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1. Introduction

Among the compact homogeneous spaces, a very distinguished subclass is formed
by the (generalized) real flag manifolds, which by definition are the orbits of the
isotropy representations of Riemannian symmetric spaces (s-orbits). This class
contains most of the compact symmetric spaces (for example, all hermitian ones), all
classical flag manifolds over real, complex and quaternionic vector spaces, all adjoint
orbits of compact Lie groups (generalized complex flag manifolds), and many others.
They form the main examples of isoparametric submanifolds and their focal
manifolds (the so-called constant principal curvature manifolds); in fact, for most
codimensions these are the only such spaces (cf. [6–8]).

Any real flag manifold M enjoys two very peculiar geometric properties: it carries
a transitive action of a noncompact Lie group G, and it is embedded in euclidean
space as a taut submanifold; that is, almost all height or coordinate functions are
perfect Morse functions (at least for Z/2-coefficients). The aim of our paper is to
link these two properties by the following theorem.

Main Theorem. The gradient flow of any height function is a one-parameter
subgroup of G, where the gradient is defined with respect to a suitable homogeneous
metric s on M .

The explicit construction of the metric s, as well as the proof of the main result,
can be found in Section 4. The theorem says that the lines of steepest descent for
the height function (gradient flow lines) are obtained by applying a one-parameter
subgroup of G. This is an elementary fact when M is a euclidean sphere and G
its conformal group: the gradient of any height function is a conformal vector field.
We will see in Section 5 that in the case in which M is an adjoint orbit (that is, a
(generalized) complex flag manifold), our metric s is a homogeneous Kähler metric.
In this case, we recover a fact that was observed earlier by Guest and Ohnita [4].

                                          
                                               



324                            

Our more general result can be derived from their theorem, since real flag manifolds
are contained in complex flag manifolds as fixed point sets under certain involutions.
However, a short, direct proof might be desirable.

2. Root space decomposition

Let P = G/K be a symmetric space of noncompact type, where G is a connected
noncompact semisimple Lie group and K ⊂ G is a maximal compact subgroup [5].
Let σ be the corresponding involution on G with fixed point set K. Consider the
corresponding Cartan decomposition

g = k ⊕ p, (1)

where g and k denote the Lie algebras of G and K, and p denotes the (−1)-eigenspace
of (the differential of) σ. The adjoint action of K leaves p invariant; this is the
isotropy representation of P . As usual, we consider an Ad(G)-invariant indefinite
inner product b on g with b > 0 on p and b < 0 on k (for example, the Killing form),
and we define a positive definite inner product 〈 , 〉 on g which is b on p and −b
on k, and for which p ⊥ k. Then any ad(x) with x ∈ p is self-adjoint on g. Hence a
maximal abelian subspace a ⊂ p gives rise to a family of mutually commuting self-
adjoint endomorphisms ad(x) of g, where x ∈ a. These have a common eigenspace
decomposition

g =
∑

α∈R̂

gα , gα := {z ∈ g; [x, z] = α(x)z ∀x ∈ a}, (2)

where R̂ ⊂ a∗ is the set of roots including 0.
After fixing some arbitrary x ∈ a, there are three disjoint subsets of R̂, formed

by the roots α with α(x) > 0, α(x) = 0 and α(x) < 0, respectively. Hence we have
the decomposition

g = n+ ⊕ c ⊕ n− (3)

with
n+ =

∑

α(x)>0

gα , c =
∑

α(x)=0

gα , n− =
∑

α(x)<0

gα . (4)

Since σ = −id on a, we have
(gα )σ = g−α , (5)

and hence σ interchanges n+ and n−. Any a ∈ g allows a unique decomposition
a = a− + a0 + a+ with a± ∈ n± and a0 ∈ c, and if a ∈ k or a ∈ p, we have a− = aσ

+

or a− = −aσ
+, respectively.

3. Generalized real flag manifolds

By definition, generalized real flag manifolds are the orbits of the isotropy
representation of a symmetric space P = G/K of noncompact type. We consider an
isotropy orbit M ⊂ p. For any fixed x ∈ M we have M = Ad(K)x. The stabilizer
subgroup is

S = {k ∈ K; Ad(k)x = x}; (6)

thus M may be identified with the coset space K/S by kS �−→ Ad(k)x.
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Now choose a maximal abelian subalgebra a ⊂ p containing x. Such an a is
uniquely determined up to applying Ad(s) with s ∈ S; this fact is just the conjugacy
of maximal flat subspaces in the symmetric subspace P̃ = C/S ⊂ P , where C (with
Lie algebra c) is the centralizer of x in G. We note that, geometrically, P̃ can be
described as the union of all geodesics parallel to the geodesic exp(Rx) ⊂ P , which is
obviously invariant under geodesic reflection; hence it is a symmetric subspace. Note
that each Ad(s), s ∈ S, commutes with ad(x), and thus preserves the eigenspaces
of ad(x); hence n− =

∑
α(x)<0 gα is also invariant under Ad(s).

Next we show that the natural K-action on M can be extended to a G-action.
Consider

H = {g ∈ G; Ad(g)(x + n−) = x + n−}, (7)

which is a closed subgroup of G containing S as a subgroup. One can see that the
Lie algebra of H is h = c + n−. Note that H does not depend on the choice of a.
Indeed, if instead of a we start our construction with a′ = Ad(s)a, where s ∈ S,
then n′

− = Ad(s)n− = n−, and we end up with H ′ = H.

Lemma 3.1. K acts transitively on the coset space G/H with stabilizer S.
Hence G/H can be identified with K/S = M .

Proof. Let M ′ ⊂ G/H be the orbit of eH ∈ G/H under the subgroup K ⊂ G.
We show first that it is open in G/H. To see this, it suffices to show that k+ h = g;
that is, one needs to show that gα ⊂ k + h for each α ∈ R with α(x) > 0. In fact,
take z ∈ gα , decompose it as z = v + u with v ∈ p and u ∈ k, and notice that
zσ = −v + u ∈ g−α ⊂ h. Thus the K-orbit M ′ is open. However, it is also closed in
G/H since K is compact. So M ′ coincides with G/H.

The K-stabilizer of eH ∈ G/H is K ∩ H; we have to show that K ∩ H = S.
Clearly, S ⊂ K ∩ H. Conversely, if k ∈ K ∩ H, then

Ad(k)x − x ∈ p ∩ n−.

But p ∩ n− = 0, because if z belongs to this intersection, then zσ = −z ∈ n+, and
hence z ∈ n− ∩ n+ = 0. We deduce that Ad(k)x = x, which means that k ∈ S.

Thus the action of G on G/H = K/S = M is an extension of the K-action. We
will denote this action G × M −→ M by (g, x) �−→ g.x. When restricted to k ∈
K ⊂ G, we have k.x = Ad(k)x. Similarly, the infinitesimal action g × M −→ TM
will be denoted by

(a, x) �−→ a.x :=
d

dt

∣∣∣
t =0

exp(ta).x,

where a ∈ g, and a.x = [a, x] whenever a ∈ k.
We take the opportunity here to give a more geometric description of the action of

G on M , although it will not be used in our paper. Consider p as the tangent space
of P = G/K at some base point o ∈ P . We may project any nonzero x ∈ T0P to
the boundary at infinity P (∞) (bearing in mind that P is a simply connected space
of nonpositive curvature) by the map π∞(x) = γx(−∞) where γx is the geodesic
in P starting at o with initial vector x. The isometry group G acts on P (∞) and
leaves π∞(M) invariant; this is the G-action. See [1] for details.
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4. Steepest descent

Theorem 4.1. Let G/K be a symmetric space of noncompact type, let g = k+p

be the corresponding Cartan decomposition, and let M ⊂ p be a real flag manifold
(isotropy orbit). Let q ∈ p and f : M −→ R, f(x) = 〈q, x〉. Then there is a K-
invariant Riemannian metric s : TM −→ T ∗M on M such that the flow lines x(t)
of the s-gradient ∇sf = s−1df satisfy

x(t) = exp(−tq).x(0). (8)

Proof. Choose an arbitrary x ∈ M , and consider the decomposition (3)
corresponding to x. We have to show that ∇sf(x) = −q.x. To compute q.x, we
look for r ∈ k with q.x = r.x; that is, q − r ∈ h. We have q = q0 +

∑
α(x)>0 qα

with q0 ∈ c and qα = zα − zσ
α for some zα ∈ gα . We may assume that q0 = 0, since

q0.x = 0. Then we put r =
∑

+(zα +zσ
α ) ∈ k, and hence r− q = 2

∑
+ zσ

α ∈ h, where∑
+ always denotes

∑
α(x)>0. Now

r.x = [r, x] = − ad(x)
∑

+(zα + zσ
α )

= −
∑

+α(x)(zα − zσ
α ) = −

∑
+α(x)qα .

Any v ∈ TxM has a decomposition v =
∑

+ vα with vα ∈ (gα + g−α ) ∩ p for
α(x) > 0, and our metric s on TxM will be of the form

〈v, w〉s =
∑

+sα 〈vα , wα 〉

for certain numbers sα > 0. We have to choose s such that for all v ∈ TxM ,

〈∇sf(x), v〉s = −〈r.x, v〉s .

The left-hand side is

〈∇sf(x), v〉s = dfxv = 〈q, v〉 =
∑

+〈qα , vα 〉,

while the right-hand side is

−〈r.x, v〉s =
∑

+sαα(x)〈qα , vα 〉.

We put

sα = 1/α(x), (9)

and the result follows.

5. Extrinsically symmetric spaces

An extrinsically symmetric space is a submanifold M of euclidian space such that
M is preserved by the reflections at all of its (affine) normal spaces. By a result
of Ferus [3] (see also [2]), after splitting off euclidean factors, M has precisely the
form of an s-orbit M = Ad(K)x0 ⊂ p, where p corresponds to a symmetric space
P = G/K and where x0 ∈ p satisfies

α(x0) ∈ {−1, 0, 1},

for all α ∈ R. In this case the metric s of Theorem 4.1 agrees with the given inner
product 〈 , 〉; cf. (9). By applying Theorem 4.1, one obtains the following theorem.
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Theorem 5.1. If M = Ad(K)x0 ⊂ p is extrinsically symmetric, then the
gradient lines of the height function h(x) = 〈q, x〉 with respect to the metric 〈 , 〉
are of the form

x(t) = exp(−tq).x(0).

6. Adjoint orbits

In the particular case of complex flag manifolds (that is, adjoint orbits of compact
Lie groups), we will establish relations between Theorem 4.1 and previously known
results.

Let K be a compact semisimple Lie group of Lie algebra k, and let T ⊂ K be a
maximal torus of Lie algebra t. Consider the adjoint orbit M = Ad(K)x for x ∈ k.
If G = KC is the complexification of K, then G/K is a non-compact symmetric
space and

g = k + i k

is a Cartan decomposition of g = Lie(G) = k ⊗ C (the involution σ is just the
complex conjugation). Since M is (up to a multiple of i) an isotropy orbit of G/K,
the results of the previous section can be applied here, too. The goal of this section
is to point out that the metric on M for which the lines of steepest descent are
orbits of one-parameter subgroups of G is well known: it is the Kähler metric (cf.
[3, 4]).

It is well known that any adjoint orbit M = Ad(K)x is a complex manifold.
In fact, in the language of Section 4 we have M = G/H but here G and H
are complex Lie groups, and hence M is a complex manifold. The corresponding
complex structure J on TxM can be described as follows. Choose a maximal abelian
subalgebra t ⊂ k with x ∈ t. The corresponding roots are considered as real linear
forms α ∈ t∗, while the eigenvalues of ad(x) are purely imaginary, i α(x). Let
kα ⊂ k ⊗ C be the root spaces. Then

TxM =
∑

α(x)>0

kr
α ,

where kr
α = (kα + k−α )∩ k is the real root space. Now J leaves invariant each kr

α and
on kr

α it is a multiple of ad(x):

ad(x) = α(x)J. (10)

The second ingredient for the Kähler metric is the Kähler form ω, which is defined
as follows: If v = ad(a)x and w = ad(b)x are tangent vectors of M at the point x,
then

ωx(v, w) := 〈x, [a, b]〉 = 〈[x, a], b〉 = 〈v, b〉 = 〈v, ad(x)−1w〉 (11)

where 〈 , 〉 denotes an Ad(K)-invariant inner product on k.
Now the Kähler metric ( , ) on TxM is defined as follows. For v, w ∈ TxM we

have
(v, w) = ωx(v, Jw). (12)

Hence from (10) and (11) we obtain

(v, w) = ωx(v, Jw) = 〈v, ad(x)−1Jw〉 =
1

α(x)
〈v, w〉 = 〈v, w〉s ; (13)

cf. (9).
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Since p = i k in the present case, we obtain the following result from Theorem 4.1.

Theorem 6.1 (cf. [3, 4]). Let K be a compact Lie group and M = Ad(K)x0 ⊂ k

an adjoint orbit, equipped with its Kähler metric ( , ) as in (12) and acted on by
the complexified group G = KC as described above. Let 〈 , 〉 be the corresponding
Ad(K)-invariant inner product on k. Then, for any q ∈ k, the gradient lines x(t) of
the function f : M −→ R, f(x) = 〈q, x〉, are orbits of a 1-parameter subgroup of
G = KC, namely

x(t) = exp(i tq).x(0).

Acknowledgements. We would like to thank Martin Guest and Peter Quast for
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