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Linear algebra plays a key role in the theory of dynamical systems, and concepts from dynamical systems 
allow the study, characterization, and generalization of many objects in linear algebra, such as similarity of 
matrices, eigenvalues, and (generalized) eigenspaces. The most basic form o f this interplay can be seen as 
a matrix A gives rise to a continuous time dynamical system via the linear ordinary differential equation 
x =  Ax, or a discrete time dynamical system via iteration x„+ i =  Ax„. The properties o f the solutions 
are intimately related to the properties o f the matrix A. Matrices also define nonlinear systems on smooth 
manifolds, such as the sphere S'*- 1  in Rd , the Grassmann manifolds, or on classical (matrix) Lie groups. 
Again, the behavior o f  such systems is closely related to matrices and their properties. And the behavior 
of nonlinear systems, e.g., o f differential equations y  =  / ( y )  in R d with a fixed point yo € Rrf, can be 
described locally around y0 via the linear differential equation x  =  Dy /(yo)x.

Since A. M. Lyapunovs thesis in 1892, it has been an intriguing problem how to construct an appro
priate linear algebra for time varying systems. Note that, e.g., for stability o f the solutions of x  =  A(t)x, 
it is not sufficient that for all t e  R the matrices A(t) have only eigenvalues with negative real part 
(see [Hah67], Chapter 62). Of course, Floquet theory (see [Flo83]) gives an elegant solution for the peri
odic case, but it is not immediately clear how to build a linear algebra around Lyapunov’s “order numbers” 
(now called Lyapunov exponents). The multiplicative ergodic theorem of Oseledets [Ose68] resolves the 
issue for measurable linear systems with stationary time dependencies, and the Morse spectrum together 
with Seigrade’s theorem [Sel75] clarifies the situation for continuous linear systems with chain transitive 
time dependencies.

This chapter provides a first introduction to the interplay between linear algebra and analysis/topology 
in continuous time. Section 56.1 recalls facts about d-dimensional linear differential equations x =  Ax,
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emphasizing eigenvalues and (generalized) eigenspaces. Section 56.2 studies solutions in Euclidian space 
Rd from the point o f view o f topological equivalence and conjugacy with related characterizations o f the 
matrix A. Section 56.3 presents, in a fairly general set-up, the concepts of chain recurrence and Morse 
decompositions for dynamical systems. These ideas are then applied in section 56.4 to nonlinear systems on 
Grassmannian and flag manifolds induced by a single matrix A, with emphasis on characterizations of the 
matrix A from this point of view. Section 56.5 introduces linear skew product flows as a way to model time 
varying linear systems x  =  A(t)x with, e.g., periodic, measurable ergodic, and continuous chain transitive 
time dependencies. The following sections 56.6, 56.7, and 56.8 develop generalizations o f  (real parts of) 
eigenvalues and eigenspaces as a starting point for a linear algebra for classes o f  time varying linear systems, 
namely periodic, random, and robust systems. (For the corresponding generalization o f  the imaginary 
parts o f eigenvalues see, e.g., [Am98] for the measurable ergodic case and (CFJ06| for the continuous, 
chain transitive case.) Section 56.9 introduces some basic ideas to study genuinely nonlinear systems 
via linearization, emphasizing invariant manifolds and Grobman—Hartman-type results that compare 
nonlinear behavior locally to the behavior o f  associated linear systems.

N o ta tio n :

In this chapter, the set o f d x  d  real matrices is denoted by g /(d ,R ) rather than Rd x d .

56.1 Linear Differential Equations
Linear differential equations can be solved explicitly if one knows the eigenvalues and a basis o f  eigenvectors 
(and generalized eigenvectors, if  necessary). The key idea is that o f  the Jordan form o f a matrix. The real 
parts o f the eigenvectors determine the exponential behavior o f the solutions, described by the Lyapunov 
exponents and the corresponding Lyapunov subspaces.

For information on matrix functions, including the matrix exponential, see Chapter 11. For information 
on the Jordan canonical form see Chapter 6. Systems o f first order linear differential equations are also 

discussed in Chapter 55.

D e fin itio n s :

ForamatrixA e  g /(d ,R ), the exponential eG L (d,R ) is defined by e A  =  f  +  G  G L (d ,R ),

where 1 €  g l(d , R) is the identity matrix.
A  linear differential equation (with constant coefficients) is given by a matrix A €  g l(d ,R )  via 

x(t) =  Ax(t), where x  denotes differentiation with respect to t. Any function x  : R  > R d  such that 
x(t) =  Ax(t) for all t e  R is called a solution o f x  =  Ax.

The in itia l value problem for a linear differential equation x  =  A x  consists in finding, for a given in itia l 

value Xo e  Rd , a solution x(-,Xo) that satisfies x(O,Xo) =  xo-
The distinct (complex) eigenvalues of A e  g l(d ,R ) will be denoted Mi, • - »Mr- (F°r  definitions and 

more information about eigenvalues, eigenvectors, and eigenspaces, see Section 4.3. For information 
about generalized eigenspaces, see Chapter 6.) The real version of the generalized eigenspace is denoted 

by £(A ,M t) C Rd  or simply Ek for k =  I , . . . ,  r <  d.
The real Jordan fo rm  of a matrix A e  g l  (d ,R ) is denoted by Note that for any matrix A  there is a

matrix T € G L (d,R ) such that A =  T~'J®T.
Let x(-,xo) be a solution o f  the linear differential equation x  =  Ax. Its Lyapunov exponent for xo /  0 

is defined as A(xo) =  lim sup, 1 fog ||x(t,xo)||, where log denotes the natural logarithm and || • ||isany  

norm in R d .
Let Mt =  +  ivk , k =  1 , . . . ,  r, be the distinct eigenvalues o f A 6 g !(d ,R ). We order the distinct

real parts o f the eigenvalues as ■.. <  I <  I <  r d , and define the Lyapunov space o f  k j as 
1 ( ^ 1  =  ^ E t , where the direct sum is taken over all generalized real eigenspaces associated to eigenvalues 

with real part equal to k j.  Note that L (k j)  =  Rd -
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The stable, center, and unstable subspaces associated with the matrix A G gl(d,W ) are defined as 
L~ =  ® {£(A 7 ), A, <  0}, £° =  © { £ (£ ; ), Lj =  0), and L +  =  ^ { £ (A ; ), A;  >  0}, respectively.

The zero solution x(r, 0) =  0 is called exponentially stable if there exists a neighborhood U (0) and 
positive constants « ,h  > 0 such that x(t,xo) < a||xo||^ - , ’i for all t c R a n d x o  € £7(0).

Facts:
Literature: [Ama90], [HSD04].

1. For each A  G g /(d ,R ) the solutions o fx  =  Ax  form a d -dimensional vector space sol (A) C 
C°°(R, R d ) over R, where C°°(R,R rf) =  { /  : R  — > R rf, f  is infinitely often differentiable}. Note 
that the solutions o f  x =  A x  are even real analytic.

2. For each initial value problem given by A e  g l(d ,R )  and Xo G R rf, the solution x(-,Xo) is unique 
and given by x(t,Xo) =  e AfXo.

3. Let v ( , . . . ,  Na G R d  be a basis of R rf. Then the functions x(-, V]) , . . . , x(-, v j) form a basis of the 
solution space sol(A ). The matrix function X(-) :=  [x(-, v j , . . .  ,x(-,v^)] is called a fundamental 
matrix of x  =  Ax, and it satisfies X (t) = A X (t).

4. Let A G g /(d ,R ) with distinct eigenvalues / Z ] , . . . , ^  G C and corresponding multiplicities m =  
a(/z t), k =  1 , . . . , r. If Ek are the corresponding generalized real eigenspaces, then dim Ek = »k 
and Ek =  R rf, i.e., every matrix has a set of generalized real eigenvectors that form a basis of 
R d .

5. If A =  T ~ l J ^ T ,  then eA t =  T~ 1e , ^ t T, i.e., for the computation of exponentials of matrices it is 
sufficient to know the exponentials of Jordan form matrices.

6. Let V|. . . . ,  Na be a basis of generalized real eigenvectors of A. If Xo =  v, » then x(t, XQ) =
o ,x{t, Ni) for all r G R. This reduces the computation of solutions to x =  A x  to the compu

tation o f solutions for Jordan blocks; see the examples below or [HSD04, Chap. 5] for a discussion 
of this topic.

7. Each generalized real eigenspace Ek is invariant for the linear differential equation x  =  Ax, i.e., for 
xo G Ek it holds that x(t, Xo) G Ek for all t  e  R .

8. The Lyapunov exponent A(XQ) of a solution X(-,XQ) (with Xo /  0) satisfies A(XQ) =  lim f_.±oc 
log |Jx(r, xq) II =  k j  if and only if XQ G L (k j) . Hence, associated to a matrix A G g /(d ,R ) are 

exactly I Lyapunov exponents, the distinct real parts of the eigenvalues of A.
9. The following are equivalent:

(a) The zero solution x(t, 0) =  0 of the differential equation x =  Ax is asymptotically stable.

(b) The zero solution is exponentially stable

(c) AH Lyapunov exponents are negative.

(d) L ~  =  R d .

Examples:
1. Let A  =  diag(a ।, . . . ,  ad) be a diagonal matrix. Then the solution of the linear differential equation

x  =  Ax with initial value Xb G Rd  is given by x(t,Xo) =  e^xo =

2. Letet =  (1 ,0 , . . .  ,0 ) r , . . .  ,e</ =  (0 ,0 , . . . ,  1)T be thestandard basis of R d . Then {x(-,ei),. . .  ,x(-,ed)} 
is a basis o f  the solution space sol (A).

3. Let A  =  d iagfd],. . .  ,ad) be a diagonal matrix. Then the standard basis {e,, - . > e rff of R rf consists 
of eigenvectors of A.
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4. Let A G g l(d ,R )  be diagonalizable, i.e., there exists a transformation matrix T  G G L(d,R ) and 
a diagonal matrix D G g l(d ,R )  with A = T ~ l DT. Then the solution of the linear differential 
equation x =  Ax with initial value x0 e  R d  is given by x(t, Xo) =  T ~ l e D t Txb, where e D t is given
in Example 1.

5. Let B = be the real Jordan block associated with a complex eigenvalue /z =  A +  iv of

the matrix A G gl(d,W). Let y0 G E (A ,n ), the real eigenspace of /z. Then the solution y(t,y0 )

of ÿ =  By is given by y(t,y0 ) =  eÀt cos vt 
sin vt

— sin vt 
cos vt

yo- According to Fact 6 this is also the

E ( A, /z)-component of the solutions of x =  J ®x
6. Let B be a Jordan block of dimension n associated with the real eigenvalue /z of a matrix A G

g l(d ,R ). Then for

f t  1

B - one has eB t = e1“

1

M.

In other words, for y0 =  [ / ] , . . .  ,y „ ] r  G E (A ,n ) ,  the j  th component o f the solution of y =  By 
readsyy(t,yo) =  22t=j (fz^ji/i.A ccordingtoFactbthisisalsotheEJA ./zbcom ponentofe^L

7. Let B be a real Jordan block of dimension n =  2m  associated with the complex eigenvalue pi = X+iv

of a matrix A  G g/(d ,R ). Then with D — A — V
V A and I  =

1 0
0 1 , for

D I

B =  oneh ase B( =

D t b  £ 5  • ■

-2 »

I

D

t b  

b

where D =
cos vt 
sin vt

— sinvt 
cos vt . In other words, for y0 =  [y i,Z ],.. .  ,y m ,z m ]T  G E (A ,n ) ,  the ;th

components, j  =  1,. . . ,  m, of the solution of ÿ  =  By read

y7 (t.yo) =  12 ( F J ÿ in  COS v t -  Zi sin vt),
t=i

cosvt +  yitsinvt).

According to Fact 6, this is also the E(A,/z)-component of e 1*'.
8. Using these examples and Facts 5 and 6, it is possible to compute explicitly the solutions to any 

linear differential equation in R d .
9. Recall that for any matrix A  there is a matrix T  G G L(d, R) such that A  =  where J*  is

the real Jordan canonical form of A. The exponential behavior of the solutions o f x  =  Ax can be 
read off from the diagonal elements of 7 ®.
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56.2 Linear Dynamical Systems in
The solutions of a linear differential equation x =  Ax, where A e  g/(d,R), define a (continuous time) 
dynamical system, or linear flow in R rf. The standard concepts for comparison of dynamical systems 
are equivalences and conjugacies that map trajectories into trajectories. For linear flows in Rrf these 
concepts lead to two different classifications of matrices, depending on the smoothness of the conjugacy 
or equivalence.

Definitions:

The real square matrix A  is hyperbolic if it has no eigenvalues on the imaginary axis.
A continuous dynamical system over the “time set” R with state space Af, a complete metric space, is 

defined as a map 0  : R  x M  — > Af with the properties

(i) 0 (0 , x) =  x  for all x  e  M,
(ii) 0 (s  + t ,x )  =  0 ( s ,0 ( t ,x ) )  for all s , t  e R a n d a llx  e Al,

(iii) <I> is continuous (in both variables).

The map <I> is also called a (continuous) flow.
For each x  e  Af the set {0 (t,x ), t e  R} is called the orbit (or trajectory) of the system through x.
For each t e  R the time-t map is defined as <pt =  0 (t,-)  : M  — > Af. Using time-t maps, the properties 

(i)and(ii) above can be restated as (i)' >̂0 =  id, the identity map on M, (ii)' <ps + t = (ps o<pt for all s ,t  e R.
A fixed point (or equilibrium) of a dynamical system 0  is a point x € Af with the property 0 ( t,x )  =  x 

for all t e  R.
An orbit {0 (t,x ), t e  R} of a dynamical system <I> is called periodic if there exists t  e  R, t > 0 such 

that 0 (  t +  s, x) =  0 ( s ,x )  for all s e R. The infimum of the positive t e  R with this property is called 
the period of the orbit. Note that an orbit of period 0 is a fixed point.

Denote by C k (X, T) (k > 0) the set of L-times differentiable functions between Ck -manifolds X  and 
T, with C° denoting continuous.

Let 0 , 0  : R  x Af -—> Af be two continuous dynamical systems of class C* (it >  0), i.e., for k > 1 the 
state space Af is at least a C k -manifold and 0 ,  0  are C i -maps. The flows 0  and 0  are:

(i) C k — equivalent (k >  1) if there exists a (local) C^-diffeomorphism h : Af —> Al such that h takes 
orbits of 0  onto orbits o f 0 ,  preserving the orientation (but not necessarily parametrization by 
time), i.e.,

(a) For each x e  Af there is a strictly increasing and continuous parametrization map rx : R —► 
R  such that h (0 ( t,x ))  =  0 ( r x (t),h(x)) or, equivalently,

(b) Forallx e  Afand5 > 0 there exists e >  0 such that for all t e (O,A),/i(0(t,x)) =  0 ( t ',  h(x)) 
for some f  e  (0, e).

(ii) C^-conjugate (k >  1) if there exists a (local) C^-diffeomorphism h : Af —► Af such that 
h (0 ( t ,x ) )  =  0 ( t ,  h(x)) for all x e  Af and t  e  R.

Similarly, the flows 0  and 0  are C°-equivalent if there exists a (local) homeomorphism h : Af -> Af 
satisfying the properties of (i) above, and they are C°-conjugate if there exist a (local) homeomorphism 
h : Af —> Af satisfyingthepropertiesof(ii)above. Often, C°-equivalence is called topological equivalence, 
and C°-conjugacy is called topological conjugacy or simply conjugacy.

Warning: While this terminology is standard in dynamical systems, the terms conjugate and equivalent 
are used differently in linear algebra. Conjugacy as used here is related to matrix similarity (cf. Fact 6), not 
to matrix conjugacy, and equivalence as used here is not related to matrix equivalence.
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Facts:
Literature: [HSD04], [Rob98].

1. If the flows 4> and 4> are C^-conjugate, then they are C k -equivalent.
2. Each time-t map <pt has an inverse = <P-t , and <pt : M  — > Af is a homeomorphism, i.e., a 

continuous bijective map with continuous inverse.
3. Denote the set of time-t maps again by 4> = [<pt , t e R). A dynamical system is a group in the sense 

that (<t>, o), with o denoting composition of maps, satisfies the group axioms, and <p : (R, +) —> 
(4>, o), defined by ̂ (t) =  <pt , is a group homomorphism.

4. Let M  be a C 00-differentiable manifold and X  a C00-vector field on Af such that the differential 
equation x = X(x) has unique solutions x (t,x 0 ) for all x0 € M and all t G R, with x(O,xo ) =  XQ. 
Then 4>(t,xo) =  x(t,xo) defines a dynamical system $  :R  x M — >• M.

5. A point XQ G Af is a fixed point of the dynamical system 4> associated with a differential equation 
x = X(x) as above if and only if X(xo) =  0.

6. For two linear flows 4> (associated with x =  Ax) and 'P (associated with x =  Bx) in Rd , the 
following are equivalent:

• 4> and 4» are C*-conjugate for k > 1.
• 4> and 4» are linearly conjugate, i.e., the conjugacy map h is a linear operator in GL(Rd ).
• A andB are similar, i.e., A — T B T~ l for some T  G G L(d,R).

7. Each of the statements in Fact 6 implies that A and B have the same eigenvalue structure and 
(up to a linear transformation) the same generalized real eigenspace structure. In particular, the 
C k -conjugacy classes are exactly the real Jordan canonical form equivalence classes in gl(d,R).

8. For two linear flows <I> (associated with x =  Ax) and 4» (associated with x =  Bx) in Rd , the 
following are equivalent:

• 4> and 4> are C^ -equivalent for k > 1.
• 4> and 4> are linearly equivalent, i.e., the equivalence map h is a linear map in GL(Rd ).
• A = a T B T ~ 1 for some positive real number a and T e G L (d ,R ).

9. Each of the statements in Fact 8 implies that A and B have the same real Jordan structure and 
their eigenvalues differ by a positive constant. Hence, the C k -equivalence classes are real Jordan 
canonical form equivalence classes modulo a positive constant.

10. The set of hyperbolic matrices is open and dense in gl(d, R). A matrix A is hyperbolic if and only 
if it is structurally stable in gl (d, R), i.e., there exists a neighborhood 17 C gl (d, R) of A such that 
all B e 17 are topologically equivalent to A.

11. If A and B are hyperbolic, then the associated linear flows 4> and 4* in Rd  are C°-equivalent (and 
C°-conjugate) if and only if the dimensions of the stable subspaces (and, hence, the dimensions of 
the unstable subspaces) of A and B agree.

Examples:
1. Linear differential equations: For A G g/(d ,R ) the solutions of x =  Ax form a continuous 

dynamical system with time set R  and state space Af =  Rd : Here 4> : R x Rd — > R d is defined 
by 4>(t,xo) =  x(t,xo) =  e^'xo-

2. Fixed points of linear differential equations: A point xo G Rd is a fixed point of the dynamical 
system 4> associated with the linear differential equation x =  Ax if and only if XQ G ker A, the 
kernel of A.

3. Periodic orbits of linear differential equations: The orbit 4>(t,Xo) := x (t,xo ),t G R is periodic with 
period t > 0 if and only if XQ is in the eigenspace of a nonzero complex eigenvalue with zero real 
part.
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4. For each matrix A  G g l(d ,R )  its associated linear flow in Rrf is C^-conjugate (and, hence, 
Ck -equivalent) for all k >  0 to the dynamical system associated with the Jordan form J

56.3 Chain Recurrence and Morse Decompositions of Dynamical 
Systems

A matrix A  G gl (d, R) and, hence, a linear differential equation x = A x  maps subspaces of R rf into 
subspaces of R d . Therefore, the matrix A also defines dynamical systems on spaces of subspaces, such as 
the Grassmann and the flag manifolds. These are nonlinear systems, but they can be studied via linear 
algebra, and vice versa; the behavior of these systems allows for the investigation of certain properties of the 
matrix A. The key topological concepts for the analysis of systems on compact spaces like the Grassmann 
and flag manifolds are chain recurrence, Morse decompositions, and attractor-repeller decompositions. 
This section concentrates on the first two approaches, the connection to attractor-repeller decompositions 
can be found, e.g., in [CKOO, App. B2],

Definitions:
Given a dynamical system 4> : R  x M — > M, for a subset N  C Ad the a-limit set is defined as 
a(N ) = {y G M, there exist sequences x„ in N  and t„ -»  —oo in R  with lim„_>Oo &(tn ,Xn) = y], and 
similarly the m-limit set of N is defined as a>(N) = {y G Ad, there exist sequences x„ in N  and tn —>• oo 
in R with limn^oo <J>(tn ,x„) =  y}.

For a flow 4> o n a  complete metric space M  and £, T > 0, an (s, T)-chain from x  & M  to y  G M  is 
given by

n G N, xo =  x , . . . ,x„ =  y, To , . . . ,  T„_1 >  T

with

d(«>(7;,x,),x,+ l ) < e for all i,

where d is the metric on M.
A set K  G. M is  chain transitive if for all x, y  G K and all e, T  > 0  there is an (e, T)-chain from x  to y .
The chain recurrent set CR. is the set of all points that are chain reachable from themselves, i.e., 

CR =  {x G M , for all e, T  > 0  there is an (e, T)-chain from x  tox).
A set Ad C M  is a chain recurrent component, if it is a maximal (with respect to set inclusion) chain 

transitive set. In this case Ad is a connected component of the chain recurrent set CH.
For a flow d> on a complete metric space M, a compact subset K  C M  is called isolated invariant, if it 

is invariant and there exists a neighborhood N  of K, i.e., a set N  with K C int N , such that 4>(t,x) G N  
for all t 6 R  implies x  G K .

A Morse decomposition of a flow on a complete metric space Ad is a finite collection {Ad,-, i =  1 ,. . .  ,1} 
of nonvoid, pairwise disjoint, and isolated compact invariant sets such that

i
(i) For all x  G Ad, m(x), o(x) C |jA d i;a n d

;=i
/

(ii) Suppose there are Ad and Xi,. . .  ,x„ G Ad \  | jA d ,  with a (x i) C Ad; , , and
¡=1

a>(Xi) C Ad J: for i =  1 , . . . .  n; then Ad j0 /  Adj„.

The elements of a Morse decomposition are called Morse sets.
A Morse decomposition {Ad,, i =  1 ,.. . ,/}  is finer than another decomposition {A/}, j  = 1 , . . . .  n}, 

if for all Ad,- there exists an index j  G { ! ,.. . ,« }  such that Ad, C A/).
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Facts:
Literature: [Rob98], [CKOO], [ACK05].

1. For a Morse decomposition {M i, i =  1 , . . . ,  Z} the relation M i -< M j ,  given by a (x )  C M i and 
a>(x) C M j  for some x  e  M \Uj= t M i,  induces an order.

2. Let 4>, 4» : R  x M  — > M  be two dynamical systems on a state space M  and let h : M  —> M be a 
topological equivalence for <1» and 4< Then

(i) The point p e  M  is a fixed point of 4> if and only if h(p) is a fixed point of 'P;

(ii) The orbit <&(•, p) is closed if and only if  h(p)) is closed;

(iii) If K  c  M is an a-(or &>-) limit set of 4> from p  e  M, then h [K] is an a -(o r w-) limit set of 
4» from h(p) € M.

(iv) Given, in addition, two dynamical systems © li2 : R  x N  — > N , if h : M  —> M  is a topo
logical conjugacy for the flows 4> and 4* on M, and g : N  —> N  is a topological conjugacy for 
©i and ©2 on N, then the product flows <t> x ©] and 4* x © 2 on M  x N  are topologically 
conjugate via h x g : M  x  N  — > M  x  N. This result is, in general, not true for topological 
equivalence.

3. Topological equivalences (and conjugacies) on a compact metric space M  map chain transitive sets 
onto chain transitive sets.

4. Topological equivalences map invariant sets onto invariant sets, and minimal closed invariant sets 
onto minimal closed invariant sets.

5. Topological equivalences map Morse decompositions onto Morse decompositions.

Examples:
1. Dynamical systems in R 1: Any limit se ta(x) and aAx) from a single point x  o f a dynamical system 

in R 1 consists of a single fixed point. The chain recurrent components (and the finest Morse 
decomposition) consist of single fixed points or intervals of fixed points. Any Morse set consists of 
fixed points and intervals between them.

2. Dynamical systems in R2 : A nonempty, compact limit set o f a dynamical system in R 2 , which 
contains no fixed points, is a closed, i.e., a periodic orbit (Poincare-Bendixson). Any nonempty, 
compact limit set of a dynamical system in R 2 consists of fixed points, connecting orbits (such as 
homoclinic or heteroclinic orbits), and periodic orbits.

3. Consider the following dynamical system 4> in R 2 \{0}, given by a differential equation in polar 
form for r >  0, 0 e  [0,2tr), and a 0:

r =  1 — r, 0 =  a.

Foreachx e  R 2 \{0) the w-limit set is the circle <u(x) =  § ' =  {(r,0 ),r =  1,0 e  [0, 2TT )}. The state 
space R 2 \{0) is not compact, and a -limit sets exist only for y e  S 1, for which a(y) =  S 1.

4. Consider the flow 4> from the previous example and a second system 4», given by

f =  1 — r, 0 — b

with b 0. Then the flows 4> and 4» are topologically equivalent, but not conjugate if  b a.
5. An example of a flow for which the limit sets from points are strictly contained in the chain recurrent 

components can be obtained as follows: Let M  =  [0,1] x [0,1]. Let the flow 4> on M  be defined 
such that all points on the boundary are fixed points, and the orbits for points (x, y ) € (0,1) x (0,1) 
are straight lines <!>(■, (x,y)) =  {(z1,z 2) ,z 1 =  x ,z 2 € (0,1)} with lim ,^ ± o o  Q (t,(x ,y ) )  =  (x ,± l). 
For this system, each point on the boundary is its own a - and tu-limit set. The a-lim it sets for points 
in the interior (x, y) e  (0,1) x (0,1) are of the form {(x,—1)), and the &>-limit sets are {(x,+l)}.
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The only chain recurrent component for this system is M  =  [0,1] x [0,1], which is also the only 
Morse set.

56.4 Linear Systems on Grassmannian and Flag Manifolds

Definitions:
The ¿th Grassmannian G* of R'' can be defined via the following construction: Let F(k,d) be the set of 
¿-frames in R rf, where a ¿-frame is an ordered set of k  linearly independent vectors in Rrf. Two ¿-frames 
X =  [X], . . . ,  x t ] and Y =  [y i,. . . , y j  are said to be equivalent, X ~  Y, if there exists T  e  G L (k, R) 
with X T =  TYT, where X and Y  are interpreted as d x k matrices. The quotient space Gt =  F (k, d ) / ~  
is a compact, kid  — ¿)-dimensional differentiable manifold. For k =  1, we obtain the projective space 
P^-1  =  G] in R rf.

The ¿th flag of R rf is given by the following ¿ —sequences of subspace inclusions,

F t =  {Fk = (Vb . . . ,  V^), Vi C Vj+ , and dim V, =  i for all i }.

For k = d, this is the complete flag F  =  Frf.
Each matrix A € gl(d , R) defines a map on the subspaces of Rrf as follows: Let V = Span({xi, . . . ,  x t}). 

Then A V  = Span({Axi,. . . ,  AxtJ).
Denote by Gt<I> and F t ty the induced flows on the Grassmannians and the flags, respectively.

Facts:
Literature: [Rob98], [CK00], [ACK05],

1. Let Pty be the projection onto P 7 -1  of a linear flow d>(t, x) = e A ,x. Then Pty has I chain recurrent 
components {M  i, . . . ,  M i}, where I is the number of different Lyapunov exponents (i.e., of differ
ent real parts o f eigenvalues) of A. For each Lyapunov exponent X,, M i =  WLi, the projection of 
the ith  Lyapunov space onto P'7 - 1 . Furthermore ( M i , . . . , M i]  defines the finest Morse decom
position of Pty and M i -< M j  if and only if X, <  Xp

2. For A, B e  g l(d ,K ), let Pty and Pty be the associated flows on P*7-1  and suppose that there is 
a topological equivalence h of P<I> and Pty. Then the chain recurrent components A6, ■ ■ ■ ,A fn 
of Pty are of the form A/j =  h [A dj, where M i  is a chain recurrent component of Pty. In 
particular, the number of chain recurrent components of P4> and Pty agree, and h maps the order 
on {A di,.. . ,  M i]  onto the order on {A/|, ...,A fi} .

3. For A, B e  g l(d ,K )  let Pty and Pty be the associated flows on P*7-1  and suppose that there is 
a topological equivalence h of Pty and Pty. Then the projected subspaces corresponding to real 
Jordan blocks of A  are mapped onto projected subspaces corresponding to real Jordan blocks of 
B preserving the dimensions. Furthermore, h maps projected eigenspaces corresponding to real 
eigenvalues and to pairs of complex eigenvalues onto projected eigenspaces of the same type. This 
result shows that while C°-equivalence of projected linear flows on P'7 - 1 determines the number / of 
distinct Lyapunov exponents, it also characterizes the Jordan structure within each Lyapunov space 
(but, obviously, not the size of the Lyapunov exponents nor their sign). It imposes very restrictive 
conditions on the eigenvalues and the Jordan structure. Therefore, C°-equivalences are not a useful 
tool to characterize /. The requirement of mapping orbits into orbits is too strong. A weakening 
leads to the following characterization.

4. Two matrices A  and B in gl (d, R) have the same vector of the dimensions di of the Lyapunov spaces 
(in the natural order of their Lyapunov exponents) if and only if there exist a homeomorphism h : 
P'7 -1  —> P'7 -1  that maps the finest Morse decomposition ofPty onto the finest Morse decomposition 
of Pty, i.e., h maps Morse sets onto Morse sets and preserves their orders.
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5. Let A 6 g K d ,^ )  with associated flows <I> on R d and Ft®  on the fc-flag.

(i) For every k e  { !,.. , ,d ]  there exists a unique finest Morse decomposition ofF^ft», 
where ij G { 1 ,... .  d}k is a multi-index, and the number of chain transitive components in 
Ft is bounded by ■

(ii) LetAi.-withi G {1 ,... ,d ] k be a chain recurrent component in Ft-1. Consider the (d —t+ 1)- 
dimensional vector bundle n  : W (A i;) —> M i  with fibers

W I M ^  = W , /V k - i fo rF k = ( V i , . . . ,V k^ e M i  C F ^ .

Then every chain recurrent component pA i^ , j  =  1 , . . . ,  ki < d — k +  1, of the projective 
bundle P W (M i)  determines a chain recurrent component k M ij  on F t via

k M ^  = {Ft =  (Fk-i, Vt) 6 F t : Fk-i G M i  andP (V t/ V i-i) e  p A t^}  .

Every chain recurrent component in F t is of this form; this determines the multiindex ij 
inductively for k =  2 , . . . ,  d.

6. On every Grassmannian G, there exists a finest Morse decomposition of the dynamical system G, 4>. 
Its Morse sets are given by the projection o f the chain recurrent components from the complete 
flagF.

7. Let A G gl(d, R) be a matrix with flow 4> on R d . Let Li, i — 1 be the Lyapunov spaces of 
A, i.e., their projections PLi =  M i  are the finest Morse decomposition of P ^  on the projective 
space. For k =  1 , . . . ,  d define the index set

I(k ) = {(k i,.. . , k m ) : ki + ■■ ■ + km =  k andO < ki < di =  d im L J .

Then the finest Morse decomposition on the Grassmannian G j is given by the sets

=  ® ....... ® GkmL m , ( k i , . . .  ,k m ) G I(k).

8. For two matrices A, B G gZ(d,R) the vector of the dimensions dj of the Lyapunov spaces (in the 
natural order of their Lyapunov exponents) are identical if and only if certain graphs defined on 
the Grassmannians are isomorphic; see [ACK05].

Examples:
1. For A e  gl(d, R) let 4> be its linear flow in R d . The flow 4> projects onto a flow P4> on  P^- 1, given 

by the differential equation

s =  h(s, A) =  (A — s T  As I )  s, with s G P 1*- 1 .

Consider the matrices

A =  diag(—1, —1,1) and B =  diag(—1,1,1).

We obtain the following structure for the finest Morse decompositions on the Grassmannians 
for A:
G p M i  ={Span(ei,e2 )} and M 3 ={Span(e3 )}
G2 : M ^  ={Span(ei,e2 )} and A i|,3 =  {{Span(x,e3 )} :x  GSpan(ei,e2 )}
G 3 : A l ^  ={Span(ej,e2 ,e 3 )}
and for B we have
G p A t ={Span(e t )} and JV2 ={Span(e2 ,e 3 )}
G2 : A U  =  {Spanfepx): x  GSpan(e2,e 3 )J and A i j  ={Span(e2,e 3 )}
G3 : ={Span(ei,e2 ,e 3 )}.
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On the other hand, the Morse sets in the full flag are given for A and B by

A41,2,3 A4 1,2,3 A412,3 AC],23

A41,2 -< A41,3 A4,,3 and ACi,2

M i A4 3 _

respectively. Thus, in the full flag, the numbers and the orders of the Morse sets coincide, while 
on the Grassmannians (together with the projection relations between different Grassmannians) 
one can distinguish also the dimensions ofthe corresponding Lyapunov spaces. (See [ACK05] for 
a precise statement.)

56.5 Linear Skew Product Flows
Developing a linear algebra for time varying systems x =  A(t)x  means defining appropriate concepts to 
generalize eigenvalues, linear eigenspaces and their dimensions, and certain normal forms that characterize 
the behavior of the solutions of a time varying system and that reduce to the constant matrix case if 
A(t) = A  6 g /(d ,R ). The eigenvalues and eigenspaces of the family (A(f), t 6 R} do not provide an 
appropriate generalization; see, e.g., [Hah67], Chapter 62. For certain classes of time varying systems 
it turns out that the Lyapunov exponents and Lyapunov spaces introduced in section 56.1 capture the 
key properties of (real parts of) eigenvalues and of the associated subspace decomposition of Rrf. These 
systems are linear skew product flows for which the base is a (nonlinear) system 0t that enters into the linear 
dynamics of a differential equation in the form x =  A(0t )x. Examples for this type of systems include 
periodic and almost periodic differential equations, random differential equations, systems over ergodic 
or chain recurrent bases, linear robust systems, and bilinear control systems. This section concentrates on 
periodic linear differential equations, random linear dynamical systems, and robust linear systems. It is 
written to emphasize the correspondences between the linear algebra in Section 56.1, Floquet theory, the 
multiplicative ergodic theorem, and the Morse spectrum and Seigrade s theorem.
Literature: [Arn98], [BK94], [CKOO], [Con97], [Rob98],

Definitions:
A (continuous time) linear skew-product flow is a dynamical system with state space M =  fl x Rd and 
flow $  : R x  f l  x  R rf — > fl x R rf, where d> =  (0,<p) is defined as follows: (9 : R x  f l — ► fl is a dynamical 
system, and : R  x 2  x R rf — > R rf is linear in its R rf-component, i.e., for each (t,w) € R x 2  the map 
<p(t,a),-) : R d  — > R rf is linear. Skew-product flows are called measurable (continuous, differentiable) 
if fl =  (0, <p) is a measurable space (topological space, differentiable manifold) and <1> is measurable 
(continuous, differentiable). For the time-t maps, the notation =  0(t, ■) : Q — ► fl is used again.

Note that the base component 0 : R x 2  — > fl is a dynamical system itself, while the skew-component 
<p is not a dynamical system. The skew-component <p is often called a co-cyde over 0.

Let <t>: R  x 2  x  R '1 — > fl x Rd  be a linear skew-product flow. For xo e  Rrf, Xo /  0, the Lyapunov 
exponent is defined as A(xo,a>) =  l im s u p ^ ^ j  log ||^(t,a>,Xo)||, where log denotes the natural logarithm 
and || • || is any norm in R rf.

Examples:
1. Time varying linear differential equations: Let A : R — ► g/(d ,R ) be a uniformly continuous func

tion and consider the linear differential equation x(t) =  A(t)x(t). The solutions o f this differential 
equation define a dynamical system via 4> : R  x R x Rd  — ► R x R rf, where 0 : R x R — ► R is 
given by 0(t, r )  =  f +  r,andç7 : R  x R x Rd — ► Rd  is defined as <p(t, T.XQ) =  X (t+  r, r)x<). Here 
X (t, r )  is a fundamental matrix of the differential equation X (t) — A (t)X (t) in gl(d, R). Note 
that for <p(t, r , ■) : R rf — ► R rf, t e  R, wehave^fft +  s , r )  =  <p(t,0(s,r)) o <p(s,r) and, hence, the
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solutions of x(t) =  A(t)x(t) themselves do not define a flow. The additional component 0 “keeps 
track of time.”

2. Metric dynamical systems: Let (Q, JF, P) be a probability space, i.e., a set Q with o -algebra IF and 
probability measure P. Let 0 : R x Q — > Q be a measurable flow such that the probability 
measure P is invariant under 0, i.e., 0t P = P for all t € R, where for all measurable sets X G F  
we define 0t P(X) =  P{0~1 (X)) =  P(X). Flows of this form are often called metric dynamical 
systems.

3. Random linear dynamical systems: A random linear dynamical system is a skew-product flow 
4> : R x Q x Rd — > S2 x Rrf, where P,0) is a metric dynamical system and each 
<p : R x Q x R rf — > Rd is linear in its Rrf-component. Examples for random linear dynamical 
systems are given, e.g., by linear stochastic differential equations or linear differential equations 
with stationary background noise; see [Arn98],

4. Robust linear systems: Consider a linear system with time varying perturbations of the form 
x =  A(u(t))x := Aox +  u, (t)AiX, where Ao , . . . ,  Am G gl(d ,R ), u G U = {u : R —> 
U, integrable on every bounded interval), and U C R m is compact, convex with 0 G int U. 
A robust linear system defines a linear skew-product flow via the following construction: We 
endow 14 with the weak*-topology of £°°(R, U)* to make it a compact, metrizable space. The 
base component is defined as the shift 0 : R x 14 — > 14, 0(t, u(-)) =  w(- +  t), and the skew
component consists of the solutions <p(t, n(-),x), t G R of the perturbed differential equation. 
Then : R x Z/ x Rd — > U x R d , <I>(t, M,X) =  (0(t, u), tp(t, n,x)) defines a continuous linear 
skew-product flow. The functions u can also be considered as (open loop) controls.

56.6 Periodic Linear Differential Equations: Floquet Theory

Definitions:
A periodic linear differential equation x =  A(0t )x is given by a matrix function A : R — ► gl(d,R) 
that is continuous and periodic (of period t > 0). As above, the solutions define a dynamical system via 

: R x S1 x Rd — > S 1 x R1*, if we identify R mod? with the circle S '.

Facts:
Literature: [Ama90], [GH83], [Hah67], [Sto92], [Wig96].

1. Consider the periodic linear differential equation x =  A(P( )x with period t > 0. A fundamental 
matrix X(t) of the system is of the form X(t) =  P(t)eRt for t G R, where P(-) is a nonsingular, 
differentiable, and t-periodic matrix function and R G gl(d, C).

2. Let X(-) be a fundamental solution with X(0) =  I G G £(d,R). The matrix X(t) =  eR t is called 
the monodromy matrix of the system. Note that R is, in general, not uniquely determined by X, 
and does not necessarily have real entries. The eigenvalues j  =  1 , . . . ,  d of X( t ) are called the 
characteristic multipliers of the system, and the eigenvalues p,j = k ) + i Vj of R are the characteristic 
exponents. It holds that /z, =  A log otj +  2^1, j  =  1 ,. . . ,  d and m G Z. This determines uniquely 
the real parts of the characteristic exponents k j =  Re =  log |> j  =  1, ■ • ., d. The kj are 
called the Floquet exponents of the system.

3. Let<b =  (0,<p) :R x S ' x Rd — > S' x Rd be the flow associated with a periodic linear differential 
equationx= A(t)x. The system has a finite number ofLyapunov exponents k ,, j  — 1 , . . . J  < d. 
For each exponent k , and each r  G S1 there exists a splitting Rd =  ®  = 1  L (k j ,r )  of Rd into 
linear subspaces with the following properties:

(a) The subspaces L (kj, r)  have the same dimension independent of r , i.e., for each j  = 1 ,...,!  
it holds that dim L(kj,cr) =  dim L(k j , r ) =: d, for all cr, r  G S1.
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(b) The subspaces L (Xj, r ) are invariant under the flow <t>, i.e., for each j  =  1 , . . . , /  it holds that 
<p(t,r)L(Lj,T) =  L(Xp6>(t,r)) =  L (k h t + r) for all t G R and r  e  S'-

(c) A(x, r )  =  lim^-too |  log U<p(t, r,x)U =  Ay if and only if x 6 L (L ,, r)\{0).

4. The Lyapunov exponents of the system are exactly the Floquet exponents. The linear subspaces 
I  (Ay, •) are called the Lyapunov spaces (or sometimes the Floquet spaces) of the periodic matrix 
function A lt).

5. For each j  =  1 , . . .  J  < d the map L j : S1 — >• G^ defined by r  i— > L(Ay, r )  is continuous.
6. These facts show that for periodic matrix functions A : R — ► g l(d ,R )  the Floquet exponents 

and Floquet spaces replace the real parts of eigenvalues and the Lyapunov spaces, concepts that 
are so useful in the linear algebra of (constant) matrices A € g/(d,R). The number of Lyapunov 
exponents and the dimensions of the Lyapunov spaces are constant for r  G S 1, while the Lyapunov 
spaces themselves depend on the time parameter r of the periodic matrix function A(t), and they 
form periodic orbits in the Grassmannians GG, and in the corresponding flag.

7. As an application of these results, consider the problem of stability of the zero solution of x(t) =  
A(t)x{t} with period t > 0: The stable, center, and unstable subspaces associated with the periodic 
matrix function A : R — ► g/(d ,R ) are defined as L (r) =  ® {L(Ay,r), Ay < 0), L°(T ) =  
® {L (A y,r), Ay =  0), and L + (r) =  ® (L(A y,r), Ay > 0}, respectively, for r  G S '. The zero 
solution x(t, 0) =  0 of the periodic linear differential equation x =  A(t)x  is asymptotically stable 
if and only if it is exponentially stable if and only if all Lyapunov exponents are negative if and only 
i fL ~ (r )  =  R rf for some (and hence for all) r  e S 1.

8. Another approach to the study of time-dependent linear differential equations is via transforming 
an equation with bounded coefficients into an equation of known type, such as equations with 
constant coefficients. Such transformations are known as Lyapunov transformations; see [Hah67, 
Secs. 61—63].

Examples:
1. Consider the t-periodic differential equation x =  A(t)x. This equation has a nontrivial t-periodic 

solution iff the system has a characteristic multiplier equal to 1; see Example 2.3 for the case with 
constant coefficients (iAma90, Prop. 20.12]).

2. Let H  be a continuous quadratic form in 2d variables Xi,. . .  ,x j ,y i , . • •,/<< and consider the 
Hamiltonian system

dH  dH
T—>7i =  “ T— . dyi 9x,

=  l , . . . , d .

Using z r  =  [xT ,y T ], we can set H(x,y, t) =  zr A(t)z, where A = 

symmetric, and, hence, the equation takes the form

— A]|(t)
A n(t)  

~A ]i(t)
z =: P(t)z.

A 12 
A n

with An and An

Note that —P T (t) = Q P (t)Q  1 with Q =
- I
0

, where 1 is the d x d identity matrix. Assume

that H  is t-periodic, then the equation for z  and its adjoint have the same Floquet exponents and
for each exponent A its negative —A is also a Floquet exponent. Hence, the fixed point 0 G R 2I/ 
cannot be exponentially stable (]Hah67, Sec. 60]).

3. Consider the periodic linear oscillator

ÿ +  ?i(f)ÿ + q i(t)y  =  0.
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Using the substitution y  =  zexp(—|  f q } (u)du) one obtains Hill’s differential equation

z +  p (t)z  =  0, p(t) := q2 (t) -  - q d t ) 2 -  - q t i t ) .

Its characteristic equation is A2 — 2aL + 1  =  0, with a still to be determined. The multipliers satisfy 
the relations a i a 2 =  1 and oti + a 2 = 2a. The exponential stability of the system can be analyzed 
using the parameter a: If a2 >  1, then one of the multipliers has absolute value > 1 and, hence, the 
system has an unbounded solution. If a 2 =  1, then the system has a nontrivial periodic solution 
according to Example 1. If a 2 <  1, then the system is stable. The parameter a can often be expressed 
in form of a power series; see [Hah67, Sec. 62] for more details. A special case of Hill’s equation is 
the Mathieu equation

z  +  (^1 +  ^2 cos 2t)z =  0,

with f i \ ,p 2 real parameters. For this equation numerically computed stability diagrams are available; 
see [Sto92, Secs. VI. 3 and 4],

56.7 Random Linear Dynamical Systems

Definitions:
Let 0 : R x Q — >■ £2 be a metric dynamical system on the probability space (£2, JP, P ). A set A e T  is 
called P -invariant under 0 if P [(0 - 1 (t, A) \  A) U (A \  0~ l (t, A))] =  0 for all t  G R. The flow# is called 
ergodic, if each invariant set A e  T  has P-measure 0 or 1.

Facts:
Literature: [Am98], [Con97].

1. (Oseledets Theorem, Multiplicative Ergodic Theorem) Consider a random linear dynamical system 
4> =  {0, <p): R  x £2 x R d — > £2 x Rd  and assume

sup log+  <o)ll G C 1(£2,7r ,P )  and sup log+ ||ip(t,tt>)- 1 || G £ '(£2 ,.P ,P ), 
o < t < i o < t < i

where || • || is any norm on GL (d, R), £ ’ is the space of integrable functions, and log+  denotes the 
positive part of log, i.e.,

i + , A f  log(jc) for log(x) > 0
lo g (x )  =  <

0 for log(x) <  0.

Then there exists a set £2 C £2 of full P-measure, invariant under the flow 0 : R  x  £2 — > £2, such 
that for each a> G £2 there is a splitting R d  =  J L j (<w) of R d  into linear subspaces with the 
following properties:

(a) The number of subspaces is 0 -invariant, i.e., l(0(t, &>)) = 1(a)) for all t G R, and the dimen
sions of the subspaces are 0 -invariant, i.e., d im ly  (P(t,&>)) =  dimLy(co) = : dj(a>) for all 
t G R.

(b) The subspaces are invariant under the flow 0 ,  i.e., <p(t,a>)L ¡(a)) C L j(0 (t,a i))  for all j  = 
I,...,1 (a)).

(c) There exist finitely many numbers A] (a>) < . . .  < A/^j(a)) in R  (with possibly A](w) =  
—co), such that for each x G Rd \{0} the Lyapunov exponent A(x,w) exists as a limit and
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X(x, &>) =  lirnf ..± ^  |  log ||<p(t, r, x) || =  Lj(o)) if and only if x e L 7 (m)\{0}. The subspaces 
L j (m) are called the Lyapunov (or sometimes the Oseledets) spaces of the system 4>.

2. The following maps are measurable: / : Q — > { 1 ,..., d} with the discrete a-algebra, and for each 
j  =  1 , . . .  ,/(&») the maps L ¡ : S2 — > with the Borel a-algebra, dj : Í2 — > { 1 ,..., d] with 
the discrete a  -algebra, and Z¡ : Í2 — > R U {— oo} with the (extended) Borel a  -algebra.

3. If the base flow 0 : R x Í2 — ► Q is ergodic, then the maps l ,d j,  and Z, are constant on Í2, but the 
Lyapunov spaces Lj(a)) still depend (in a measurable way) on a> e  Í2.

4. As an application of these results, we consider random linear differential equations: Let (F,£, Q) 
be a probability space and £ : R x T — > Rm a stochastic process with continuous trajectories, i.e., 
the functions £(•, y ) : R — > Rm are continuous for all y € T. The process £ can be written as a 
measurable dynamical system in the following way: Define S2 =  C(R,Rm ), the space of continuous 
functions from R  to R m . We denote by F  the a-algebra on Q generated by the cylinder sets, i.e., 
by sets of the form Z  = {a> e  £2, w(ti) e F i , . .. ,a>(tn ) e  F„,n e  N, F, Borel sets in Rm }. The 
process f  induces a probability measure P on (Í2, J 7) via P(Z) = Q{y 6 T, £(t¡,y) e Fi for 
i =  1 , . . . .  n}. Define the shift 0 : R x Í2 — > R x Q as 0(t,a>(-)) =  to(t +  •)• Then (S2,F  P,0) 
is a measurable dynamical system. If £ is stationary, i.e., if for all n e  N, and t, t,, . . . ,  t„ 6 R, and 
all Borel sets F j , . . . ,  F„ in R m , it holds that Q{y e r , ^ (t¡ ,y ) e F, for i =  1 ,. . . ,  n] =  Q{y e  T, 
í  (h + 1, y )  e  F¡ for i = 1 ,. . .  ,n], then the shift 0 on Q is P -invariant, and (Q .J7, P ,0) is a metric 
dynamical system.

5. Let A  : Í2 — > g l(d ,R )  be measurable with A e  £ ' .  Consider the random linear differential 
equation x(t) =  A (0(t,«))x(t), where F l , F  P ,0) is a metric dynamical system as described 
before. We understand the solutions of this equation to be «-wise. Then the solutions define a 
random linear dynamical system. Since we assume that A e  £ 1, this system satisfies the integrability 
conditions of the Multiplicative Ergodic Theorem.

6. Hence, for random linear differential equations x(t) =  A(0(t,a>))x(t) the Lyapunov exponents 
and the associated Oseledets spaces replace the real parts of eigenvalues and the Lyapunov spaces 
of constant matrices A e gl (d , R). If the “background” process |  is ergodic, then all the quantities 
in the Multiplicative Ergodic Theorem are constant, except for the Lyapunov spaces that do, in 
general, depend on chance.

7. The problem of stability of the zero solution of i( t)  =  A(0(t,a>))x(t) can now be analyzed in 
analogy to the case of a constant matrix or a periodic matrix function: The stable, center, and u nstable 
subspaces associated with the randommatrix process A(0(t,«))aredefinedasL"(<z>) =  ^ ( L 7 (w), 
Z /m ) < 0), L°(a>) =  ® { £ 7 (a>), Z; (a>) =  0}, and L+ (w) =  ® {L 7 (w), Z ; («) > 0), respectively 
for a> e  Q. We obtain the following characterization of stability: The zero solution x( t ,« , 0) =  0 
of the random linear differential equation x(t) =  A(0(f, o>))x(f) is P -almost surely exponentially 
stable if and only if P-almost surely all Lyapunov exponents are negative if and only if P(<w € Q, 
£ - ( « )  =  R rf} =  1.

Examples:

1. The case ofconstant matrices: Let A e g /(d ,R ) and consider the dynamical system«/): R x R rf — > 
R rf generated by the solutions of the linear differential equation x  =  Ax. The flow <p can be 
considered as the skew-component of a random linear dynamical system over the base flow given 
by Q =  {0}, F  the trivial a-algebra, P the Dirac measure at {0}, and 0 : R x Q — ► S2 defined as 
the constant map 0(t,a>) =  co for all t € R. Since the flow is ergodic and satisfies the integrability 
condition, we can recover all the results on Lyapunov exponents and Lyapunov spaces for <p from 
the Multiplicative Ergodic Theorem.

2. Weak Floquet theory: Let A :R  — > g/(d,R)beacontinuous,periodicmatrixfunction.Definethe 
base flow as follows: S2 =  S ', Bis the Borel a-algebra on S ', P is the uniform distribution on S ', and 
0 is the shift 0 ( t , r )  =  t+ r .T h e n  (Q ,F , P ,0 ) is an ergodic metric dynamical system. The solutions 
<p(-, r ,  x) of x =  A(t)x define a random linear dynamical system <l> : R x Q x R”1 — ► Q x R rf via
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<I>(t,w,x) =  (0(t,a>),<p(t,a>,x)). With this set-up, the Multiplicative Ergodic Theorem recovers 
the results of Floquet Theory with P-probability 1.

3. Average Lyapunov exponent: In general, Lyapunov exponents for random linear systems are difficult 
to compute explicitly— numerical methods are usually the way to go. In the ergodic case, the average 
Lyapunov exponent A := |  y^d/A,- is given by A =  ljtrE (A  | Z), where A  : Q — > gl (d, R) is the 
random matrix of the system, and is the conditional expectation of the probability measure
P given the a  -algebra I  of invariant sets on Q. As an example, consider the linear oscillator with 
random restoring force

y(t) +  2^y(t) +  (l + a f(0 (t,a> )))y (t)  =  0,

where f i,a  e R are positive constants and f  : S2 —> R is in £ '.  We assume that the background 
process is ergodic. Using the notation x 1 =  y  and x2 =  y we can write the equation as

x(t) =  A(0(t, a>)x(t) =
0

- 1  -  af(0(t,a>))
x(t).

For this system we obtain A =  — ( [Arn98, Remark 3.3.12]).

56.8 Robust Linear Systems

Definitions:
Let 4>: R x 14 x  Rd  — > 14 x Rd  be a linear skew-product flow with continuous base flow 0 : R  x 14 — > 14. 
Throughout this section, 14 is compact and 0 is chain recurrent on 14. Denote by 14 x P^- 1 the projective 
bundle and recall that <I> induces a dynamical system P<I> : R x 14 x P^- 1  — > 14 x P^- 1 . For e, T > 0 
an (E, T)-chain f  of Pd> is given by n e  N, To,. . . ,  Tn > T, and (UQ, po), • • •, (un , p n ) G 14 x Pd - 1  with 
d(P<P(Ti,Ui, p i),(u i+ i, pi+i)) < £ for i =  0 , . . .  ,n  — 1.

Define the finite time exponential growth rate of such a chain f  (or chain exponent) by

(
n— 1 \ -l n-1
57 % I 5 ? »Dll -  log 11̂.ID,
i=0 / i=0

where x; e  P _ , (pD-
Let Ad C 14 x IP̂ - 1  be a chain recurrent component of the flow P<I>. Define the Morse spectrum over 

Ad as

{A e  R, there exist sequences s n —> 0, T„ —> oo and 1
r (sn , T„)-chains in Ad such that lim A(£„) =  A I

and the Morse spectrum of the flow as

A e  R, there exist sequences E„ —> 0, Tn —> oo and (E„, Tn )- 1 
=  * ? . 

chains in the chain recurrent set of Pd> such that lim A(£„) =  A I

Define the Lyapunov spectrum over Ad as

^Ly(Ad) =  (A(M, X ), (u ,x) 6 Ad, X ^ 0 )

and the Lyapunov spectrum of the flow 4> as

E t y (d>) =  (A(M, X), (u,x) G 14 x R d , X /  0}.
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Facts:
Literature: [CKOO], [Gru96], [HPO5].

1- The projected flow P<I> has a finite number of chain-recurrent components Ad i, ,A4/, / < d.
These components form the finest Morse decomposition for P4>, and they are linearly ordered 
M  i -< . . .  -< M i.  Their lifts P - 1  M i  C U  x Rd form a continuous subbundle decomposition of 
U  x R'' =  ® ' =1 P - 'M .

2. The Lyapunov spectrum and the Morse spectrum are defined on the Morse sets, i.e., E iy (4>) =  
U k i  and =  Ui= i

3. For each Morse set M  t theLyapunovspectrumiscontainedintheMorsespectrum,i.e.,Ei y (A4,) C 
^ M o W i)  for i =  1 , . . . , / .

4. For each Morse set, its Morse spectrum is a closed, bounded interval E M„(Ad,) =  ], and
K*,Ki G ^L y^M )  for i = 1,.. . J .

5. The intervals of the Morse spectrum are ordered according to the order of the Morse sets, i.e., 
M j -< M ; is equivalent to x* < x jandx , <  Kj.

6. As an application of these results, consider robust linear systems of the form : R  x U x R rf — > 
U  x  R rf, given by a perturbed linear differential equation x =  A(u(t))x  :=  Aox +  u,(t)A ,x,
with Ag,. . . ,  A m G g l(d yK), u G Id =  {n : R  — ► U, integrable on every bounded interval! and 
U C R m is compact, convex with 0 G intU. Explicit equations for the induced perturbed system on 
the projective space P ' - 1  can be obtained as follows: Let S'' "1 c  Rrf be the unit sphere embedded 
into R rf. The projected system on Sr f_ | is given by

5(t) =  h(u(t),s(t)), u e U , s e Srf-1

where
m

h(u ,s) =  h0 (s) +  ^ 2  Uihiis) with hj(s) =  (A, — s T A,s • / )  s, i =  0 ,1 , . . -,m.
i = l

Define an equivalence relation on 1 vias, ~  s2 ifsi =  —s2 , identifying opposite points. Then the 
projective space can be identified as P<,_1 =  Srf~ '/  ~ .  Since h(u,s) = —h ( u ,- s ) ,  the differential 
equation also describes the projected system on IP̂ - 1 . For the Lyapunov exponents one obtains in 
the same way

1 1 f 'A(n,x) =  limsup -  log ||x(t)|| =  limsup -  I q (u (r) ,s (r ) )  dr  
r->oo t t—tx  t Jo

with
nt

q(u ,s) =  q0 (s) +  ^ 2  with q js )  =  (A, — s T A,s ■ l )  s, i =  0 ,1 , . . . ,  m.
i=l

For a constant perturbation u(t) = u G R for all t G R the corresponding Lyapunov exponents 
X(u, x) of the flow <t> are the real parts of the eigenvalues of the matrix A(u) and the corresponding 
Lyapunov spaces are contained in the subbundles P _ | A4,-. Similarly, if a perturbation u G U  is 
periodic, the Floquet exponents of x =  A(u(-))x are part of the Lyapunov (and, hence, of the 
Morse) spectrum of the flow <I>, and the Floquet spaces are contained in P - 1  M ,.  The systems 
treated in this example can also be considered as “bilinear control systems” and studied relative to 
their control behavior and (exponential) stabilizability — this is the point of view taken in | CKOO ].

7. For robust linear systems “generically” the Lyapunov spectrum and the Morse spectrum agree see 
[CKOO] for a precise definition of “generic” in this context.

8. O f particular interest is the upper spectral interval EMA M I) = [xf.x,], as it determines the 
robust stability of x =  A(u(t))x (and stabilizability of the system if the set 14 is interpreted as a
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set of admissible control functions; see [Gru96]). The stable, center, and unstable subbundles of 
U x R d associated with the perturbed linear system x =  A(u(t))x  are defined as L ~ M j,
Kj <  0}, L° = 0 e  [K*,K , ]}, and L +  = K * >  0}, respectively. The zero
solution of x  =  A (u(t))x  is exponentially stable for all perturbations u e  U  if and only if KI < 0  if 
and only if L~ = 14 x R d .

Examples:
1. In general, it is not possible to compute the Morse spectrum and the associated subbundle decom

positions explicitly, even for relatively simple systems, and one has to revert to numerical algorithms; 
compare [CK00, App. D]. Let us consider, e.g., the linear oscillator with uncertain restoring force

1Xi

X2

0
- 1 —2b

Xi

x2

+ u(t)
0

- 1
0 Xi
0 x 2

w ithn(t) e  [—p ,p ]a n d b  > 0. Figure 56.1 shows the spectral intervals for this system depending 
on p  >  0.

2. We consider robust linear systems as described in Fact 6, with varying perturbation range by 
introducing the family Up =  p U  for p >  0. The resulting family of systems is

nt
xp  =  A(Mp (t))xp  :=  A oxp  +  ^ 2  Ui(t)AiXp , 

i=l

with up  e  14P =  {u : R — ► Up , integrable on every bounded interval}. The corresponding 
maximal spectral value ici(p) is continuous in p  and we define the (asymptotic) stability radius of 
this family as r =  inf{p > 0, there exists UQ 6 14 p  such that x p  = A (uo(t))xp  is not exponentially 
stable}. This stability radius is based on asymptotic stability under all time varying perturbations. 
Similarly one can introduce stability radii based on time invariant perturbations (with values in 
Rm or C m ) or on quadratic Lyapunov functions ([CK00], Chapter 11 and [HP05]).

3. Linear oscillator with uncertain damping: Consider the oscillator

y +  2(b + u (t))y  +  (1 +  c)y  =  0

FIGURE 56.1 Spectral intervals depending on p >  0 for the system in Example 1.
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FIGURE 56.2 Stability radii for the system in Example 4.

with u(t) e  [—p , p] and c e  R. In equivalent first-order form the system reads

Xt

x 2

0Xl

X2

*1
Xï

Clearly, the system is not exponentially stable for c < — 1 with p =  0, and for c >  —1 with p > b. 
It turns out that the stability radius for this system is

r(c) =
for 

for

c < — 1

c >  -1 .

4. Linear oscillator with uncertain restoring force: Here we look again at a system of the form

Xi

X2

0
-1

1
—2b

Xl

X2
+ u(t)

0
-1

Xl

x2

w ith n (t) 6 [—p ,p ]a n d b  > 0. (Forb < 0 the system is unstable even for constant perturbations.) 
A closed form expression of the stability radius for this system is not available and one has to use 
numerical methods for the computation of (maximal) Lyapunov exponents (or maxima of the 
Morse spectrum); compare [CK00, App. D], Figure 56.2 shows the (asymptotic) stability radius r, 
the stability radius under constant real perturbations TR, and the stability radius based on quadratic 
Lyapunov functions r Ly, all in dependence on  b > 0; see [CK00, Ex. 11.1.12],

56.9 Linearization
The local behavior o f the dynamical system induced by a nonlinear differential equation can be studied via 
the linearization of the flow. At a fixed point of the nonlinear system the linearization is just a linear differ
ential equation as studied in Sections 56.1 to 56.4. If the linearized system is hyperbolic, then the theorem 
of Hartman and Grobman states that the nonlinear flow is topologically conjugate to the linear flow. The 
invariant manifold theorem deals with those solutions of the nonlinear equation that are asymptotically 
attracted to  (or repelled from) a fixed point. Basically these solutions live on manifolds that are described 
by nonlinear changes o f coordinates of the linear stable (and unstable) subspaces.

Fact 4 below describes the simplest form of the invariant manifold theorem at a fixed point. It can 
be extended to include a “center manifold” (corresponding to the Lyapunov space with exponent 0). 
Furthermore, (local) invariant manifolds can be defined not just for the stable and unstable subspace.
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but for all Lyapunov spaces; see [BK94], [CK00], and [Rob98] for the necessary techniques and precise 
statements.

Both the Grobman-Hartman theorem as well as the invariant manifold theorem can be extended to time 
varying systems, i.e., to linear skew product flows as described in Sections 56.5 to 56.8. The general situation 
is discussed in [BK94], the case of linearization at a periodic solution is covered in [Rob98], random 
dynamical systems are treated in [Arn98], and robust systems (control systems) are the topic of [CK00].

Definitions:
A (nonlinear) differential equation in Rd  is of the form y =  f  (y), where f  is a vector field on R d . Assume 
that f  is at least of class C 1 and that for all y0 e  R d  the solutions y(t,y0 ) o f the initial value problem 
y(O,yo ) =  yo exist for all t e  R.

1. (Hartman-Gobman) Consider a differential equation y  =  /(y )  in R d  with flow 0  : R  x Rd — > 
Rd . Assume that the equation has a hyperbolic fixed point p  and denote the flow o f the linearized 
equation k =  Dy f  (p)x by 'F : R  x R d — > R d . Then there exist neighborhoods l/(p) of p and 
V(0) of the origin in R d , and a homeomorphism h : U(p) — > V(0) such that the flows <F |u(p j 
and *F |v(0) are (locally) C°-conjugate, i.e., h(<I>(t,y)) =  ^ ( t , h (y)) for all y e  U (p) and t e R as 
long as the solutions stay within the respective neighborhoods.

2. Consider two differential equations y =  /i(y ) in Rd with flows <J>i : R  x  R d  — > R d for i = 
1,2. Assume that 4», has a hyperbolic fixed point pI and the flows are C l -conjugate for some 
k >  1 in neighborhoods of the p,. Then a (D y /i(p i))  =  or (D y / 2 (p2))> i.e., the eigenvalues of the 
linearizations agree; compare Facts 5 and 6 in Section 56.2 for the linear situation.

3. Consider two differential equations y =  / , (y) in Rd  with flows «F, : R  x  Rd  — > R d  for i =  1,2. 
Assume that 4>i has a hyperbolic fixed point p, and the number of negative (or positive) Lyapunov 
exponents of Dy  ft (p,) agrees. Then the flows <t>, are locally C°-conjugate around the fixed points.

4. (Invariant Manifold Theorem) Consider a differential equation y =  /(y )  in R d  with flow <t> : 
R  x Rd  — > Rd . Assume that the equation has a hyperbolic fixed point p  and denote the linearized 
equation by x =  Dy  f  (p)x.

(i) There exists a neighborhood U(p) in which the flow <I> has a local stable manifold Wioc (p) 
and a local unstable manifold W^f (p).

A point p e  R d is a fixed point of the differential equation y =  /(y )  if y(t, p) =  p for all t e  R.
The linearization of the equation y =  f  (y) at a fixed point p e  Rd  is given by x =  Dy f  (p)x, where 

Dr f lp )  is the Jacobian (matrix of partial derivatives) of f  at the point p.
A fixed point p e  R d  of the differential equation y =  /(y )  is called hyperbolic if D y / ( p )  has no 

eigenvalues on the imaginary axis, i.e., if the matrix Dy f  (p) is hyperbolic.
Consider a differential equation y =  /(y )  in Rd  with flow 4> : R  x R 11 — > R d , hyperbolic fixed point 

p and neighborhood U (p). In this situation the local stable manifold and the local unstable manifold 
are defined as

^ ( P )  =  (q € U: lim^oo 4>(t,q) =  p} and (p) =  {q e U: l im ,^ -^  <I>(t,q) =  p}, 

respectively.
The local stable (and unstable) manifolds can be extended to global invariant manifolds by following 

the trajectories, i.e.,

W5 (p) =  ^ C(P)) “ d ^ ( P )  =  ^ ( P » -

Facts:
Literature: [Arn98], [AP90], [BK94], [CK00], [Rob98].

See Facts 3 and 4 in Section 56.2 for dynamical systems induced by differential equations and their fixed 
points.
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(ii) Denote by L ~ (and L + ) the stable (and unstable, respectively) subspace of Dy  f  (p); compare 
the definitions in Section 56.1. The dimensions of L~ (as a linear subspace of R rf) and of 
WiM (p) (as a topological manifold) agree, similarly for L + and W ^ tp ) .

(iii) The stable manifold Wfoc (p) is tangent to  the stable subspace I  ~ at the fixed point p, similarly 
for W^c (p) and L +  .

5. Consider a differential equation y =  /(y )  in Rrf with flow 0  : R x R rf — > R rf. Assume that the 
equation has a hyperbolic fixed point p. Then there exists a neighborhood U (p) on which 0  is 
C°-equivalent to the flow of a linear differential equation of the type

Xs =  -Xs, xs e R'f , 

xu =  x„x u eR''-,

where ds and du are the dimensions of the stable and the unstable subspace of Dy f (p ) ,  respectively, 
with ds + du = d.

Examples:

1. Consider the nonlinear differential equation in R  given by z +  z — z3 =  0, or in first-order form 
in R 2

>rl y2 1 \
. = , =  fW -
DJ [ - y i+ y j

The fixed points o f this system are pi =  [0,O]T , p 2 =  [l,0 ]T , ps =  [—1,0]T . Computation of the 
linearization yields

Hence, the fixed point p] is not hyperbolic, while p2 and pi have this property.
2. Consider the nonlinear differential equation in R given by z +  sin(z) +  z =  0, or in first-order 

form in R 2

ÿi
h

72

- s i n f / J  — y2
=  /(y)-

The fixed points of the system are p„ =  [ntr, O]T for n e  1 . Computation of the linearization yields

0 1
— cos(yi) -1

Hence, for the fixed points p„ with n even the eigenvalues are M i > ZD =  — |  i  ’ y  < n e 8a t 'v e  
real part (or Lyapunov exponent), while at the fixed points p„ with n odd one obtains as eigenvalues
Vj, v2 =  — j  ±  y  | ,  resulting in one positive and one negative eigenvalue. Hence, the flow of the 
differential equation is locally C°-conjugate around all fixed points with even n, and around all 
fixed points with odd n, while the flows around, e.g., po and p, are not conjugate.
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