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1 Introduction

A posteriori analysis has become an inherent part of numerical mathematics.
Methods of a posteriori error estimation for finite element approximations
were actively developed in the last two decades (see, e.g., [1, 2, 3, 12] and
the references therein). For problems in the theory of optimization, these
methods started receiving attention much later. In particular, for optimal
control problems governed by PDEs the literature on this matter is rather
scarce. In this work, we present a new approach to a class of optimal control
problems associated with elliptic type partial differential equations. In the
framework of this approach, we obtain directly computable upper bounds for
the cost functionals of the respective optimal control problems.

Let Ω ∈ R
n be a Lipschitz domain with boundary Γ := ∂Ω.

Problem 1. Given ψ ∈ L∞(Ω), yd ∈ L2(Ω), ud ∈ L2(Ω), f ∈ L2(Ω), and
a ∈ R+, consider the distributed control problem

minimize J(y(v), v) :=
1
2
‖y − yd‖2 +

a

2
‖v − ud‖2 (1a)

over (y, v) ∈ H1
0 (Ω)× L2(Ω) ,

subject to −∆ y = v + f a.e. in Ω , (1b)

v ∈ K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω} . (1c)

The function yd is given and presents the desired shape of the state function
y, whereas ud presents the desired control. It is well-known that under the
above assumptions Problem 1 has a unique solution (see, e.g. [9]).
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There exist many different approaches to optimal control problems of this
type. The numerical solution of optimal control problems is usually based on
applying specific iterative schemes to the system of optimality conditions, e.g.,
active set strategies or interior point methods (cf., e.g., [6, 7] and the references
therein). Adaptive techniques for optimal control problems governed by PDEs
are presented in [4] and [8].

In this work, we follow another approach which is based on so-called func-
tional type a posteriori error estimates. To explain the meaning of such esti-
mates, as a model problem we consider Poisson’s equation with homogeneous
boundary conditions

−∆y = v + f in Ω , (2a)
y = 0 on Γ , (2b)

which describes the dependence between the control and the state in the
optimal control problem (1a)-(1c). Let ỹ be any function from the admissible
set Y := H1

0 (Ω) which we view as an approximation of the solution of the
elliptic problem (2a)-(2b). It was shown (see, e.g., [10] and [11]) that the error
of the approximation ỹ satisfies the following estimate:

‖∇(y(v)− ỹ)‖ ≤ ‖τ −∇ỹ‖+ CΩ‖divτ + v + f‖ . (3)

Here, CΩ is the constant in the Friedrichs inequality

‖w‖ ≤ CΩ ‖∇w‖ , w ∈ H1
0 (Ω) (4)

for the domain Ω and τ is an arbitrary function from the functional class
Σ := Hdiv(Ω,Rn). Mathematical justifications of functional type a posteriori
estimates and their analysis can be found in the above cited literature. Below,
we recall the main properties of such estimates:

• For any approximation ỹ ∈ Y , the right–hand side of (3) gives an upper
bound of the error in the natural energy norm of the problem considered;

• Its value is equal to zero if and only if ỹ coincides with y(v) and τ = ∇y(v);
• The estimate is consistent in the sense that its value tends to zero for

any sequences {ỹk} and {τk}, converging to the exact solution y and its
gradient ∇y, respectively;

• The estimate is exact in the sense that there exists a function τ such that
equality holds true;

• The estimate does not depend on the mesh parameters and only contains
a global constant.

The function τ in the expression of the error majorant (3) serves as an image
of the exact flux ∇y(v). It is easy to observe that two terms of the majorant
represent the respective errors in the constitutive relation τ = ∇y(v) and in
the equilibrium equation divτ + v + f = 0.

In this paper, we apply this estimate in order to reformulate the origi-
nal optimal control problem. As a result, we obtain a directly computable



310 Alexandra Gaevskaya, Ronald H.W. Hoppe and Sergey Repin

and guaranteed majorant for the cost functional. Besides, we prove that the
sequences of approximate state and control functions, computed by the min-
imization of the majorant, converge to the exact state and control functions.

2 Majorants for the cost functional

One of the major difficulties in (1a)-(1c) is that the state and control functions
must satisfy the equality constraint presented by the boundary-value problem
for an elliptic PDE.

Let v ∈ K and y ∈ Y be two functions related by the differential equation
(1b). For this pair, the cost functional is as follows:

J(y(v), v) :=
1
2
‖y − yd‖2 +

a

2
‖v − ud‖2 .

Let ỹ ∈ Y be some approximation of y so that we may include it in the first
term of the cost functional. By the triangle and Friedrichs inequalities, we
obtain the estimate

J(y(v), v) ≤ 1
2
(
‖ỹ − yd‖+ CΩ‖∇(y − ỹ)‖

)2
+

a

2
‖v − ud‖2 . (5)

Now, using the error majorant (3) we can estimate the weak norm of the error
and substitute it to the estimate of the cost functional (5). By this procedure,
we exclude the explicit entry of the exact solution y of (2a)-(2b) from our
estimate and arrive at the relation

J(y(v), v) ≤ 1
2
(
‖ỹ − yd‖+ CΩ‖∇ỹ − τ‖+ C2

Ω‖divτ + v + f‖
)2

+
a

2
‖v−ud‖2 .

However, from a computational point of view it is desirable to reformulate
this estimate such that the right–hand side is given by a quadratic functional.
For this purpose, we introduce parameters α, β > 0 and obtain the following
upper bound (hereafter called the majorant) :

J(y(v), v) ≤ J⊕(α, β; ỹ, τ, v) , ∀v ∈ K . (6)

Here,

J⊕(α, β; ỹ, τ, v) :=
1 + α

2
‖ỹ − yd‖2 +

(1 + α)(1 + β)
2α

C2
Ω‖τ −∇ỹ‖2+ (7)

+
(1 + α)(1 + β)

2αβ
C4
Ω‖divτ + v + f‖2 +

a

2
‖v − ud‖2 ,

where ỹ ∈ Y and τ is an arbitrary function in Σ.

Remark 1. A similar upper estimate can be derived for the optimal control
problem with the cost functional
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J(y, v) =
1
2
‖∇y − σd‖2 +

a

2
‖u− ud‖2 ,

where the vector-valued function σd is given and presents the desired gradient
of the state function.

Let us consider the majorant as a functional that generates a new mini-
mization problem

Problem 1∗. Given ψ ∈ L∞(Ω), yd ∈ L2(Ω), ud ∈ L2(Ω), f ∈ L2(Ω), and
a ∈ R+,

minimize J⊕(α, β; ỹ, τ, v) (8a)
over v ∈ K, ỹ ∈ Y, τ ∈ Σ, α, β ∈ R+ ,

K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω} . (8b)

We see that in this problem the differential equation (which in (1a)-(1c) defines
the respective admissible set) does not appear explicitly. In (8a)-(8b), the
functions τ , ỹ and v act as independent variables. In the next section, we
present properties of the majorant (7) and show that Problem 1∗ and Problem
1 have one and the same exact lower bound attained on the same state and
control functions.

Remark 2. It is worth noting that the majorant J⊕(α, β; ỹ, τ, v) can be used to
find guaranteed upper bounds for the cost functional when the minimization
problem is solved by known methods. Indeed, since the functions ỹ and v
are arbitrary, we can take them as approximate solutions computed by some
optimization procedure and minimize the majorant w.r.t. the function τ and
the parameters β and α. The respective value J⊕ will represent the guaranteed
upper bound for the value of the cost functional.

3 Properties of majorants

Theorem 1. The exact lower bound of the majorant (7) coincides with the
optimal value of the cost functional of the problem (1a)-(1c), i.e,

inf
ỹ∈Y,τ∈Σ,

v∈K,α,β∈R+

J⊕(α, β; ỹ, τ, v) = J(y(u), u) .

The infimum of J⊕ is attained for v = u, ỹ = y(u), τ = ∇y(u).

This property means that our transformation of the original problem is math-
ematically correct in the sense that the new problem is solvable and has the
same lower bound as the original one.

Let {Vk}∞k=1, {Yk}∞k=1 and {Σk}∞k=1 be sequences of finite-dimensional sub-
spaces that are limit dense in V := L2(Ω), Y and Σ, respectively. The discrete
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control constraints are given by Kk := Vk ∩K. It is not difficult to show that
Kk is limit dense in K.
We define the sequence of numbers

J⊕
k := J⊕(αk, βk; ỹk, τk, vk) = inf

ỹ∈Yk,τ∈Σk,
v∈Kk,α,β∈R+

J⊕(α, β; ỹ, τ, v) , (9)

which is obtained by solving the problem on sequences of the selected finite–
dimensional subspaces.

Theorem 2. If Kk, Yk and Σk are limit dense in K, Y , and Σ, respectively,
then

(i) J⊕
k → J(y(u), u) as k →∞ ;

(ii) the sequence {y(vs), vs} converges to the exact solution
of the control problem {y(u), u} in Y ×K.

The theorem shows that a numerical strategy based upon using the majo-
rant produces sequences of control and state functions which provide a value of
the cost functional as close to the value J(y(u), u) as it is required. Moreover,
the respective sequences of control and state functions tend to the desired
solution of the original problem.

4 Practical implementation

In this section, we briefly discuss the practical implementation of the numerical
strategy based on the majorants.

4.1 Discretization of the problem

In the resultes exposed below, we restrict ourselves to the case when the
problem is solved by usual finite element approximations on a simplicial mesh
which is the same for all functions involved. Let Th(Ω) denote such a shape-
regular simplicial triangulation of Ω. For the state function, we use continuous
piecewise affine approximations ỹh ∈ Yh vanishing on the boundary Γ , whereas
for the control v ∈ K we use piecewise constant approximations vh ∈ Kh
where Kh is chosen such that Kh ⊂ K. The vector–valued functions τ ∈ Σ
are approximated by piecewise affine functions τh ∈ Σh.

4.2 Minimization algorithm

To obtain a sharp upper bound of the cost functional, we minimize the ma-
jorant J⊕(α, β; ỹh, τh, vh) over (ỹh, τh, vh) ∈ Yh × Σh × Kh and α, β ∈ R

+.



A Posteriori Estimates for Cost Functionals of OC Problems 313

The numerical results presented below have been obtained using the following
algorithm:

Step 1. Initialization. Set i = 0, define α0, β0, v0
h, ỹ

0
h.

Step 2. Minimize J⊕(αi, βi; ỹh, τh, vh) over (ỹh, τh, vh) ∈ Yh ×Σh ×Kh.
Step 3. Minimize J⊕(α, β; ỹi+1

h , τ i+1
h , vi+1

h ) w.r.t. β, α ∈ R+. Set i = i + 1.

Steps 2 and 3 are repeated until

|J⊕
i − J⊕

i−1|
J⊕
i

+
‖vih − vi−1

h ‖
‖vih‖

+
‖∇(ỹih − ỹi−1

h )‖
‖∇ỹih‖

> ε ,

where ε is a given tolerance and J⊕
i = J⊕(αi, βi; ỹih, τ

i
h, v

i
h).

5 Numerical experiments

The method described in the previous sections has been numerically tested on
a set of various optimal control problems. In all examples, it has been observed
that the sequences of computed upper bounds of the cost functionals rapidly
converge to the exact lower bound whose value has been computed at high
accuracy. Also, it has been observed that the sequences of the state and control
functions converge to the exact ones.

Below, we show these results for the model problem in Ω = (0, 1)2. In this
case, CΩ = 1√

2π
.

The efficiency of the approach is measured by three quantities. The index

I = J⊕/J(y, u)

shows the relation between the value of majorant computed for the control
function v and the exact lower bound of the cost functional J(y, u). The
quantities

ηy = (‖y − ỹ‖H1/‖y‖H1) ∗ 100% , ηu = (‖v − u‖/‖u‖) ∗ 100% ,

represent the relative errors in the state and control functions, respectively.

Example

As an example we take the problem from [6] with the following data:
a = 0.01, ψ(x, y) = 1, f(x, y) = 0, ud(x, y) = 0 and

yd(x, y) =

{

200(x− 0.5)2(1− y)yx , x ≤ 0.5 ,

200(x− 0.5)2(1− y)y(x− 1) , else .

The exact solution of this optimal control problem is unknown. Therefore, in
order to analyze the efficiency of the method, we have computed a ‘reference
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solution’ using a mesh much finer than those used in the actual computations.
For this task, we have used the primal-dual active set strategy (cf., e.g., [5]).
The reference value of the cost functional in this case is J(y, u) = 9.5838·10−2.

The discrete problem has been solved for various uniform meshes with N
nodes. Table 1 shows the relative errors in the state and control functions and
the index I. In Figure 1, we depict values of the majorant with respect to
the minimization time (N = 1089). In this figure, the horizontal line shows
J(y(u), u) (actual value of the cost functional) whereas the rapidly decaying
curve reflects the reduction of the computable upper bound given by the
majorant. The desired tolerance ε = 10−4 was achieved after i = 16 iterations.
Approximations (ỹh, vh) obtained by the algorithm and the reference state and
control functions are displayed in Figure 2.
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Fig. 1. Reduction of the upper bound of the cost functional w. r. t. CPU time.

Table 1. Index I and relative errors in the state and control.

N ηy, % ηu, % I

25 67.51 54.39 1.050

81 31.50 25.23 1.029

289 14.59 12.07 1.014

1089 7.55 6.49 1.007

4225 4.67 4.18 1.003

16641 3.65 3.39 1.002
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Fig. 2. Exact state y (upper left) and approximate state ỹh (upper right), exact
control u (lower left) and approximate control vh (lower right).
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