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Abstract. Optimal structural design of microstructured materials is
one of the central issues of material science. The paper deals with the
shape optimization of microcellular biomorphic silicon carbide ceramics
produced from natural wood by biotemplating. Our purpose is to achieve
an optimal performance of the new composite materials by solving a non-
linear optimization problem under a set of equality and inequality con-
straints. The microscopic geometric quantities serve as design parameters
within the optimization procedure. Adaptive grid-refinement technique
based on reliable and efficient a posteriori error estimators is applied in
the microstructure to compute the homogenized elasticity coefficients.
Some numerical results are included and discussed.

                                                              
                                                               
     

                                                        

1 Introduction

Biological materials exhibit a hierarchically designed composite morphology and
unique mechanical properties. Natural grown materials like wood and cellulose
fibres have recently become of interest for advanced processing of engineering
materials. Carbon preforms derived from natural wood structures serve as tem-
plates for preparation of microstructural designed materials. The tracheidal cells
in wood form directly porous structures at the microlevel which are accessible for
liquid or gaseous infiltration and chemical reaction processing. Biomorphic mi-
crocellular silicon carbide (SiC) ceramics have been recently produced by biotem-
plating methods (see [6]). The production process requires infiltration of liquid
or gaseous silicon (Si) into the carbonized (at high temperature) wood templates.
Due to their excellent structural-mechanical properties, the new ceramic com-
posite materials have found a lot of technical applications, for instance, filter
and catalyst carriers, heat insulation structures, medical implants, sensor tools,
etc.
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In this study, we are concerned with the optimal shape design of the new
microstructured ceramics by using the homogenization modelling and mesh-
adaptivity at the microlevel. The homogenization design method is well es-
tablished in structural mechanics (cf., e.g., [2, 4, 5, 7, 8]) and recently success-
fully applied to a variety of optimization problems. Section 2 comments on the
computation of the homogenized elasticity tensor in the case of a stationary
microstructure with homogeneous linear elastic constituents. We assume a peri-
odical distribution of the microstructure with a geometrically simple tracheidal
periodicity cell. Here, the optimal shape design of the biomorphic SiC ceramics
is briefly discussed. The optimization is applied to the homogenized model un-
der both equality and inequality constraints on the state variables and design
parameters. In Section 3, we focus on the adaptive refinement method based on
the Zienkiewicz-Zhu (see [11]) error estimator. Mesh-adaptive procedures and a
posteriori error analysis have been recently widely used in many finite element
simulations of computational engineering and scientific computing (cf., e.g., [1,
3, 9–11]). Numerical experiments given in the last section show the efficiency of
our adaptive strategy and the reliability of the a posteriori error indicator.

2 Optimal Shape Design Based on Homogenization

We assume periodical distribution of the microstructure with a simple unit tra-
cheidal periodicity cell Y (see Fig. 1) consisting of an outer layer of carbon,
interior layer of SiC, a very thin layer of silicon dioxide (SiO2), and a void. Ex-
perimental data show that the SiC-ceramics are not stable under oxidizing con-
ditions and they form a SiO2-layer of thickness 100 nm whereas the typical size
of the tracheidal cell is approximately 30-50 µm in diameter. The SiO2-coating
of the interface between the SiC and the void can be done by a controlled oxida-
tion process of the inner SiC-surfaces at 800-12000C in ambient atmosphere and
can significantly improve the mechanical performance of the ceramic materials.

To provide a macrscopic scale model of the biomorphic composites we have
applied the homogenization approach which has recently become a well-estab-
lished technique in structural mechanics to find an optimal design of microstruc-
tured materials (cf., e.g., [2, 4, 5, 8, 7]). We consider the case of a stationary mi-
crostructure with homogeneous isotropic linear elastic constituents and Hooke’s

Carbon
SiC

Void

SiO2

Fig. 1. The periodicity cell Y with 3 constituents and a void
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law as the constitutive equation. Under the assumption for well separated macro-
and micro-scales, the homogenization method based on double scale asymptotic
expansion (we refer to [2, 5, 8] for details) results in the homogenized elasticity
tensor EH = (EHijkl), i, j, k, l = 1, 2, with

EHijkl =
1
|Y |

∫
Y

(
Eijkl(y)− Eijpq(y)

∂ξklp
∂yq

)
dy. (1)

The vector function ξkl with periodic components ξklp ∈ H1
per(Y ), p = 1, 2, is

considered as a microscopic displacement field of the following elasticity cell-
problem in a weak formulation

∫
Y

(
Eijpq(y)

∂ξklp
∂yq

)
∂φi
∂yj

dy =
∫
Y

Eijkl(y)
∂φi
∂yj

dy, ∀φ ∈ VY , (2)

where VY = {φ ∈ H1
per(Y )} is the set of all admissible Y -periodic displacements.

For the macroscale model of the composite ceramic material we consider a
suitable reference domain Ω ⊂ R2 which can carry given loads. The optimal
performance of the biomorphic ceramics strongly depends on the exterior body
force f and the surface traction t applied to a portion ΓT ⊂ ∂Ω of the work-
piece. We denote by u = (u1, u2)T the displacement vector (state variable), by
α = (α1, . . . , αm)T the design parameters (the widths of the different material
layers), and by J the objective functional to be minimized (e.g., mean compli-
ance, bending strength, etc.). Three different materials (m = 3) are considered
in the microstructure shown on Fig. 1.

Our optimization problem has the form

J(u, α) = inf
v,β

J(v, β), (3)

subject to the following equality and inequality constraints on the state variables
and the design parameters:

2∑
i,j,k,l=1

∫
Ω

EHijkl(α)
∂uk
∂xl

∂φi
∂xj

dx =
∫
Ω

q · φdx+
∫
ΓT

t · φds, (4)

g(α) :=
m∑
i=1

αi = C, αmin ≤ αi ≤ αmax, 1 ≤ i ≤ m, (5)

where αmin = 0, αmax = 0.5, and C, 0 ≤ C ≤ 0.5, is a given constant. Note
that αi = 0, 1 ≤ i ≤ m, corresponds to a complete void, C = 0.5 to a com-
plete solid material, and the case 0 < αi, C < 0.5, 1 ≤ i ≤ m, corresponds
to a microstructural porous composite with a void. Equation (4) refers to the
homogenized equilibrium equation given in a weak form.

The constrained minimization problem (3)-(5) is solved by the primal-dual
Newton interior-point method. The interior-point aspect is taken care of by
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coupling the inequality constraints in (5) by parametrized logarithmic barrier
functions whereas the primal-dual aspect stems from coupling the equality con-
straints by appropriate Lagrangian multipliers. The resulting saddle-point prob-
lem is solved by the Newton method applied to the associated Karush-Kuhn-
Tucker conditions featuring a line-search approach for the increments and a
hierarchy of merit functions for convergence monitoring (see [7]).

3 Adaptive Grid Refinement

The main idea of the adaptive grid-refinement process is to find a mesh which
is adjusted to the behavior of the solution, i.e., the mesh points have to be con-
centrated only in those parts of the domain where the solution changes rapidly.
For the parts where the solution has unessential changes the mesh is distributed
coarsely. This process is usually done by a trial and error analysis. Note that
a priori error estimates give information about the asymptotic error behavior
and in the case of singularities do not always lead to satisfactory results. In
the past twenty years, numerous studies have been devoted to an error control
and efficient mesh-design based on some post-processing procedures (cf., e.g.,
[1, 3, 9–11]). A natural requirement for the a posteriori error estimate is to be
less expensive than the computation of the numerical solution. The a posteriori
adaptive strategy can be described as follows:

1. Start with an initial coarse mesh T0 fitting the domain geometry. Set n := 0.
2. Compute the discrete solution on Tn.
3. Use a posteriori error indicator for each element T ∈ Tn.
4. If the global error is small enough, then stop. Otherwise, refine the marked

elements, construct the next mesh Tn+1, set n := n+1, and return to step 2.

We solve the linear elasticity equation (2) in the periodicity cell Y by adaptive
finite element method based on the Zienkiewicz-Zhu (often called ZZ) error es-
timator proposed in [11]. A detailed theoretical study of the ZZ-estimator for
linear triangular elements and the Poisson equation can be found in [9]. The
basic idea of the method consists in computing an improvement of the solution
stress tensor by a post-processing and take the difference between this so-called
recovered continuous stress and the discrete solution stress as an error estima-
tor. The quality and the reliability of the a posteriori error estimator strongly
depend on the approximation properties of the stress recovery technique and the
accuracy of the recovered solution.

Assume an initial coarse triangulation satisfying the conditions: i) any two
triangles share either a common edge or a common vertex; ii) the triangulation
is shape regular, i.e., the ratio of the radius of the smallest circumscribed ball to
that of the largest contained ball is bounded above by a constant independent
of the partition. The adaptive mesh-generation technique essentially depends on
the properties of the coarsest mesh. For more details about dealing with hanging
nodes within the adaptive procedure and keeping conformity of the elements, we
refer, for instance, to [10].



Adaptive Grid Refinement 375

Suppose that for a given level of refinement n the triangulation Tn satisfies
the conditions i)-ii). For fixed k, l = 1, 2, denote by σ, σ̂, and σ∗, respectively,
the exact stress, the discrete finite element discontinuous stress, and the contin-
uous recovered stress in equation (2) discretized on Tn. Originally, the recovered
stress was defined in [11] by interpolating the discontinuous (over the elements)
approximation σ̂ under the assumption to use the same shape functions as for
the displacements. This smoothing procedure can be done by nodal averaging
method or the L2-projection technique. The components of σ∗ are piecewise lin-
ear and continuous. The computation of the global L2(Y )-projection is expensive
and hence, as proposed in [11], one usually uses “lumping” of the mass matrix
of the form

σ∗(P ) =
∑
T∈YP

|T |
|YP |

σ̂|T , (6)

where YP ⊂ Y is the union of all elements sharing vertex P . Thus, σ∗(P ) is
simply a weighted average of σ̂ on the triangles belonging to YP . In practice,
local recovery estimators of the form ηT := ‖σ∗ − σ̂‖0,T are considered. The
global estimator ηY :=

(∑
T∈Tn

η2
T

)1/2 is equivalent to the error ‖σ − σ̂‖0,Y
(we refer to [9, 11] for more details). Heuristically (as an error indicator), the
continuous recovered solution σ∗ is a better approximation to the exact stress σ
than σ̂. In our numerical experiments, we apply (6) only to the boundary grid
points P ∈ ∂Y . For an arbitrary interior node, σ∗ is computed by averaging the
stresses at the elements that share the considered node. This procedure requires
to solve a least-square problem to find an approximation of the stress at the
corresponding vertex inside the domain Y .

4 Numerical Experiments

In this section, we present some results on the computation of the homogenized
elasticty coefficients (1) which invokes the numerical solution of (2) with the
microcell as the computational domain. Due to the equal solutions ξ12 = ξ21,
one has to solve three problems in the period Y to find ξ11 (Problem 1), ξ22

(Problem 2), and ξ12 (Problem 3). Note that the problem (2) is subjected to
periodic boundary conditions on the outer part of ∂Y and Neumann boundary
conditions on the inner part of ∂Y where the void is located (see Fig.1). For
simplicity, we consider a square hole inside the domain and notice that in this
case EH2222 = EH1111.

We use conforming P1 finite element approximations with respect to an
appropriate initial triangulation of Y and adaptive mesh-refinement procedure
based on the ZZ-error indicator. The main purpose of any adaptive algorithm
is to get an optimal mesh (heuristically), i.e., to make the discretization er-
rors equidistributed between elements. The following adaptive strategy has been
used in our finite element code: mark for refinement those triangles T for which
ηT ≥ γmaxT ′∈Tn ηT ′ , 0 < γ < 1 (see Section 3). In our numerical experiments,
we choose γ = 0.5 as a threshold. The marked elements are refined by a bisec-
tion through the marked edge. The problem (2) is solved by the preconditioned



Fig. 3. Problem 1, early wood, density = 51%, 9 adaptive refinement levels: a) carbon,
1382 triangles, 737 nodes; b) carbon and SiC, 3754 triangles, 1919 nodes

conjugate gradient (PCG) method with incomplete Cholesky factorization as a
preconditioner. Plane stresses are assumed to compute the homogenized elastic-
ity coefficients (1). The Young modulus E (in GPa) and the Poisson ratio ν of our
three materials are, respectively, E = 10, ν = 0.22 for carbon, E = 410, ν = 0.14
for SiC, and E = 70, ν = 0.17 for SiO2. The numerical examples considered in
this section do not take into account the additional thin layer of SiO2 formed by
posttreatment of the SiC-ceramics (after oxidation at high-temperature).

On Fig. 2 we display the behavior of the homogenized coefficient EH1111 versus
the widths of the C and SiC layers which vary between 0 and 0.5. The first picture
a) on this figure treats the void as a weak material with E = 0.01 and ν = 0.45
whereas b) concerns a complete void with no material. We compute the effective
coefficients EHijkl only for a fixed number of values of the design parameters (e.g.,
20×20 grid as shown on Fig. 2) and then interpolate the values by splines. With
regard to the homogenized state equation (4), this procedure results in having
explicit formulas at hand for the gradients and the Hessian of the Lagrangian
function needed in the optimization loop (see [7]).

The mesh-adaptive process is visualized on Figures 3 and 4. We see that in
case a) of one material available in the microstructure, an appropriate refinement
is done around the corners where the hole with a complete void is located. In case
b) of more materials, additional mesh-adaptivity is needed across the material
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F i g. 2. Homogenized coefficients EH
1111 w.r.t. the widths of carbon and SiC layers:

a) hole with a weak material; b) hole with no material
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Fig. 4. Problem 1, late wood, density = 84%, 9 adaptive refinement levels: a) carbon,
1527 triangles, 818 nodes; b) carbon and SiC, 3752 triangles, 1916 nodes

Table 1. Homogenized coefficients (early wood) w.r.t. adaptive refinement level

level EH
1111 EH

1122 EH
1212 nt / nn (Prob.1,2) nt / nn (Prob.3)

1 64.975 7.664 12.116 168 / 100 168 / 100
2 63.336 6.642 9.750 220 / 126 224 / 128
3 58.466 6.682 8.073 288 / 162 300 / 168
4 56.572 7.012 6.643 484 / 262 576 / 308
5 54.385 6.245 6.212 712 / 378 760 / 402
6 52.936 6.091 5.474 1208 / 630 1376 / 716
7 51.914 5.458 5.306 1800 / 932 1800 / 930
8 50.861 4.790 5.217 2809 / 1444 2688 / 1374
9 50.455 4.571 5.029 3754 / 1919 3726 / 1896
10 49.591 4.359 4.983 5918 / 3013 5708 / 2896

interfaces in the microstructure due to the strongly varying material properties
(Young’s modulus and Poisson’s ratio). The ZZ a posteriori error estimator is
local, not expensive and yields satisfactory results as the numerical experiments
show. We also note that the density of the microcell depends on the growing state
of the wood. In early wood regions (growth of the tree in spring and summer) the
holes are large and the cell walls are thin (see Fig. 3, density 51%). For the late
wood regions (autumn), the density of the tracheidal cells is larger compared to
the early tree due to the smaller pores and the ticker cell walls, see Fig. 4.

In Table 1 we give some results for the homogenized elasticty coefficients
on various adaptive refinement levels in the case of early wood. We report the
number of triangles nt and the number of nodes nn on each level when solving
problems (2). The corresponding experimental data in the case of late wood are
presented in Table 2. We see from both Tables that the mesh sensitivity on the
successive levels is very small. Our adaptive mesh-refinement procedure stops
when a priori given limit for the number of refinement levels is reached.
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Table 2. Homogenized coefficients (late wood) w.r.t. adaptive refinement level

level EH
1111 EH

1122 EH
1212 nt / nn (Prob.1,2) nt / nn (Prob.3)

1 33.430 3.885 9.893 168 / 100 168 / 100
2 33.064 3.929 9.577 216 / 126 224 / 128
3 32.844 4.024 9.283 300 / 168 284 / 160
4 32.291 4.254 8.970 544 / 296 520 / 280
5 32.144 4.312 8.809 828 / 438 668 / 356
6 31.909 4.372 8.703 1354 / 705 1064 / 556
7 31.862 4.379 8.526 1892 / 980 1484 / 768
8 31.735 4.399 8.470 2894 / 1485 2232 / 1142
9 31.711 4.400 8.373 3752 / 1916 3088 / 1576
10 31.487 4.497 8.321 5716 / 2906 4564 / 2316
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