
Morphogenesis of Growing Amorphous Films 

Stefan J. Linz, Martin Raible and Peter Hänggi 

Theoretische Physik I, Institut für Physik, 
Universität Augsburg, 86135 Augsburg, Germany 

Abstract. In a first part of this paper, we survey the conceptional and method­
ological background of the stochastic field equations approach to model surface 
growth processes. In the second part, we focus on recent progress in the modeling 
of such equations for the specific case of vapor deposited amorphous thin films that 
allow for a quantitative validation with experimental data. 

1 Introduction 

The fundamental physical laws governing the macroscopic and the micro­
scopic world are, in principle, rather simple. Nevertheless, nature is able to 
create a highly complicated and structured world on the basis of these laws. 
Unraveling the hidden rules of nature how to fabricate such complex systems, 
Le. systems being built up of many interacting constituents and exhibiting a 
complicated overall behavior that is not at all evident from the known un­
derlying inter action between the individual constituents, has developed into 
a central area of current research in physics. 

The morphogenesis or structure formation of growing surfaces and in­
terfaces due to deposition processes constitutes a specific and nonetheless 
pararugmatic example of such a complex system [1,2]. Focussing on atomic 
deposition processes, the interplay of two individual components, Le. atoms 
or moleeules of the typical size of lO-lnm, is basically determined by their 
electromagnetic interaction. This, however, does not give us immediate in~ 
sights into the deposition processes of particles when they arrive at a surface 
profile of already collectively condensed particles: It is not at all obvious how 
to theoretically understand the plethora of different, experimentally observed 
surface structures that can be created by the variety of deposition methods, 
deposition conditions and specific type of particles. In this context, vapor 
deposited amorphous films exhibit the spectacular fact of building up surface 
patterns with some intrinsic regularity or periodicity on scales of the order 
of lOnm if the film thickness reaches values of several hundred nanometers 
[3-5]. 

Even if one were able to simulate the corresponding full ab-initio many­
particle problem on square areas of the corresponding size and for correspond­
ingly long deposition times, this would not directly lead to physical insights 
into the underlying physical phenomena happening on the mesoscale. In the 
last fifteen years, an alternative approach to study surface growth phenomena 
[1,2,6,7] basically pioneered by the seminal work of Kardar, Parisi and Zhang 
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Fig. 1. Sketch of a representative deposition process: Particles from the incoming 
ßux (denoted by the arrows) are deposited on the rugged surface and contribute to 
the spatio-temporal evolution of the surface. 

[8] has attracted considerable interest and developed into a significant branch 
of surface physics. Here, the primary ideas are to consider the surface struc­
ture as a continuous two-dimensional manifold on a superatomic level as, for 
instance, represented by scanning tunneling microscopy images and then to 
model its spatio-temporal evolution by means of stochastic field equations 
(SFEs) that incorporate the relevant mesoscopic relaxation mechanisms of 
the deposited particles. 

The focus of this work is twofold. In section 2, we critically review the 
basic strategies of the SFE approach for spatio-temporally evolving surface 
morphologies and put some emphasis on the pattern forming aspect of such 
equations. In section 3, we specifically apply this method to the problem of 
amorphous thin film growth by physical vapor deposition. We review and ex­
tend recent investigations that lead, by comparison with experimental data, 
to a rather complete picture of the significant relaxation phenomena and, 
most importantly, to an elementary description of the vapor deposition pro­
cess in form of a minimal deposition equation. 

2 Basic Concepts 

General strategy. As starting point, we present here a synoptic account 
of the framework of stochastic field equations (SFEs) to model surface mor­
phologies (for a thorough overview see Refs. [2,7]) including the clarification of 
some misconceptions in the literature. The general idea of the SFE approach 
is comparatively straightforward: A generally spatio-temporally varying fiux 
of particles given by lex, t) reaches the surface (cf. also Fig. 1), the particles 
from the beam are deposited at the surface and then undergo various surface 
diffusion processes until they arrive at their final position. The growing layer 
built up by the deposited particles forms a spatio-temporally evolving free 
surface that is characterized by its height or morphology H(x, t) at time t and 
the location x = (x, y) measured with respect to coordinates of the initially 
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flat surface H(x, 0) = O. The SFE approach disregards the mieroseopie details 
of the particle arrangement and interaction at the surfaee and eonsiders the 
growth proeess on a slighty larger length seale, the meso- or nanoseale, where 
the (eoarse-grained) surface morphology H(x, t) ean be regarded as a field 
variable evolving eontinuously in spaee and time. Then, the rate of change 
of the surface height H(x, t) ean be expressed in form a partial differential 
equation 

8t H (x, t) = G[V'H, ... ] + I(x, t) (1) 

where the funetional G[V' H, ... ] depends only on spatial derivatives of H and 
their nonlinear eombinations and eomprises all physieal mechanisms leading 
to growth and relaxational proeesses at the surface. Writing down (1), three 
fundamental symmetry requirements [2] for surface growth proeesses have 
been already ineorporated: (i) no dependenee of (1) on the speeifie choice 
of the origin of time implying invariance under translation in time, (ii) no 
dependenee of (1) on the specifie choice of the origin of the eoordinate sys­
tem implying invariance under translation in the direction perpendicular to 
the growth direction, and (iii) no dependenee of (1) on the speeifie choice of 
the origin of the H -axis implying invariance under translation in growth di~ 
rection. These symmetry requirements on the evolution equation (1) exclude 
anyexplicit dependenee of the functional G[ .. ] on the time t, the spatial po­
sition x, and the height H, respeetively. Note, however, that these symmetry 
requirements do not neeessarily apply to the solutions H(x, t) of (1), too. 

It is worthwhile noting that (1) eontains several implicit assumptions: 
(i) the relaxation proeesses are loeal in space, (ii) no, in principle possible 
changes in bulk of the already built-up layer are taken into aceount, (iii) in 
order to guarantee single-valuedness of H(x, t), no overhangs in the evolv­
ing surface strueture are allowed, and (iv) to fulfill moderate existenee and 
uniqueness requirements for H(x, t), the (eoarse-grained) surface profile can 
have at most some eusps with a non-zero opening angle. 

How does stochasticity enter into (I)? In many physieal applieations 
such as vapor deposition experiments [3-5], the deposition flux is basically 
eonstant with some small superimposed spatio-temporal variations resulting 
from the particle souree. As a eonsequenee, the deposition flux ean be split 
into a spatio-temporally eonstant mean deposition flux F and a fluctuating 
part I(x, t) = F + 1J(x, t). As a simplest model for the generally not well­
known fluetuations 1J(x, t) one usually uses spatio-temporal Gaussian white 
noise determined by (1J(x, t)}1/ = 0 and (1J(x, t) 1J(x', t')}1/ = 2D o(x-x') o(t­
t'). Here, ("'}1/ denotes the ensemble average, and D the fluctuation strength. 
Sinee the mean deposition flux F is constant it also proofs useful to introduee 
the height profile h(x, t) = H(x, t) - Ft in the frame eomoving with the 
velo city F. Then, (1) simplifies to 

8t h = G[V'h] + 1J(x, t). (2) 
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As an aside, we note that the method leading to (2) also works if the mean 
deposition flux F(t) contains an experimentally predetermined dependenee 
on time t. Then one straightforwardly arrives at (2) if the definition hex, t) = 
H(x, t) - J~ F(t') dt' is used. 

How to specify the functional G[ .. ]? As explained before, all physics 
of the growth proeess is hidden in the funetional G[ .. ]. So, the variety of 
different experimentally observable surfaee structures must be direetly re­
lated to the specifie funetional form of G[ .. ]. Basically two approaches are 
used in the literature. One way is to select known physical relaxation meeh­
anisms (for eolleetion of such mechanisms see e.g.[2]) that are eonsidered to 
be relevant for the speeifie system, eombines them and tries to eompare the 
outeome with experimental data. This method has the drawback of being non­
systematic. Another way is to start from the guiding principle of simplicity 
of the funetional form of G[ .. ] eombined with further symmetry requirements 
for the specifieally eonsidered system and aseries expansion of G[ .. ] in small 
gradients of hup to some given order. In this ease, one obtains a systematic 
skeleton ofthe funetional form ofthe SFEj it is, however, not direetly evident 
how to relate all the terms to underlying growth and relaxation processes. 

In the remainder of this section, we foeus on deposition processes that also 
possess invariance under rotation and reftection in the plane perpendieular 
to the growth direetion. An example for such processes is amorphous growth 
where the isotropy of the amorphous phase implies such an invarianee. This 
symmetry immediately excludes any odd derivatives of h in G and implies 
that V' -operators entering the various contributions in G must be multiplied 
in eouples by sealar multiplieation. Assuming that all surfaee relaxation pro­
cesses are loeal, we finally expand the funetional G in apower series in all 
possible spatial derivatives of h and keep only the terms that are linear or 
quadratic in h and only possess a maximum of four V'-operators. As a result 
of the afore-mentioned symmetries, the deterministic part of (2) ean only eon­
sist of the terms V'2h, (V'h)2, V'4h, V'2(V'h)2, (V'2h)2, and V' . [(V'h)(V'2h)]. 
The last term ean be slightly rearranged in the form 

(3) 

with 

(4) 

Consequently, a systematic expansion of the funetional form of the growth 
equation (1) that takes into aceount (i) all afore-mentioned symmetries and 
(ii) all admissible eombinations of terms being linear or quadratie in hex, t) 
and eontaining up to a maximum of four V'-operators is given explicitly by 
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8t h = alV2h+a2V4h+a3V2(Vh)2 

+a4(Vh)2 + as(V2h)2 + a6M + 'fJ. (5) 

Eq.(5) constitutes the main result of this section. 

Some general remarks. Equation (5) consists of two linear terms and 
four nonlinear terms in h. The term being proportional to a6 becomes zero 
in the one-dimensional limit. This shows the principal problem that one­
dimensionally motivated surface growth equations cannot be carried over 
to the two-dimensional case by simply replacing 8z -t V. Moreover, it is 
interesting to note that Lai and Das Sarma [10] have also attempted to derive 
the leading order functional form of a growth equation using isotropy and the 
fact that the functional G in (2) is a scalar. Their result, however, significantly 
differs from (5) since the terms as(V2h)2 and a6M are missing. Therefore, 
we conclude that Lai and Das Sarma's growth equation [10] represents an 
inconsistent systematic expansion since the terms (8;h) (8;h) - (8z 8yh)2 and 
(8;h)2 + (8;h)2 + 2(8;h) (8;h) are not properly taken into account. 

The growth equation (5) contains several known limiting cases. The limit 
ai = 0 for i = 1, .. , 6, 8t h = 'fJ, is considered as an appropriate model for 
random deposition [2]. Setting ai = 0 for i = 2, .. ,6, 8t h = al V 2h + 'fJ, yields 
the Edwards-Wilkinson (EW) equation originally motivated in the context 
of granular systems [11]. The limit ai = 0 for i = 2,3,5,6, determines the 
Kardar-Parisi-Zhang (KPZ) equation, 8t h = al V 2h+a4(Vh)2 +1], being the 
paradigm for a stochastic roughening process [8]. Finally, the limit ai = 0 
for i = 3,5,6, 8t h = al V 2h + a2V 4h + a4(Vh)2 + 'fJ, leads to the stochastic 
version of the Kuramoto-Sivashinsky (KS) equation [12]. 

Pattern forming aspects. Prom the viewpoint of nonlinear dynam,. 
ics, the KPZ equation and the KS equation can be considered as an­
tipodal paradigms although they only differ by the term V4 h. This can 
seen from the linearized version of (5) that dominates the initial stages 
of the growth process. Neglecting any stochasticity for the moment, in­
serting a solution or mode ansatz hex, t) = ho exp(ik . x) exp(at) into 
8t h = al V2 h + a2 V4 h directly leads to the dispersion relation for the growth 
rate, a(k) = -a1k2 +a2k4, with k = Ikl being the modulus ofthe wave vector 
k. Depending on the sign of the coefficients al and a2, four main types of 
behavior can be distinguished. For al > 0 and a2 ::; 0, all modes are damped 
with time, whereas for al < 0 and a2 ~ 0 all modes grow with time and they 
grow the faster, the larger the wave number iso If al > 0 and a2 > 0, then all 
mo des beyond the threshold kT = JaI/a2 grow. The most important case, 
however, occurs if al < 0 and a2 < O. Then, only wave numbers k in the 
range 0 ::; k ::; J al / a2 can grow with time and, moreover, there is a fastest 
growing mode km = J al /2a2 that dominates the evolution of h. The latter 
result teIls us that, at least for stages where the linearized version of the KS 
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equation is sufficient, a pattern with an underlying periodicity dominated by 
km develops. This growth mechanism disappears in the KPZ-type limit when 
a2 is set to zero. Physically interesting behavior of the KPZ equation appears 
when al > O. Then, the col1aborate effect of the noise and the nonlinearity 
leads to a stochastic roughening of the surface with self-affine character [2]. 
The noisy KS equation for al > 0 and a2 < 0 leads to a similar behavior. H, 
however, al < 0 and a2 < 0, the pattern forming mechanism dominates (for 
smal1 enough noise amplitudes) the early stages of the growth process. The 
role of the entering nonlinearity is to modify the pattern at later stages of 
the growth process. 

Besides the invariances already invoked for its derivation, the growth equa­
tion (5) possesses an interesting additional symmetry: It remains invariant 
under the combined transformation 

(6) 

As a consequence, one has to expect that a simultaneous change of the sign of 
the coefficients a3, a4, a5, a6 belonging to the nonlinear terms in (5) only leads 
to an inversion of the surface profile hex, t) about h = O. Note, however, that 
(5) does not possess mirror symmetry about h = 0, i.e. it does not fulfill the 
up/down invariance h -+ -h (without inversion of the signs of the nonlinear 
coefficients). This already implies some degree of asymmetry of the resulting 
surface profile hex, t). 

Conservative growth processes. A frequently invoked further requir&­
ment on surface growth equations [2,7] is that the functional G should be 
represented by the divergence of a surface current, G = -\7 . ja (\7h) if no 
desorption of particles can occur. Such an assumption directly rules out the 
appearance of a KPZ term (\7h)2 and the term (\72h)2 in G. It also implies 
that the spatial and ensemble averaged height is related to the deposition 
flux by ((H(x,t)}'l}x = Ft or, equivalently, that ((h(x,t))'l}x = 0 holds. 
The afor&-mentioned assumption, however, also implicitly implies that nO 
coars&-grained density variations can occur. In the presence of local den­
sity variations, a discussion starting from the condition that nO incom­
ing particles are lost (cf. the following section) can lead to a KPZ term 
(\7h)2 and a term (\72h)2 and, therefore, also to a nonzero excess velocity 
v = ((8t h}'l}x = ((a4(\7h)2 + a5(\72h)2}'l}x of the surface profile hex, t). 

How to make contact with experimental results? Modern experi­
mental investigation tools such as scanning tunneling microscopy combined 
with image processing allow for a detailed resolution of the surface morphol­
ogy and its spatio-temporal evolution [3-5]. Since the obtained data set is too 
immense and the data also contain some degree of stochasticity due to the 
small deposition noise resulting from the particle source, the height-height­
correlation function 

C(r, t) = (([H(x + r, t) - (H}x][H(x, t) - (H}x]}'l}x.lrl=r (7) 
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determines an appropriate quantitative statistieal measure for the informa­
tion on height variations and lateral correlations. In (7), ( ... }7J represents 
an average over different sampies (ensemble average), ( ... )x = L-2 JoL d?x ... 
the spatial average over a sampie area of size L2, and (H}x = (H}x(t) = 
(H(x, t)}x the spatially averaged surface profile at time t. The height-height­
correlation function C(r, t) contains the two most important global quan­
tities that characterize the surface morphology: (i) The correlation length 
Re(t) that is given by the first maximum of C(r, t) for non-zero r, Le. by 
Re(t) = min{r > 018r C(r, t) = 0, 8;C(r, t) < O}, and, therefore, determines 
the typieallength scale over whieh height fluctuations are correlated, and (ii) 
the surface roughness w( t) or root mean square deviation ofthe relative height 
fluctuations that is determined by the r = O-limit of C(r, t), w2 (t) = C(O, t). 
Another often used statistieal measure of the surface morphology is the spec­
tral power density that is determined by 

C(k, t) = C(lkl, t) = F[C(r, t)] = F[C(lrl, t)] (8) 

where F[ ... ] represents the two-dimensional Fourier transform with respect 
to the wave vector k. As a minimum requirement for a successful model­
ing attempt of the spatio-temporal evolution of H(x, t), the validation of 
the temporal evolution of Re(t) and w(t) in comparison with the available 
experimental data needs to be achieved. 

3 Deposition Equation for Thin Film Growth 

In this section, we specifically focus on the growth of solid amorphous films 
generated by physical vapor deposition under normal incidence of the particle 
flux that is important e.g. in the context of coating and the manufacturing of 
thin glassy ZrA1Cu films and has recently attracted interest [3-5,13] in ma­
terials science. We review and partly extend some major results obtained in 
recent works [13-16] on the development and detailed analysis of a minimal 
model in form of a SFE that (i) appropriately describes the spatio-temporal 
evolution of such amorphous surface growth processes and (ii) stands the test 
of a quantitative comparison with available experimental data [3-5,13]. From 
the theoretieal point of view, amorphous film growth constitutes a partieu­
larly attractive testing ground for a quantitative comparison of experimental 
data and theoretieal approaches since (i) there are not any long range or­
dering phenomena (as in epitaxial growth processes) to be expected, (ii) the 
effect of terrace formation and, therefore, the Ehrlich-Schwoebel effect being 
significant for epitaxial growth processes are absent, and (iii) the growing 
film should be spatially isotropie. As an appropriate starting point, we can 
directly use the general form (5) that contains all basie symmetries relevant 
for the vapor deposition process. 
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Fig.2. Microscopic effects of amorphous surface growth. Left part: InHection of 
particles due to interatomic interaction. Middle part: Surface diffusion of deposited 
particles due to surface relaxation. Right part: Equilibration of the inhomogeneous 
particle concentration due to the geometry of the surface. 

Physics behind the growth equation. Guided by the principle that 
any mathematically admissible term might have some physieal significanee, 
we next relate all terms appearing in the growth equation (5) to the four 
competing mieroseopic mechanisms 

- surface tension [18] 
- eoneentration equilibration of deposited partieies [19,20] 
- steering of arriving partieies [14] 
- inhomogeneous density distribution [14,15] 

that, as we shall see in the next section, seem to dominate physieal vapor de­
position and are all, at least at some stages of the growth proeess, important. 
Also the signs and the order of magnitude estimates of some eoefficients in 
(5), as weH as a physically motivated simplifieation of (5) are obtained. 

The linear term proportional to a2 in (5) ean be interpreted as the result 
of a type of a mieroseopie surface tension effeet as originally suggested by 
MuHins [18]. The basie idea behind this effect (cf. also the middle part of 
Fig. 2) is that the just deposited partieles favoritely move to positions at 
the surfaee that have positive eurvature '\72 h > 0 sinee there, the already 
eondensed surface partieies form a loeal vieinity with higher binding energy. 
This gives rise to a diffusion eurrent jm oe '\7('\72h) that, depending on the 
loeal eurvature, ean be uphiH or downhill. The divergenee of this eurrent, 
-'\7 ·jm = a2'\74h, contributes to the surface evolution in (5) with a2 being 
neeessarily negative. This term basica1ly tries to minimize the area of the 
surface and, as a consequenee, to smooth the surface morphology. . 

The nonlinear term proportional to a3 can be related to the tendeney of 
equilibrating the non-homogeneous eoneentration C of the deposited partieies 
just after arriving at the surface. This effect has originally been suggested 
by Villain [19] (cf. also [20)). The underlying reason is of purely geometrie 
nature. Although the deposition flux is basieally homogeneous, more partieies 
per surface area arrive at positions with a small or zero modulus of slope '\7 h 
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than at positions being strongly inelined with respect to the partiele beam, cf. 
also the right part of Fig. 2. Therefore, the local concentration of the diffusing 
particles right after the deposition is not constant, but is weighted by the local 
slope of the surface, C (X 1/ VI + ('\1h)2, or in a small gradient expansion, C (X 

1- !('\1h)2. Then, the tendency to equilibrate the concentration is reflected 
by a diffusion current je (X -'\1 C (X '\1 ('\1 h)2, or, after taking the divergence, 
by the term -'\1 . je = a3 '\12 ('\1 h)2 that contributes to the height changes 
in (5). Obviously, concentration equilibration requires that the coefficient 
a3 is negative and also tries to smooth the surface morphology. A simple 
dimensional argument leads to an estimate for a3. Equation (5) implies that 
the coefficient a3 has the dimension of length3 /time. The magnitude of a3 

necessarily depends on the deposition flux F that possesses the dimension of 
length/time and the mean diffusion length 1 which is the only relevant length 
scale determining this process. The only combination of F and 1 leading 
to the correct dimension of a3 is Fl2. Therefore, one expects a3 (X - Fl2 .
A thorough discussion of the concentration equilibration [14] supports this 
argument and yields the explicit relation a3 = -~FI2. Moreover, one expects 
that the typical magnitude of I is of the order of several atom diameters. 

The two terms in (5) that are proportional to al and a6 can microscop­
ically be related to the steering of the arriving partieles. Here, the basic 
idea [14] is that the particles from the beam experience elose to the growing 
surface a deflection due to the interatomic attractive interaction with the 
already condensed surface partieles. As a consequence, the particles do not 
hit the surface perpendicular to the substrate orientation, but perpendicular 
to the surface itself. This implies that more particles arrive at positions at 
the surface with negative curvature, '\12 h < 0, than at positions with posi­
tive curvature '\12 h > O. Effectively, this leads to a tendency to roughen the 
surface morphology. We refer to Ref. [21] for experimental indications of the 
relevance of this effect. To model this scenario in a dynamical way [14], we 
use the idealization that the particles undergo a change of direction only af­
ter reaching a critical distance b, the effective range of the interaction, from 
the surface and are then attracted such that they arrive perpendicular to the 
surface, cf. the left part of Fig. 2. A detailed mathematical derivation [14] 
using a reparametrization in the coordinates of the imaginary surface where 
the interaction becomes effective (cf. the dotted line in the left part of Fig. 2) 
and a small gradient expansion in h in fact shows that this scenario gives 
simultaneously rise to the two contributions al '\12h and a6M in (5). More­
over, the coefficients al and a6 can be related to the mean deposition flux 
F and the effective range b of the interatomic interaction yielding al = - Fb 
and a6 = Fb2 [14]. Although b cannot be directly measured its magnitude 
should be typically of the order of one atomic diameter and, therefore, much 
smaller than the radius of the surface curvature. This implies that the term 
proportional to a6 is of minor relevance in comparison to the al-term and 
can be neglected. Moreover, the sign of al is negative. 
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The physical origin of the nonlinear terms proportional to a4 and a5 is 
determined by the potential variations of the coarse-grained density [13,14]. 
These terms cannot result from particle desorption since the substrate is held 
at room temperature and the particle energy in the vapor beam is rather 
low (typically of the order O.leV). Therefore, all arriving particles finally 
contribute to the surface growth. As a consequence, any term that cannot be 
recast in form of the divergence of a current in (5) arises from changes of the 
coarse-grained density. Assuming for the moment that the deposition noise 
is zero (1] = 0), particle conservation implies that the rate of change of the 
number of particles per substrate area above a given substrate location, C, is 
determined by a balance equation 8t C = -V -je+PoF. Here the divergence of 
the current je is given by the combination of all surface relaxation processes 
(cf. the afore-mentioned arguments), Le. by -V ·je = Po [al V 2H +a2V 4H + 
a3 V2 (V H)2 + a6M], and Po represents the density of the growing film in the 
case of a horizontal surface. Allowing for density variations at the growing 
surface, the rate of change of C is related to the rate of change of the height 
H by 8t C = p(VH)8t H. Here p(VH) denotes the density at the surface. 
Without the incorporation of density changes (p = Po = const.), there is a 
direct proportionality 8t C = Po8tH. H small density variations are taken into 
account, p(V H) can be expanded in the derivatives of H yielding p(V H) = 
po[1 + ql(VH)2 + q2V 2H] in lowest order approximation. Therefore, 8t H = 
Pr;t [1 - ql (V H)2 - q2 V2 H]8t C holds. Inserting this in the balance equation 
from above, explains the presence of the two terms -qlF(VH)2 = a4(Vh)2 
and -Q2al(V2H)2 = a5(V2h)2 appearing in (5). From the physical point 
of view, however, density changes are primarily connected to the gradients 
of the surface profile reflecting the local arrangement of the particles at the 
surface and not so much to the surface curvature. Therefore, it is plausible to 
disregard the term a5 (V2 h)2 in a minimal description of the growth evolution. 
Since the density variations result from a widening of the mean inter-particle 
distances at the surface or an enlarged number of microscopic vacancies in 
the growing material one has to expect that they locally decrease the density 
implying that a4 > 0 holds. 

Taking into account the afore-mentioned physical arguments, the terms 
a5(V2h)2 and a6M are negligible in leading order and, as a final result, we 
obtain the model equation for amorphous film growth [9,13-15], 

8t h = al V 2h + a2 V 4h + a3 V 2(Vh)2 + a4(Vh)2 + 1] (9) 

with al, a2, a3 being negative and a4 being positive. 
Using stochastic numerical simulations of the surface growth equation 

(9) starting from a flat substrate (for details of the different methods see 
Ref. [17]), we investigate in the remainder of this contribution the evolution 
of the correlation length Re and surface roughness w as a function of the 
experimentally measurable layer thickness H. This quantity is determined by 
H = ((H(x, t)},,)x = Ft+((h(x, t)},,)x and is, in general, implicitly connected 
to the time t via the solution of (9). The latter results from the fact that 
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Fig.3. Solid lines (dashed lines): Correlation length Re and surface roughness w 
for the experimentally investigated thickness interval 0 ~ H ~ 480nm calculated 
from the nonlinear growth equation (9) using the parameters al = -O.0826nm2 /s, 
a2 = -O.319nm4 /s, a4 = O.055nm/s, D = O.0174nm4 /s and a3 = -O.10nm3 /s (a3 = 
Onm3 /s). Diamonds represent the corresponding experimental results previously 
published in Ref.[3,22]. This figure is taken from Ref.[13]. 

the surface profile generated by (9) possesses a finite excess velocity, v = 
«8t h}'1}x = ((a4{VTh)2}'1}x. Since a4 is positive the average of the surface 
morphology H{x, t) = Ft + hex, t) grows with a faster speed than F as a 
result of the inhomogeneous density distribution. 

Selected results. Here, we show that the model equation (9) is indeed 
able to quantitatively reproduce experimental data on the correlation length 
Re and surface roughness w if the coefficients al, a2, a3, a4 and D are ap­
propriately chosen. For the specific example ofthe growth of Zr65AI7.5Cu27.5 
films [3-5,13], a parameter estimation procedure discussed in detail in [13] 
yields for the coefficients in (9) al = -0.0826nm2 js, a2 = -0.319nm4 js, 
a3 = -0.lOnm3 js, and a4 = 0.055nmjs and for the strength of the depo­
sition noise D = 0.0174nm4 js. The experimentally determined mean depo­
sition flux is given by F = 0.79nmjs. For this set of parameter values, we 
show the dependence of the correlation length Re and surface roughness w 
(solid lines) on the thickness of the amorphous film in Fig. 3 and infer a very 
good agreement with the corresponding experimental data. For comparison, 
the corresponding results of the Kuramoto-Sivashinsky limit (a3=0, dashed 
lines) are given. Since the correlation length ceases to exist at a film thick­
ness of about 300nm in this limit we also conclude that both nonHnear terms 
proportional to a3 and a4 are necessary to reproduce the experimental data. 
Leaving off the term that describes the effect of density inhomogeneities, 
a4 = 0, the surface roughness increases strongly with time and does not show 
the cross-over to a saturation at layer thicknesses of about 480nm {for more 
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details ofthis limit cf. Ref.[14,15]). Moreover, both linear terms proportional 
to al and a2 are necessary to excite the growth instability at the initial stages 
ofthe growth process [14]. Consequently, (9) must be considered as a minimal 
model for the growth of amorphous Zr65Ah.5Cu27.5 films. 

The extrapolated parameters al, a2, a3, a4, and D also allow for mi­
croscopic estimates [13]. (i) Since al = -Fb, the typical range b of the 
inter action between the surface atoms and the particles to be deposited is 
about O.lnm, Le. of the size of the radii (0.2nm) of the surface atoms. (ii) 
Since a3 = - Fl2 /8, the diffusion length l is ab out 1.0nm. Consequently, the 
deposited particles experience a surface diffusion on a nanometer scale and 
do not just stick at the places where they hit the surface. (iii) If the par­
ticles arrive independentlyon the surface, the deposition noise is related to 
the particle volume n and the mean deposition rate F by 2D = Fn [14], 
yielding n = 0.04nm3 . This is up to a factor of two the averaged particle 
volume of ZrAICu. (iv) The local density of the growing film varies with the 
surface slope: On an inclined surface area the local density is decreased by 
p('Vh) = poh with I = 1 + (a4/F)('Vh)2 (where a4/F is about 0.07). These 
finite density variations are physically compatible with the small diffusion 
length l of two to three atom diameters. At the layer thickness 480nm, this 
local density reduction I (averaged over the surface) possesses a mean 1.021 
and a standard deviation 0.017. 

Finally, we present in Fig. 4 the dependence of the Fourier transform of 
the height-height correlation function, eCk, t) (see (8», on the modulus ofthe 
wave vector for five subsequent deposition times or layer thicknesses obtained 
from the numerical solution of (9). Also here, our numerical simulations show 
a striking agreement with previously published experimental data (cf. Fig. 4 
[right part] in Ref.[22] and also Fig. 3 in Ref.[23]). As in these experiments, 
one recovers (i) the characteristic decay proportional to k-4 that gives clear 
evidence of the importance of the Mullins term a2 'V4h in (9) and (ii) the 
slight buckling of eCk) for the layer thickness of 480nm and wave numbers 
k somewhat larger than 1O-lnm-1 where in a narrow range of k a decay 
proportional to k-1 can be fitted. A detailed numerical comparison with and 
without the density variation term, a4('Vh)2, in (9) shows that this effect 
is directly related to the inclusion of density variations. Based on their ex­
perimental data (cf. Fig. 3 in Ref.[23]), Mayr and Samwer [23] have recently 
suggested an alternative explanation for this effect. Using the old idea tracing 
back to Mullins [18] that a linear term leading to a decay proportional to k-1 

might be related to viscous flow in the bulk, these authors have designed a 
qualitative model of viscous hill coalescence to explain this feature. Since the 
decay of the power spectral density eCk, t) proportional to k-1 in a small 
range of k is in our analysis a direct consequence of the nonlinear KPZ term, 
it does not seem to substantiate the presence of viscous flow in the bulk. 
Moreover, the remark in [23] that the KPZ term, a4('Vh)2, in (9) might be 
interpreted as the lowest order mathematical representation of viscous hill 
coalescence is not convincing. If no desorption takes place and a KPZ term, 
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Fig.4. Dependence of the Fourier transform of the height-height correlation func­
tion or power spectral density, G(k, t), on the modulus of the wave vector for 
five subsequent deposition times or layer thicknesses calculated from the nonlinear 
growth equation (9) using the parameters Ul = -O.0826nm2 /s, U2 = -O.319nm4 /s, 
U3 = -O.lOnm3/s, U4 = O.055nm/s and D = O.0174nm4 /s. 

a4(V'h)2, is invoked to explain experimental data, then it must be related to 
density variations. All other effects that are based on transport mechanisms 
should be expressible in terms of divergences of currents. 

Next, we explore some properties of the growth process in a layer thick­
ness range up to 2000nm that has so far not yet experimentally investigated. 
The results in Fig. 3 up to a layer thickness of 480nm suggest that the growth 
process has not yet reached a final, not necessarily stationary state. Using 
again the afore-mentioned parameter values, the dependence of the corre­
lation length Re and surface roughness w (solid lines) on the thickness of 
the amorphous film is shown in Fig. 5 (the dashed lines refer to the special 
case a3=O). Obviously, the surface roughness has reached an almost constant 
value for a layer thickness larger than 600nm that increases only very weakly 
as the growth process proceeds. In contrast to that, the correlation length 
steeply decays after reaching a maximum and then saturates in an almost 
constant value for a layer thickness larger than 600nm as the growth process 
proceeds. For further results, in particular the properties of the correlation 
function and the related height difference correlation function as well as vi­
sualizations of the surface morphology and a theoretical interpretation of the 
various stages of the growth process, we refer to Ref.[15]. 
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Fig. 6. Visualization of the cross-section of the spatio-temporal evolution of the 
growing surface of the film calculated from the nonlinear growth equation (9). Left 
part: realistic parameters for ZrAICu al = -O.0826nm2 /s, a2 = -O.319nm4 /s, a3 = 

-O.10nm3 /s, a4 = O.055nm/s, and D = O.0174nm4 /s; right part: same parameters 
except of a sign change of al, Le. al = O.0826nm2 /s. 

To obtain further insight into the spatio-temporal evolution of the sur­
face morphology, we present in the left part of Fig. 6 a representative one­
dimensional cross-section of the growth of the surface profile (for y = 0) with 
increasing time or layer thickness. For demonstration purposes, the relative 
height fluctuations have been weighted by a factor of 20 relative to the mean 
thickness (H)x = (H)(x,y). From the left part of Fig. 6, three remarkable fea­
tures can be read off. First, as the time proceeds and the layer builds up, the 
surface morphology develops into a predominantly almost periodic structure 
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with an averaged periodicity length given by the eorrelation length Re . and 
some superimposed stoehastic variations. Seeond, the evolving mound and 
dip strueture is asymmetrie in the sense that the dips are eomparatively nar­
row in eontrast to the wide mounds. Third and most remarkably, the surfaee 
morphology does not approach a stationary profile in the thickness range 
lOOOnm ::; (H)(z,y) ::; 2000nm. Despite the fact that statistical quantities 
such as the correlation length and the surfaee roughness are almost eonstant 
in this thickness interval, the surface profile still varies signifieantly with time. 
The right part of Fig. 6 depicts (up to some scaling of the amplitudes) the 
evolution of the surface morphology for the same parameters except that the 
sign of the eoefficient al has been inverted. Although this parameter set is 
not really physical, it shows the remarkable fact that, as a eonsequenee of the 
inversion of the sign of al, the surfaee strueture changes from a pattern with 
intrinsie regularity (depicted on the left panel of Fig. 6 with negative al) to a 
stochastically varying profile without any regularity when al ehanges its sign 
(see right panel of Fig. 6). Beyond that, the roughness of the surface itself is 
largely redueed in comparison to the ease al < O. The distinet surface evolu­
tion for positive and negative values of al supports our previous statements 
about pattern forming aspeets in section 2. 

4 Conclusions and Perspectives 

Based on (i) a systematically derived minimal functional form of a growth 
equation being appropriate for the understanding of amorphous thin film 
growth, cf. equation (5), and (ii) relations of the terms oeeuring in the fune­
tional form (5) to underlying mieroseopie surfaee relaxation meehanisms, a 
quantitative agreement of the temporal evolution of the eorrelation length 
and the surface roughness of the surfaee morphology with experimental data 
ean be aehieved. We expect that similar quantitative agreement of experimen­
tal data and appropriately modeled SFEs for the spatio-temporal evolution 
of surface morphologies ean also be obtained for different systems such as for 
erystalline growth processes or sputter deposition. 

Acknowledgement: This work has been supported by Sonderforschungsbereich 
438 (TU München/Univ. Augsburg), Projeet Al. 

References 

1. Tong, W. M., Williams, R. S.: Kinetics of surface growth. Annu. Rev. Phys. 
Chem. 45 (1994) 401-438 

2. Barabasi A.-L., Stanley, H. E. : Fractal concepts in sur/ace growth (Cambridge 
University Press, Cambridge, 1995) 

3. Reinker, B., Moske, M., Samwer, K.: Kinetic roughening of amorphous ZrAICu 
films investigated in situ with scanning tunneling microscopy. Phys. Rev. B 56 
(1997) 9887-9893 



118                                  

4. Mayr, S. G., Moske, M., Samwer, K.: Early stages in amorphous Zr65Ah.5CU27.5 
film growth on HOPG. Europhys. Lett. 44 (1998) 465-470 

5. Mayr, S. G., Moske, M., Samwer, K.: Identification of key parameters by 
comparing experimental and simulated growth of vapor deposited amorphous 
Zr65 AI7.5Cu27.5 films. Phys. Rev. B 60 (1999) 16950-16955 

6. Krug, J.: Origins of scale invariances in growth processes. Adv. Phys. 46 (1997) 
139-282 

7. Marsili, M., Maritan, A., Toigo, F., Banavar, J. R.: Stochastic growth equations 
and reparametrization invariance. Rev. Mod. Phys. 68 (1996) 963-983 

8. Kardar, M., Parisi, G., Zhang, Y. C.: Dynamic scaling of growing interfaces. 
Phys. Rev. Lett. 56 (1986) 889-892 

9. Linz, S. J., Raible, M., Hänggi, P.: Stochastic field equation for amorphous sur­
face growth. Lecture Notes in Physics 551 (2000) 473-483 

10. Lai Z.-W., Das Sarma S.: Kinetic growth with surface relaxation: continuum 
versus atomistic models. Phys. Rev. Lett. 66 (1991) 2348-2351 

11. Edwards S., Wilkinson D.R.: The surface statistics of a granular aggregate. 
Proc. Roy. Soc. London A 381 (1982) 17-31 

12. Drotar, J. T., Zhao, Y.-P., Lu, T.-M., Wang, G.-C.: Numerical analysis of the 
noisy Kuramoto-Sivashinsky equation in 2 + 1 dimensions. Phys. Rev. E 59 
(1999) 177-185 

13. Raible, M., Mayr, S. G., Linz, S. J., Moske, M., Hänggi, P., Samwer, K.: Amor­
phous thin film growth: theory compared with experiment. Europhys. Lett. 50 
(2000) 61-67 

14. Raible, M., Linz, S. J., Hänggi, P.: Amorphous thin film growth: minimal de­
position equation. Phys. Rev. E 62 (2000) 1691-1705 

15. Raible, M., Linz, S. J., Hänggi, P.: Amorphous thin film growth: effects of 
density inhomogeneities. Phys. Rev. E 64 (2001) 031506 1-11 

16. Linz, S. J., Raible, M., Hänggi, P.: Amorphous thin film growth: modeling and 
pattern formation. Adv. Solid State Phys. 41 (2001) 391-403 

17. Raible, M., Linz, S. J., Hänggi, P.: Amorphous thin film growth: simulation 
methods for stochastic deposition equations. Acta Phys. Pol. B 33 (2002) 1049~ 
1061 

18. Mullins, W. W.: Theory ofthermal grooving. J. Appl. Phys. 28 (1957) 333-339; 
Flattening of a nearly planar solid surface due to capillarity. J. Appl. Phys. 30 
(1959) 77-83 

19. Villain, J.: Continuum models of crystal growth from atomic beams with and 
without desorption. J. Physique I 1 (1991) 19-42 

20. Moske, M.: Mechanische Spannungen als Sonde für Schichtwachstum und 
Schichtreaktionen (Habilitation thesis, Universität Augsburg, 1997) 

21. van Dijken, S., Jorritsma, 1. C., Poelsema, B.: Steering-enhanced roughening 
during metal deposition at grazing incidence. Phys. Rev. Lett. 82 (1999) 4038-
4041 

22. Mayr, S. G., Moske, M., Samwer, K.:ldentification of key surface processes for 
vapor deposited amorphous metallic film growth. Mater. Sei. Forum 343-346 
(2000) 221-230 

23. Mayr, S. G., Samwer, K.: Model for intrinsic stress formation in amorphous 
thin films. Phys. Rev. Lett. 81 (2001) 036105 1-4 


