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1. Introduction

Nonstationarity, unsteadiness and non-Markovity are the most common essential
peculiarities of stochastic processes in nature. The existence of similar properties
creates significant difficulties for the theoretical analysis of real complex systems [1].
At present, methods connected with localization of the registered or calculated
parameters for the quantitative account of the dramatic changes caused by the fast
alternation of the behavior modes and intermittency came into use. For example, the
time behavior of the local (scale) Hurst exponents was found in the recent work of
Stanley et al. to study multifractal cascades in heartbeat dynamics [1] and to analyze
and forecast earthquakes and technogenic explosions in Ref. [2]. The application of
the local characteristics allows to avoid difficulties connected with nonergodicity of
the investigated system and gives a possibility to extract additional valuable
information on the hidden properties of real complex systems. From the physical
point of view this approach resembles the use of nonlinear equations of generalized
hydrodynamics with the local time behavior of hydrodynamical and thermodyna-
mical parameters and characteristics.
It is well known that one of the major problems of seismology is to predict the

beginning of the main shock. Although science still seems to be far from the
guaranteed decision of this problem there exist some interesting approaches based on
the peculiar properties of precursory phenomena [3–9]. Another important problem
is recognition and differentiation of weak earthquakes and technogenic underground
explosion signals. One of the useful means of solving this problem is by defining their
local characteristics [1,2].
In the present work we suggest a new universal description of real complex systems

by means of the microscopic, mesoscopic and macroscopic methods. We start with a
macroscopic approach based on the kinetic theory of discrete stochastic processes
and the hierarchy of the chain of finite-difference kinetic equations for the discrete
time correlation function (TCF) and memory functions [2,10,11].
The mesoscopic phenomena of the so-called ‘‘soft matter’’ physics, embracing a

diverse range of system including liquid crystals, colloids, and biomembranes,
generally involve some form of coupling of different characteristic time- and length-
scales. Computational modelling of such multi-scale effects requires a new
methodology applicable beyond the realm of traditional techniques such as ab
initio and classical molecular dynamics (the methods of choice in the microscopic
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regime), as well as phase field modelling or the lattice-Boltzmann method (usually
concerned with the macroscopic regime).
We propose to consider intermediate and slow processes within a unified

framework of mesoscopic approach: by means of local time behavior of the local
relaxation and kinetic parameters, local non-Markovity parameters and so on. For
this purpose we introduce the notion of quasi-Brownian motion in a complex system
by coarse-grained averaging of the initial time series on the basis of wavelet
transformation.
As an example we consider here the local properties of relaxation or noise

parameters for the analysis of seismic phenomena such as earthquakes and
technogenic explosions. The layout of the paper is as follows. In Section 2 we
describe in brief the stochastic dynamics of time correlation in complex systems
containing seismic signals by means of discrete non-Markov kinetic equations.
The basic equations used for these calculations are presented here. The local
noise parameters are defined in Section 3. Section 4 contains the results ob-
tained by the local noise parameter procedure. The models of the time dependence
of the local parameters are given in Section 5. The basic conclusions are discussed
in Section 6.
2. The basic definitions in kinetic description of discrete stochastic processes

2.1. Macroscopic description in the analysis of stochastic processes

Several different existent processes, such as economical, meteorogical, gravime-
trical and other data are registered as discrete random series xi of some variable X.
This random variable X can be written as an array of its values

X ¼ fxðTÞ;xðT þ tÞ;xðT þ 2tÞ; . . . ;xðT þ ktÞ; . . . ; xðT þ ðN � 1ÞtÞg : ð1Þ

Here a time step (or a time interval) t is a constant, T is the time when the
registration of the signal begins, and ðN � 1Þt is the duration of the signal detection.
The average value hxi and fluctuations dxj are defined by the following

expressions, correspondingly:

hxi ¼
1

N

XN�1

j¼0

xðT þ jtÞ; dxj ¼ dxðT þ jtÞ ¼ xðT þ jtÞ � hxi : ð2Þ

From the fluctuations of the considered random variable dxj we can form k-
component state vector of the system’s correlation state

A0k ¼ A0kð0Þ ¼ ðdxðTÞ; dxðT þ tÞ; . . . ; dxðT þ ðk � 1ÞtÞÞ

¼ ðdx0; dx1; . . . ; dxk�1Þ : ð3Þ
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The time dependence of the correlation state vector A can be represented as a
discrete m-step shift

Am
mþk ¼ Am

mþkðtÞ ¼ ðdxðT þ mtÞ; dxðT þ ðm þ 1ÞtÞ; . . . ; dxðT þ ðm þ k þ 1ÞtÞÞ

¼ ðdx0; dx1; . . . ; dxmþk�1Þ : ð4Þ

Then by analogy with the papers [2,10,11] we can write the following normalized
TCF:

M0ðtÞ ¼
hA0N�1�mA

m
N�1i

hA0N�1�mA
0
N�1�mi

¼
hA0N�1�mð0ÞA

m
N�1ðtÞi

jA0N�1�mð0Þj
2

¼
hA0N�1�mð0ÞUðt ¼ T þ mt;TÞA0N�1�mð0Þi

jA0N�1�mð0Þj
2

; ð5Þ

where the angular brackets indicate the scalar product of the two state vectors. On
the other hand, the time dependence of vector Am

N�1�mðT þ tÞ, t ¼ mt, can be
represented formally with the help of the evolution operator Uðt0; tÞ as follows:

Am
N�1ðT þ tÞ ¼ UðT þ mt;TÞA0N�1�mðTÞ ¼ Uðt; 0ÞA0N�1�mð0Þ : ð6Þ

The last one has the property: Uðt; tÞ ¼ 1. Actually, one can write down formal
discrete equation of motion with the use of the evolution operator Uðt0; tÞ (see
Appendix A for more details).
It was shown in Refs. [2,10,11] that the finite-difference kinetic equation of a non-

Markov type for TCFM0ðtÞ can be written by means of the technique of projection
operators of Zwanzig’–Mori’s type [14,15]

DM0ðtÞ

Dt
¼ l1M0ðtÞ � tL1

Xm�1

j¼0

M1ðjtÞM0ðt � jtÞ : ð7Þ

Here the first-order memory function M1ðjtÞ appears, l1 is an eigenvalue of
Liouville’s quasioperator L̂ (see Appendix A) and L1 is a relaxation noise
parameter, which are characteristics of the investigated process. Possible methods of
defining quasioperator L̂ are presented in Appendix A [see Eqs. (A.3), (A.5) and
(A.7)]. It should be noted that Eq. (7) is the first kinetic finite-difference equation for
initial TCFM0ðtÞ. With the use of the same procedure of projection operator we can
obtain the chain of kinetic finite-difference equations of the form

DM i�1ðtÞ

Dt
¼ liM i�1ðtÞ � tLi

Xm�1

j¼0

M iðjtÞM i�1ðt � jtÞ; i ¼ 1; 2; 3; . . . : ð8Þ

Here li and Li are noise parameters, and M iðjtÞ is the memory function of the ith
order

ln ¼ i
hWn�1L̂Wn�1i

jWn�1j
2

; Ln ¼ i
hWn�1L̂Wni

jWn�1j
2

: ð9Þ
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Here Wn are the dynamical orthogonal variables, obtained by the Gram–Schmidt
orthogonalization procedure

hWn;Wmi ¼ dn;mhjWnj
2i ;

where dn;m is the Kronecker’s symbol,

W0 ¼ A
0
kð0Þ; W1 ¼ ½iL̂� l1
W0 ;

W2 ¼ ½iL̂� l2
W1 � L1W0; . . . : ð10Þ

From Eq. (10) it is obvious that in the cited Gram–Schmidt procedure from each
new vector of state one should subtract the projection on all the previous vectors.
Thereafter the orthogonalization (10) is complete.
A chain of integro-differential equations (8) arise as a result of the use of

projection operator technique to define different correlation functions in physical
problems [14,15] (for example, TCF of density fluctuation in inelastic neutron
scattering [12,13] and light scattering investigations, velocity autocorrelation
function and others can be received in a specified way). However, the quest for a
physically based way of closing the chain of equations and finding the spectra of the
initial TCF are essential moments in these challenges. Here the situation is different.
Namely, the initial TCF can be calculated directly from the experimental data. Then
memory functions M i and noise parameters li, Li are similarly calculated from the
experiment. All these functions and parameters make it possible to carry out the
detailed analysis of the random process. The noise parameters li and Li are the
relaxation characteristics of the experimental time series, which contain information
of various modes passing and changing. The macroscopic approach presented above
is based on the calculation of memory functions, power spectra, dynamic variables,
and relaxation parameters. It suggests the investigation of the system as a single
whole. The global characteristics calculated on the basis of all the time series contain
hidden information about various modes of the system behavior. As a rule, this
information is difficult to extract and analyze. For this reason it is necessary to
develop a mesoscopic description and introduce a local noise and relaxation
parameters li and Li.

2.2. Mesoscopic description in analysis of stochastic processes

It is well known that the mesoscopic conception is one of the possible ways to deal
with random processes in complex systems. It consists of extension of the domain of
the dynamical equations mesoscopic variables and of introduction of some local time
interval. Such a quantity as X (it can be particle position, mass density and so on) is
defined on the mesoscopic space [20]. In addition we introduce number M as its
extensive quantity. This number M should satisfy the condition

15M5N ; ð11Þ

where N is the length of the initial experimental sampling. Let us take a working
window of the fixed lengthM. By superposing this window on the initial sampling X,
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we choose all elements, incoming, as a separate sampling �x0. Further, let us execute
one time step t shift of this working window to the right and obtain another local
sampling of length M. Executing this procedure (N � M þ 1) times, one can obtain
the same quantity of the local samplings of length M:

�x0 ¼ �x0fxðTÞ;xðT þ tÞ; xðT þ 2tÞ; . . . ;xðT þ ðM � 1ÞtÞg ;
�x1 ¼ �x1fxðT þ tÞ;xðT þ 2tÞ;xðT þ 3tÞ; . . . ; xðT þ MtÞg ;

..

.

�xN�M ¼ �xN�MfxðT þ ðN � M � 1ÞtÞ; xðT þ ðN � MÞtÞ;

xðT þ ðN � M þ 1ÞtÞ . . . ;xðT þ ðN � 1ÞtÞg : ð12Þ

In its turn the obtained local samplings �xi form the array, which represents the time
dynamics of the investigated process

�xðt0Þ ¼ f�x0; �x1; �x2; . . . ; �xi; . . . ; �xN�Mg : ð13Þ

Then in accordance with the procedure described in the last Section 2.1, we can
define fluctuations by Eq. (2), calculate TCF with the help of Eq. (5), and calculate
memory functions and parameters li and Li by Eqs. (9) for every sampling �xi.
However, parameters li and Li will be characteristic of concrete jth sampling only.
Thus, they will characterize the local properties of the initial time data X and will
change at cross-over from one local sampling �xi to another �xiþ1. Then it is convenient
to represent their local time dependence in the following way:

liðt
0Þ ¼ fliðT þ ðM � 1ÞtÞ; liðT þ MtÞ;

liðT þ ðM þ 1ÞtÞ; . . . ; liðT þ ðN � MÞtÞg ;

Liðt
0Þ ¼ fLiðT þ ðM � 1ÞtÞ;LiðT þ MtÞ;

LiðT þ ðM þ 1ÞtÞ; . . . ;LiðT þ ðN � MÞtÞg : ð14Þ

Operating in a similar way, one can execute cross-over from the macroscopic
description of the whole system to the mesoscopic one. The offered approach is very
convenient for the description and analysis of nonstationary stochastic processes. It
allows to depart from the global macro-characteristics, which carry only averaged
minor information about the whole investigated process, and to turn to the
stochastic description with the use of the local characteristics and to execute a more
detailed analysis of various dynamic states of the system.

2.3. Conception of one-dimensional dynamics of quasi-Brownian particle

Let us consider the motion of a large Brownian particle in a dense medium
composed of light molecules. Let us restrict it by a simple one-dimensional case.
Coordinate xi and velocity vi are random variables of a Brownian particle. Quantity
t represents the average time between the two successive collisions of liquid
molecules; T is the initial moment of time. Variable M characterizes a local size
(mass) of a Brownian particle. It is obvious, that a Brownian particle must have a
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larger mass in comparison with liquid particles (Mb1); therefore, it is more inert.
Then it is convenient to define the coordinate of a Brownian particle at moment t0 as
an average value of sampling �xi. For example, we obtain from �x0

y0 ¼
xðTÞ þ xðT þ tÞ þ xðT þ 2tÞ þ � � � þ xðT þ ðM � 1ÞtÞ

M

¼
1

M

XM�1

j¼0

xðT þ jtÞ : ð15Þ

Quantity y0 defines the coordinate of ‘‘the center of gravity’’ of a Brownian particle
at the initial time moment t0 ¼ 0. By analogy it can define the position of a Brownian
particle at the next time moment t0 ¼ t and so on. As a result we obtain a new time
discrete series Y ðt0Þ as

Y ðt0Þ ¼ fy0; y1; y2; . . . ; yN�Mg : ð16Þ

The velocity of a Brownian particle is

vi ¼
yiþ1 � yi

t
: ð17Þ

Thus, for example, for the initial velocity v0 we obtain from Eqs. (12), (15) and (17):

v0 ¼
y1 � y0

t
¼

xðT þ MtÞ � xðTÞ

Mt
: ð18Þ

Obviously, if the larger one is M, the smaller one is the velocity of a Brownian particle.
Hence, we obtain a discrete set of velocity values for a Brownian particle at an
equally small time interval t

V ðt0Þ ¼ fv0; v1; v2; . . . ; vN�M�1g : ð19Þ

Eqs. (16) and (19) define time dependence of random variables Y ðt0Þ and V ðt0Þ.
2.3.1. Generalized Langevin equation with discrete time

In accordance with Eq. (2), let us define the correlation state vector, whose
components are the fluctuations of the particle position

B0k ¼ fdy0; dy1; dy3; . . . ; dyk�1g : ð20Þ

Then by analogy to (4) time dependence of vector B can be considered a discrete m-
step time shift. For vector B the following normalized TCF can be written with the
help of Eq. (5):

bðtÞ ¼
hB0N�1�mB

m
N�1i

jB0N�1�mj
2

: ð21Þ

The last one describes the time correlation of the two different correlation states of
the system.
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Now let us introduce the linear projection operator in Euclidean space of the state
vectors:

QB ¼
Bð0ÞihBð0ÞBðtÞi

jBð0Þj2
¼ Bð0ÞibðtÞ; Q ¼

Bð0ÞihBð0Þ

hBð0ÞBð0Þi
: ð22Þ

This operator has the necessary property of idempotency Q2 ¼ Q. The existence of
projection operator Q allows to introduce the mutually supplementary projection
operator R as follows:

R ¼ 1� Q; R2 ¼ R; QR ¼ RQ ¼ 0 : ð23Þ

It is necessary to note that projectors Q and R are both linear and can be recorded
for the fulfillment of projection operations in the particular Euclidean space. The
projection operators Q and R allow to carry out the splitting of Euclidean space of
vectors B, where Bð0Þ and BðtÞ 2 B, into a straight sum of the two mutually
supplementary subspaces in the following way:

B ¼ B0 þ B00; B0 ¼ QB; B00 ¼ RB : ð24Þ

Let us consider the finite-difference Liouville’s Eq. (A.1) for the vector of
fluctuations of a Brownian particle position

D
Dt
Bm

mþkðtÞ ¼ iL̂ðt; tÞBm
mþkðtÞ : ð25Þ

Modifying the last equation by operators Q and R successfully, we can split the
dynamic equation (25) into two interconnected equations in the two mutually
supplementary Euclidean subspaces

D
Dt
B0ðtÞ ¼ iQL̂ðQ þ RÞBðtÞ ¼ iL̂11B

0ðtÞ þ iL̂12B
00ðtÞ ; ð26Þ

D
Dt
B00ðtÞ ¼ iRL̂ðQ þ RÞBðtÞ ¼ iL̂21B

0ðtÞ þ iL̂22B
00ðtÞ : ð27Þ

In the above equations the matrix elements L̂ij of quasi-operator L̂ have been
introduced

L̂11 ¼ QL̂Q; L̂12 ¼ QL̂R; L̂21 ¼ RL̂Q; L̂22 ¼ RL̂R ;

L̂ ¼
L̂11 L̂12

L̂21 L̂22

!
: ð28Þ

Operators L̂ij act as follows: L̂11—from subspaces B0 to B0; L̂12—from B00 to B0;
L̂21—from B0 to B00; and L̂22—from B00 to B00.
To simplify Liouville Eqs. (26) and (27) we exclude the irrelevant part B00ðtÞ and

construct the closed equation for the relevant part B0ðtÞ. For this purpose it is
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necessary to obtain a step-by-step solution of Eq. (27)

DB00ðtÞ

Dt
¼
B00ðt þ tÞ � B00ðtÞ

t
¼ iL̂21B

0ðtÞ þ iL̂22B
00ðtÞ ; ð29Þ

B00ðt þ tÞ ¼ B00ðtÞ þ itL̂21B
0ðtÞ þ itL̂22B

00ðtÞ ;

¼ ð1þ itL̂22ÞB
00ðtÞ þ itL̂21B

0ðtÞ ;

¼ U22ðt þ t; tÞB00ðtÞ þ itL̂21ðt þ t; tÞB0ðtÞ ; ð30Þ

where U22ðt þ t; tÞ ¼ 1þ itL̂22ðt þ t; tÞ is the operator of a time step shift.
With the help of Eq. (30) we can derive the following expression for the next time

step:

B00ðt þ 2tÞ ¼ U22ðt þ 2t; t þ tÞB00ðt þ tÞ þ itL̂21ðt þ 2t; t þ tÞB0ðt þ tÞ

¼ U22ðt þ 2t; t þ tÞ½U22ðt þ t; tÞB00ðtÞ þ itL̂21ðt þ t; tÞB0ðtÞ


þ itL̂21ðt þ 2t; t þ tÞB0ðt þ tÞ

¼ U22ðt þ 2t; t þ tÞU22ðt þ t; tÞB00ðtÞ þ it½U22ðt þ 2t; t þ tÞ

� L̂21ðt þ t; tÞB0ðtÞ þ L̂21ðt þ 2t; t þ tÞB0ðt þ tÞ
 : ð31Þ

Generalizing this result in case of the mth discrete step we find the following final
result:

B00ðt þ mtÞ ¼ T̂
Ym�1

j¼0

U22ðt þ ðj þ 1Þt; t þ jtÞ

( )
B00ðtÞ

þ it
Xm�1

j¼0

T̂
Ym�2

j0¼j

U22ðt þ ðj0 þ 2Þt; t þ ðj0 þ 1ÞtÞ

8<
:

9=
;

� L̂ðt þ ðj þ 1Þt; t þ jtÞB0ðt þ jtÞ : ð32Þ

Here T̂ denotes the Dyson operator of chronological ordering. Substituting the
irrelevant part of Eq. (26) into the right-hand side of Eq. (32), we obtain the closed
finite-difference equation for the relevant part of the correlation state vector

D
Dt
B0ðt þ mtÞ

¼ iL̂11ðt þ ðm þ 1Þt; t þ mtÞB0ðt þ mtÞ þ iL̂12ðt þ ðm þ 1Þt; t þ mtÞ

� T̂
Ym�1

j¼0

U22ðt þ ðj þ 1Þt; t þ jtÞ

( )
B00ðtÞ

� t
Xm�1

j¼0

T̂
Ym�2

j0¼j

U22ðt þ ðj0 þ 2Þt; t þ ðj0 þ 1ÞtÞ

8<
:

9=
;

� L̂21ðt þ ðj þ 1Þt; t þ jtÞB0ðt þ jtÞ

!
: ð33Þ
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Substituting Eqs. (22) and (24) into Eq. (33), we derive a finite-difference kinetic
equation of a non-Markov type for TCF bðtÞ

DbðtÞ

Dt
¼ l1bðtÞ � tL1

Xm�1

j¼0

M1ðt � jtÞbðjtÞ : ð34Þ

Here the TCF M1ðtÞ is the first-order memory function

M1ðt � jtÞ ¼
hW1ð0ÞW1ðt � jtÞi

jW1ð0Þj
2

: ð35Þ

Here L1 is the frequency relaxation parameter of the first order with a square
frequency dimension, and is defined by Eq. (9). Then if the dynamic variable W0 ¼
B0kð0Þ represents the fluctuations of a Brownian particle position, the dynamic
variable W1 ¼ iL̂W0 � l1W0 contains fluctuations of pulses of a Brownian particle
(see, Eqs. (10)). The functionM1ðtÞ is a time correlation function of fluctuations of a
Brownian particle velocity.
Defining the corresponding projection operators to new dynamic variableW1 and

repeating the above-described procedure, we find the finite-difference kinetic
equation for M1ðtÞ

DM1ðtÞ

Dt
¼ l2M1ðtÞ � tL2

Xm�1

j¼0

M2ðt � jtÞM1ðjtÞ : ð36Þ

Here l2 and L2 are frequency relaxation parameters of the second order,M2ðtÞ is the
second-order memory function or memory function of the velocity correlation
function for a Brownian particle (memory friction) [16–19]. In fact, Eq. (36) is a
discrete finite-difference generalized Langevin equation (GLE). Thus, M2ðtÞ can be
associated with TCF of the stochastic Langevin forces, for which a similar equation
can be obtained:

DM2ðtÞ

Dt
¼ l3M2ðtÞ � tL3

Xm�1

j¼0

M3ðt � jtÞM2ðjtÞ ð37Þ

with the third-order frequency relaxation parameters l3 and L3, and the memory
function of the third order M3ðtÞ, respectively.
The three Eqs. (34), (36) and (37) are the exact consequence of microscopic

discrete finite-difference equations of motion. Calculation of memory functionM iðtÞ

and the relaxation frequency parameters lj, Lk are the central point here.
In case of a Brownian particle presented above, dynamic variablesW0 andW1 are

the position and pulses of random particles. In fact, they can be taken as
characteristics of any other nonstationary process. The averaging operator of
sampling with length M elements, Â ¼ 1=M

PM�1
j¼0 (see Eq. (15)), applied to the

intermediate local sampling can be changed by any other operator, depending on the
goal of the investigation. The operator Â allows to obtain clear or sharp fluctuations
in the initial sampling of data X ðtÞ and to replace it by another Y ðt0Þ : X ðtÞ ! Y ðt0Þ,
which contains the results of coarse-graining averaging. However, it is not always
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convenient to average a local sampling. In these cases the operator Â can be replaced
by another operator, which allows to obtain only one number from every local
sampling. In the general case, another, more universal method of transformation of
the initial sampling into the sampling with some specified (required) characteristics
can become discrete wavelet-transform [21–25], which is defined by the following
equation:

W ðj; kÞ ¼
X

j

X
k

X ðkÞ2�j�2Cð2�jn � kÞ : ð38Þ

Here X ðkÞ is the sampling (1) and CðtÞ is a time function with fast decay called
mother wavelet. The following analysis can be applied to the new transformed data
W ðj; kÞ according to the algorithm described above. Namely, memory functions
M iðtÞ and frequency relaxation parameters li and Li can be calculated for the
transformed data.
2.3.2. Analog of Green–Kubo relation for diffusion coefficient for time discrete system

According to the theory of random walks the mean-square displacements of a
Brownian particle can be defined as

hDy2it ¼

Z þ1

�1

Dy2F1ðy; tÞdy ¼ 2Dt ðt ! 1Þ : ð39Þ

Here F1ðy; tÞ is the density of probability of a particle being at point y at time
moment t. Eq. (39) is a well-known Einstein relation for continuous displacements.
According to Eq. (39) the displacement during time t is

Dyt ¼ yðtÞ � yð0Þ : ð40Þ

In case of the discrete time Eq. (40) can be rewritten in the form

DyðtÞ ¼ DyðT þ jtÞ ¼ yðT þ ðj þ mÞtÞ � yðT þ jtÞ; t ¼ mt; mb1 : ð41Þ

Then the mean-square displacement of a Brownian particle is

hDy2ðT þ ðj þ mÞtÞi ¼
1

N � m

XN�m�1

j¼0

½yðT þ ðj þ mÞtÞ � yðT þ jtÞ
2;

N4mb1 ; ð42Þ

where N � m is the quantity of ‘‘possible ways’’. The diffusion coefficient takes the
following form:

D ¼
1

2mðN � mÞt

XN�m�1

j¼0

½yðT þ ðj þ mÞtÞ � yðT þ jtÞ
2;

at N4mb1 ðor t ! 1Þ : ð43Þ
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Let us consider separately the sum in the last expression in terms of the velocity (see
Eq. (17))

XN�m�1

j¼0

½yðT þ ðj þ mÞtÞ � yðT þ jtÞ
2

¼ ½yðT þ mtÞ � yðTÞ
2 þ ½yðT þ ð1þ mÞtÞ � yðT þ tÞ
2 þ � � � þ ½yðT þ ðN � 1ÞtÞ � yðT þ ðN � m � 1ÞtÞ
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðN�mÞ of square brackets ½...


¼ ½yðT þ mtÞ � yðT þ ðm � 1ÞtÞ þ yðT þ ðm � 1ÞtÞ � � � � � yðT Þ
2 þ � � �

þ ½yðT þ ðN � 1ÞtÞ � yðT þ ðN � 2ÞtÞ þ yðT þ ðN � 2ÞtÞ � � � �

� yðT þ ðN � m � 1ÞtÞ
2

¼ t2½vðT þ ðm � 1ÞtÞ þ vðT þ ðm � 2ÞtÞ þ � � � þ vðTÞ
2 þ � � �

þ t2½vðT þ ðN � 2ÞtÞ þ vðT þ ðN � 3ÞtÞ þ � � � þ vðT þ ðN � m � 1ÞtÞ
2

¼ t2
XN�m�1

j¼0

Xm�1þj

j¼0

vðT þ ktÞ

" #2
: ð44Þ

Then the expression for the diffusion coefficient (43) can be rewritten as

D ¼
t

2mðN � mÞ

XN�m�1

j¼0

Xm�1þj

k¼j

vðT þ ktÞ

" #2
: ð45Þ

Eq. (45) is the discrete finite-difference analog of the famous Green–Kubo relation
for the diffusion coefficient. The given relation has been obtained from Einstein
equation (39) for a discrete system. The asymptotic limit t ! 1 can be replaced here
by the similar condition N ! 1, m ! 1, N4m.
3. Local noisy parameters

Seismic data represent discrete random series, which is a recording of
displacements of the Earth’s surface. Therefore, we can use the above-stated
formalism to analyze seismic data.
In particular, the local dependence of various characteristics [1,2] can serve as an

additional source of information on properties of objects. Noise parameters li and
Li are very sensitive to the presence of a nonrandom component in the sampling. The
change in the character of the correlated noise and the appearance of the additional
signal in the sampling can cause an alternation of these parameters. Hence, the time
behavior of the local parameters li, Li is important and informative when analyzing
seismic data.
The procedure of localization consists of the following. Let us assume that we

have an array of data fx1;x2;x3; . . . ;xM ; . . . ;xNg. Let us take the initial sampling of
the fixed length M. Then by passing through all array of values with the ‘‘work
window’’ of the fixed length M we can calculate the time series of the noisy
parameters fliðT ;T þ MtÞ; liðT þ t;T þ ðM þ 1ÞtÞ; . . . ; liðT þ ðN � M � 1Þt;T þ



ARTICLE IN PRESS

                                           315
ðN � 1ÞtÞg and fLiðT ;T þ MtÞ;LiðT þ t;T þ ðM þ 1ÞtÞ; . . . ;LiðT þ ðN � M � 1Þt;
T þ ðN � 1ÞtÞg.
Obviously, it is inadmissible to use both very large intervals (1000 and more

points) and very short intervals (50 points and less) for the definition of local
parameters liðtÞ, LiðtÞ. In the first case the physical sense of the localization
procedure is lost. On the other hand, it is impossible to carry out any plausible
correlation analysis with small intervals because of gross errors. Therefore there is a
necessity to find the optimum length of the initial local interval ðT ;T þ t;T þ

2t; . . . ;T þ ðM � 1ÞtÞ or quantity M.
To determine the optimal minimal local sampling we have used the data

corresponding to the calm state of the Earth before the technogenic explosion (an
underground nuclear explosion). The calculation procedure consists in the following.
We have taken the interval of 40 points as the starting point and have calculated all
the noise low-order parameters li ði ¼ 1; 2; 3Þ and Lj ðj ¼ 1; 2Þ by Eqs. (9) and (10).
Then the interval was consistently increased by unit time segment t and the
relaxation parameters li, Lj were calculated every time at the increase of the interval.
As a result of this procedure executed for the calm state of the Earth we have
established that all parameters take ‘‘steady’’ numerical values at the interval
approximately equal to 150 points and more (see Fig. 1 for more details). Namely,
from Fig. 1 one can see that parameters l1 and L1 take minimal values in their
absolute quantity at this length of interval; the amplitude of value fluctuations of the
parameter L2 becomes lower and levels off. It is again an evidence of reduction of the
noise influence. Fluctuations of parameters l2 and l3 also decrease and the
parameters themselves take steady values starting with the sampling of length � 150
points.
Applying this procedure to other data of the calm state of the Earth, we find the

same behavior of noise parameters li, Li and detect the minimal interval of 150
points again. Thus, we choose the interval of such length as being optimal for
accumulation of local statistics.1
4. Definition of relaxation parameters liðtÞ and LjðtÞ for earthquakes and technogenic
explosions data

It is well known that modern seismic devices allow to derive different quantitative
and qualitative data about the seismic state of the Earth. In this work we analyze
three various weak local earthquakes (EQ’s) in Jordan (1998) (EQ(1), EQ(2), EQ(3)),
one strong earthquake in Turkey (summer 1999) [EQ(T)] and three local
underground technogenic explosions (TE) (TE(1), TE(2), TE(3)) with the length of
registration from 10 000 to 25 000 points. In case of strong EQ its seismogram
contains 65 000 registered points. All these experimental data were courteously given
by the Laboratory of Geophysics and Seismology (Amman, Jordan). All data
1It should be noted the interest observation that local interval with 100–120 points was also found in

previous work [2] devoted to seismic data analysis with the help of local Herst exponent.
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Fig. 1. The definition of the optimal size for a local ‘‘working window’’. Calculations were carried out for

the data of a steady state of the Earth. As a result we find that size N � 150 points is more optimal. The

relative stability of all parameters is observed. Inset (f) shows seismic signals for the Earth’s steady state

(before underground TE).
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correspond to transverse seismic displacements. The real temporal step of
digitization t between the registered points of seismic activity has the following
values, viz, t ¼ 0:02 s for the EQ(T), and t ¼ 0:01 s for all other cases. We defined
such characteristics as the maximal amplitude of signal fluctuations before ‘‘event’’
a1, the maximal amplitude of signal fluctuations during ‘‘event’’ a2, EQ (TE) power
a2=a1, time interval till EQ (TE) T0, continuance of ‘‘event’’ T l and finally the total
time of signal recording T total directly from seismic data. These quantities are
presented in Table 1. They give a clear notion about the duration and power of
investigated phenomena. One can see from Table 1, that approximately 4500–5700
points are accounted for the visible part of a wavelet. This number of recorded
points allows one to calculate and analyze local parameters liðtÞ and LjðtÞ in detail
from Eqs. (9) and (10).
Let us describe the procedure of calculation of time dependence for liðtÞ and LjðtÞ

in detail. It is based on the following operations. An interval withM � 150 points is
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Table 1

Some characteristics of technogenic explosions (TE(1), TE(2), TE(3)) and earthquakes (EQ(1), EQ(2),

EQ(3), EQ(T)) obtained from seismic data: a1 is a maximal amplitude of signal oscillations before the

‘‘event’’, a2 is maximal amplitude of signal oscillations at the time of the ‘‘event’’, T0 is time from the

beginning of the signal registration to the beginning of the ‘‘event’’, T l is the ‘‘event’’ duration, and

T total ¼ N is the total time of signal recording

a1 a2 a2=a1 T0 T l T total

TE(1) 1:03� 10�3 8:24� 10�3 8 4091 4500 12 500

TE(2) 1:5� 10�3 18:5� 10�3 12.3(3) 3538 4500 10 000

TE(3) 1:18� 10�3 56:5� 10�3 47.88 4091 4850 15 000

EQ(1) 0:74� 10�3 7:1� 10�3 9.59 5682 4500 15 000

EQ(2) 0:94� 10�3 6:1� 10�3 6.49 12 308 5770 25 000

EQ(3) 0:59� 10�3 14:1� 10�3 23.9 3182 5700 12 500

EQ(T) 9� 10�3 20 2:2ð2Þ � 103 � 13 500 — 65 000
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taken, and noisy parameters li, Lj are calculated for it with the help of Eqs. (9) and
(10). Then the operation of ‘‘stepwise shift to the right’’ at the interval of the fixed
length M is executed, and parameters are computed again. These actions are
executed, while the initial sampling X ðtÞ will not be finished. As a result we obtain
the following dependencies: fliðT ;T þ MtÞ; liðT þ t;T þ ðM þ 1ÞtÞ; . . . ; liðT þ

ðN � M � 1Þt;T þ ðN � 1ÞtÞg and fLiðT ;T þ MtÞ;LiðT þ t;T þ ðM þ 1ÞtÞ; . . . ;
LiðT þ ðN � M � 1Þt;T þ ðN � 1ÞtÞg. If the character of the noise in the investi-
gated data changes, some signal will appear or disappear, and it will be directly
reflected in the behavior of the relaxation characteristics.
The above-described procedure has been used to analyze EQ and TE data. The

results are shown in Figs. 2, 3 and 4 and Table 2. However, in order to verify the
optimized length of the local interval, we calculated local parameters liðtÞ and LjðtÞ

ði ¼ 1; 2; 3Þ, ðj ¼ 1; 2Þ at the local sampling with length M ¼ 100; 200; 250; 300; 350
and 400 points. It turned out that a large number of various noises are superimposed
on the carrying trajectory at M ¼ 100 points in the behavior of liðtÞ and LjðtÞ

(parameters has a gross errors). The line-shapes of liðtÞ and LjðtÞ practically cease to
change at the sampling length M ¼ 150 and more M ¼ 200; 250; . . . : Once again it
favors the view that the local interval with length M ¼ 150 points is optimal for the
analysis of strong, weak EQs and TEs.
The detailed analysis of the received results allows to reveal the following features.
Weak EQs and local underground TEs(for TE(3) and EQ(3), see Figs. 3 and 4):
(1)
 All the parameters liðtÞ take only negative values (liðtÞo0), whereas noisy
parameters LjðtÞ can be both positive and negative.
(2)
 Noisy parameterl1ðtÞ: Absolute magnitude jl1j increases sharply in its amplitude
by a factor approximately equal to 4–13.3 during EQ (various for different
EQs), and then it returns to its initial state. Restoration time Tl1 and the
duration of ‘‘event’’ T l are approximately equal for weak EQ, i.e., Tl1 � T l .
Absolute magnitude jl1j also exhibits an abrupt rise � 2:2–3.5 times higher for
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Fig. 2. The calculated time behavior of noisy relaxation parameters li and Li for the technogenic

explosion TE(3) (a–e), whose signal is presented in inset (f).
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TEs. However, it returns quickly to its normal level. The restoration time l1ðtÞ
for TE is less than the duration of the ‘‘event’’ approximately by a factor of
2.5–3.
(3)
 Noisy parameterl2ðtÞ: Parameter l2ðtÞ responds to the beginning of the ‘‘event’’
by an abrupt rise of its value. It increases in amplitude both for TEs and for
EQs. The character of the noise changes during the ‘‘event’’. The parameter
responds to the power of the ‘‘event’’.
(4)
 Noisy parameterl3ðtÞ: This parameter always fluctuates close to its numerical
value �1, and shows an abrupt rise of its values at the beginning the ‘‘event’’ in
the form of separated spikes (see Figs. 3 and 4). The parameter keenly responds
to the noise changes.
(5)
 Noisy parameterL1ðtÞ:It fluctuates near zero before and after the ‘‘event’’
changing its sign at this time. The parameter increases sharply at the ‘‘event’’
and always (!) remains positive. Then it decays smoothly. Restoration time TL1
and the duration of the ‘‘event’’ T l are approximately the same both for the EQ
and TE. This parameter is very sensitive to the changes in the noise character.
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For example, the data analysis of the EQ(2) shows that the separate burst of the
amplitude values of L1ðtÞ appears for � 4000 points up to the beginning of the
EQ, although such an indicator was not visually observed in the initial seismic
data.2 It may be an evidence of high prognostic property of this parameter for
EQs forecasting.
(6)
 Noisy parameter L2ðtÞ: The noise changes of parameter L2ðtÞ are observed
during the ‘‘event’’ both during EQs and TEs. From Figs. 3 and 4 we can see
that L2ðtÞ has a distinctive negative depression during the ‘‘event’’.
Strong EQs (for EQ(T) see Fig. 5):3
turned out, that the noise variation is visible for all noise parameters liðtÞ and LjðtÞ (i ¼ 1–3; j ¼ 1; 2)
before earthquake. However, it is more pronounced for time-dependence of the parameter L1ðtÞ.
e strong Turkish earthquake presented here was analyzed on the basis of the data of different

es. However, we received always results, which were the same with presented in Fig. 4.
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Table 2

Characteristics of local parameters l1ðtÞ and L1ðtÞ: Tl1 is the parameter l1ðtÞ relaxation time, TL1 is the

relaxation time of L1ðtÞ, tl is the relaxation time for exponential attenuation of l1ðtÞ, and tL is the
relaxation time for exponential attenuation of L1ðtÞ

l0 (units
of t�1)

Dl (units
of t�1)

Tl tl L0 (units
of t�2)

DL (units
of t�2)

TL tL Dl=l0 DL=L0 T l=Tl

TE(1) �0.13 �0.425 1800 90 0.02 0.28 4500 45 3.27 14 2.5

TE(2) �0.15 �0.34 1440 100 0.02 0.28 4032 55 2.26(6) 14 3.125

TE(3) �0.15 �0.33 1870 80 0.002 0.42 4850 45 2.2 210 2.59

EQ(1) �0.045 �0.6 4500 170 0.005 0.43 4500 110 13.3(3) 86 1

EQ(2) �0.1 �0.5 5770 170 0.001 0.35 5770 130 5 350 1

EQ(3) �0.12 �0.47 5700 210 0.01 0.35 5700 180 3.91(6) 35 1
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All parameters react keenly to the appearance of the signal in case of a strong
EQ. Let us consider the behavior of the local parameters in this case in detail.
(7)
 Noisy parameter l1ðtÞ:The parameter demonstrates the presence of noise and
takes negative values before the ‘‘event’’ (region I in Fig. 5f). As the ‘‘event’’
approaches, the amplitude of fluctuations decreases, and oscillations turn into
negligible fluctuations close to zero value for II, III and IV Regions (for more
details, see Fig. 5).
(8)
 Noisy parameter l2ðtÞ: A noise is also observed in the behavior of this parameter
before the ‘‘event’’, and this parameter takes only negative values. However, its
values decrease sharply in absolute magnitude and begin to take values close to
zero with the appearance of an EQ signal (Fig. 5b).
(9)
 Noisy parameter l3ðtÞ: This parameter takes only negative values at all times t.
The negligible noise appears before the ‘‘event’’. As the ‘‘event’’ approaches the
noise increases in amplitude by the factor 3–5. The amplitude of oscillations
begins to decrease in Region IV (see Fig. 5c).
(10)
 Noisy parameters L1ðtÞ and L2ðtÞ: Parameters fluctuate, taking positive values
mainly before the ‘‘event’’ (Region I). When the ‘‘event’’ starts their values
increase greatly in absolute magnitude approaching zero. At the beginning of
Region II both parameters change their sign from positive to negative. Then for
Regions II, III and IV we see only a right line with L1ðtÞ;L2ðtÞ ! 0 on the scales
of Figs. 5d and e. However, the parameter L2ðtÞ has faintly visible fluctuations
for Region IV characterizing the final EQ phase (see Figs. 5d and e).



ARTICLE IN PRESS

                                           322
Hence, all parameters are very sensitive to the approach of a strong EQ. A sharp

change in their behavior is appreciable before strong fluctuations of the Earth’s
surface beyond 10 000 points (� 3:5 min).
5. Simple exponential model for time local behavior of noisy relaxation parameters

l1ðtÞ and L1ðtÞ

As can be seen from Figs. 3–5 all relaxation parameters are very sensitive to the
beginning of EQ and/or a TE. The behavior of parameters l1ðtÞ and L1ðtÞ in weak
local EQs and local underground explosions TEs is of great interest. These
parameters are initial in our calculations (see Eqs. (9), (10)). The analysis has shown
that parameters oscillate near average values l0 and L0, correspondingly, before and
after the oscillations visible on seismograms. The results of the behavior of these
parameters for the TE(3) and the EQ(3) are presented in Figs. 3a–d and Fig. 4a–d.
However, a sudden rise by factors Dl0 and DL0 is always observed in the behavior of
these parameters at the enhancement or the appearance of the signal (it is seen at the
beginning of the EQ or the TE in seismogram data). Furthermore, continuous
attenuation occurs. During all this time these parameters have a well-defined
pronounced trend. Such behavior of l1ðtÞ and L1ðtÞ gives us a possibility of
modelling the time dependence of these parameters by some simple mathematical
functions. The fitting procedure showed that the time behavior of these parameters
can be well approximated by the following simple time dependence:

l1ðtÞ ¼ l0 þ Dl � exp �
t � T0

Tl

� �
� Hðt � T0Þ ; ð46Þ

L1ðtÞ ¼ L0 þ DL � exp �
t � T0

TL

� �
� Hðt � T0Þ ; ð47Þ

whereHðtÞ is the Heaviside function, and Tl and TL are relaxation times of l1ðtÞ and
L1ðtÞ, correspondingly. Time T0 is the same in Eqs. (46) and (47) for parameters l1ðtÞ
and L1ðtÞ. Its numerical values are presented in Table 1.
The numerical values of the variables, included in the last Eqs. (46), (47) were

defined for our EQs and TEs by comparison of localization results with these
equations. They are presented in Table 2.
Therefore, it was proved that the restoration of these parameters to their steady

values occurs according to the exponential law. As can be seen from Fig. 4 this
description best suits l1ðtÞ and L1ðtÞ of weak EQs. The foregoing estimations fully
strengthen our resume (2) and (5) of Section 5.
The results presented in the last three columns of Table 2 might be of interest for

readers of this paper. As quantities Dl0=l0 and DL0=L0 show the rise of value of the
corresponding parameter at the explosion (at the EQ), the ratio between the ‘‘event’’
duration T l and the relaxation time Tl discovers a remarkable distinction between
TEs and weak EQs.
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6. Conclusion

In this work a universal method for investigating nonstationary, unsteady and
non-Markov random processes in discrete systems is suggested. This universality is
achieved by combining the opportunities of microscopic, mesoscopic and macro-
scopic descriptions for complex systems. This method allows to find and to analyze
fast, slow and superslow processes. To investigate superslow processes we propose to
use the model of ‘‘a quasi-Brownian particle’’ which moves chaotically in heat. The
wavelet-transformation of the initial time series and generalized kinetic Langeven
equation can be used for this purpose.
This method helps to analyze and differentiate similar signals of different origin.

Theoretical investigations have been realized by means of two methods supplementing
each other: the statistical theory of discrete non-Markov stochastic processes [2] and
the local noisy parameters. The application of the last method gives a possibility to
study nonstationary and unsteady processes with alternation and superimposition of
different modes. The correlation between the time scales characteristic of different
modes may be different. However, if accurately realized, the localization procedure of
the parameters and the calculation of their dynamics allow, as a rule, to separate the
noise and the signals [1,2], and to carry out their quantitative and informative analysis.
Another important advantage of the method is the possibility to operate it in a

‘‘real-time’’ regime, i.e., it can be put into practice immediately after obtaining the
data, which is of great practical value.
The developed approach has been tested for strong and weak EQs data and

nuclear underground TEs. As a result we have obtained the following results.
The time behavior of the local relaxation parameters can be described by simple

model relaxation functions. The temporal relaxation of parameters l1ðtÞ and L1ðtÞ in
weak EQs and TEs after the beginning of the ‘‘event’’ occurs according to the
exponential law. However, the restoration and duration of the events are practically
the same in the case of weak EQs. The restoration time of parameters l1ðtÞ and L1ðtÞ
in the case of TEs differs noticeably from the duration of the event. Thus, this
approach can be useful in recognition of these two different seismic phenomena.
From the analysis of strong EQ data one can see that the behavior of all parameters
changes greatly long before the EQ. For example, such a change for the EQ(T)
presented here occurs � 3:5 min before the main event. This change of liðtÞ and LiðtÞ

obtained for strong EQs opens the possibility for a more accurate registration of the
beginning of changes of the parameters before the visual wavelet and real EQs.
We are sure that the suggested method can be very useful for the study of a wide

class of random discrete processes in real complex systems of live and of lifeless things:
in cardiology, physiology, neurophysiology, biophysics of membranes and seismology.
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Appendix A. Three forms of the quasi-operator L̂

Equations of motion of a random variable x with the use of the derivative of the
three different forms [26] are represented here.
Using evolution operator, we can write the equation of motion for a discrete case

as follows:

dxðtÞ=dt ¼ iL̂xðtÞ : ðA:1Þ

However, there is a possibility of application of the time derivative d=dt ! D=Dt in
three different forms:
(1)
 ‘‘Right’’ derivative (with decurrent difference in numerator)

DxðtÞ

Dt
¼

xðt þ tÞ � xðtÞ

t
¼
1

t
Uðt þ t; tÞxðtÞ ðA:2Þ

with Liouville’s quasioperator of the following form:

L̂ðt; tÞ ¼ �
i

t
½Uðt þ t; tÞ � 1
 ; ðA:3Þ
(2)
 ‘‘Left’’ derivative (with ascending difference in numerator)

DxðtÞ

Dt
¼

xðtÞ � xðt � tÞ
t

¼
xðtÞ � U�1ðt; t � tÞxðtÞ

t
¼
1

t
½1� U�1ðt; t � tÞ
xðtÞ

ðA:4Þ

with the Liouvillian of the following form:

L̂ðt; tÞ ¼ �
i

t
½1� U�1ðt; t � tÞ
 ; ðA:5Þ
(3)
 ‘‘Central’’ derivative (with a central difference in the numerator)

DxðtÞ

Dt
¼

xðt þ tÞ � xðt � tÞ
2t

¼
xðt þ tÞ � xðtÞ

2t
�

xðtÞ � xðt � tÞ
2t

¼
1

2t
½Uðt þ t; tÞ � U�1ðt; t � tÞ
xðtÞ : ðA:6Þ

Then the quasioperator L̂ takes the following form:

L̂ðt; tÞ ¼ �
i

2t
½Uðt þ t; tÞ � U�1ðt; t � tÞ
 : ðA:7Þ
In the calculations and the analysis presented in this work we have used the
derivative of the first form [see Eqs. (A.2), (A.3)].
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