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Abstract In proportional representation systems, apportionment meth-
ods are used to convert the number of votes of a party into the number
of seats allocated to this party. An interesting characteristic of any such
method are the seat biases, that is, the expected differences between the
actual seat allocation and the ideal share of seats, separately for each party,
when parties are ordered from largest to smallest. For electoral systems with
a threshold, that is, with a minimum percentage of votes that parties must
reach in order to be eligible to participate in the apportionment process, we
show that seat biases decrease from their maximum to zero, as the thresh-
old increases from zero to its maximum, and that all seat biases decrease
linearly.
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1 Introduction

Proportional representation systems calculate the number of representatives
in a political body proportionally to some input data. Important examples
are the apportionment of the 435 seats of the US-House of representatives
to the 50 states of the Union, proportionally to the decennial population
counts. Another example is the apportionment of parliamentary seats to
parties, proportionally to the vote counts on the eve of an election day.
There are plenty of apportionment methods available to carry out these
calculations, see Balinski and Young (2001) for a historical account as well as
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for the foundations of an apportionment theory, or Taagepera and Shugart
(1989) for an exposition from the political science point of view.

An important issue with any such apportionment method is whether it is
biased, that is, whether it exhibits indications of disproportionality of some
sort or other. Following Schuster et al. (2003) we give the general notion of
“bias” a specific, operational meaning, and define the seat bias of the k-th
largest party to be

Bk(M,O) - E[mk 7ka

wy > ws > e > we > 0], (1)

that is, the expected difference between the actual number of seats allocated
to the k-th largest party and the ideal share of seats which the party could
claim if fractional seats were available. Here, my denotes the number of
seats apportioned to party k, M is the district magnitude or house size,
that is, the total number of seats to be apportioned, and wy, designates the
proportion of votes won by party k. Moreover, we assume that ¢ parties
are eligible to participate in the apportionment process, and that they are
numbered from largest to smallest, wy > we > --- > we > 0. The letter
“E” indicates expectation, which is calculated under the assumption that
all feasible weight configurations are equally likely. Schuster et al. (2003)
present seat bias formulas and empirical data, and also include an extensive
review of the literature.

In the present paper we extend their results to electoral systems where,
in order to be eligible to participate in the apportionment process, the pro-
portion of votes which a party wins must exceed a certain threshold ¢. Many
systems impose a five percent threshold, ¢ = 0.05.

There exists an extensive literature on thresholds in electoral systems,
see Taagepera (1998), Palomares and Ramirez (2003), and the references
given there. Those papers do not address the impact of thresholds on seat
biases, instead calculating minimum thresholds which a party must pass
in order to possibly be allocated a given number of seats, and maximum
thresholds beyond which a party is certain to be allocated that many seats.

In contrast, we consider a threshold fixed by the applicable electoral
law, whence the smallest party must have a proportion of votes above the
threshold t. In such systems, the seat bias for the k-th largest party depends
on the threshold ¢, and will be denoted by

Bk(M,t) == E[mk 7ka

wy > wp > - > wp > . (2)

In other words, we condition on the event that, while parties are still ordered
from largest to smallest, the weight of the last party cannot be arbitrarily
close to 0, but must exceed the threshold ¢, w; > .

In Section 2 we show that, as the threshold parameter ¢ increases from
zero to its maximum, the seat biases decrease from their maxima to zero.
This is not at all surprising. After all, the minimum threshold permits a
maximum disparity between the largest party and the smallest party. The
maximum threshold equals 1/¢ and forces all party weights to be identical,
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wy = ws = ... = wp = 1/£. What is surprising, though, is that the decrease
of the seat biases is practically linear, thus taking the simplest possible form.

2 Seat biases as a function of the threshold

The threshold ¢ can range from 0 to 1/¢, where £ is the number of parties that
are eligible to participate in the apportionment process. In the beginning,
when the threshold is equal or close to 0, the disparity between the largest
and the smallest party is most pronounced. On the other hand, when the
threshold is equal or close to 1/¢, all parties have their proportion of votes
close to 1/¢ and hence are more or less equal. It is therefore to be expected
that, if at all an apportionment method suffers from nonzero seat biases,
they will be largest for small thresholds, and wear away as the threshold
grows close to 1/¢. Indeed, the dependence on ¢ turns out to be practically
linear in ¢,

Bir(M,t) = (1 — £)By(M,0). (3)

In deriving formula (3) some mild approximations are needed. However, it
transpires that these approximations are practically negligible.

Figure 1 exhibits the straight-line decrease, for two-, three-, and four-
party systems. Overlaid are dots for thresholds of 5, 10, and 15 percent that
are generated by computer simulations (100 000 realizations). The house size
M = 598 is appropriate for the German Bundestag. If the approximations in
deriving formula (3) were not negligible, the dots would show some deviation
from the straight lines, which is not the case. Rather, the dots are perfectly
aligned, and re-confirm formula (3).

The apportionment method used in Figure 1 is the divisor method with
rounding down (Jefferson, Hondt) which, among the traditional methods,
is the one with the most prominent seat biases, see Figure 3 in Schuster
et al. (2003). In that paper two empirical data sets were investigated. One
data set refers to the Swiss Kanton Solothurn, where thresholds were never
implemented.

The other data set comes from Bavaria 1966-1998, where the threshold
was at 5 percent throughout. With no threshold, theoretical seat biases in
a three-party system are: a gain of 5/12 = 0.42 seat fractions for the largest
party, and losses of —1/12 = —0.08 for the middle party and —4/12 = —0.33
for the smallest party. With a 5 percent threshold, these seat biases need to
be multiplied by the factor 1 — 3/20 = 0.85. The changes are so small that
the concordance with the empirical data set from Bavaria, which after all
embraces just 49 apportionments, persists.

Appendix: Derivation of formula (3)

The arguments leading to formula (3) extend the geometric approach pio-
neered by Pdélya (1918), and employed by Schuster et al. (2003). The lines of
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reasoning follow the more detailed approach by Drton and Schwingenschlogl
(2004), and Schwingenschlégl and Drton (2004). Those papers also provide
a stringent proof of the seat bias formula for multi-party systems which in
Schuster et al. (2003, p. 672) was put forward as a conjecture.

The approximation step needed to derive the linear relationship (3) con-
sists in a transition from the vote region to the seat region. Theoretically,
we restrict attention to those situations where the smallest party has a
weight exceeding the threshold ¢, wy > t. Practically, we substitute this con-
dition by demanding that the smallest party has a seat proportion exceeding
t,mg/M > t. While the threshold ¢ is a continuous variable, the proportion
of seats is discrete. However, for district magnitudes M that are practically
relevant the approximation works perfectly well, while the computational
simplification appears to be substantial.

Therefore we condition on mg/M > t, and approximate the threshold
seat bias of (2) according to

Bk(M,t) a1 E[mk 7ka

wy > wa > - >wp and my/M > t].  (4)

From equations (1) and (5) in Schwingenschlogl and Drton (2004) it tran-
spires that, except for constants not depending on ¢, (4) is the quotient of

two sums
Bi(M,t) = bT(”Tr’;)/Z ﬁ (5)

where the summations extend over all seat allocation vectors m = (mq, mo,
..., my) with Zle m; = M satisfying my > ma > --- > my > tM, while
the boundary factor b(m) counts the number of permutations leaving the
seat allocation m invariant.

Let n be the integer part of (M — 1)/¢, and let s be the smallest integer
bigger than or equal to tM. Theorem 3 in Schwingenschlogl and Drton
(2004) implies that, except for constants not depending on s, the sum in
the numerator of (5) equals

my 2 iy i _
W:Z(]Z Y103G) =nf = (s— 1) 00", (6)
m j=s
Similarly, the sum in the denominator of (5) is seen to equal
1 . v - - -
ZW:Z(]Z 2+O(]Z 3)):nf 17(871% 1+O(nf 2)' (7)
m j=s

Being the quotient of two polynomials in s, of degree ¢ in the numerator and
of degree £ — 1 in the denominator, (5) is linear in s and hence ¢, except for
lower order remainder terms. By neglecting the remainder terms we obtain

Bk(M, t) = a+bt, (8)

and it remains to determine the constants a and b. Clearly we have a =
By (M, 0). The other endpoint By (M,1/£) = 0 yields b = —¢By(M, 0). Thus
(8) turns into (3).
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Fig. 1 Linear decrease of seat biases for systems with ¢ = 2, 3,4 parties and
M = 598 seats, for the divisor method with rounding down (Jefferson, Hondt).
With threshold ¢ growing from 0 to 1/£, the linear decrease is seen to be in perfect
agreement with the simulated seat biases, indicated by bold dots, for thresholds
of 5, 10, and 15 percent.



