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Summary. We consider the modeling, simulation, and optimization of microstruc-
tural cellular biomorphic ceramics obtained by biotemplating. This is a process
in biomimetics, a recently emerged discipline in materials science where engineers
try to mimick or use biological materials for the design of innovative technological
devices and systems. In particular, we focus on the shape optimization of micro-
cellular silicon carbide ceramic materials derived from naturally grown wood. The
mechanical behavior of the final ceramics is largely determined by the geometry of
its microstructure which can be very precisely tuned during the biotemplating pro-
cess. Our ultimate goal is to determine these microstructural details in such a way
that an optimal mechanical performance is achieved with respect to merit criteria
depending on the specific application. Within the shape optimization problem the
state variables are the displacements subject to the underlying elasticity equations,
and the design variables are the geometrical quantities determining the microstruc-
ture. Since a resolution of the microstructure is numerically cost-prohibitive, we use
the homogenization approach, assuming periodically distributed microcells. Adap-
tive mesh-refinement techniques based on reliable and efficient a posteriori error
estimators are applied in the microstructure to compute the homogenized elastic-
ity coefficients. The shape optimization problem on the macroscopic homogenized
model is solved by primal-dual Newton-type interior-point methods. Various numer-
ical experiments are presented and discussed.

1 Introduction

Biomimetics, also called bionics or biomimicry, is a discipline in materials
science that has recently attracted a lot of attention. It allows the cost-
effective production of high performance technological devices and systems
by either mimicking or using naturally grown biological structures (cf., e.g.,



                            

[Eli00, HDL02, GA88]). In contrast to engineering materials, biological struc-
tures exhibit a hierarchically built anatomy, developed and optimized in a
long-term genetic process. Their inherent cellular, open porous morphology
can be used for liquid or gaseous infiltration and subsequently for high tem-
perature reaction processes. A specific example of such a naturally grown
biological material is wood which exhibits an anisotropic, porous morphology
with excellent strength at low density, high stiffness, elasticity, and damage
tolerance. Typical feature of the wood structure is the system of the tracheidal
cells which provide the transportation path for water and minerals within the
living tree. This open porous system is accessible for infiltration of various
metals.

A recent idea in biomimetical applications is to take advantage of naturally
grown wood in the production of high performance ceramics to be used as fil-
ters and catalysts in chemical processing, heat insulation structures, thermally
and mechanically loaded lightweight structures, and medical implants (for in-
stance, for bone substitution). In particular, silicon carbide (SiC) is known as
a material that is not only suitable in microelectronical applications due to its
bandwidth structure but also useful in mechanical and high temperature appli-
cations with regard to its excellent thermomechanical properties. Since wood
essentially consists of carbon (C), the idea is to use it as a basic material for
the production of highly porous ceramics. Among the large variety of ceramic
composites, new biomorphic cellular silicon carbide ceramics from wood were
recently produced and investigated, see [GLK98a, GLK98b, OT*95, VSG02].
The conversion of naturally grown wood to highly porous SiC ceramics is
done by a process called biotemplating which includes two processing steps,
illustrated in Fig. 1.1.

Biological porous carbonized preforms (also called C−templates) can be
derived from different wood structures by drying and high-temperature py-
rolysis at temperatures between 800 and 1800oC and used as templates for
infiltrations by gaseous or liquid silicon (Si) to form SiC and SiSiC-ceramics,
respectively. During high-temperature processing, the microstructural prop-
erties of the bioorganic preforms were retained, so that a one-to-one reproduc-
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Fig. 1.1. Processing scheme of SiC-ceramics from wood



                    

Fig. 1.2. SiC-ceramic derived from pine wood a) radial direction; b) axial direction

tion of the original wood structure was obtained, see Fig. 1.2. The resulting
cellular composites show low density, high specific strength, and excellent high
temperature stability.

The geometry of the final ceramics, i.e., the widths and lengths of the
different layers forming the struts, can be determined very precisely by an
appropriate tuning of the process parameters. This raises the question how to
choose these microstructural geometrical data in order to achieve an optimal
performance with respect to a prespecified merit criterion depending on the
specific application. From a mathematical point of view, this issue represents
a shape optimization problem where the state variables are subject to the
underlying elasticity equations and the microstructural data serve as design
variables. As far as the solution of such a shape optimization problem is con-
cerned, the resolution of the microstructure is cost-prohibitive with respect
to both computational time and storage. Therefore, the idea is to perform
homogenization, assuming a periodically distributed microstructure, and to
apply the optimization to the homogenized model.

In this study, we focus both on the homogenization process and on the
application of state-of-the-art optimization strategies for the numerical solu-
tion of the shape optimization problem under consideration. The remaining
of the paper is organized as follows: In Sect. 2, we describe in detail the ho-
mogenization technique that provides a macromechanical model where the
components of the homogenized elasticity tensor reflect the microstructural
details. Section 3 deals with the setting of our shape optimization problem. In
Sect. 4, we present a primal-dual Newton interior-point method and in Sect. 5
we comment on the numerical solution of the condensed primal-dual system.
Section 6 concerns adaptive grid-refinement procedures based on a posteriori
error estimators. In particular, we use the Zienkiewicz-Zhu error estimator
proposed in [ZZ87]. Iterative solution techniques for the homogenized elas-
ticity equation and the microcell problem are discussed in Sect. 7. Various
numerical results are given in Sect. 8.



                            

2 Homogenized computational model

In this section, we briefly explain the derivation of the homogenized compu-
tational model on the macroscale by using the asymptotic homogenization
theory. Homogenization has been successfully used in the last three decades
for solving multi-scale problems on computational regions occupied by hetero-
geneous microstructural materials (see, cf., [BP84, BLP78, JKO94, SP80]).

Let Ω ⊂ Rd, d = 2, 3, be a domain occupied by a heterogeneous ma-
terial with microstructures of periodically distributed constituents. Suppose
that the boundary of Ω, denoted by Γ , consists of a prescribed displacement
boundary ΓD (meas ΓD > 0) and a prescribed traction boundary ΓT , such
that Γ = ΓD ∪ΓT , ΓD ∩ΓT = ∅. Let b be the body force, ū be the prescribed
displacement on ΓD, and t̄ be the prescribed traction on ΓT .

The homogenized model for our original heterogeneous material occupying
the domain Ω, Ω ⊂ Rd, d = 2, 3, is illustrated in Fig. 2.1. The main idea of
the homogenization is to replace the heterogeneous material by an equivalent
homogenized material, extracting the information for the material properties
of the various microstructural constituents (or different phases).

The microscopic and macroscopic models are considered simultaneously
supposing a strong scale separation, i.e., a large gap in length scale between
the macroscopic component and the microstructure. In practical applications
the microscopic length scales are orders of magnitude smaller than the physical
macroscopic length scale. A main assumption in the homogenization approach
is that the original heterogeneous material workpiece is composed of peri-
odically distributed microstructures of various constituents. To couple prop-
erly the micro- and macro-scales, we choose a representative volume element
(RVE) or a unit microstructure.

Consider a stationary microstructure with a geometrically simple tra-
cheidal periodicity cell Y = [0, 1]d, d = 2, 3, (see Fig. 2.2) consisting of
an outer layer of carbon (C), interior layer of silicon carbide (SiC), and a
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Fig. 2.1. The macroscopic homogenized material model



                    

Carbon
SiC
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Fig. 2.2. a) 3-D unit periodicity cell Y , b) 2-D unit periodicity cell Y = P ∪SiC∪C

centered pore channel (P, no material). We introduce two space variables x
(macroscopic/slow variable) and y (microscopic/fast variable) and denote by
ε, y = x/ε, ε � 1, the scale parameter (dimensionless number) which, in
fact, represents the periodicity under the assumption that ε is very small
with respect to the size of Ω, i.e., there exists a large scale gap between the
microstructure and the macroscopic component.

The parameter ε allows us to define macrofunctions in terms of the mi-
crostructural behavior and vice versa. Thus, for any state function f(y) :=
f(x/ε), one can compute the spatial derivatives by using the following differ-
entiation rule

d

dx
f
(
x,

x

ε

)
=
∂f(x,y)
∂x

+ ε−1 ∂f(x,y)
∂y

.

Consider the following elasticity equation defined in the microstructure Y

−∇ · σ = F in Y (2.1)

with a load vector F. Here, σ is the microscopic symmetric stress, u ∈ H1(Y ),
is the corresponding displacement at point y ∈ Y , and e is the microscopic
symmetric strain with components

eij(u(y)) =
1
2

(
∂ui(y)
∂yj

+
∂uj(y)
∂yi

)
. (2.2)

The problem (2.1) is subject to periodic boundary conditions on the outer
part of ∂Y , Neumann boundary conditions around the pore, and continuity
conditions [u] = 0 and [σ · n] = 0 on the interfaces between the different
phases, see Fig. 2.2. The symbol [ ] denotes the jump of the function across
the corresponding interface with a normal vector n (cf., e.g., [BP84]).

Assuming linearly elastic constituents, the unit microstructure is governed
by the Hooke law σ = E : e with componentwise (i, j, k, l = 1, . . . , d) consti-
tutive relations as follows



                            

σij(u) = Eijkl(y) ekl(u(y)). (2.3)

Here, we adopt the Einstein convention of a summation on repeated indices.
The 4-th order elasticity (also called plain-stress) tensor E(y) with compo-
nents Eijkl(y) characterizes the behavior of the material at point y and de-
pends on material constants like Young’s modulus and Poisson’s ratio. Note
that E(y) is zero if y is located in the porous subdomain of the microstructure
and coincides with the elasticity tensor of the material if y is located in the
corresponding microstructural constituent. The elasticity tensor is symmetric
in the following sense

Eijkl = Ejikl = Eijlk = Eklij (2.4)

and satisfies the following ellipticity conditions

Eijkl χijχkl ≥ c χ2
ij , ∀χij = χji,

for a constant c > 0 (cf., e.g., [BP84, BLP78, JKO94]).
Denote by uε(x) := u(x/ε) the unknown macroscopic displacement vector

and consider the following family of elasticity problems

−∇ · σε = b in Ω, (2.5)

subject to a macroscopic body force b and a macroscopic surface traction t
applied to the portion ΓT ⊂ ∂Ω. Here, σε(uε) := Eε(x)e(uε(x)) is the stress
tensor for x ∈ Ω and Eε(x) := E(x/ε) = E(y) is the piecewise constant
elasticity tensor defined in Y . Following, for instance, [BLP78] for the basic
concepts of the homogenization method, the unknown displacement vector is
expanded asymptotically as

uε(x) = u(0)(x,y) + εu(1)(x,y) + ε2 u(2)(x,y) + . . . , y = x/ε, (2.6)

where u(i)(x,y), i ≥ 0, are Y−periodic in y, i.e., take equal values on opposite
sides of Y . Consider the space H := {u|u ∈ H1(Ω), u = 0 on ΓD}. Under
the assumptions of symmetry and ellipticity of the elasticity coefficients, it
was shown in the homogenization theory that the sequence {uε} of solutions
of (2.5) tends weakly in H as ε → 0 to a function u(0)(x) ∈ H , the solution
of the following macroscopic homogenized problem with a constant elasticity
tensor.

−∇ · σ = b in Ω, (2.7)

where σ = σ(u(0)) := EHe(u(0)(x)), x ∈ Ω, and EH stands for the homog-
enized elasticity tensor. Note that u(0)(x) depends only on the macroscopic
variable x and is independent of the microscopic scale y. The leading term
u(0) in (2.6) is called a macroscopic displacement and the remaining terms
u(i), i > 0, are considered as perturbed displacements.

The homogenization method requires to find periodic functions ξkl satisfy-
ing the following problem in a weak formulation to be solved in the microscopic
unit cell



                    ∫
Y

Eijpq(y)
∂ξklp
∂yq

∂φi
∂yj

dY =
∫
Y

Eijkl(y)
∂φi
∂yj

dY, (2.8)

where φ ∈ H1(Y ) is an arbitrary Y−periodic variational function. The func-
tion ξkl, also referred to as the characteristic displacement, is found by solv-
ing (2.8) in Y with periodic boundary conditions. After computing ξkl, one
defines the homogenized coefficients by the following formulas (we refer to
[BP84, BLP78, JKO94] for details)

EH
ijkl =

1
|Y |

∫
Y

(
Eijkl(y)− Eijpq(y)

∂ξklp
∂yq

)
dY. (2.9)

Due to the symmetry conditions (2.4), the 4-th order homogenized elas-
ticity tensor EH = (EH

ijkl) can be written as a symmetric and usually a dense
matrix. In the case d = 2 it is a 3× 3 matrix and has the form

EH =

⎛⎜⎝ EH
1111 EH

1122 E
H
1112

EH
2222 E

H
2212

SYM EH
1212

⎞⎟⎠ . (2.10)

The 3-d homogenized tensor can be written, respectively, as a 6×6 matrix

EH =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

EH
1111 EH

1122 E
H
1133 E

H
1112 E

H
1123 E

H
1113

EH
2222 E

H
2233 E

H
2212 E

H
2223 E

H
2213

EH
3333 E

H
3312 E

H
3323 E

H
3313

EH
1212 E

H
1223 E

H
1213

EH
2323 E

H
2313

SYM EH
1313

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.11)

The computation of the homogenized elasticity coefficients can be done
analytically for some specific geometries as, for instance, layered materials
or checkerboard structures. In case of more complicated microstructures, the
computation of EH

ijkl has to be done numerically through a suitable micro-
scopic modeling.

Once the constant homogenized coefficients from (2.9) are computed, one
comes up with the homogenized macroscopic equation (2.7) given in a weak
form as follows∫

Ω

EH
ijkl

∂u0
k

∂xl

∂vi
∂xj

dΩ =
∫
Ω

b · v dΩ +
∫
ΓT

t̄ · v dΓ, ∀ v ∈ H, (2.12)

where u(0)(x) := u(0)(x,y) is the homogenized solution occurring in (2.6).

3 Shape optimization by primal-dual methods

Structural optimization has recently become of increasing interest in computer
aided design and optimization of composite structures in materials science (cf.,



                            

e.g., [Ben95] and the references therein). A typical problem of structural opti-
mization is to minimize a function (called objective, cost or criterion function)
over a set of geometrical or behavioral requirements (called constraints). The
set of structural parameters includes the so-called state and design param-
eters, and the problem consists in computing optimal values of the design
parameters, such that they minimize the specific objective function. Sizing,
shape, and topology optimization problems are different types in structural
optimization. Detailed classification of these problems is given, for instance,
in [OT83]. In the sizing problems, the goal is to find the optimal thickness
distribution of a given material structure. The main difficulty in shape op-
timization problems arises from the fact that the geometry of a structure is
a design variable which means, in particular, that the discretization model
associated with the structure has to be changed in the process of optimiza-
tion, see [All02, SZ92]. In the topology optimization of solid structures we are
interested in the determination of the optimal placement of material in space,
i.e., one has to determine which points of space are material and which points
should remain void (no material). Hence, the main goal of these problems is
to find the location of holes and the connectivity of the domain, see [BS03].

Our goal is to optimize mechanical performances of the ceramic composites
described in Sect. 1 (such as the compliance or the bending strength) taking
into account technological and problem specific constraints on the state and
design parameters. Denote the state variables u = (u1, ..., uN )T , which are
the nodal values of the components of the discrete displacement vector, and
the design variables α = (α1, ..., αM )T chosen as the microstructural data
determining the geometry of the periodicity cell (widths and lengths of the
different materials layers forming the cell walls, see Fig. 2.2). Since the geo-
metrical properties of the final ceramics are not fixed but can be changed and
precisely tuned within the processing, we focus on shape optimization of our
microcellular SiC ceramic materials. Depending on the specific application,
the objective functional J = J(u,α) can be chosen according to the following
criteria:

• mechanical properties (minimum compliance),
• loading (bending, tension, torsion),
• thermal properties (shock resistance),
• technological properties (minimum weight),
• economical properties (cheapness).

For simplicity, we consider the mean compliance of the structure defined
as

J(u,α) =
∫
Ω

b · u dΩ +
∫
ΓT

t̄ · u dΓ, (3.1)

Our shape optimization problem reads: Find (u,α) ∈ RN ×RM such that

J(u,α) = inf
v,β

J(v,β), (3.2)



                    

subjected to the following equality and inequality constraints

A(α)u = f , g(α) :=
M∑
i=1

αi = C, αmin ē ≤ α ≤ αmax ē, (3.3)

where J(u,α) is defined by (3.1), A(α) is the stiffness matrix corresponding to
the homogenized equilibrium equation (2.12), u is the discrete homogenized
displacement vector, f is the discrete load vector, and ē = (1, 1, . . . , 1) ∈
RM . Note that αmin and αmax are technologically motivated lower and upper
bounds for the design parameters. In the case of unit microstructure Y , we
take the limits αmin = 0, αmax = 0.5, and 0 < C ≤ 0.5.

4 Primal–dual Newton interior–point method

In the optimization algorithm, we are typically faced with constrained non-
convex nonlinear minimization problems with both equality and inequality
constraints on the state variables and design parameters. For the discretized
optimization problem we use the primal-dual Newton interior-point meth-
ods, recently a topic of intensive research [BHN99, ET*86, FGW02, GOW98,
HPS02, HP04b, VS99]. The main idea of these methods is to generate it-
eratively approximations of the solution which strictly satisfy the inequality
constraints. Details are given in this section.

4.1 General nonlinear optimization problem

We consider the following general constrained nonlinear nonconvex program-
ming problem with both equality and inequality constraints

min
x∈Rn

f(x), (4.1)

subject to
h(x) = 0, g(x) ≥ 0, (4.2)

where f : Rn → R, h : Rn → Rm,m < n, and g : Rn → Rl are assumed to
be twice Lipschitz continuously differentiable. Note that the constraints (4.2)
have to be understood componentwise.

The Lagrangian function associated with (4.1)–(4.2) is defined by

L(x,y, z) = f(x) + yTh(x)− zTg(x), (4.3)

where y ∈ Rm and z ∈ Rl are the Lagrange multipliers for the equality and
inequality constraints, respectively.

The first-order Karush-Kuhn-Tucker (KKT) necessary conditions for op-
timality of (4.1)–(4.2) read



                            

∇xL(x,y, z) = 0, h(x) = 0, g(x) ≥ 0, Z g(x) = 0, z ≥ 0,

where

∇xL(x,y, z) = ∇f(x) +
m∑
i=1

yi∇hi(x)−
l∑

i=1

zi∇gi(x) (4.4)

is the gradient of the Lagrangian function and Z is the diagonal matrix with
a diagonal z. We also consider the Hessian of the Lagrangian with respect to
x defined by

∇2
xL(x,y, z) = ∇2f(x) +

m∑
i=1

yi∇2hi(x)−
l∑

i=1

zi∇2gi(x), (4.5)

where∇2f(x), ∇2hi(x), 1 ≤ i ≤ m, ∇2gi(x), 1 ≤ i ≤ l stand for the Hessians
of f(x), hi(x), and gi(x), respectively. Denote by

A(x) = {i, gi(x) = 0, i = 1, . . . , l}

the set of all indices for which the inequality constraints are equal to zero
at x. We are interested in finding local minimizers of our optimization prob-
lem (4.1)–(4.2). Assume that at least one such point x∗ exists satisfying the
conditions:

• Feasibility. h(x∗) = 0 and g(x∗) ≥ 0.
• Regularity. The set {∇h1(x∗), . . . ,∇hm(x∗)} ∪ {∇gi(x∗), i ∈ A(x∗)} of

gradients of equality and active inequality constraints is linearly indepen-
dent.

• Smoothness. The Hessian matrices ∇2f(x), ∇2hi(x), 1 ≤ i ≤ m, and
∇2gi(x), 1 ≤ i ≤ l, exist and are locally Lipschitz continuous at x∗.

• Second-order sufficiency condition. ηT∇2
xL(x∗)η > 0 for all vectors

η �= 0 satisfying ∇hi(x∗)Tη = 0, 1 ≤ i ≤ m, and ∇gi(x∗)T η = 0, i ∈
A(x∗).

• Strict complementarity. z∗i > 0 if gi(x∗) = 0, 1 ≤ i ≤ l.

Well-known approaches from the optimization theory for handling prob-
lems with inequality constraints are, for instance, the slack variable approach,
the active set strategy, and the logarithmic barrier function approach. Each of
these approaches results in a nonlinear programming problem with only equal-
ity constraints. For example, in the first approach, the constraint g(x) ≥ 0
can be replaced by g(x)−s = 0, s ≥ 0 by adding a nonnegative slack variable
to each of the inequality constraints. Transformation of the original inequality
problem into an equality one, by adding slacks, have been a frequently applied
tool in scientific computations in the past twenty years and recently used in
cf., [BHN99, ET*86, VS99]. The introduction of slack variables is associated
with a small amount of additional work and storage, since they do not enter



                    

the objective function and are constrained by simple bounds. The second,
active set strategy, approach in nonlinear programming is directly related to
the idea of the simplex method in linear programming. At each iterative step
from this approach, applying, for example, Newton’s method, one has to define
which constraints are active at the solution and treat them as equality con-
straints by ignoring the others. The third approach was used in our practical
implementations and we explain it in detail in the next subsection.

4.2 Logarithmic barrier interior-point method

The logarithmic barrier function method was first introduced in [Fri55] and
later on popularized by [FM68] in the late sixties of the last century. The
basic idea of this method is to replace the optimization problem (4.1)–(4.2)
with the following equality constrained optimization problem

min
x∈Rn

β(ρ)(x), (4.6)

subject to
h(x) = 0, (4.7)

where ρ is a positive scalar, called barrier parameter, and

β(ρ)(x) = f(x)− ρ
l∑

i=1

log gi(x) (4.8)

is often referred to as a barrier function. To insure existence of the logarithmic
terms in (4.8) we implicitly require gi(x) > 0, 1 ≤ i ≤ l. In such a way, we
get a family of subproblems depending on ρ for which it is well-known that
under the assumptions conditions from Sect. 4.1 the solution of (4.6)–(4.7)
converges to a solution of the original problem (4.1)–(4.2) as ρ decreases to
zero (cf., [FM68]). This method obviously is an interior-point method since it
keeps the sequence of iterating solutions strictly feasible with respect to the
inequality constraints. Note that the logarithmic terms serve as a barrier and
result in finding a solution x(ρ) such that g(x(ρ)) > 0. The solution points
x(ρ) parameterized by ρ define the so-called central path or also called barrier
trajectory.

The gradient of (4.8) is given by

∇β(ρ)(x) = ∇f(x)−
l∑

i=1

ρ

gi(x)
∇gi(x)

and the Hessian of β(ρ)(x) is defined by

∇2β(ρ)(x) = ∇2f(x)−
l∑

i=1

ρ

gi(x)
∇2gi(x)+

l∑
i=1

ρ

g2
i (x)

∇gi(x)(∇gi(x))T . (4.9)



                            

The Lagrangian function associated with (4.6)–(4.7) is

L(ρ)(x,y) = β(ρ)(x) + yTh(x) = f(x)− ρ
l∑

i=1

log gi(x) + yTh(x)

and the gradient of L(ρ)(x,y) with respect to x is given by

∇xL(ρ)(x,y) = ∇f(x)−
l∑

i=1

ρ

gi(x)
∇gi(x) +

m∑
i=1

yi∇hi(x). (4.10)

The logarithmic barrier function method consists now of generating a se-
quence of iterative solutions {x} = {x(ρ)}, local minimizers of the equality
constrained subproblems, with ρ > 0 decreasing at each iteration. Taking into
account the first-order optimality conditions and especially ∇xL(ρ)(x,y) = 0,
we see that convergence of {x(ρ)} to an optimal solution x∗ requires that

lim
ρ→ 0

y
(ρ)
i = y∗i , 1 ≤ i ≤ m and lim

ρ→ 0

ρ

gi(x(ρ))
= z∗i , 1 ≤ i ≤ l, (4.11)

where {y∗i } and {z∗i } are the Lagrange multipliers associated with the equal-
ity and inequality constraints gi(x(ρ)) > 0, respectively. From gi(x(ρ)) → 0
and the second relation in (4.11) we get ρ/g2

i (x
(ρ)) →∞ and hence, the Hes-

sian of the logarithmic barrier function (4.9) would become arbitrarily large.
Comparing now relations (4.4) and (4.10), we see that ρ/gi(x(ρ)) serves as a
Lagrange multiplier for the inequality constraints. Thus, we can introduce an
auxiliary variable zi = z

(ρ)
i = ρ/gi(x(ρ)), 1 ≤ i ≤ l which can also be written

in the form z
(ρ)
i gi(x(ρ)) = ρ. The last relation is usually called perturbed com-

plementarity and can be used as a remedy, so that the differentiation will not
create ill-conditioning.

We formulate now the perturbed KKT conditions for the logarithmic bar-
rier function problem (4.6)–(4.7), namely

∇f(x) +∇h(x)y −∇g(x)z = 0, h(x) = 0, Zg(x) = ρē, g(x) > 0. (4.12)

In matrix-vector notations, (4.12) results in the following nonlinear equation
with n+m+ l components

F (ρ)(x,y, z) = 0 with F (ρ)(x,y, z) =

⎛⎜⎝ t + JTeqy − JTinz

h
Gz − ρ ē

⎞⎟⎠ , (4.13)

where F (ρ) = ∇L(ρ) is the gradient of the Lagrangian function with respect
to x,y, and z; t = ∇f(x) is the gradient of the objective function, Jeq is
the Jacobian m× n matrix of the equality constraints h(x) = 0 and Jin

is the Jacobian l× n matrix of the inequality constraints g(x) ≥ 0. In the



                    

last equation of (4.13) we have denoted G = diag(gi), gi > 0, 1 ≤ i ≤ l and
ē = (1, 1, . . . , 1)T . Note that at each iteration we have three sets of unknowns:
the primal variable x, the dual variable y, and the perturbed complementarity
variable z which we consider independently.

Denote the unknown solution by Φ = (x,y, z) and apply the New-
ton method to the nonlinear system (4.13) to find the increments ∆Φ =
(∆x, ∆y, ∆z), namely

K∆Φ = −F (ρ)(Φ), (4.14)

which is often referred to as a primal-dual system. The vector ∆Φ is called
search direction. The so-called primal-dual matrix K =

(
F (ρ)

)′(Φ) of second
derivatives of the Lagrangian function is defined as follows

K =

⎛⎝ H JTeq −JTin
Jeq 0 0
ZJin 0 G

⎞⎠ , (4.15)

where the Hessian of the Lagrangian function H = ∇2
xL is given by (4.5).

Note that the matrix K is sparse, nonsymmetric, independent of ρ, and usu-
ally well-conditioned in a sense that its condition number is limited when
ρ→ 0 (see [Wri98] for more details). In the case of convex optimization (i.e.,
convex objective function f(x), linear equality constraints h(x), and concave
inequality constraints g(x)), the Hessian matrix H is positive semidefinite.
The properties of the Hessian matrix for inequality constrained optimization
problem with logarithmic barrier function method are discussed in [FGW02].

One possible way for solving (4.14) is to symmetrizeK taking into account
the fact that Z and G are diagonal matrices. This method is proposed in
[FGS96] and results in the following symmetric matrix

K̂ =

⎛⎝ H JTeq −JTin
Jeq 0 0
−Jin 0 −Z−1G

⎞⎠ ,

which is strongly ill-conditioned with some diagonal elements becoming un-
bounded as ρ → 0. In particular, for the active inequality constraints, the
diagonal entries of Z−1G go to zero, and for the inactive constraints they go
to infinity. As the iterates converge, the ill-conditioning of K increases, but
it was shown in [FGS96] that the primal-dual solution of the optimization
problem is actually independent of the size of the large diagonal elements and
can be found by using, for instance, a symmetric indefinite factorization of
the primal-dual system.

Another alternative way for solving (4.14) which we use in our practical
applications is to eliminate the (1,3) block of (4.15), i.e., due to g(x) > 0, we
eliminate ∆z from the third equation of (4.14)

∆z = −z +G−1(ρ ē− ZJin∆x) (4.16)



                            

and replace it in the first equation. This method produces a symmetric linear
system with n+m equations of the form(

H̃ JTeq
Jeq 0

)(
∆x
∆y

)
= −

(
t + JTeqy − ρJTinG−1ē

h

)
, (4.17)

where H̃ = H + JTinG
−1ZJin is often referred to as a condensed primal-dual

Hessian and (4.17) is called a condensed primal-dual system. A detailed anal-
ysis of the properties of the condensed primal-dual matrix can be found in
[Wri98] where it was shown that the inherent ill-conditioning of the reduced
primal-dual matrix is usually benign and does not influence the accuracy of
the solution.

Various methods for solving (4.17) and finding the primal-dual steps
(∆x, ∆y) are proposed in the literature (cg., e.g., [ET*86, GOW98, Wri98]).
Note that one needs a reliable and efficient solver of (4.17), since the con-
densed primal-dual system is solved at every iteration of the optimization
loop. In practice, we apply transforming iterations (see [Wit89]) to find the
increments. This method will be explained in more detail in Sect. 5.

After finding the solution of (4.17), the algorithm proceeds iteratively from
an initial point (x(0),y(0), z(0)) through a sequence of points determined from
the search directions described by (4.16) and (4.17) as follows

x(k+1) = x(k) + α(k)
x ∆x, y(k+1) = y(k) + α(k)

y ∆y, z(k+1) = z(k) + α(k)
z ∆z.

The parameters α(k)
x , α

(k)
y , α

(k)
z ∈ (0, 1] are called steplengths and their choice

at each iteration is a critical feature of the algorithm to find a local minimizer
of the optimization problem.

4.3 Merit functions. Computing the steplengths

In all optimization algorithms it is important to have a reasonable way of
deciding whether the new iterate is better than the previous one, i.e., it is
essential to measure appropriately the progress in finding a local solution.
Merit functions of different types have been a subject of great interest over
the past years (see, e.g., [ET*86, GOW98, Wri98]). The main idea of a merit
function is to ensure simultaneously a progress toward a local minimizer and
toward feasibility. The method of choosing α(k) at each iteration becomes
more complicated in general nonlinear programming problems as it is well-
known that the Newton method may diverge when the initial estimate of the
solution is bad.

Two versions of the Newton method can be applied, namely, the trust-
region and the line-search approach. The first method has recently been ap-
plied in, e.g., [BHN99]. Typical for this method is to find a step d(k) which
is restricted to a set, called the trust region. This set is practically obtained



                    

by limiting |d(k)| ≤ r(k), where r(k) is the trust region radius. At each it-
eration, r(k) is updated according to how successful the step has been. For
instance, if the a priori chosen merit function M decreases, we accept the
step d(k), update the solution Φ(k+1) = Φ(k) + d(k) and possibly increase the
trust region radius r(k). Otherwise, we decrease r(k) by a damping factor, e.g.,
r(k) = r(k)/2 and compute again the step d(k).

We apply the second variant of the Newton method, the line-search ap-
proach. Once the solution ∆Φ(k) of (4.14) has been determined, we find a
steplength α(k) > 0 such that Φ(k+1) = Φ(k)+α(k)∆Φ(k) measuring a progress
in minimization at each iteration and reducing the merit function in the sense
M(Φ(k+1)) < M(Φ(k)). The ideal value α(k) = 1 may not always happen
so that various modifications of the basic Newton method have to be imple-
mented. The following basic model algorithm can be considered:

S1. If the conditions for convergence are satisfied, the algorithm terminates
with Φ(k) as the solution.

S2. Compute a search direction ∆Φ(k) solving (4.14).
S3. Compute the steplength α(k) > 0 for which M(Φ(k) + α(k)∆Φ(k)) <

M(Φ(k)).
S4. Update the estimate for the minimum by Φ(k+1) := Φ(k)+α(k)∆Φ(k), k :=

k + 1, and go back to step S1.

A standard convergence monitor in nonlinear programming is to choose
the Euclidean norm ‖F (ρ)(x,y, z)‖ of the residual produced by the KKT
conditions (4.13) as a merit function. However, in many practical implemen-
tations, this choice of the merit function is not sufficient, since it does not
allow to tell the difference between a local minimizer and a stationary non-
minimizing point. The KKT conditions are necessary optimality conditions
and hence, the optimization problem (4.1)–(4.2) and the nonlinear problem
(4.13) are not equivalent, i.e., the Newton method may find solutions of (4.13)
which do not minimize the objective function f(x). Therefore, in order to
find simultaneously solutions of both problems, a better approach is to rely
on a hierarchy of two merit functions (cf., e.g., [GOW98, HPS02]). In general,
the choice of merit functions in nonlinear constrained optimization problems
is complicated. Several ideas have recently been proposed in the context of
primal-dual interior methods (cf., e.g., [BHN99, ET*86, FGW02]). In particu-
lar, our primary merit function is related to those suggested in [GOW98] and
is chosen as a modified augmented Lagrangian incorporating the logarithmic
barrier function (4.8) as follows

M := M(x,y, ρ, ρA) = f(x)− ρ
l∑

i=1

log gi(x) + yTh(x) +
1
2
ρA h(x)Th(x),

(4.18)
where ρA is a positive parameter. Our purpose now is to satisfy the descent
conditions and to guarantee a reduction of the merit function in the sense that



                            

each iterate should be an improved estimate of the solution of (4.6)–(4.7). Note
that a descent is sought only with respect to x taking into account the original
optimization problem. A standard way to achieve M(x + α∆x,y, ρ, ρA) <
M(x,y, ρ, ρA) is to require that∆x is a descent direction, i.e.,∆xT∇xM < 0,
where ∇xM is the gradient of the primary merit function with respect to the
primal variable x. In particular, we have

∆xT∇xM = ∆xT (t− ρJTinG−1ē + JTeq y + ρAJ
T
eq h)

= ∆xT (t− ρJTinG−1ē)− hTy − ρAhTh, (4.19)

due to Jeq∆x = −h from the second equation of (4.17). Hence,∆xT∇xM < 0
can be satisfied if the augmented Lagrangian parameter ρA is sufficiently large,
namely

ρA >
∆xT (t− ρJTinG−1ē)− hTy

hTh
.

Hence, ρA can be changed within the optimization loop, if ∆x is not a descent
direction. In our algorithm, we choose

ρA = min
(

5
hTh

(∆xT (t− ρJTinG−1ē)− hTy), 100
)

(4.20)

in the case ∆xT∇xM ≥ 0 and continue the loop (see [GOW98, HPS02] for
details).

For the secondary merit function we choose the l2− norm of the resid-
ual with respect to perturbed KKT-conditions (4.13). We apply the Newton
method and choose the steplengths to strictly satisfy the inequality constraints
g(x) > 0 and the complementarity constraints z > 0. Hence, the first require-
ment for the line-search approach is to insure a strict feasibility. Let α̂ and γ̂
be separate steplengths defined as follows

α̂ = max{α|g(x) + αJin∆x ≥ 0}, γ̂ = max{γ|z + γ∆z ≥ 0}.

Since we maintain interior (i.e., strict feasible) iterates, usually we take a
parameter τ ∈ (0, 1) bounded strongly away from unity and define α =
min(1, τ α̂) and γ = min(1, τ γ̂). We use the same steplength γ for the La-
grange multiplier y. In practice, both merit functions are used by means of
the following strategy: If the steplengths α and γ lead to a reduction of M ,
they are accepted. If M does not decrease, we check the secondary merit func-
tion. If the latter decreases, the steplengths are accepted; otherwise damp the
Newton steps by a certain factor and continue the procedure. The barrier pa-
rameter ρ > 0 is updated by decreasing values until an approximate solution
of the nonlinear problem is obtained (cf., e.g., [ET*86, GOW98, HPS02]). We
rely on a watchdog strategy (see [CL*82]) to ensure progress in finding a local
minimizer. If after some fixed number of iterations there is no reduction of
M , the augmented Lagrangian parameter ρA is chosen sufficiently large in
accordance with (4.20).



                    

5 Solving the condensed primal–dual system

The discretized constrained optimization problem (3.2)–(3.3) is solved by the
primal-dual interior-point method described in Sect. 4. We consider the diag-
onal matrices D1 := diag(αi−αmin) and D2 := diag(αmax−αi) and introduce
z := ρD−1

1 ē ≥ 0 and w = ρD−1
2 ē ≥ 0 serving as perturbed complementarity.

We note that 1 ≤ i ≤ N where N is the number of finite elements in the dis-
cretized domain and ē = (1, 1, . . . , 1)T ∈ RM . The primal-dual Newton-type
interior-point method is applied to three sets of variables: primal feasibil-
ity (u,α), dual feasibility (λ,η), and perturbed complementarity related to
(z,w).

Denote the Lagrangian function of (3.2)–(3.3) by

L(u,α; λ, η; z,w) := f(u,α) (5.1)
+ λT (A(α)u− f ) + η (g(α)− C)
− zT (α− αmin ē)−wT (αmaxē−α).

The Newton method applied to the KKT conditions of (5.1) results in⎛⎜⎜⎜⎜⎜⎜⎝
0 Luα Luλ 0 0 0

Lαu Lαα Lαλ Lαη −I I
Lλu Lλα 0 0 0 0

0 Lηα 0 0 0 0
0 Z 0 0 D1 0
0 −W 0 0 0 D2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
)u
)α
)λ
)η
)z
)w

⎞⎟⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎝
∇uL
∇αL
∇λL
∇ηL
∇zL
∇wL

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.2)

where I stands for the identity matrix, Z = diag(zi) and W = diag(wi) are
diagonal matrices. Following Sect. 4 we eliminate the increments for z and w
from the 5th and 6th rows of (5.2), namely,

)z = D−1
1 (−∇zL − Z)α), )w = D−1

2 (−∇wL+W )α) (5.3)

and substitute (5.3) in the second row of (5.2). We get the linear system
K̃)ψ = −ξ̃ for the increments of ψ := (u,α,λ, η), denoted by )ψ :=
()u,)α,)λ,)η) where K̃ is the matrix and (−ξ̃) is the right-hand side of
the following condensed primal-dual system⎛⎜⎜⎝

0 Luα Luλ 0
Lαu L̃αα Lαλ Lαη

Lλu Lλα 0 0
0 Lηα 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
)u
)α
)λ
)η

⎞⎟⎟⎠ = −

⎛⎜⎜⎝
∇uL
∇̃αL
∇λL
∇ηL

⎞⎟⎟⎠ . (5.4)

The αα-entry of K̃ and the modified entry for the right-hand side are

L̃αα = Lαα +D−1
1 Z+D−1

2 W, ∇̃αL = ∇αL+D−1
1 ∇zL−D−1

2 ∇wL.

Direct methods for the solution of (5.4) can be divided into two classes:
range space methods and null space methods. These approaches essentially



                            

differ in the grouping of the matrix into a 2 × 2-block structure. The de-
composition of the condensed primal-dual system (5.4) is related to the first
approach. In this section, we consider the null space decomposition of the con-
densed primal-dual matrix interchanging the second and the third rows and
columns. The resulting matrix can be written according to

K̃ =
(
A11 A12

A21 A22

)
=

⎛⎜⎜⎜⎝
0 Luλ Luα 0

Lλu 0 Lλα 0

Lαu Lαλ L̃αα Lαη

0 0 Lηα 0

⎞⎟⎟⎟⎠ ,

where the first diagonal block

A11 =
(

0 Luλ
Lλu 0

)
(5.5)

is now an indefinite but nonsingular matrix. We remind that Lλu = A(α) is
exactly the stiffness matrix corresponding to the equilibrium equation (2.12).
Hence, A−1

11 exists, and the Schur complement S := A22 − A21A
−1
11 A12 is

defined correctly.
We use the following regular splitting of K̃

KLK̃R = M1 −M2 (5.6)

with left and right factors given below and reasonable matrices M1 and M2 ∼
0. For solving the system of the form K̃)ψ = −ξ̃, starting with an initial
guess for )ψ := ()u,)λ,)α,)η)T , the transforming iteration proposed in
[Wit89] is described by

)ψ(ν+1) := )ψ(ν) +KRM−1
1 KL(−ξ̃ − K̃)ψ(ν)), (5.7)

where the new iterate ψ(new) is obtained by a line-search in the direction )ψ,
namely

ψ
(new)
j = ψ

(old)
j + αj()ψ)j , 1 ≤ j ≤ 4.

The line-search approach and the choice of the steplengths parameters αj are
discussed in Sect. 4.3.

Using an appropriate preconditioner for the stiffness matrix, we approxi-
mate the first diagonal block (5.5) as follows

A11 =
(

0 Luλ
Lλu 0

)
∼

(
0 L̃uλ

L̃λu 0

)
=: Ã11.

Usually, the left and right transformations are of the form

KL = I, KR =
(
I −Ã−1

11 A12

0 I

)
=

⎛⎜⎜⎝
I 0 −L̃−1

λu
Lλα 0

0 I −L̃−1

uλ
Luα 0

0 0 I 0
0 0 0 I

⎞⎟⎟⎠ .



                    

In this case, the regular splitting (5.6) becomes KKR = M1 −M2 where

M1 =

⎛⎜⎜⎝
0 Luλ 0 0

Lλu 0 0 0
Lαu Lαλ S̃ Lαη

0 0 Lηα 0

⎞⎟⎟⎠ =
(
A11 0
R Q

)
(5.8)

and

M2 =

⎛⎜⎜⎝
0 0 Luα − LuλL̃

−1

uλ
Luα 0

0 0 Lλα − LλuL̃
−1

λu
Lλα 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (5.9)

Note that M2 ∼ 0 if we have a good preconditioner for the stiffness matrix.
In our numerical experiments, we choose a Cholesky decomposition of Luλ.
The second diagonal block Q in (5.8) is symmetric and indefinite given by

Q :=
(

S̃ Lαη

Lηα 0

)
with S̃ := L̃αα−LαuL̃−1

λu
Lλα−LαλL̃

−1

uλ
Luα.

We denote the defect in (5.7) by d = −ξ̃ − K̃)ψ(ν) and compute the corre-
sponding entries

du = −∇uL− Luλ)λ− Luα)α,

dλ = −∇λL− Lλu)u− Lλα)α,

dα = −∇̃αL − Lαu)u− Lαλ)λ− L̃αα)α− Lαη)η,
dη = −∇ηL − Lηα)α.

Taking into account (5.7) one needs to compute δ = M−1
1 d, i.e., M1δ = d.

Consequently, we find δλ = L̃−1

uλ
du and δu = L̃−1

λudλ. To compute the
remaining components of δ we have to solve systems with an indefinite matrix
Q of the form(

S̃ Lαη

Lηα 0

)(
δα
δη

)
=

(
dα − Lαuδu − Lαλδλ

dη

)
.

Iterative procedures such as MINRES or Bi-CGSTAB (see [VdV92]) with
appropriate stopping criteria can be applied in this case. Compute KRδ and
find the increments from (5.7) as follows

)u(new) = )u(old) + δu − L̃−1

λu
Lλαδα, )α(new) = )α(old) + δα,

)λ(new) = )λ(old) + δλ − L̃−1

uλ
Luαδα, )η(new) = )η(old) + δη.

We apply the above algorithm (with a fixed number of iterations) to find
the increments of the primal and dual variables )u,)α,)λ,)η and then
use (5.3) to determine the global search direction )Φ.



                            

6 Adaptive grid refinement

Advanced finite element applications in science and engineering provoke the
extensive use of adaptive mesh-refinement techniques to optimize the number
of degrees of freedom and obtain accurate enough numerical solutions. The
adaptive framework requires a locally refined discretization in regions where
a better accuracy is necessary.

The computation of the homogenized elasticity coefficients requires the nu-
merical solution of (2.8) with the unit cell as the computational domain. Previ-
ous works on shape and topology optimization (cf., e.g., [Ben95, BS03, SZ92])
strongly suggest the use of locally refined grids particularly at material inter-
faces. In the context of shape optimization such local refinements have been
mostly done before the computations relying on a priori geometric informa-
tions or in an interactive way (manual remeshing based on computational
results). In case of local singularities of the discrete solution, a priori error
estimates typically give information about the asymptotic error behavior and
thus, are not the best choice to control the mesh. In those parts of the do-
main where the solution changes rapidly, an automatic grid refinement on the
basis of reliable and robust a posteriori error estimators is highly beneficial.
In practice, the main goal in adaptive mesh-refinement procedures is to refine
the mesh so that the discretization error is within the prescribed tolerance
and as possible equidistributed throughout the domain.

In the past twenty years, numerous studies have been devoted to an er-
ror control and a mesh-design based on efficient postprocessing procedures
(cf., e.g., [CF01, EE*95, HP04a, ZZ87]). A natural requirement for a poste-
riori error estimates is to be less expensive than the cost of the numerically
computed solution. Moreover, appropriate refinement techniques have to be
applied to construct the adaptive mesh and implement the adaptive solver.
Local reconstruction of the grid is necessary to be done with a computational
cost proportional to the number of modified elements.

The a posteriori adaptive strategy can be described as follows:

A1. Start with an initial coarse mesh T0 fitting the domain geometry. Set
n := 0.

A2. Compute the discrete solution on Tn.
A3. Use a posteriori error indicator for each element T ∈ Tn.
A4. If the global error is small enough, then stop. Else refine the marked

elements, construct the next mesh Tn+1, set n := n+1, and go to step A2.

The solution of our linear elasticity equation (2.8) is computed by using
adaptive finite element method based on the Zienkiewicz-Zhu (referred as ZZ)
error estimator. For instance, a recovery technique is analyzed in [ZZ87] for
determining the derivatives (stresses) of the finite element solutions at nodes.
The main idea of the recovery technique is to develop smoothing procedures
which recover more accurate nodal values of derivatives from the original finite
element solution.



                    

The necessity of derivative recovering arises from the fact that in the finite
element approach the rate of convergence of the derivatives is usually one
order less than that of the discrete solution. In particular, the accuracy of the
derivatives (stresses) computed by directly differentiating the discrete solution
is inferior. Therefore, in many practical problems an improved accuracy of the
stresses at nodes is needed.

Denote by σ the exact stress, by σ̂ the discrete finite element discontinuous
stress, and by σ∗ the smoothed continuous recovered stress. The computation
of σ∗ was proposed and discussed in [ZZ87] under the assumption that the
same basis functions for interpolation of stresses are used as those for the
displacements. The recovered stress σ∗ is computed by smoothing the discon-
tinuous (over the elements) numerical stress σ̂. The smoothing procedure can
be accomplished by nodal averaging method or the L2-projection technique.
Note that the components of σ∗ are piecewise linear and continuous.

The computational of the globalL2-projection is expensive and the authors
of [ZZ87] proposed to use a lumping form of the mass matrix. Thus, the value
of the recovered stress σ∗ at a node P can be computed by averaging the
stresses σ̂ at the elements that share that node. Denote by YP ⊂ Y the
neighborhood patch as an union of all triangles/tetrahedra T having node P .
Consider

σ∗(P ) =
∑
T∈YP

ω|T σ̂|T , ω|T =
|T |
|YP |

, T ∈ YP , (6.1)

i.e., σ∗(P ) is a weighted average of σ̂ with weights ω|T defined on the elements
belonging to YP . Least-square technique can also be applied to approximate
the stress field at a given node.

It was shown in [ZZ87] that σ∗ is a better approximation to σ than σ̂ and
the following estimate holds

‖σ − σ∗‖0,Y � ‖σ − σ̂‖0,Y , (6.2)

where Y is the periodicity microcell into consideration. Furthermore, the re-
covered technique was used in a formulation of a posteriori error estimator
by comparing the recovered solution σ∗ with the finite element solution σ̂. In
particular, the estimate (6.2) allows us to replace the exact (unknown) stress
σ by σ∗ and consider ‖σ∗ − σ̂‖0,Y as an error estimator.

In many practical implementations reliability and efficiency are highly de-
sirable properties in a posteriori error estimation. It basically means that
there exist constants independent of the discrete solution and the mesh which
limit the error (in a suitable norm) from below and above. Moreover, techni-
cally it is better to use local error estimators which are computationally less
expensive. The following local estimator is considered

ηT := ‖σ∗ − σ̂‖0,T . (6.3)

The nodal values of the recovered stresses are found locally. The elementwise
contributions (6.3) are used further as local error indicators in the adaptive
mesh-refinement procedure.



                            

The global ZZ-error estimator is defined by

ηY :=
(∑

T∈Tn

η2
T

)1/2

. (6.4)

Based on a posteriori processing, the local estimator (6.3) is practically
efficient providing recovered values are more accurate, i.e., the quality of the
a posteriori error estimator strongly depends on the approximation properties
and the accuracy of the recovered solution.

Arbitrary averaging techniques in low order finite element applications for
elasticity problems are subject of investigations in [CF01]. In the latter study
the authors considered the following global averaging estimator

ηA := min
σ∗

‖σ∗−σ̂‖0,Y (6.5)

and proved an equivalence to the error ‖σ − σ̂‖0,Y with lower and upper
bounds independent of the shape-regular mesh. Note that in (6.5) σ∗ is a
smoother approximation to σ̂ obtained by any averaging procedure. In partic-
ular, the final error estimate in [CF01] explains the reliability and robustness
of the ZZ- a posteriori error estimators in practice.

7 Iterative solution techniques

In this section, we comment on the iterative solvers for the microcell problem
(2.8) defined in Y to find the effective coefficients and for the homogenized
elasticity equation (2.12) on the global domain Ω. After finite element dis-
cretization of the corresponding domain we get the following system of linear
equations

Au = f , (7.1)

where u is the vector of unknown displacements and f is the discrete right-
hand side. The stiffness matrix A is symmetric and positive definite but not
an M -matrix.

Two typical orderings of the unknowns are often used in practice. In the
3-dimensional case they are presented as follows(

u
(x)
1 , u

(y)
1 , u

(z)
1 , u

(x)
2 , u

(y)
2 , u

(z)
2 , . . . , u

(x)
N , u

(y)
N , u

(z)
N

)
, (7.2)

referred to as a pointwise displacements ordering and(
u

(x)
1 , u

(x)
2 , . . . , u

(x)
N , u

(y)
1 , u

(y)
2 , . . . , u

(y)
N , u

(z)
1 , u

(z)
2 , . . . , u

(z)
N

)
, (7.3)

called the separate displacements ordering. Here, u(x)
k , u

(y)
k , and u(z)

k are the
corresponding x, y-, and z- displacement components. For the the first or-
dering (7.2), the resulting stiffness matrix A = A(point) can be seen as a



                    

discretization matrix consisting of elements which are small 3× 3 blocks. For
the second ordering (7.3), the matrix A = A(block) admits the following 3× 3
block decomposition

A =

⎡⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦ . (7.4)

In case of isotropic materials, the diagonal blocks Ajj , j = 1, 2, 3, in (7.4)
are discrete analogs of the following anisotropic Laplacian operators

D̃1 =a ∂2

∂x2 + b ∂2

∂y2 + b ∂2

∂z2 , D̃2 =b ∂2

∂x2 + a ∂2

∂y2 + b ∂2

∂z2 , D̃3 =b ∂2

∂x2 + b ∂2

∂y2 + a ∂2

∂z2

with coefficients a = E(1−ν)/((1+ν)(1−2ν)) and b = 0.5E/(1+ν) where E
is the Young modulus and ν is the Poisson ratio of the corresponding material.
This anisotropy requires a special care to construct an efficient preconditioner
for the iterative solution method. Based on Korn’s inequality, it can be shown
that A and its block diagonal part are spectrally equivalent. The condition
number of the preconditioned system depends on the Poisson ratio ν of the
materials and the constant in the Korn inequality. For the background of the
spectral equivalence approach using block diagonal displacement decomposi-
tion preconditioners in linear elasticity problems we refer to [BLA94]. Note
that the spectral equivalence estimate will deteriorate for ν close to 0.5 which
is not the case in our particular applications.

The PCG method is applied to solve the linear system (7.1). We propose
two approaches to construct a preconditioner for A:

(i) construct a preconditioner for A(point)

(ii) construct a preconditioner for A(block) of the type M = diag(Mjj),
where Mjj ∼ Ajj , j = 1, 2, 3, are “good” approximations to the diagonal
blocks of A. In case (i) we have chosen the incomplete Cholesky (IC) factor-
ization of A with an appropriate stopping criterion.

An efficient preconditioner for Ajj in case (ii) turns out to be a matrix
Mjj corresponding to a Laplacian operator (−div (c grad u)) with a fixed scale
factor c. In our case we use, for instance, c = b/2 for all three diagonal blocks.
Algebraic MultiGrid (AMG) method is applied as a “plug-in” solver for A
(see [RS86] for details). This method is a purely matrix-based version of the
algebraic multilevel approach and has shown in the last decade numerous
efficient implementations in solving large sparse unstructured linear systems
of equations without any geometric background.

8 Numerical experiments

In this section, we comment on some computational results concerning the
microscopic problem to find the homogenized elasticity coefficients and the
macroscopic shape optimization problem. For simplicity, we suppose linear
elasticity with homogeneous and isotropic constituents in terms of carbon



                            

and SiC. The Young modulus E (in GPa) and the Poisson ratio ν of our two
materials are, respectively, E = 10, ν = 0.22 for carbon and E = 410, ν =
0.14 for SiC.

The computation of the characteristic displacement fields ξkl and the ho-
mogenized elasticity coefficients (2.9) requires the solution of linear elastic
boundary value problems with the periodicity cell Y as the computational
domain. The elasticity equation (2.8) is solved numerically using a conform-
ing finite element discretization of the periodicity cell Y by linear basis func-
tions. Since the periodic displacements ξkl = ξlk are symmetric, the equation
(2.8) is computed numerically 3 times in the case d = 2 and respectively,
6 times in the case d = 3. Due to the composite character of our microcell
there are material interfaces where the solution changes significantly. Hence,
local refinement of the underlying finite element mesh is strongly advised. As
discussed in Sect. 6, we use an adaptive grid refinement strategy based on a
posteriori error estimator of Zienkiewicz-Zhu type obtained by local averaging
of the computed stress tensor. Note that the adaptivity procedure is local and
computationally cheap.

Denote the global density of the solid material part in the microstructure
by µ, 0 < µ < 1. Note that the density of the tracheidal cells of the wood
essentially depends on the growth of the tree. If µ is relatively small, we speak
about an early wood (grown in spring and summer) and respectively, about
late wood (grown in autumn and winter) for values of µ, close to 1.

We present first some numerical experiments on a plane microstructure
(d = 2) shown in Fig. 2.2 b). More experiments can be found in [HP04a]. We
assume that the material layers in the periodicity cell have equal widths from
all sides of the cell. Denote by αi, i = 1, 2, the widths of the carbon and SiC
layers, respectively. Figure 8.1 a) illustrates the behavior of the homogenized
coefficient EH

1212 in case of square hole versus α1 and α2 which vary between 0
and 0.5. We compute the effective coefficients EH

ijkl only for a fixed number of
values of the design parameters (e.g., 20× 20 grid as shown on Fig. 8.1) and
then interpolate the values by splines. With regard to the homogenized state
equation (2.12), this procedure results in having explicit formulas at hand
for the gradients and the Hessian of the Lagrangian function needed in the
optimization procedure.

In principal, the hole is located inside the microstructure but we find
interesting to demonstrate the behavior, for instance, of EH

1212 depending on
a rectangular hole [1 − a] × [1 − b], see Fig. 8.1 b). Note that a = b = 0
represents a complete void, a = b = 1 realizes a complete solid material, and
0 < a < 1, 0 < b < 1 characterize a general porous material. We consider in
this example the case when the carbon has completely reacted with the SiC
which strongly concerns the so-called pure biomorphic SiC-ceramics. Very
recently, the chemical experiments have shown that the carbon phase limits
the mechanical properties of the composite materials and restricts their high-
temperature applications. The final transformation of the original carbonized
template to pure ceramic composite requires to offer enough silicon during
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Fig. 8.1. Homogenized coefficient EH
1212: a) w.r.t. the widths of carbon and SiC

layers (square hole); b) w.r.t. the sizes 1− a and 1− b of the rectangular hole (pure
SiC-ceramic)

the infiltration process and to wait an appropriate time until the carbon is
completely consumed by the silicon resulting in a SiC-phase.

Figure 8.2 displays the dependence of the homogenized elasticity coeffi-
cients on the density µ of the cell. In particular, we show this behavior versus
the width of the SiC layer in case of pure SiC-ceramics. Figure 8.2 a) shows the
behavior of the effective coefficients for early wood (0 ≤ α2 ≤ 0.15, µ = 51%)
and Fig. 8.2 b) demonstrates the coefficients for late wood (0 ≤ α2 ≤ 0.3,
µ = 84%). One can easily observe from both pictures on this figure a highly
nonlinear behavior of the homogenized coefficients.

The mesh-adaptive process is visualized in Fig. 8.3. We see that in case
of one material available in the microstructure, an appropriate refinement is
done around the corners where the hole with a complete pore is located, see
Fig. 8.3 a). In case of more materials, additional mesh-adaptivity is needed
across the material interfaces in the microstructure due to the strongly varying
material properties in terms of Young’s modulus and Poisson’s ratio.

In Table 8.1 we give some results for the homogenized elasticity coefficients
on the first ten adaptive refinement levels for various values of the density. We
report the number of triangles NT and the number of nodes NN on each level
when solving problem (2.8). We see from the computed values that the mesh
sensitivity on the successive levels is very small. Our adaptive mesh-refinement
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Fig. 8.2. Homogenized coefficients w.r.t. the width α2 of SiC layer for pure SiC-
ceramic: a) early wood, density 51%; b) late wood, density 84%



                            

Fig. 8.3. Late wood, density µ = 84%, 9 adaptive refinement levels: a) SiC, 1527
triangles, 818 nodes; b) carbon and SiC, 3752 triangles, 1916 nodes

procedure stops when a priori given limit for the number of refinement levels
is reached.

We are now concerned with the solution of problem (3.2)–(3.3). In Ta-
ble 8.2 we report some numerical results from running the optimization code
varying the constant C with respect to (3.3). Our purpose is to find the op-
timal widths/lengths of the layers in the composite material and to show the
convergence behavior of the optimization algorithm. The domain Ω is chosen
to be a circle which corresponds naturally to a cross section of the original
wood structure. We have fixed the discretization and vary the initial values
for the lengths of the carbon and SiC layers denoted, respectively, by α(0)

1 and
α

(0)
2 . As before, we report the number of iterations ITER to get convergence,

the optimal lengths α1 and α2 of the carbon and SiC layers, the last value of
the barrier parameter ρ, the final value of the primary merit function M , the
l2-norm of the residual, and the l2-norm of the complementarity conditions
v = (z,w) at the last iteration. We see from the experiments that the optimal

Table 8.1. Homogenized coefficients w.r.t. refinement level, a) µ = 51%, b) µ = 84%

level EH
1111 EH

1122 EH
1212 NT NN

1 64.975 7.664 12.116 168 100
2 63.336 6.642 9.750 220 126
3 58.466 6.682 8.073 288 162
4 56.572 7.012 6.643 484 262
5 54.385 6.245 6.212 712 378
6 52.936 6.091 5.474 1208 630
7 51.914 5.458 5.306 1800 932
8 50.861 4.790 5.217 2809 1444
9 50.455 4.571 5.029 3754 1919
10 49.591 4.359 4.983 5918 3013

level EH
1111 EH

1122 EH
1212 NT NN

1 33.430 3.885 9.893 168 100
2 33.064 3.929 9.577 216 126
3 32.844 4.024 9.283 300 168
4 32.291 4.254 8.970 544 296
5 32.144 4.312 8.809 828 438
6 31.909 4.372 8.703 1354 705
7 31.862 4.379 8.526 1892 980
8 31.735 4.399 8.470 2894 1485
9 31.711 4.400 8.373 3752 1916
10 31.487 4.497 8.321 5716 2906



                    

Table 8.2. Convergence results for biomorphic microcellular SiC ceramics

α
(0)
1 α

(0)
2 C ITER α1 α2 ρ M ‖F (ρ)‖2 ‖v‖2

0.05 0.05 0.3 11 3.6e-12 0.3 1.3e-17 1.24 9.63e-6 e-10

0.1 0.1 0.3 11 5.5e-14 0.3 3.0e-21 1.24 1.03e-6 e-12

0.1 0.1 0.4 12 1.6e-16 0.4 1.2e-26 0.85 8.63e-9 e-14

0.2 0.2 0.1 16 5.5e-17 0.1 2.2e-25 7.73 2.23e-8 e-13

0.2 0.2 0.2 13 1.0e-16 0.2 5.3e-26 2.34 1.54e-8 e-14

0.2 0.2 0.3 11 2.5e-16 0.3 6.7e-26 1.24 1.79e-8 e-14

0.24 0.24 0.15 11 5.4e-15 0.15 4.1e-12 3.81 4.99e-7 e-12

0.3 0.1 0.4 11 1.3e-12 0.4 8.5e-19 0.85 5.07e-6 e-10

0.4 0.05 0.1 17 9.8e-15 0.1 6.9e-21 7.73 9.49e-7 e-11

length α1 of the carbon layer in all the runs is very close to zero, i.e., the solid
part of the body is entirely occupied by a silicon carbide layer due to the
higher stiffness of this material.

In case of 3-dimensional implementations we decompose the periodic mi-
crocell Y first in hexahedra and further we use continuous, piecewise linear
finite elements on tetrahedral shape regular meshes. The adaptive grid refine-
ment process is visualized in Fig. 8.4. The mesh adaptivity around the material
interfaces has been realized by means of Zienkiewicz-Zhu type a posteriori er-
ror which is used heuristically (as an error indicator). One computes the error
(6.3) locally for each element and mark for refinement those tetrahedra {T }
for which

ηT ≥ γ max
T ′∈Tn

ηT ′ ,

where 0 < γ < 1 is a prescribed threshold, for instance, γ = 0.5. The refine-
ment process is visualized in Fig. 8.4 b) on the cross section of the microstruc-

Fig. 8.4. Adaptive refinement a) 3-D unit periodicity cell Y , b) Cross section of Y



                            

Table 8.3. Homogenized coefficients for late wood, density µ = 91%

level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 148.35 152.57 153.96 60.22 62.46 59.50
2 154.34 162.64 162.77 69.71 71.31 65.79
3 142.66 148.42 162.79 60.51 65.26 63.23
4 145.84 137.61 161.70 53.91 59.04 62.92
5 127.99 134.32 161.43 49.41 56.19 56.49
6 98.29 111.65 160.71 40.44 46.14 48.45
7 91.79 90.23 158.29 35.70 43.69 46.03
8 82.42 83.00 160.57 30.59 41.03 43.70
9 75.05 75.11 160.22 26.93 39.75 40.97
10 69.66 70.30 159.82 25.47 37.16 39.30

ture Y for widths of the C- and SiC- layers α1 = α2 = 0.15. Additional adap-
tive refinement is generated in the stiffer material (SiC) and on the interface
between the materials due to the different characteristic constants.

In Table 8.3 we report some values of the computed 3-dimensional ho-
mogenized coefficients with respect to the adaptive refinement level for a late
wood with density µ = 91%. More numerical experiments for various values
of the density and various number of adaptive levels can be found in [HP06a].

Table 8.4 presents some convergence results for the proposed precondition-
ers within PCG method. For various values of the density µ of the periodical
microstructure we report the number of degrees of freedom NDOF, the num-
ber of iterations ITER, and the CPU-time in seconds for the first 11 adaptive
refinement levels. One can see from the numerical results a better convergence
of AMG-preconditioner compared to IC-factorization. We observe an essential
efficiency of AMG for a larger number of unknowns.

Table 8.4. Convergence results with IC and AMG preconditioners, density µ

density level 1 2 3 4 5 6 7 8 9 10 11

µ = 51% NDOF 78 90 126 225 336 579 1185 1908 3360 5598 9987
IC ITER 9 8 14 23 40 66 105 150 235 269 299

CPU e-16 e-16 e-16 0.1 0.2 0.2 0.9 2.4 8.2 20.9 59.1
AMG ITER 11 13 13 15 18 23 38 57 89 94 99

CPU e-16 e-16 e-16 0.2 0.3 0.5 1.5 3 7.6 14.8 23.5

µ = 84% NDOF 78 93 150 261 510 1047 2103 3843 6537 10485 18459
IC ITER 10 11 16 21 44 78 117 171 226 273 301

CPU e-16 e-16 0.1 0.1 0.1 0.6 2.4 8.4 24.3 63.7 187.1
AMG ITER 12 14 14 14 18 31 43 73 69 74 75

CPU e-16 e-16 e-16 0.2 0.4 1.1 3 7.5 15.5 25.6 33.8
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