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Abstract. The optimization of the macroscopic behavior of microstructured ma-
terials using microscopic quantities as design variables is a well established dis-
cipline in materials science. The paper deals with recently produced microcel-
lular biomorphic ceramics. The mechanical macromodel corresponding to these
composite materials is obtained by homogenization. The homogenized elastic-
ity tensor and its dependence on the design variables are computed numerically
involving adaptive finite element approximations of elasticity problems in the 3-
D periodicity cell. Efficient iterative solvers based on incomplete Cholesky (IC)
decomposition and algebraic multigrid method (AMG) as preconditioners of the
stiffness matrix are proposed in the application of PCG method.

1 Introduction

The production of microcellular biomorphic ceramics by biotemplating processes is a
particular area within biomimetics which has emerged as a perspective new technology
in materials science during the past decade (cf., e.g., [11]). The biological object under
consideration in this paper is naturally grown wood which is known to be highly porous
and to possess excellent mechanical properties. The wood morphologies are charac-
terized by an open porous system of tracheidal cells which provide the transportation
path for water and minerals in the living plants. The biotemplating process uses wooden
specimen to produce graphite-like carbon preforms by high temperature pyrolysis fol-
lowed by an infiltration by liquid-phase or gaseous-phase materials such as silicon (Si)
or titanium (Ti) to come up with SiC- or TiC-ceramics (see, e.g., [6] for details). An
important feature of the biotemplating process is that it preserves the high porosity of the
wooden specimen and results in a final ceramics with excellent structural-mechanical
and thermomechanical properties which can be used as heat insulators, particle filters,
catalyst carriers, automotive tools, and medical implants.

The macroscopic mechanical behavior of the microcellular biomorphic ceramics
depends on microscopic geometrical quantities such as the size of the voids and the
lengths and widths of the different layers forming the cell walls. While the size of the
voids is determined by the growth of the wood itself (early/late wood), the other quantities
can be influenced by tuning the parameters of the biotemplating process. Therefore, an
optimal structural design of the ceramics can be performed where the state equation
is given by linear elasticity and the design variables are chosen as the microstructural
geometrical quantities (cf., e.g., [8]). The objective functional depends on the mode
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of loading. Since the resolution of the microstructures is cost prohibitive with respect
to computational work, the idea is to derive a homogenized macromodel featuring the
dependence on the microstructural design variables and to apply the optimization process
to the homogenized model.

2 Computation of Homogenized Elasticity Tensor

For the structural optimization of the microcellular biomorphic SiC ceramics modern
optimization techniques (see, [7]) are applied to the mechanical macromodel obtained
by the homogenization approach (cf., e.g., [3,9]).

We assume the workpiece of macroscopic length L to consist of periodically distrib-
uted constituents with a cubic periodicity cell Y of microscopic characteristic length �
consisting of an interior void channel (V) surrounded by layers of silicon carbide (SiC)
and carbon (C) (cf. Fig.1).

SiC CV

Fig. 1. a) Periodicity cell Y = [0, �]3, b) Cross section of Y = V ∪ SiC ∪ C

Assuming linear elasticity and denoting by u the displacements vector, the stress
tensor σ is related to the linearized strain tensor e = 1

2 (∇u + (∇u)T ) by Hooke’s
law σ = Ee, where E = E(X) = (Eijk�(X)) stands for the elasticity tensor whose
components attain different values in the regions V, SiC, and C:

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1111 E1122 E1133 E1112 E1123 E1113

E2222 E2233 E2212 E2223 E2213

E3333 E3312 E3323 E3313

E1212 E1223 E1213

E2323 E2313

SYM E1313

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

Introducing x := X/L and y := X/� as the macroscopic and microscopic variables
and ε := �/L as the scale parameter, homogenization based on the standard double scale
asymptotic expansion results in the homogenized elasticity tensor EH = (EH

ijk�) whose
components are given by
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EH
ijk� =

1
|Y |

∫

Y

(
Eijkl(y) − Eijpq(y)

∂ξk�
p

∂yq

)
dy . (2.2)

The tensor ξ=(ξk�
p ), k, l, p = 1, 2, 3, with periodic components ξk�

p ∈ H1
per(Y ) has

to be computed via the solution of the elasticity problems

∫

Y

(
Eijpq(y)

∂ξkl
p

∂yq

)
∂φi

∂yj
dy =

∫

Y

Eijkl(y)
∂φi

∂yj
dy (2.3)

for an arbitrary Y −periodic variational function φ ∈ H1(Y ). We note that explicit
formulas for the homogenized elasticity tensor are only available in case of laminated or
checkerboard structures (cf., e.g., [2,9]). Therefore, (2.3) has to be solved numerically
which has been done by using continuous, piecewise linear finite elements with respect
to adaptively generated locally quasi-uniform and shape regular simplicial tetrahedral
partitionings of the periodicity cell Y .

3 Mesh Adaptivity by a Posteriori Error Estimation

The computation of the homogenized elasticity coefficients requires the solution of linear
elastic boundary value problems with the periodicity cell Y as the computational domain.
Due to the composite character of the cell there are material interfaces where the solution
changes significantly. Hence, local refinement of the underlying finite element mesh is
strongly advised. In contrast to previous work in structural optimization (cf., e.g., [1,2])
where local refinement is done by manual remeshing, we have used an automatic grid
refinement based on a posteriori error estimator of Zienkiewicz-Zhu type [13] obtained
by local averaging of the computed stress tensor.

Using an approximation of the components of the displacements vector by continu-
ous, piecewise linear finite elements with respect to a simplicial tetrahedrization Th of
the periodicity cell Y , we denote by σ̂ the discontinuous finite element stress. A contin-
uous recovered stress σ∗ is obtained at each nodal point p by local averaging: Denoting
by Yp ⊂ Y the union of all elements K ∈ Th sharing p as a vertex, we compute

σ∗(p) =
∑

K∈Yp

ωK σ̂|K , ωK :=
|K|
|Yp|

, K ∈ Yp . (3.4)

Based on (3.4), we have chosen

η :=

( ∑
K∈Th

η2
K

)1/2

, ηK := ‖σ∗ − σ̂‖0,K , K ∈ Th (3.5)

as a global estimator whose local contributions ηK are cheaply computable.
Note that such an estimator has been studied and analyzed in [10] for linear second

order elliptic boundary value problems where it was shown that η is asymptotically exact.
Moreover, general averaging techniques for low order finite element approximations of
linear elasticity problems have been considered in [5] and efficiency and reliability of
Zienkiewicz-Zhu type estimators have been established.
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4 Iterative Solution Techniques

After finite element discretization of the domain Y the elasticity equation (2.3) used to
compute the effective coefficients results in the following system of linear equations

Au = f , (4.6)

where u is the vector of unknown displacements and f is the discrete right–hand side.
The stiffness matrix A is symmetric and positive definite but not an M -matrix. Two
typical orderings of the unknowns are often used in practice, namely

(
u

(x)
1 , u

(y)
1 , u

(z)
1 , u

(x)
2 , u

(y)
2 , u

(z)
2 , . . . , u(x)

n , u(y)
n , u(z)

n

)
, (4.7)

referred to as a pointwise displacements ordering and
(
u

(x)
1 , u

(x)
2 , . . . , u(x)

n , u
(y)
1 , u

(y)
2 , . . . , u(y)

n , u
(z)
1 , u

(z)
2 , . . . , u(z)

n

)
, (4.8)

called the separate displacements ordering. Here, u
(x)
k , u

(y)
k , and u

(z)
k are the corre-

sponding x, y-, and z- displacement components.
Using (4.8), for instance, the matrix A admits the following 3×3block decomposition

A =

⎡
⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦ . (4.9)

In case of isotropic materials, the diagonal blocks Ajj , j = 1, 2, 3, in (4.9) are
discrete analogs of the following anisotropic Laplacian operators

D̃1 =a
∂2

∂x2
+b

∂2

∂y2
+b

∂2

∂z2
, D̃2 =b

∂2

∂x2
+a

∂2

∂y2
+b

∂2

∂z2
, D̃3 =b

∂2

∂x2
+b

∂2

∂y2
+a

∂2

∂z2

with coefficients a = E(1−ν)/((1+ν)(1−2ν)) and b = 0.5E/(1+ν) where E is the
Young modulus and ν is the Poisson ratio of the corresponding material. This anisotropy
requires a special care to construct an efficient preconditioner for the iterative solution
method. Based on Korn’s inequality, it can be shown that A and its block diagonal part
are spectrally equivalent. The condition number of the preconditioned system depends
on the Poisson ratio ν of the materials and the constant in the Korn inequality. For the
background of the spectral equivalence approach using block diagonal displacement
decomposition preconditioners in linear elasticity problems we refer to [4]. Note that
the spectral equivalence estimate will deteriorate for ν close to 0.5 which is not the case
in our particular applications.

The PCG method is applied to solve the linear system (4.6). We propose two ap-
proaches to construct a preconditioner for A:

(i) construct a preconditioner for the global matrix A
(ii) construct a preconditioner for A of the type

M =

⎡
⎢⎣

M11 0 0
0 M22 0
0 0 M33

⎤
⎥⎦ , (4.10)
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where Mjj ∼ Ajj , j = 1, 2, 3, are “good” approximations to the diagonal blocks of
A. In case (i) we have chosen the incomplete Cholesky (IC) factorization of A with an
appropriate stopping criterion.

An efficient preconditioner for Ajj in case (ii) turns out to be a matrix Mjj corre-
sponding to a Laplacian operator (−div (c grad u)) with a fixed scale factor c. In our
case we use, for instance, c = b/2 for all three diagonal blocks. Algebraic multigrid
(AMG) method is applied as a “plug-in” solver for A (see [12] for details). This method
is a purely matrix–based version of the algebraic multilevel approach and has shown in
the last decade numerous efficient implementations in solving large sparse unstructured
linear systems of equations without any geometric background.

5 Numerical Experiments

In this section, we present some computational results concerning the microscopic prob-
lem to find the homogenized elasticity coefficients. The elasticity equation (2.3) is solved
numerically using initial decomposition of the periodic microcell Y into hexahedra and
then continuous, piecewise linear finite elements on tetrahedral shape regular meshes.
Due to the equal solutions ξ12 =ξ21, ξ23 =ξ32, and ξ13 =ξ31 one has to solve six
problems in the period Y to find ξ11 (Problem 1), ξ22 (Problem 2), ξ33 (Problem 3),
ξ12 (Problem 4), ξ23 (Problem 5), and ξ13 (Problem 6). The discretized problems have
been solved by the iterative solvers discussed in Section 4 and the mesh adaptivity has
been realized by means of a Zienkiewicz-Zhu type a posteriori error estimator [13].

Fig. 2. Cross section of Y , density = 96%, Problem 3, nt = 12395, nn = 2692

The Young modulus E (in GPa) and the Poisson ratio ν of our two materials are,
respectively, E = 10, ν = 0.22 for carbon and E = 410, ν = 0.14 for SiC. We denote
by nt the number of tetrahedra and by nn the number of nodes on the corresponding
refinement level. In Fig.2 the adaptive mesh refinement is visualized on the cross section
of the period Y . Tables 1 and 2 contain information for the computed homogenized
coefficients according to the refinement level.

Table 3 presents some convergence results for the proposed preconditioners within
PCG method. For various values of the density µ of the periodicity microstructure we re-
port the number of degrees of freedom d.o.f., the number of iterations iter, and the CPU–
time in seconds for the first 11 adaptive refinement levels. One can see from the numerical
results a better convergence of AMG–preconditioner compared to IC–factorization. We
observe an essential efficiency of AMG for a larger number of unknowns.
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Table 1. Homogenized coefficients w.r.t. adaptive refinement level, µ = 19%

level EH
1111 EH

2222 EH
3333 nt/nn (Prob.1) nt/nn (Prob.2) nt/nn (Prob.3)

1 160.82 174.34 204.39 288/126 288/126 288/126

2 175.60 207.65 214.79 334/137 332/136 332/136

3 159.18 170.78 206.73 443/166 457/169 441/165

4 174.07 166.79 213.77 637/222 593/208 595/211

5 168.97 163.26 214.10 982 /297 971/292 948/287

6 146.50 147.22 208.64 1641/433 1609/431 1684/443

7 160.25 147.90 211.11 2516/624 2422/604 2427/601

8 146.80 138.09 211.82 3761/896 3915/927 3881/920

9 137.10 134.55 210.36 5134/1171 7743/1722 5092/1160

10 133.22 131.84 210.91 10839/2259 13698/2869 11078/2289

Table 2. Homogenized coefficients for late wood, density µ = 91%

level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 148.35 152.57 153.96 60.22 62.46 59.50

2 154.34 162.64 162.77 69.71 71.31 65.79

3 142.66 148.42 162.79 60.51 65.26 63.23

4 145.84 137.61 161.70 53.91 59.04 62.92

5 127.99 134.32 161.43 49.41 56.19 56.49

6 98.29 111.65 160.71 40.44 46.14 48.45

7 91.79 90.23 158.29 35.70 43.69 46.03

8 82.42 83.00 160.57 30.59 41.03 43.70

9 75.05 75.11 160.22 26.93 39.75 40.97

10 69.66 70.30 159.82 25.47 37.16 39.30

Table 3. Convergence results with IC and AMG preconditioners, density µ, Problem 1

prec. level 1 2 3 4 5 6 7 8 9 10 11

µ = 51% d.o.f. 78 90 126 225 336 579 1185 1908 3360 5598 9987

IC iter 9 8 14 23 40 66 105 150 235 269 299

CPU e-16 e-16 e-16 0.1 0.2 0.2 0.9 2.4 8.2 20.9 59.1

AMG iter 11 13 13 15 18 23 38 57 89 94 99

CPU e-16 e-16 e-16 0.2 0.3 0.5 1.5 3 7.6 14.8 23.5

µ = 84% d.o.f. 78 93 150 261 510 1047 2103 3843 6537 10485 18459

IC iter 10 11 16 21 44 78 117 171 226 273 301

CPU e-16 e-16 0.1 0.1 0.1 0.6 2.4 8.4 24.3 63.7 187.1

AMG iter 12 14 14 14 18 31 43 73 69 74 75

CPU e-16 e-16 e-16 0.2 0.4 1.1 3 7.5 15.5 25.6 33.8
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12. K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.
13. O.C. Zienkiewicz and J.Z. Zhu. A simple error estimator and adaptive procedure for practical

engineering analysis. Intern. J. Numer. Methods Eng., 24:337–357, 1987.


	Introduction
	Computation of Homogenized Elasticity Tensor
	Mesh Adaptivity by a Posteriori Error Estimation
	Iterative Solution Techniques
	Numerical Experiments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




