nected components of R(Z) are chain transitive. Hence the flow restricted
to ω(x)× {1} and thus the flow restricted to ω(x) are chain recurrent. 2

7. Ergodic Theory for Chains

In this section we explain how the classical construction of invariant mea-
sures as occupation measures along trajectories can be generalized to the
construction along chains.

Standard references for the ergodic theory of flows are Katok and Has-
selblatt [15], Mañé [16], and Nemytskii and Stepanov [18]; see also Pollicott
[21]. Recall that a σ-algebra on a set X is a family A of subsets of X such
that X ∈ A, the complement of every A ∈ A is again in A, and count-
able unions of elements in A are in A; in particular, this implies that finite
intersections of elements in A are in A. For a metric space X the Borel σ-
algebra is the smallest σ-algebra containing all open (and hence all closed)
subsets of X; the elements of this σ-algebra are called Borel sets. A map
µ : A → R is a measure on a σ-algebra A, if for every countable family
(Ai)i∈N of pairwise disjoint sets Ai ∈ A

µ(
∞[
i=1

Ai) =
∞X
i=1

µ(Ai).

A probability measure is a measure with µ(X) = 1 and µ(A) ≥ 0 for all A.
For a flow Φ on a metric space X an invariant measure µ is a probability
measure on the Borel σ-algebra of X such that

µ(A) = µ(Φ−tA) := µ({x ∈ X, Φt(x) ∈ A})

for all t ∈ R and all Borel sets A. It suffices to require this condition
for all open (or all closed) subsets A ⊂ X. In the following, let X be a
compact metric space. Then the probability measures coincide with the
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Radon probability measures, that is the continuous linear functionals µ
from the space of continuous functions C(X) to R with µ(χX) = 1 where
χX(x) = 1 for all x ∈ X, and µ(f) ≥ 0 for all f ∈ C(X) with f(x) ≥ 0. The
support supp(µ) of a measure µ is the smallest closed subset K of X such
that µ(f) = 0 if f vanishes on K. An invariant measure is called ergodic if

µ(A∆(Φ−tA)) = 0 for all t ∈ R implies µ(A) = 0 or µ(A) = 1,

where for subsets A, B ⊂ X the symmetric difference is denoted by A∆B =
A\B∪B \A. The set of invariant measures is convex and weakly compact
and the extremal points are the ergodic measures; see [16, Proposition
II.2.5] or [15, Lemma 4.1.10].

A classical construction due to Krylov-Bogolyubov yields invariant mea-
sures as occupation measures along trajectories. Given x ∈ X and T > 0
define a continuous linear functional L on C(X) by

Lf :=
1

T

Z T

0
f(Φtx) dt.

This defines a Radon probability measure ν on X. For every sequence
Tk →∞ a subsequence of the corresponding measures νk converges weakly
to a Radon probability measure µx on X. This measure is in fact invariant
for the flow Φ (see, e.g., [18, Theorem VI.9.05]), and hence the set MΦ of
invariant measures is nonempty. This construction can be generalized to
obtain invariant measures via chains.

Let ζ be an (ε, T )-chain in X given by n ∈ N, Ti ≥ T, xi ∈ X, i =
0, 1, ..., n. Then a continuous linear functional Lζ on C(X) is defined by

Lζf =

Ã
n−1X
i=0

Ti

!−1 n−1X
i=0

Z Ti

0
f(Φtxi) dt.

For i = 0, ..., n− 1, the map

f 7→ 1

Ti

Z Ti

0
f(Φtxi) dt

defines a Radon probability measure νi onX. The measure ν corresponding
to Lζ is a convex combination of the νi, hence also a Radon probability
measure. Now consider for εk → 0, T k →∞ a sequence of (εk, T k)-chains
ζk, given by nk ∈ N, T k

i ≥ T k, and xki ∈ X for i = 0, ..., nk − 1, k ∈ N .
Define Lk for ζk as earlier with corresponding measure νk. As k → ∞, a
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subsequence of (νk) denoted again by (νk), converges weakly to a Radon
probability measure µ on X, i.e., we have for all f ∈ C(X)

lim
k→∞

⎛⎝nk−1X
i=0

T k
i

⎞⎠−1 nk−1X
i=0

Z Tki

0
f(Φtx

k
i ) dt =

Z
X
f dµ.(7.1)

Theorem 7.1. Let Φ : R × X −→ X be a continuous dynamical system
on the compact state space X. Then the measure µ defined in (7.1) is
invariant under the flow, that is, for all f ∈ C(X) it holds thatZ

X
f(x) dµ =

Z
X
f(Φτ (x)) dµ for all τ ∈ R.

Proof. This assertion is—as in the standard Krylov-Bogolyubov construction—

seen as follows: For τ ∈ R and all i, k

¯̄̄̄R Tki
0 f(Φt+τx

k
i ) dt−

R Tki
0 f(Φtx

k
i ) dt

¯̄̄̄
≤
¯̄̄̄R Tki
τ f(Φtx

k
i ) dt+

R Tki +τ
Tki

f(Φtx
k
i ) dt−

R Tki
0 f(Φtx

k
i ) dt

¯̄̄̄
≤ 2τ max |f(x)| . Hence for all δ > 0 and all T k > T > 0 large enough, one
has ¯̄̄̄

¯̄̄
⎛⎝nk−1X

i=0

T k
i

⎞⎠−1 nk−1X
i=0

(Z Tki

0

h
f(Φt+τx

k
i )− f(Φtx

k
i )
i
dt

)¯̄̄̄¯̄̄ < δ,

proving the assertion. 2

Remark 7.2. Further relations between ergodic limits and limits along
chains are explored in Colonius et al. [6].

8. Chain Recurrence for Families of Dynamical Systems

In general limit sets, Morse sets and chain recurrent components do not
depend continuously on system parameters, see, e.g., bifurcation scenarios
like the pitchfork or Hopf bifurcation, or the discussions and results on
control flows in [7]. However, an upper semicontinuity holds for chain
transitive sets, which will be made precise in this section.

Consider a family of dynamical systems on a compact metric space X
depending on a parameter α ∈ A ⊂ Rk of the form

Φ : A×R×X −→ R×X(8.1)
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where A is a (path) connected set and Φ is continuous in all components.
We need some properties of set valued maps Γ defined on a metric space A
with nonvoid value sets in a metric space X; compare, e.g., Castaing and
Valadier [5], Aubin and Frankowska [2], or Warga [29].

Definition 8.1. A set valued map Γ : A → X is lower semicontinuous
at α0 ∈ A if for all ε > 0 there is δ > 0 such that d(α, α0) < δ implies
that supx∈Γ(α0) d(x, Γ(α)) < ε. It is called upper semicontinuous at α0 ∈
A, if for all ε > 0 there is δ > 0 such that d(α, α0) < δ implies that
supx∈Γ(α) d(x, Γ(α0)) < ε.

Note that Γ is upper and lower semicontinuous if and only if it is con-
tinuous with respect to the Hausdorff metric (2.1). Furthermore, if Γ has
compact values, lower semicontinuity is equivalent to

Γ(α0) ⊂ lim inf
α→α0

Γ(α) :=

(
x ∈ X, for all αk → α in A

there are xk ∈ Γ(αk) with xk → x

)
.

Upper semicontinuity is equivalent to

Γ(α0) ⊃ lim sup
α→α0

Γ(α) :=

(
x ∈ X, there are αk → α in A
and xk ∈ Γ(αk) with xk → x

)
.

The following theorem shows that maximal (with respect to set inclusion)
chain transitive subsets Y ⊂ X depend upper semicontinuously on α ∈ A.

Theorem 8.2. Consider the parameter dependent system (8.1). For a
sequence αk → α0 in A consider maximal chain transitive sets Eαk ⊂ X
of (8.1)αk . Then there exists a maximal chain transitive set Eα0 of (8.1)α0

such that

lim sup αk→α0E
αk := {x ∈ X, there are xαk ∈ Eαk with xαk → x} ⊂ Eα0 .

Of course, the set on the left-hand side of this inclusion may be empty, in
which case the statement is trivial.

Proof. Pick y1, y2 in lim sup αk→α0E
αk . We have to show that y1 and y2

are in some chain transitive set of (8.1)α0 . Let ε, T > 0. We will construct
an (ε, T )-chain from y1 to y2. For i = 1, 2, one has yi = limk→∞ xik with
xik ∈ Eαk , k ∈ N. For all k ∈ N there are ( ε3 , T )-chains from x1k to x2k,
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i.e., there are nk ∈ N , zk0 , ..., z
k
nk
∈ X and tk0, ..., t

k
nk−1 ≥ T with zk0 = x1k,

zknk = x2k and

d(Φα
k
(tkj , z

k
j ), z

k
j+1) <

ε

3
for j = 0, 1, ..., nk − 1.(8.2)

Using compactness of X and continuity of the family Φα one finds k0 ∈ N
such that for all k ≥ k0, all z ∈ X, and all 0 ≤ t ≤ 2T

d(Φα0(t, z),Φαk(t, z)) <
ε

3
.(8.3)

We may choose k0 so large that we also have for k ≥ k0

d(Φα0(T, y1),Φαk(T, x1k)) <
ε

3
(8.4)

and
d(x2k, y

2) <
ε

3
.(8.5)

In the following, we will fix k ≥ k0 and drop the index k everywhere except
in αk. Define an (ε, T )-chain for αk from y1 to y2 in the following way. The
points are

y0,0 = y1, y0,1 = Φ
αk(T, x1), and for j = 1, 2, ..., n− 1

yj,i = Φ
αk(iT, zj), i = 0, 1, ..., ij , and yn = y2,

(8.6)

where ij ∈ N is such that (ij + 1)T ≤ tj < (ij + 2)T ; and the times are

t0,0 = T, and for j = 1, 2, ..., n− 1
tj,i = T , i = 0, 1, ..., ij − 1, tj,ij = tj − ijT .

(8.7)

In fact, this is an (ε, T )-chain from y1 to y2 with 1+
Pn−1

j=1 ij jumps of size
less than ε:

d(Φα0(t0,0, y0,0), y0,1) = d(Φα0(T, y1),Φαk(T, x1)) < ε

by (8.4); for i = 0, 1, ..., ij − 1, j = 1, ..., n− 1 d(Φα0(tj,i, yj,i), yj,i+1)
= d(Φα0(T,Φαk(iT, zj)),Φ

αk((i+ 1)T, zj))
= d(Φα0(T,Φαk(iT, zj)),Φ

αk(T,Φαk(iT, zj)))
< ε by (8.3); for i = ij , j = 0, 1, ..., n− 1 d(Φα0(tj,ij , yj,ij ), yj+1,0)
= d(Φα0(tj − ijT,Φ

αk(ijT, zj)), zj+1)
≤ d(Φα0(tj − ijT,Φ

αk(ijT, zj)),Φ
αk(tj − ijT,Φ

αk(ijT, zj)))
+ d(Φαk(tj , zj), zj+1)

< ε by (8.3) and (8.2). Finally, for j = n − 1 and i = ij = in−1
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d(Φα0(tj,i, yj,i), yj+1)
= d(Φα0(tn−1 − in−1T, yn−1,in−1), yn)
= d(Φα0(tn−1 − in−1T,Φαk(in−1T, zn−1)), y2)
≤ d(Φα0(tn−1 − in−1T,Φαk(in−1T, zn−1)),
Φαk(tn−1 − in−1T,Φαk(in−1T, zn−1)))
+ d(Φαk(tn−1, zn−1), x2) + d(x2, y2)

< ε
3 +

ε
3 +

ε
3 = ε by (8.3), (8.2), and (8.5). 2

In specific situations, stronger results are valid. One such situation is
given by a one-parameter family (8.1)α with α ∈ A ⊂ R and an increasing
family of chain transitive sets. This situation is common in the theory of
control flows, compare, e.g., [7]. Indeed, the following, more general result
holds.

Proposition 8.3. Let Γ be a set valued map defined on a real interval
[α∗, α∗), 0 ≤ α∗ < α∗ ≤ ∞, with compact values in a compact metric space
X and suppose that Γ is monotonically increasing, that is,

Γ(α) ⊂ Γ(α0) if α ≤ α0.

Then Γ is continuous (with respect to the Hausdorff metric) at all but at
most countably many points α0 ∈ [α∗, α∗).

Proof. Let {xn, n ∈ N} be a countable dense subset of X. Then
for every n ∈ N the map α 7→ cn(α) := d(xn,Γ(α)) is monotonically
decreasing, hence it has at most countably many points ρmn , m ∈ N , of
discontinuity (see Natanson [17] or Hewitt and Stromberg [13]). Thus it is
sufficient to show that every point α0 of discontinuity of Γ is also a point of
discontinuity for some cn. Then the countable set {αmn , n,m ∈ N} contains
all points of discontinuity of Γ. Let first α > α0 and consider

dH(Γ(α),Γ(α0)) = sup
x∈Γ(α)

d(x,Γ(α0)).

If limαk&α0 dH(Γ(αk),Γ(α0)) =: 3ε0 > 0, then there is for all k large enough
a point yk ∈ Γ(αk) ⊂ Γ(αm) for m ≤ k with d(yk,Γ(α0)) ≥ 3ε0. Every
cluster point y of this sequence satisfies y ∈ Γ(αk) for all k and d(y,Γ(α0)) ≥
3ε0. Then there is a point xn with cn(α0) = d(xn,Γ(α0)) ≥ 2ε0 and
d(xn, y) ≤ ε0; hence cn(αk) = d(xn,Γ(αk)) ≤ ε0 for all k. Thus cn is
discontinuous at α = α0. For αk % α0 one argues similarly. 2

Remark 8.4. Proposition 8.3 is known as Scherbina’s Lemma; see Pilyu-
gin [20, Lemma 4.1.3] and Scherbina [27]. Scherbina’s Lemma [20] states
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that increasing, compact-valued mappings defined on [0,∞) are continuous
with respect to the Hausdorff metric at all but countably many α−values.

Remark 8.5. The preceding elementary proof is based on the classical fact
that real-valued monotonically increasing maps have at most countably
many points of discontinuity (Carathéodory [4], § 158, p.154), which, in
turn, is based on the elementary fact that an uncountable sum of positive
numbers cannot be finite ([23], p. 38). See, however, [4], § 156, for an
example of a function g : R −→ R, for which these points of discontinuity
are everywhere dense. Now suppose, without loss of generality, that there
is a dense set of points where g is not right continuous. Then the set valued
function

Γ(α) := [0, g(α)]

has a dense set of points of discontinuity.
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