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1. Introduction

Symmetric submanifolds are defined analogously to Riemannian symmetric
spaces. Riemannian symmetric spaces admit an intrinsic symmetry at each point,
whereas symmetric submanifolds admit an extrinsic symmetry at each point. A
connected submanifold M of a connected Riemannian manifold M̄ is called sym-
metric if at each point p in M there exists an involutive isometry tp of M̄ satisfying
tp(p) = p, tp(M) = M , (tp)∗X = −X for all X ∈ TpM , and (tp)∗ξ = ξ for
all ξ ∈ T ⊥

p M . Here TpM and T ⊥
p M denote the tangent and normal space of M

at p, respectively. The isometry tp is called the extrinsic symmetry of M at p.
For definitions of locally symmetric submanifolds, symmetric immersions and
locally symmetric immersions we refer to [10]. The aim of this paper is to classify
symmetric submanifolds in Riemannian symmetric spaces.

Ferus ([2]) proved that the symmetric submanifolds of Euclidean spaces are
essentially the symmetric orbits of the isotropy representations of semisimple
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Riemannian symmetric spaces. The orbits of such representations are known as
R-spaces or real flag manifolds. For some symmetric spaces M̄ some of these
orbits are symmetric spaces, in which case they are symmetric submanifolds in
the corresponding tangent space ToM̄ of M̄ . These symmetric submanifolds are
known as symmetric R-spaces or symmetric real flag manifolds. If M̄ is noncom-
pact, the projection of these symmetric submanifolds from ToM̄ into M̄ via the
exponential map at o provides examples of symmetric submanifolds in M̄ . In this
paper we extend these symmetric submanifolds to larger one-parameter families
of symmetric submanifolds, and prove that if M̄ is irreducible and of rank ≥ 2,
then every symmetric submanifold of M̄ arises in this way.

We recall some properties of symmetric submanifolds. Since the restriction to
M of an extrinsic symmetry tp gives an intrinsic symmetry of M , each symmetric
submanifold is a Riemannian symmetric space. For each point p ∈ M the tangent
space TpM and the normal space T ⊥

p M are invariant under the curvature tensor
R̄ of M̄ , that is,

R̄(TpM, TpM)TpM ⊂ TpM and R̄(T ⊥
p M, T ⊥

p M)T ⊥
p M ⊂ T ⊥

p M .

Moreover, a symmetric submanifold is equivariant in the following sense. We
denote by I (M̄) the isometry group of M̄ and by I o(M̄) its identity component.
Let GM be the subgroup of I (M̄) which is generated by all extrinsic symmetries
tp, p ∈ M . Then Go

M = I o(M̄) ∩ GM acts transitively on M . This and further
details about the basic theory of symmetric submanifolds can be found in [10].

The above property induces the following classes of submanifolds in the frame-
work of Grassmann geometries that were introduced by Harvey and Lawson ([3]),
and which is an essential ingredient of our approach: Let M̄ be a Riemannian man-
ifold and Grm(T M̄) be the Grassmann bundle over M̄ consisting of all m-dimen-
sional linear subspaces of the tangent spaces of M̄ . Let O be an arbitrary orbit
of the canonical action of I o(M̄) on Grm(T M̄). An m-dimensional connected
submanifold M is called an O-submanifold if all its tangent spaces belong to O.
The collection of all O-submanifolds forms a class of submanifolds, the so-called
O-geometry. If for some, and hence for any, V ∈ O both V and its orthogonal
complement V ⊥ are invariant under the curvature tensor R̄ of M̄ , the orbit O
is of strongly curvature-invariant type and its O-geometry is also said to be of
strongly curvature-invariant type. From this definition it follows that a symmetric
submanifold belongs to some O-geometry of strongly curvature-invariant type.

If M̄ is a Riemannian symmetric space, then the curvature-invariant linear
subspaces are also known as Lie triple systems. If p ∈ M̄ and V ⊂ TpM̄ is
a Lie triple system, then there exists a unique connected complete totally geo-
desic submanifold M of M̄ with p ∈ M and TpM = V . The condition that
V ⊥ is also a Lie triple system means geometrically that the geodesic reflection
of M̄ in M is an isometry in some open neighborhood of M , in which case M

is called a reflective submanifold. The reflective submanifolds are precisely the
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totally geodesic symmetric submanifolds of M̄ . The reflective submanifolds of
simply connected irreducible Riemannian symmetric spaces were classified by
Leung ([7], [8]). We note that this classification is equivalent to the classification
of O-geometries of strongly curvature-invariant type on Riemannian symmetric
spaces. The third author obtained in a series of papers ([11], [12], [13], [14])
the classification of such O-geometries by different methods, and determined all
O-geometries containing non-totally geodesic submanifolds.

Theorem 1.1. All O-geometries of strongly curvature-invariant type in simply
connected irreducible Riemannian symmetric spaces except the following ones
have only totally geodesic submanifolds:

(1) the geometry of k-dimensional (0 < k < n) submanifolds of the sphere Sn

resp. of the real hyperbolic space RH n (n ≥ 2);
(2) the geometry of k-dimensional (0 < k < n) complex submanifolds of the

complex projective space CP n resp. of the complex hyperbolic space CH n

(n ≥ 2);
(3) the geometry of n-dimensional totally real submanifolds of the complex pro-

jective space CP n resp. of the complex hyperbolic space CH n (n ≥ 2);
(4) the geometry of 2n-dimensional totally complex submanifolds of the qua-

ternionic projective space HP n resp. of the quaternionic hyperbolic space
HH n (n ≥ 2);

(5) the geometries associated with irreducible symmetric R-spaces and their
noncompact dual geometries.

The third author proved Theorem 1.1 for simply connected irreducible Rie-
mannian symmetric spaces of compact type. However, it is easy to see that the
proof also holds for the noncompact case. He also obtained a decomposition
theorem (Theorem 2.2 in [12]) which shows that it is sufficient to discuss the
irreducible case.

The symmetric submanifolds belonging to the geometries of type (1)–(4) in
Theorem 1.1 were classified by several authors, we refer to [10], [15] for fur-
ther details. The symmetric submanifolds belonging to the geometries of type (5)
were classified by the third author in [10] for the compact case. In this paper we
solve the last remaining case, namely the case of geometries of type (5) for the
noncompact case.

The paper is organized as follows. In Section 2 we construct the above men-
tioned one-parameter families of symmetric submanifolds in Riemannian
symmetric spaces of noncompact type. In Section 3 we show that submanifolds
belonging to the geometries of type (5) in the noncompact case are locally extrin-
sically symmetric submanifolds (Theorem 3.3), and that such submanifolds are
exhausted by the examples constructed in Section 2 (Theorem 3.5).
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2. The new examples of symmetric submanifolds

In this section we construct a one-parameter family of noncongruent symmetric
submanifolds Mc, c ≥ 0, in irreducible Riemannian symmetric spaces of noncom-
pact type.All these submanifolds belong to the O-geometries of type (5).Any such
family contains a family of homothetic symmetric R-spaces and its noncompact
dual spaces, and a flat submanifold. Our construction is a noncompact version of
the one discussed by the third author in [10], §5, Part II.

We start with recalling some facts about the theory of symmetric R-spaces,
for details we refer to Kobayashi and Nagano [5], Nagano [9] and Takeuchi [17].
Let (ḡ, σ ) be a positive definite symmetric graded Lie algebra, that is, ḡ is a
real semisimple Lie algebra with a Cartan involution σ satisfying the following
properties:

(1) ḡ = ḡ−1 + ḡ0 + ḡ1 (vector space direct sum) and [ḡp, ḡq] ⊂ ḡp+q (p, q ∈
{0, ±1}) ;

(2) σ(ḡp) = ḡ−p (p ∈ {0, ±1}) ;
(3) ḡ−1 �= {0}, and the adjoint action of ḡ0 on the vector space ḡ−1 is effective.

For the classification of the positive definite symmetric graded Lie algebras see
[5], [17], and the table at the end of this paper. We define a linear isomorphism
τ of ḡ by τ(X) = (−1)pX for X ∈ ḡp. Then τ is an involutive automorphism
of ḡ with στ = τσ . Let ḡ = k̄ + p̄ be the Cartan decomposition induced by σ .
Then we have τ(k̄) = k̄ and τ(p̄) = p̄. Let k̄ = k+ + k− and p̄ = p+ + p− be the
±1-eigenspace decompositions of k̄ and p̄ with respect to τ . Obviously, we have

k+ = k̄ ∩ ḡ0 , k− = k̄ ∩ (ḡ−1 + ḡ1) , p+ = p̄ ∩ ḡ0 , p− = p̄ ∩ (ḡ−1 + ḡ1) .

Since ḡ is semisimple, there exists a unique element ν ∈ ḡ0 such that

ḡp = {X ∈ ḡ | ad(ν)X = pX} for all p ∈ {0, ±1} .

It is easy to see that ν ∈ p̄ and hence ν ∈ p+. The following lemma can be proved
in a straightforward manner.

Lemma 2.1. The adjoint transformation ad(ν) restricted to p− is an isomorphism
from p− onto k−, and its inverse is ad(ν) restricted to k−. Moreover, the following
holds:

(1) [T , ad(ν)X] = ad(ν)[T , X] for all T ∈ k+ and X ∈ p−;
(2) [ad(ν)X, Y ] ∈ p+ and [ad(ν)X, Y ] + [X, ad(ν)Y ] = 0 for all X, Y ∈ p−;
(3) [ad(ν)X, ad(ν)Y ] = −[X, Y ] ∈ k+ for all X, Y ∈ p−.

The restriction of the Killing form B of ḡ to p̄ × p̄ is a positive definite inner
product on p̄, which will be denoted by 〈·, ·〉. This inner product is invariant under
the adjoint action of k̄ on p̄ and under the involution τ |p̄. In particular, p+ and
p− are perpendicular to each other. Let Ḡ be the simply connected Lie group
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with Lie algebra ḡ and K̄ be the connected Lie subgroup of Ḡ with Lie algebra
k̄. Let π̄ : Ḡ → M̄ = Ḡ/K̄ be the canonical projection and o = π̄(e), where
e is the identity of Ḡ. The restriction to p̄ of the differential π̄∗e : ḡ → ToM̄ of
π̄ at e yields a linear isomorphism from p̄ onto ToM̄ . In the following we will
always identify p̄ and ToM̄ via this isomorphism. From the Ad(K̄)-invariant inner
product 〈·, ·〉 on p̄ ∼= ToM̄ we get a Ḡ-invariant Riemannian metric on M̄ . Then
M̄ = Ḡ/K̄ is the simply connected Riemannian symmetric space of noncompact
type associated with (ḡ, σ, 〈·, ·〉).

The Lie algebra of the closed subgroup K ′
+ = {k ∈ K̄ | Ad(k)ν = ν} of

K̄ is k+. The homogeneous space M ′ = K̄/K ′
+ is diffeomorphic to the orbits

Ad(K̄) · ν ⊂ p̄ and K̄ · π̄(exp ν) ⊂ M̄ , where exp : ḡ → Ḡ denotes the Lie
exponential map from ḡ into Ḡ. We equip M ′ with the induced Riemannian met-
ric from M̄ . Then M ′ is a compact Riemannian symmetric space associated with
the orthogonal symmetric Lie algebra (k̄, τ |k̄), where τ |k̄ is the restriction of τ

to k̄. The symmetric spaces M ′ arising in this manner are precisely the symmet-
ric R-spaces. If ḡ is simple, then M ′ is called an irreducible symmetric R-space.
Symmetric R-spaces form a class of compact Riemannian symmetric spaces with
remarkable properties.

The subspace p− is a Lie triple system in p̄ = ToM̄ and [p−, p−] ⊂ k+. Thus
there exists a connected complete totally geodesic submanifold M of M̄ with
o ∈ M and ToM = p−. Moreover, M is a reflective submanifold, as T ⊥

o M = p+
is also a Lie triple system. Since M is the image of p− under the exponential
map of M̄ at o, we see that M is simply connected. We define a subalgebra g of
ḡ by g = k+ + p− and denote by G the connected Lie subgroup of Ḡ with Lie
algebra g. Then, by construction, M is the G-orbit through o. The Lie algebra
of the isotropy subgroup K+ of this action at o is just k+. Since M = G/K+ is
simply connected, K+ is connected. The restriction τ |g of τ to g is an involutive
automorphism of g, and it follows from Lemma 2.1 (1) and (3) that (g, τ |g) is the
orthogonal symmetric Lie algebra dual to (k̄, τ |k̄). Moreover, M is the Riemannian
symmetric space of noncompact type associated with (g, τ |g).

We now introduce an O-geometry on M̄ . We put dim p− = m and denote by
O the orbit through p− under the action of Ḡ on Grm(T M̄). Since p+ is also a
Lie triple system, O is of strongly curvature-invariant type. This O-geometry is a
geometry of type (5) in Theorem 1.1 for the noncompact case.

We will now construct a one-parameter family of symmetric submanifolds of
M̄ consisting of O-submanifolds and containing the reflective submanifold M

and the symmetric R-space M ′. For each c ∈ R we define a linear subspace pc of
p− + k− = ḡ−1 + ḡ1 by

pc = {X + c ad(ν)X | X ∈ p−} .

Both p1 = ḡ1 and p−1 = ḡ−1 are Abelian subalgebras of ḡ. From Lemma 2.1
it follows that gc = k+ + pc is a subalgebra of ḡ. The adjoint action of k+ on
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pc is effective. In fact, suppose that T ∈ k+ satisfies [T , X + c ad(ν)X] = 0 for
all X ∈ p−. Since [T , X] ∈ p− and [T , ad(ν)X] ∈ k−, this implies [T , X] = 0
and [T , ad(ν)X] = 0 for all X ∈ p−. This implies that 0 = [T , p− + k−] =
[T , ḡ−1 + ḡ1]. Since the adjoint action of ḡ0 on ḡ−1 is effective, this gives T = 0.
On k+ we have τ = I (the identity map), and since pc ⊂ p− + k− = ḡ−1 + ḡ1, we
get τ(pc) = pc and τ = −I on pc. Therefore gc is invariant under τ and (gc, τ |gc)

is an orthogonal symmetric Lie algebra. We denote by Gc the connected Lie
subgroup of Ḡ with Lie algebra gc and by Mc the Gc-orbit through o in M̄ .

Proposition 2.2. For each c ∈ R the orbit Mc = Gc · o is a symmetric submani-
fold of M̄ belonging to the O-geometry of M̄ . The submanifolds Mc and M−c are
congruent via the geodesic symmetry so of M̄ at o.

Proof. We denote by π̄ the canonical projection from ḡ onto p̄ with respect to the
Cartan decomposition ḡ = k̄+ p̄. Using our identification of p̄ with ToM̄ , we have
ToMc = π̄(gc) = p−, and hence T ⊥

o Mc = p+. Since Mc is a Gc-equivariant sub-
manifold, we see that Mc is an O-submanifold. The Lie group automorphism of
Ḡ whose differential at e is the Lie algebra automorphism τ will also be denoted
by τ . The Lie group automorphism τ induces an involutive isometry to of M̄ .
Since τ(gc) = gc, we have τ(Gc) = Gc, and therefore to(Mc) = Mc. More-
over, by construction, to satisfies (to)∗X = −X for all X ∈ ToMc = p− and
(to)∗ξ = ξ for all ξ ∈ T ⊥

o Mc = p+. Thus to is an extrinsic symmetry of Mc at
o, and the Gc-equivariance of Mc implies that M is a symmetric submanifold of
M̄ . Finally, the involution σ of ḡ satisfies σ(pc) = p−c and hence σ(gc) = g−c.
Therefore M−c is congruent to Mc via the geodesic symmetry so of M̄ at o induced
from σ . �

The third author proved in [10], Lemma 4.3, an analogon of Proposition 2.2 for
the compact case. Our next aim is to study the geometry of the submanifolds Mc

(c ≥ 0) in more detail.

Theorem 2.3. The submanifolds Mc, 0 ≤ c < 1, form a family of noncompact
symmetric submanifolds which are homothetic to the reflective submanifold M .
The submanifolds Mc, 1 < c < ∞, form a family of compact symmetric sub-
manifolds which are homothetic to the symmetric R-space M ′. The submanifold
M1 is a flat symmetric space which is isometric to a Euclidean space. The second
fundamental form αc of Mc is given by

αc(X, Y ) = c[ad(ν)X, Y ] ∈ p+ = T ⊥
o Mc , X, Y ∈ p− = ToMc .

In particular, all submanifolds Mc, 0 ≤ c < ∞, are pairwise noncongruent.

Proof. We use the following lemma, which can be proved by a straightforward
calculation.
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Lemma 2.4. For all t ∈ R we have

(1) Ad(exp tν)T = T for all T ∈ k+;
(2) Ad(exp tν)X = cosh(t)X + sinh(t)ad(ν)X for all X ∈ p− + k−.

For each t ∈ R we define an inner automorphism ρt of Ḡ by ρt(g) =
(exp tν)g(exp(−tν)) for all g ∈ Ḡ. The induced Lie algebra automorphism
of ḡ is Ad(exp tν). From Lemma 2.4 it follows that Ad(exp tν)(g) = gtanh(t)

and Ad(exp tν)(k̄) = gcoth(t) (t > 0), which implies that ρt(G) = Gtanh(t) and
ρt(K̄) = Gcoth(t). Thus Mtanh(t) is congruent to the orbit G · exp(−tν)o ⊂ M̄ and
Mcoth(t) is congruent to the orbit K̄ · exp(−tν)o ⊂ M̄ . Note that, since ν ∈ p̄, the
curve t �→ exp(−tν)o is a geodesic in M̄ . The fact that the orbits of G through the
points on this geodesic are symmetric submanifolds in M̄ was already discovered
by Osipova in [16].

The case 0 ≤ c < 1: For c = 0 we have g0 = k++p−, and hence M0 coincides
with the reflective submanifold M . Let t be the nonnegative real number given by
tanh(t) = c. Since K+ is connected, Lemma 2.4 (1) implies ρt(K+) = K+. We
define a G-equivariant map ft from M = G/K+ into M̄ = Ḡ/K̄ by ft(gK+) =
ρt(g)(o) for all g ∈ G. Then we obviously have ft(M) = Mtanh(t) = Mc. Using
our identification of ToM with p− and of ToM̄ with p̄, the differential ft∗o of ft

at o is given by

ft∗oX = π̄(Ad(exp tν)X) = cosh(t)X , X ∈ p− ,

where π̄ denotes the canonical projection from ḡ onto p̄. We denote by 〈·, ·〉 and
〈·, ·〉t the induced Riemannian metrics on M from the totally geodesic imbedding
and from ft , respectively. Then we have 〈·, ·〉t = cosh2(t)〈·, ·〉. Therefore ft is a
homothetic immersion from M into M̄ and hence a covering map onto Mc. We will
show that ft is a diffeomorphism from M onto Mc. The normal exponential map
Exp : T ⊥M → M̄ from the normal bundle T ⊥M onto M̄ is a diffeomorphism.
Since

ft(gK+) = (exp tν)g(exp(−tν))(o) = (exp tν)(Expg(o)(−tg∗oν)) ,

we have ft(gK+) = ft(K+) if and only if g ∈ K+. Therefore ft is an imbedding
from M into M̄ and hence a diffeomorphism from M onto Mc.

Next, we compute the second fundamental form αc of Mc. We denote by ∇̄ the
Riemannian connection of M̄ and by Z∗ the Killing vector field of M̄ generated
by Z ∈ ḡ. At the origin o of M̄ we have ∇̄XZ∗ = [Zk̄, X] for all X ∈ ToM̄ = p̄,
where Zk̄ denotes the k̄-component of Z with respect to the Cartan decomposition
ḡ = k̄ + p̄. Therefore we have

(∇̄ft∗Uft∗V ∗)o = (∇̄ft∗U (Ad(exp tν)V )∗)o
= [(Ad(exp tν)V )k̄, ft∗U ]

= sinh(t) cosh(t)[ad(ν)V, U ]

= sinh(t) cosh(t)[ad(ν)U, V ] ∈ p+ = ToM
⊥
c
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for all U, V ∈ p−. For X, Y ∈ p− we define U = X/ cosh(t) and V = Y/ cosh(t).
Then we have ft∗U = X and ft∗V = Y at o, and the above equation implies
αc(X, Y ) = c [ad(ν)X, Y ].

The case 1 < c < ∞: Let t be the positive real number defined by coth(t) = c.
For t = 1, Mcoth(1) is congruent to the symmetric R-space M ′ = K̄/K ′

+. Since
Ad(k)ν = ν for all k ∈ K ′

+, we have k(exp tν)k−1 = exp tν and hence ρt(k) = k.
Moreover, ρt(g)(o) = o holds for g ∈ K̄ if and only if g ∈ K ′

+. In fact, for g ∈ K̄

we get

ρt(g)(o) = o ⇐⇒ (exp tν)g(exp(−tν))π̄(e) = π̄(e)

⇐⇒ gπ̄(exp(−tν)) = π̄(exp(−tν))

⇐⇒ π̄(exp(−tAd(g)ν)) = π̄(exp(−tν))

⇐⇒ Ad(g)ν = ν .

Here we note that π̄ ◦ exp |p̄ : p̄ → M̄ is a diffeomorphism. Therefore the map
ht from M ′ = K̄/K ′

+ into M̄ defined by ht(gK ′
+) = ρt(g)(o) for all g ∈ K̄ is

a diffeomorphism from M ′ onto Mcoth(t) = Mc. The differential ht∗eK ′+ of ht at
eK ′

+ is given by

ht∗eK ′+X = π̄(Ad(exp tν)X) = sinh(t)ad(ν)X , X ∈ k− ,

where we identify TeK ′+M ′ and ToM̄ with k− and p̄, respectively. We denote by
〈·, ·〉t the inner product on k− that corresponds to the induced Riemannian metric
on M ′ by ht . Then we have 〈X, Y 〉t = sinh2(t)〈ad(ν)X, ad(ν)Y 〉 for all X, Y ∈ k−,
which shows that ht is a homothetic diffeomorphism from M ′ onto Mc. By a com-
putation similar to the case 0 ≤ c < 1 we see that the second fundamental form
αc of Mc, 1 < c < ∞, is given by αc(X, Y ) = c [ad(ν)X, Y ] for all X, Y ∈ p−,
where we use the identification of ToMc with p− and of T ⊥

o Mc with p+.
The case c = 1: The submanifold M1 arises as the limit of the two fam-

ilies Mtanh(t) and Mcoth(t) for t → ∞. Since p1 = ḡ1 is an Abelian ideal in
g1 = k+ + p1 = k+ + ḡ1, (g1, τ |g1) is an orthogonal symmetric Lie algebra of
Euclidean type. Therefore M1 is a flat symmetric space. We shall prove now that
M1 is isometric to a Euclidean space. Let Ḡ1 be the connected Lie subgroup of Ḡ

with Lie algebra ḡ1. Then Ḡ1 isAbelian and we have exp(ḡ1) = Ḡ1. Moreover, the
orbit Ḡ1 · o coincides with G1 · o = M1. There exists an Iwasawa decomposition
ḡ = k̄ + ā + n̄ of ḡ such that the maximal Abelian subspace ā of p̄ contains the
element ν and the nilpotent subalgebra n̄ contains ḡ1 (cf. [17], Chapter I, § 4).
Let Ḡ = K̄ · Ā · N̄ be the Iwasawa decomposition of Ḡ that corresponds to the
above Iwasawa decomposition of ḡ. Since the exponential map exp : n̄ → N̄ is
a diffeomorphism (cf. [4], Chapter VI, § 5), Ḡ1 is a closed subgroup of N̄ that
is diffeomorphic to ḡ1. Since Ḡ1 ∩ K̄ = {e}, the orbit M1 = Ḡ1 · o is isomet-
ric to the simply connected Abelian Lie group Ḡ1 with a suitable left-invariant
Riemannian metric. By a computation similar to the case 0 ≤ c < 1 we see that
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the second fundamental form α1 of M1 is given by α1(X, Y ) = [ad(ν)X, Y ] for
all X, Y ∈ p−. �

Recall that a submanifold M of a Riemannian manifold M̄ is pseudo-umbil-
ical if the second fundamental form α in direction of the mean curvature vec-
tor field ξ of M is a multiple of the induced Riemannian metric on M , that is,
〈α(X, Y ), ξ〉 = λ〈X, Y 〉 for all vector fields X, Y tangent to M and some smooth
function λ on M .

Corollary 2.5. The mean curvature vector ξc ofMc ato is given by ξc = (c/2m)ν ∈
p+ = T ⊥

o Mc, where m = dim Mc = dim p−, and Mc is a pseudo-umbilical sub-
manifold of M̄ .

Proof. Let e1, . . . , em be an orthonormal basis of ToMc = p−. Then the vec-
tors ad(ν)e1, . . . , ad(ν)em form an orthonormal basis of k− with respect to the
negative definite inner product B|(k− × k−), and

m∑

i=1

B(ad(η)ad(ν)ad(ν)ei, ad(ν)ei) = −
m∑

i=1

〈ad(η)ad(ν)ei, ei〉 ,

which implies

B(η, ν) = tr(ad(η)ad(ν)) = 2
m∑

i=1

〈ad(η)ad(ν)ei, ei〉

for all η ∈ T ⊥
o Mc = p+. Thus

〈ξc, η〉 = 1

m

m∑

i=1

〈αc(ei, ei), η〉 = c

m

m∑

i=1

〈[ad(ν)ei, ei], η〉

= − c

m

m∑

i=1

B(ad(ν)ei, ad(η)ei) = c

m

m∑

i=1

B(ad(η)ad(ν)ei, ei)

= c

2m
B(η, ν) = 〈 c

2m
ν, η〉 ,

which implies ξc = (c/2m)ν and

〈αc(X, Y ), ξc〉 = c2

2m
〈[ad(ν)X, Y ], ν〉 = c2

2m
〈ad(ν)2X, Y 〉 = c2

2m
〈X, Y 〉

for all X, Y ∈ p− = ToMc. �
Remark 2.6. In the case of Table, No.13, i=1, M̄ is a real hyperbolic space RH n,
and the family of symmetric submanifolds Mc constructed in this section is the
family of complete totally umbilical hypersurfaces. The totally geodesic subman-
ifold M is a totally geodesic hyperplane RH n−1, and the submanifold Mtanh(t),
t > 0, is congruent to the equidistant hypersurface at distance t from M . The
hypersurface M1 is a flat Euclidean space R

n−1 which is imbedded in RH n as a
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horosphere. The submanifold Mcoth(t), t > 0, is congruent to a distance sphere
with radius t in RH n. So our construction of symmetric submanifolds can be
viewed as a generalization of this well-known family of symmetric submanifolds
in a real hyperbolic space.

3. The classification of symmetric submanifolds

In this section we will prove that for each O-geometry as introduced in Section
2 every O-submanifold is locally extrinsically symmetric, and that such subman-
ifolds are exhausted by the examples constructed in Section 2. We continue to
use the notations that we introduced in Section 2. Let M̄ = Ḡ/K̄ be a simply
connected Riemannian symmetric space of noncompact type and O a Grassmann
geometry of strongly curvature-invariant type on M̄ .

We first study the submanifold geometry of an O-submanifold (M, f ) follow-
ing Chapter VII in Kobayashi and Nomizu [6]. We denote by uo the restriction
to p̄ of the differential π̄∗e : ḡ → ToM̄ . Then uo is a linear isometry from p̄
onto ToM̄ and induces an orthonormal frame for ToM̄ . We define a smooth map
φ from Ḡ into the orthonormal frame bundle O(M̄) by φ(g) = g∗ouo. Then φ

is a K̄-bundle homomorphism that corresponds to the Lie group homomorphism
Adp̄ : K̄ → O(p̄). We denote by ω̄k̄ the k̄-component of the Maurer-Cartan form
ω̄ on Ḡ with respect to the Cartan decomposition ḡ = k̄ + p̄. General theory of
Riemannian symmetric spaces implies that φ maps the canonical connection of
Ḡ with connection form ω̄k̄ to the Riemannian connection of O(M̄).

The orbit O can be identified with the fibre bundle Ḡ ×K̄ (K̄/K̄+) that is
associated with the principal fibre bundle π̄ : Ḡ → M̄ , where K̄+ = {k ∈ K̄ |
Adp̄(k)(p−) = p−}. It is easy to see that the Lie algebra of K̄+ is just k+. Let
(M, f ) be an O-submanifold, that is, f is an immersion from an m-dimensional
smooth manifold M into M̄ such that f∗pTpM ∈ O for all p ∈ M . We denote by

P = {(p, g) ∈ M × Ḡ | f (p) = π̄(g) , φ(g)p− = f∗pTpM}
the bundle of the adapted frames of (M, f ), and by π : P → M and f̃ : P → Ḡ

the restrictions to P of the canonical projection from M × Ḡ onto the first fac-
tor M and the second factor Ḡ, respectively. Then π : P → M is a principal
fibre bundle with structure group K̄+, and f̃ is the bundle homomorphism that
corresponds to the Lie group homomorphism K̄+ → K̄ . Moreover, the following
diagram commutes:

P
f̃−−−→ Ḡ

π

�
�π̄

M −−−→
f

M̄

.
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We denote by ρ ′ : K̄+ → O(p−) and ρ ′′ : K̄+ → O(p+) the representations
of K̄+ that are obtained by restricting Adp̄(K̄+) to p− and p+, respectively. Let
O(M) be the orthornormal frame bundle of M with respect to the induced Rie-
mannian metric and O(T ⊥M) be the orthonormal frame bundle of the normal bun-
dle T ⊥M . For each u ∈ P we define linear isomorphisms φ′(u) : p− → Tπ(u)M

and φ′′(u) : p+ → T ⊥
π(u)M by restricting φ(f̃ (u)) to p− and p+, respectively.

Then φ′ : P → O(M) and φ′′ : P → O(T ⊥M) are bundle homomorphisms
with corresponding Lie group homomorphism ρ ′ and ρ ′′, respectively.

The decomposition ḡ = k̄ + p̄ = k+ + k− + p− + p+ induces a decomposition
of the pull back ω = f̃ ∗ω̄ of the Maurer-Cartan form ω̄ on Ḡ to P into

ω = ωk+ + ωk− + ωp− ,

since ωp+ vanishes. We denote by ∇̄ and ∇ the Riemannian connections of M̄

and M , respectively, and by α the second fundamental form of (M, f ). For each
vector field Y on M we define a smooth function Ỹ : P → p− by

Ỹ (u) = φ(f̃ (u))−1(Yπ(u)) , u ∈ P .

For each vector field X on M we denote by X∗ a lift of X to P with respect to
π : P → M . Then, by definition of ∇̄, we have

φ(f̃ (u))−1(∇̄XY ) = X∗
u(Ỹ ) + adp̄(ωk̄(X

∗))(Ỹ (u))

= X∗
u(Ỹ ) + adp̄(ωk+(X∗) + ωk−(X∗))(Ỹ (u))

= X∗
u(Ỹ ) + ρ ′(ωk+(X∗))(Ỹ (u)) + [ωk−(X∗), Ỹ (u)]

for all u ∈ P . On the other hand, we have

φ(f̃ (u))−1(∇XY + α(X, Y )) = φ′(u)−1(∇XY ) + φ′′(u)−1(α(X, Y )) .

Comparing the p−- and p+-components of both equations, we obtain

φ′(u)−1(∇XY ) = X∗
u(Ỹ ) + ρ ′(ωk+(X∗))(Ỹ (u)) and φ′′(u)−1(α(X, Y ))

= [ωk−(X∗), Ỹ (u)] .

Analogously, for a normal vector field ξ and a tangent vector field X of M we get

φ′(u)−1(AξX) = −[ωk−(X∗), ξ̃ (u)] and

φ′′(u)−1(∇⊥
X ξ) = X∗

u(ξ̃ ) + ρ ′′(ωk+(X∗))(ξ̃ (u)) ,

where A and ∇⊥ denote the shape operator and the normal connection of M ,
respectively. From these equations we get
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Lemma 3.1. The maps φ′ and φ′′ map the connection in P with connection
form ωk+ to the Riemannian connection in O(M) and the normal connection
in O(T ⊥M), respectively. Moreover, for each u ∈ P there exists a linear map
α̂u : p− → k− such that

φ′′(u)−1(α(φ′(u)X, φ′(u)Y )) = [α̂uX, Y ]

for all X, Y ∈ p−.

We define a k+-invariant p+-valued symmetric bilinear form α̃1 on p− by

α̃1(X, Y ) = [ad(ν)X, Y ] , X, Y ∈ p− .

We recall that the subgroup K+ of K̄ is the identity component of K̄+ and its Lie
algebra is k+. Since α̃1 is invariant under the action of k+, it is also invariant under
the action of K+. From now on we assume that M is simply connected. Let Q

be the principal subbundle of P over M with structure group K+. We define a
T ⊥M-valued symmetric bilinear form α1 on M by

α1(X, Y ) = φ′′(u)(α̃1(φ
′(u)−1X, φ′(u)−1Y )) (3.1)

for all X, Y ∈ TpM , p ∈ M , u ∈ Q with π(u) = p. Since both the Riemann-
ian connection on M and the normal connection on T ⊥M are reduced to Q by
Lemma 3.1, α1 is a parallel tensor field. The following lemma is a key point for
our classification result.

Lemma 3.2. Let M̄ be an irreducible Riemannian symmetric space of noncompact
type as in the Table, except No. 13 for i = 1, and let (M, f ) be an O-submanifold
of M̄ . Then there exists a smooth function c on M such that the second fundamental
form α of (M, f ) satisfies α = cα1.

Proof. We will reduce the proof to arguments of Theorem 5.7 in [10] and adapt
these arguments to our context. By Lemma 3.1, for each u ∈ Q there exists a
linear map α̂u : p− → k− such that

φ′′(u)−1(α(φ′(u)X, φ′(u)Y )) = [α̂uX, Y ] , X, Y ∈ p− .

The symmetry of the second fundamental form α yields [α̂uX, Y ] = [α̂uY, X],
and the definition of α1 implies α̂1 = ad(ν). We will prove that α̂u = cα̂1 for
some c ∈ R.

In order to be able to apply the arguments in the proof of Theorem 5.7 in
[10] we consider the compact dual of (ḡ, σ ). We put ĝ = k̄ + √−1p̄ and define
involutive automorphisms σ̂ and τ̂ of ĝ by σ̂ (T + √−1X) = T − √−1X and
τ̂ (T + √−1X) = τ(T ) + √−1τ(X) for all T ∈ k̄ and X ∈ p̄. Then (ĝ, σ̂ ) is an
orthogonal symmetric Lie algebra of compact type and the negative of the Killing
form of ĝ defines a positive definite inner product 〈·, ·〉 on ĝ. For the linear maps
λ1, λu :

√−1p− → k− given by λ1X = −α̂1(
√−1X) and λuX = −α̂u(

√−1X)

we have
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[λuX, Y ] = [λuY, X] and λ1X = ad(−√−1ν)X

for all X, Y ∈ √−1p−. Note that −√−1ν ∈ √−1p+ and that the map J =
ad(−√−1ν) on p∗ = √−1p− + k− interchanges

√−1p− and k− and satisfies
J 2 = −Ip∗ .

The previous equation for λu implies

〈ad(ξ)λuX, Y 〉 = 〈ξ, [λuX, Y ]〉 = −〈ξ, [X, λuY ]〉 = −〈λt
uad(ξ)X, Y 〉

for all X, Y ∈ √−1p− and ξ ∈ √−1p+, which implies

ad(ξ)λu = −λt
uad(ξ)|√−1p− , ξ ∈ √−1p+ . (3.2)

Here, λt
u : k− → √−1p− denotes the transpose map of λu with respect to 〈·, ·〉.

From (3.2) we will now deduce the equation

λuad(ξ)|k− = −ad(ξ)λt
u , ξ ∈ √−1p+ . (3.3)

The equation (3.2) applied to ξ = −√−1ν implies that Jλu = −λt
uJ . Since

each ξ ∈ √−1p+ commutes with −√−1ν, we get [ad(−√−1ν), ad(ξ)] =
ad([−√−1ν, ξ ]) = 0. Hence, by conjugating the left-hand side of (3.3) with
J = ad(−√−1ν), we see that Jλuad(ξ)J−1 = −λt

uJ ad(ξ)J−1 = −λt
uad(ξ),

which is the right-hand side of (3.2). Analogously, the left-hand side of (3.2) is
obtained by conjugating the right-hand side of (3.3) with J .

Now we extend the linear map λu :
√−1p− → k− to a skewsymmetric endo-

morphism Au of p∗ = √−1p−+k− by putting Au = λu on
√−1p− and Au = −λt

u

on k−. From (3.2) and (3.3) we obtain [ad(ξ), Au] = 0 for all ξ ∈ √−1p+, and
then [ad(T ), Au] = 0 for all T ∈ h+ +√−1p+, where h+ is the subalgebra of k+
given by h+ = [

√−1p+,
√−1p+].

Assume that (ḡ, σ ) is as in the Table, No. 7 − 18. Then (ĝ, τ̂ ) is an orthogonal
symmetric Lie algebra that corresponds to an irreducible Hermitian symmetric
space with isotropy algebra k∗ = k+ + √−1p+. Moreover, it satisfies k+ =
[
√−1p+,

√−1p+] unless we are in the case of No. 13 for i = 1. Since the above
skewsymmetric endomorphismAu ofp∗ = √−1p−+k− satisfies [ad(T ), Au] = 0
for all T ∈ k∗, Au is a real multiple of J . This implies λu = c ad(−√−1ν) = cλ1

on
√−1p− for some c ∈ R and hence α̂u = cα̂1 on p−. The same holds in

the case of No. 1 − 6. For more details we refer to the proof of Theorem 5.7
in [10]. �
Theorem 3.3. Let M̄ be an irreducible Riemannian symmetric space as in the
Table, except No. 13 for i = 1. Then every O-submanifold (M, f ) of M̄ is a
locally extrinsically symmetric submanifold.

Proof. Let p ∈ M and U be a simply connected open neighborhood of p in M .
On U we consider the T ⊥M-valued symmetric bilinear form α1 as defined in
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(3.1). By Lemma 3.2, there exists a smooth function c on U such that the second
fundamental form α of (M, f ) satisfies α = cα1. Since α1 is parallel, we have
(∇̄Xα)(Y, Z) = dc(X)α1(Y, Z) on U . Assume that dcq �= 0 at some point q ∈ U .
Since dim M ≥ 2, there exist nonzero vectors X, Y ∈ TqM such that dcq(X) �= 0
and dcq(Y ) = 0. Since the tangent space TqM is invariant under the curvature
tensor R̄ of M̄ , the Codazzi equation is of the form (∇̄Xα)(Y, Z) = (∇̄Y α)(X, Z).
From this equation we get

dcq(X)α1(Y, Y ) = (∇̄Xα)(Y, Y ) = (∇̄Y α)(X, Y ) = dcq(Y )α1(X, Y ) = 0.

It follows from the proof of Corollary 2.5 that α1(Y, Y ) �= 0, and thus we have
dcq(X) = 0, which contradicts our assumption dcq(X) �= 0. Thus dc vanishes on
U , which implies that α is parallel. From Theorem 1.3 in [10] we now conclude
that M is a locally extrinsically symmetric submanifold of M̄ . �
The compact dual M̄∗ of an irreducible Riemannian symmetric space M̄ as above
is associated with an orthogonal symmetric Lie algebra (ĝ, σ̂ , 〈·, ·〉) as in the proof
of Lemma 3.2. If we consider on M̄∗ the O-geometry induced from the Lie triple
system

√−1p−, the arguments in Lemma 3.2 and Theorem 3.3 are still valid.
Therefore we have

Theorem 3.4. Let M̄∗ be the compact dual to an irreducible Riemannian symmet-
ric space M̄ as in the Table, except No. 13 for i = 1. Then every O-submanifold
M of M̄∗ is a locally extrinsically symmetric submanifold.

The second author proved this result in [1] under the two additional assump-
tions that the reflective submanifold tangent to

√−1p− is irreducible and of rank
≥ 2. His approach is different from ours and uses the Gauss equation.

Eventually, we can now prove the final classification result.

Theorem 3.5. Let M̄ be an irreducible Riemannian symmetric space of noncom-
pact type as in the Table, except No. 13 for i = 1, and consider an O-geometry of
type (5) on M̄ . Then every symmetric submanifold M of M̄ which belongs to this
O-geometry is congruent to some submanifold Mc as constructed in Section 2.

Proof. Without loss of generality we may assume that M contains the origin o

of M̄ and that ToM = p−, using our identification of ToM̄ with p̄. Let α be the
second fundamental form of M . By Lemma 3.2, there exists a real number c such
that α = cα1 at o. By Theorem 2.3, we have α = αc at o, where αc is the second
fundamental form of Mc. By a result of Naitoh and Takeuchi [15] it follows that
M = Mc. �
Remark 3.6. As we have seen in Remark 2.6, in the case of No. 13 for i = 1, M̄

is a real hyperbolic space RH n and its O-geometry is formed by hypersurfac-
es. Symmetric hypersurfaces in RH n have already been classified by Takeuchi
in [18]. In fact, they are totally umbilical or the product Riemannian manifolds
Sk × RH n−k−1.
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Table This table is a modification of Table II in [10]. The notation for real semisimple Lie
algebras is as in [4].
(ḡ, σ ) M̄: an irreducible Riemannian symmetric space M̄ associated with a positive definite
symmetric graded Lie algebra (ḡ, σ )

p− (M): a totally geodesic submanifold M tangent to p−
k− (M ′): a symmetric R-space
(ĝ, τ̂ ) M∗: an irreducible Hermitian symmetric space M∗ associated with (ĝ, τ̂ )

p+ (M⊥): a totally geodesic submanifold M⊥ tangent to p+

No. (ḡ, σ ) M̄ p− (M) k− (M ′)

1 sl(n; C)/su(n) su(i, n − i)/s(u(i) + u(n − i)) su(n)/s(u(i) + u(n − i))

2 so(2n; C)/so(2n) so∗(2n)/u(n) so(2n)/u(n)

3 so(n; C)/so(n) so(n − 2, 2)/so(n − 2) + T so(n)/so(n − 2) + T

4 sp(n; C)/sp(n) sp(n; R)/u(n) sp(n)/u(n)

5 EC

6 /E6 E−14
6 /so(10) + T E6/so(10) + T

6 EC

7 /E7 E−25
7 /E6 + T E7/E6 + T

7 su(n, n)/s(u(n) + u(n)) R + sl(n; C)/su(n) T + su(n) + su(n)/su(n)

8 so∗(4n)/u(2n) R + su∗(2n)/sp(n) T + su(2n)/sp(n)

9 sp(n; R)/u(n) R + sl(n; R)/so(n) T + su(n)/so(n)

10 E−25
7 /E6 + T R + E−26

6 /F4 T + E6/F4

11 sl(n; R)/so(n) so(i, n − i)/so(i) + so(n − i) so(n)/so(i) + so(n − i)

12 su∗(2n)/sp(n) sp(i, n − i)/sp(i) + sp(n − i) sp(n)/sp(i) + sp(n − i)

13 so(i, n − i)/ so(i − 1, 1)/so(i − 1) so(i)/so(i − 1)

so(i) + so(n − i) +so(n − i − 1, 1)/so(n − i − 1) +so(n − i)/so(n − i − 1)

14 so(n, n)/so(n) + so(n) so(n; C)/so(n) so(n) + so(n)/so(n)

15 sp(n, n)/sp(n) + sp(n) sp(n; C)/sp(n) sp(n) + sp(n)/sp(n)

16 E6
6/sp(4) sp(2, 2)/sp(2) + sp(2) sp(4)/sp(2) + sp(2)

17 E−26
6 /F4 F−20

4 /so(9) F4/so(9)

18 E7
7/su(8) su∗(8)/sp(4) su(8)/sp(4)
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Table (Continued)

No. (ĝ, τ̂ ) M∗ p+ (M⊥) Remark

1 su(n)/s(u(i) + u(n − i)) R + sl(i; C)/su(i) 1 ≤ i ≤ n − i, n ≥ 3

+su(n)/s(u(i) + u(n − i)) +sl(n − i; C)/su(n − i)

2 so(2n)/u(n) R + sl(n; C)/su(n) n ≥ 4

+so(2n)/u(n)

3 so(n)/so(n − 2) + T R + so(n − 2; C)/so(n − 2) n ≥ 5, n �= 6

+so(n)/so(n − 2) + T

4 sp(n)/u(n) R + sl(n; C)/su(n) n ≥ 3

+sp(n)/u(n)

5 E6/so(10) + T R + so(10; C)/so(10)

+E6/so(10) + T

6 E7/E6 + T R + EC

6 /E6

+E7/E6 + T

7 su(2n)/s(u(n) + u(n)) R + sl(n; C)/su(n) n ≥ 2

8 so(4n)/u(2n) R + su∗(2n)/sp(n) n ≥ 2

9 sp(n)/u(n) R + sl(n; R)/so(n) n ≥ 2

10 E7/E6 + T R + E−26
6 /F4

11 su(n)/s(u(i) + u(n − i)) R + sl(i; R)/so(i) 1 ≤ i ≤ n − i, n ≥ 3

+sl(n − i; R)/so(n − i)

12 su(2n)/s(u(2i) + u(2n − 2i)) R + su∗(2i)/sp(i) 1 ≤ i ≤ n − i, n ≥ 3

+su∗(2(n − i))/sp(n − i)

13 so(n)/so(n − 2) + T R + so(i − 1, n − i − 1)/ i = 1 : n ≥ 3, i = 2 : n ≥ 7,

so(i − 1) + so(n − i − 1) i = 3 : n ≥ 7, i = 4 : n ≥ 9,

5 ≤ i ≤ n − i

14 so(2n)/u(n) R + sl(n; R)/so(n) n ≥ 4

15 sp(2n)/u(2n) R + su∗(2n)/sp(n) n ≥ 2

16 E6/so(10) + T R + so(5, 5)/so(5) + so(5)

17 E6/so(10) + T R + so(1, 9)/so(9)

18 E7/E6 + T R + E6
6/sp(4)
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