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12.1 Introduction
A main obstacle for the experimental realization of a quantum computer is the unavoidable 
coupling of the qubits to external degrees of freedom and the decoherence caused in that 
way. A possible solution of this problem are error correcting codes. These, however, require 
redundant coding and, thus, a considerably higher algorithmic effort.

Yet another route to minimize decoherence is provided by the use of time-dependent con
trol fields. Such external fields influence the coherent and the dissipative behavior of a quan
tum system and can extend coherence times significantly. One example is the stabilization of 
a coherent superposition in a bistable potential by coupling the system to an external dipole 
field [1,2]. The fact that a driving field reduces the effective level splitting and therefore de
celerates the coherent dynamics as well as the dissipative time evolution is here of cruical 
influence. A qubit is usually represented by two distinguished levels of a more complex quan
tum system and, thus, a driving field may also excite the system to levels outside the doublet 
that forms the qubit, i.e., cause so-called leakage. While a small leakage itself may be tol
erable for the coherent dynamics, its influence on the quantum coherence of the system may 
be even more drastic. We demonstrate in this article that in a drivien qubit resonances with 
higher states, which are often ignored, may in fact enhance decoherence substantially.

A related phemomenon has been found in the context of dissipative chaotic tunneling near 
singlet-doublet crossings where the influence of so-called chaotic levels yields an enhanced 
loss of coherence [3,4].

12.2 The model and its symmetries
We consider as a working model the quartic double well with a spatially homogeneous driving 
force, harmonic in time. It is defined by the Hamiltonian

1 77-,2, ,4
H (t) =  ---------------------------—- x 4 +  Szcos(Q t). (12.1)
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The potential term of the static bistable Hamiltonian, H DW , possesses two minima at x  = 
±xo, XQ =  (SKB/muo)1/ 2 , separated by a barrier of height E& (cf. Fig. 12.1). The parameter
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Figure 12.1: Sketch of the double well poten
tial in Eq. (12.1) for D  = EB/ ^ O =  2. The 
horizontal lines mark the eigenenergies in the 
absence of the driving; the levels below the bar
rier come in doublets.

uo denotes the (angular) frequency of small oscillations near the bottom of each well. Thus, 
the energy spectrum consists of approximately D = E B  /^vo doublets below the barrier and 
singlets which lie above. As a dimensionless measure for the driving strength we use F =

The Hamiltonian (12.1) is T-periodic, with T  = 2TT/Q. AS a consequence of this discrete 
time-translational invariance of H(x^p\ t), the relevant generator of the quantum dynamics is 
the one-period propagator [2,5-8]

U(T,O) = T  exp | f  /  d i i r D W ( i ) b  (12.2)
y Jo J

where T  denotes time ordering. According to the Floquet theorem, the Hoquet states of the 
system are the eigenstates of U(T, 0). They can be written in the form

(12.3)

with

Expanded in these Hoquet states, the propagator of the driven system reads

U ^ t ' )  =  ^ e - i£“(t - t '’/ f i |ÇiQ ( i ) ) ^ Q (i')|. (12.4)
a

The associated eigenphases eQ , referred to as quasienergies, come in classes, ea k̂ = ea +kh£ï, 
k =  0, ±1, ± 2 ,.. . .  This is suggested by a Fourier expansion of the |0Q (t)),

k

RW ) =  ÿ  £ d t l ^ W J e ^ .  (12.5)
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The index k counts the number of quanta in the driving field. Otherwise, the members of a 
class a  are physically equivalent. Therefore, the quasienergy spectrum can be reduced to a 
single “Brillouin zone”, —hCl/2 < e < hCl/2.

Since the quasienergies have the character of phases, they can be ordered only locally, not 
globally. A quantity that is defined on the full real axis and therefore does allow for a complete 
ordering, is the mean energy [2,8]

iV’aW ) (12.6)

It is related to the corresponding quasienergy by

i o
E a  = ea  + ~  d i { M t ) \ (12.7)

Without the driving, E a  — ea t  as it should be. By inserting the Fourier expansion (12.5), the 
mean energy takes the form

E a  =  J 2 ( e Q +  k K l)  (12.8)
k

This form reveals that the A:th Floquet channel yields a contribution + khQ to the mean 
energy, weighted by the Fourier coefficient For the different methods to obtain
the Floquet states, we refer the reader to the reviews [2,8], and the references therein.

The invariance of the static Hamiltonian under parity P : (x ,p ,t)  —> (—x, —p ,t)  is vi
olated by the dipole driving force. With the above choice of the driving, however, a more 
general, dynamical symmetry remains. It is defined by the operation [2,8]

PT  : (x ,p ,t)  —> ( - x ,  —p^t + T /2 )  (12.9)

and represents a generalized parity acting in the extended phase space spanned by x, p, and 
phase, i.e., time t mod T. While such a discrete symmetry is of minor importance in classical 
physics, its influence on the quantum mechanical quasispectrum {eQ (S, Q)} is profound: It 
devides the Hilbert space in an even and an odd sector, thus allowing for a classification 
of the Floquet states as even or odd. Quasienergies from different symmetiy classes may 
intersect, while quasienergies with the same symmetry typically form avoided crossings. The 
fact that P^ acts in the phase space extended by time im o d T , results in a particularity: 
If, e.g., |<$(i)) is an even Floquet state, then exp(iQt)|^>(f)) is odd, and vice versa. Thus, 
two equivalent Floquet states from neighboring Brillouin zones have opposite generalized 
parity. This means that a classification of the corresponding solutions of the Schrodinger 
equation, |^ (t))  =  exp(—iei//i) |^ (i)), as even or odd is meaningful only with respect to a 
given Brillouin zone.

12.3 Coherent tunneling
With the driving switched off, S  =  0, the classical phase space generated by # DW exhibits 
the constituting features of a bistable Hamiltonian system: A separatrix at E  =  0 forms the



148 12 Decoherence in Resonantly Driven Bistable Systems

border between two sets of trajectories: One set, with E  <  0, comes in symmetry-related 
pairs, each partner of which oscillates in either one of the two potential minima. The other set 
consists of unpaired, spatially symmetric trajectories, with E  >  0, which encircle both wells.

Torus quantization of the integrable undriven double well implies a simple qualitative pic
ture of its eigenstates: The unpaired tori correspond to singlets with positive energy, whereas 
the symmetry-related pairs below the top of the barrier correspond to degenerate pairs of 
eigenstates. Due to the almost harmonic shape of the potential near its minima, neighboring 
pairs are separated in energy approximately by hcjQ. Exact quantization, however, predicts 
that the partners of these pairs have small but finite overlap. Therefore, the true eigenstates 
come in doublets, each of which consists of an even and an odd state, and |$ ” ), respec
tively. The energies of the nth doublet are separated by a finite tunnel splitting An . We can 
always choose the global relative phase such that the superpositions

l* n 'L ) =  ^ ( l < < ) ± I K »  (12.10)

are localized in the right and the left well, respectively. As time evolves, the states [$„), )
acquire a relative phase exp(—iA n t/h )  and |$ * ), | ^ )  are transformed into one another after 
a time 7th//Sn . Thus, the particle tunnels forth and back between the wells with a frequency 
A n /h . This introduces an additional, purely quantum-mechanical frequency scale, the tun
neling rate A 0 //i of a particle residing in the ground-state doublet. Typically, tunneling rates 
are extremely small compared to the frequencies of the classical dynamics.

The driving in the Hamiltonian (12.1), even if its influence on the classical phase space 
is minor, can entail significant consequences for tunneling: It may enlarge the tunnel rate by 
orders of magnitude or even suppress tunneling altogether. For adiabatically slow driving, i.e. 
Q A o /^  tunneling is governed by the instantaneous tunnel splitting, which is always larger 
than its unperturbed value A o and results in an enhancement of the tunneling rate [9]. If the 
driving is faster, the opposite holds true: The relevant time scale is now given by the inverse of 
the quasienergy splitting of the ground-state doublet A/|ei — eo | - It has been found [9-11] that 
in this case, for finite driving amplitudes, | ei — co I <  A Q. Thus tunneling is always decelerated. 
When the quasienergies of the ground-state doublet (which are of different generalized parity) 
intersect as a function of F , the splitting vanishes and tunneling can be brought to a complete 
standstill by the purely coherent influence of the driving — not only stroboscopically, but also 
in continuous time [9-11].

So far, we have considered only driving frequencies much smaller than the frequency scale 
u?o of the relevant classical resonances. In this regime, coherent tunneling is well described 
within a two-state approximation [11]. Near an avoided crossing, level separations may devi
ate vastly, in both directions, from the typical tunnel splitting. This is reflected in time-domain 
phenomena ranging from the suppression of tunneling to a strong increase in its rate and to 
complicated quantum beats [12]. Singlet-doublet crossings, in turn, drastically change the 
quasienergy scales and replace the two-level by a three-level structure.

Three-level crossings

A doublet which is driven close to resonance with a singlet can be adequately described in 
a three-state Floquet picture. For a quantitative account of such crossings and the associated
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Figure 12.2: Quasienergies (a) and mean energies (b) found numerically for the driven double well 
potential with D = E B / ^ O =  2 and the dimensionless driving strength F  =  10“ 3 . Energies of 
states with even (odd) generalized parity are marked by full (broken) lines; bold lines (full and broken) 
correspond to the states (12.16) which are formed from the singlet \<j\) and the doublet ). A driving 
frequency Q > 1.5 ¿Jo corresponds to a detuning 5 =  — AQ < 0.

Q [¿j0]

coherent dynamics, and for later reference in the context of the incoherent dynamics, we shall 
now discuss them in terms of a simple three-state model, which has been discussed in the 
context of chaotic tunneling [3,13]. In order to illustrate the above three-state model and to 
demonstrate its adequacy, we have numerically studied a singlet-doublet crossing that occurs 
for the double-well potential, Eq. (12.1), with D  = 2, at a driving frequency Q «  1.5 CJQ and 
an amplitude F  — 0.001 (Fig. 12.2).

Far outside the crossing, we expect the following situation: There is a doublet (subscript d) 
of Floquet states

l^d
+ W )= e- i' Î ‘/« |^ ( i ))) (12.11)

with even (superscript + ) and odd (—) generalized parity, respectively, residing on a pair 
of quantizing tori in one of the well regions. We have assumed the quasienergy splitting 
△ =  — eJ (as opposed to the unperturbed splitting) to be positive. The global relative
phase is chosen such that the superpositions

|0R,L W) =  2=  (I^W ) ± 1 ^ (0 » (12.12)

are localized in the right and the left well, respectively, and tunnel back and forth with a 
frequency A/A.

As the third player, we introduce a Floquet state

(12.13)
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located mainly at the top of the barrier (subscript t), so that its time-periodic part (t)) 
contains a large number of harmonics. Without loss of generality, its parity is fixed to be 
odd. Note that |</>J(i)) are in general not eigenstates of the static part of the Hamiltonian, 
but exhibit for sufficiently strong driving already a non-trivial, T-periodic time-dependence. 
For the quasienergy, we assume that =  eJ 4- A +  6 = + 6, where the detuning
6 = — E ^  — hil serves as a measure of the distance from the crossing. The mean energy
of |^ t~ (i)) lies approximately by hQ above the doublet such that <  E ^  -  E ^ .

In order to model an avoided crossing between ) and | ^ ) ,  we suppose that there is a 
non-vanishing fixed matrix element

1 r  
b = r J Q (12.14)

For the singlet-doublet crossings under study, we typically find that △ <  b C  Ml. Neg
lecting the coupling with all other states, we model the system by the three-state (subscript 3s) 
Floquet Hamiltonian [3,4]

/  0 0
W3s =  4  +  0 A 

\  0 b

°  \  
b

A - U  /
(12.15)

in the three-dimensional Hilbert space spanned by |</>d  (t)), |<£t  (i))}. Its Floquet
states are

I O ) )  =  IO ) )>
l< O ) )  =  (I0d W ) “ s ß  _  IK W ) s in /? ). (12.16)

I0 ÎW ) =  ( l < O ) ) s i n ß + h O ) ) “ 3 /?) ■ 

with quasienergies

4  =  4 -  =  4  +  A +  (12.17)

and mean energies, neglecting contributions of the matrix element b.

^o+  =
E^ = E ^  cos2 ß  + E^ sin2 ß, 
E ^  = E ^  sin2 ß  + E ^  cos2 ß.

(12.18)

The angle /? describes the mixing between the Floquet states |$d ) and ) and is an al
ternative measure of the distance to the avoided crossing. By diagonalizing the matrix (12.15), 
we obtain

2ß =  arctan (12.19)

For 3 —► 7r/2, corresponding to — 6 b, we retain the situation far right of the crossing, as 
outlined above, with «  — |0 f ) ,  ~  )■ To the far left of the crossing, i.e. for
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/? —> 0 or 6 »  b, the exact eigenstates and MF) have interchanged their shape [3,12]. 
Here, we have M D  Md) and M D MD- T h e  m e a n  energy is essentially determined by 
this shape of the state, so that there is also an exchange of and E% in an exact crossing, 
cf. Eq. (12.18), while E Q remains unaffected (Fig. 12.2b).

To study the dynamics of the tunneling process, we focus on the state

=  2 =  ( e - “ o+ ‘/» |i i +( i )> +  e - - r ‘/ ^ r ( t))co s^  +  e - k i i / A ^ 2- ( i ) ) s in i5) .

(12.20)

It is constructed such that at t =  0, it corresponds to the decomposition of MR ) in the basis 
(12.16) at finite distance from the crossing. Therefore, it is initially localized in the right well 
and follows the time evolution under the Hamiltonian (12.15). From Eqs. (12.12), (12.16), we 
find the probabilities for its evolving into MR )» ML), o r  Mt), respectively, to be

PR ,L W IMR .L W M W )!2

-  I 1 ±  cos 
2 \

-— 6° cos2 ß  +  cos sin2 ß
n n

+  cos — — 62  -  1 cos2 ß  sin2 ß  J ,
n /

(12.21)

^ t ( i ) K ^ t ( i ) M W ) l 2  = 1 — cos cos2 0  sin2 (3.

At sufficient distance from the crossing, there is only little mixing between the doublet and the 
resonant states, i.e., sin (3 1 or cos 0  1. The tunneling process then follows the familiar
two-state dynamics involving only Md ) a n d MD* t u n n e l frequency A //i. Close to the 
avoided crossing, cos 0  and sin 0  are of the same order of magnitude, and MF)» M2 ) be c o m e  
very similar to one another. Each of them has now support at the barrier top and in the well 
region, they are of a hybrid nature. Here, the tunneling involves all the three states and must 
be described at least by a three-level system. The exchange of probability between the two 
well regions proceeds via a “stop-over” at hte top of the barrier.

12.4 Dissipative tunneling
The small energy scales associated with tunneling make it extremely sensitive to any loss of 
coherence. As a consequence, the symmetry underlying the formation of tunnel doublets is 
generally broken, and an additional energy scale is introduced, the effective finite width at
tained by each discrete level. As a consequence, the familiar way tunneling fades away in the 
presence of dissipation on a time scale i coh. In general, this time scale gets shorter for higher 
temperatures, reflecting the growth of the transition rates. However, there exist counterintu
itive effects: in the vicinity of an exact crossing of the ground-state doublet, coherence can be 
stabilized with higher temperatures [1] until levels outside the doublet start to play a role.
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As a measure for the coherence of a quantum system we employ in this work the Renyi 
entropy [14]

_  ln trp °  
b a  1 -  a (12.22)

In our numerical studies we will use S ?  which is related to the purity tr(p2 ). It possesses a 
convenient physical interpretation: Suppose that p  describes an incoherent mixture of n  states 
with equal probability, then tr(p2 ) reads 1/n and one accordingly finds S 2  =  Inn.

Floquet-Markov master equation

To achieve a microscopic model of dissipation, we couple the driven bistable system (12.1) 
bilinearly to a bath of non-interacting harmonic oscillators [8,15,16]. The total Hamiltonian 
of system and bath is then given by

00 /  2 / \ 2\
H(t) =  i W O  +  E  +  • (12.23)

Due to the bilinearity of the system-bath coupling, one can eliminate the bath variables to get 
an exact, closed integro-differential equation for the reduced density matrix p ( t )  =  trsAotai W 
It describes the dynamics of the central system, subject to dissipation.

In the case of weak coupling, such that the dynamics is predominatly coherent, the re
duced density operator obeys in good approximation a Markovian master equation. The Flo- 
quet states form then a well-adapted basis set for a decomposition that allows for an 
efficient numerical treatment. If the spetral density of the bath influence is ohmic [8,16], the 
resulting master equation reads [17,18]

P a p ( t)  =  £>ap,a' (3'P a '0 ‘ • (12.24)
a 'B '

The time-independent dissipative kernel

£ 'a 0 ,g , 0 ' =  ( N g a ' ,k  4~ ^ 0 0 ' ,k} ^ a a ' , k ^ - 0 '0 , —k
k

- ^ 0 0 '  N 0 » a f  k X a 0H k  (12.25)
0 " ^

^ a a 1 ^ a " 0 ' , k X 0 'a "  t - k - ^ a " 0 ,k

a " k
is given by the Fourier coefficients of the position matrix elements,

X a 0 ,k  =  ± J  (12.26)

and the coefficients

N a P ,k  =  N(ea  - ( 0  + kM l), N(e) = (12.27)

which consist basically of the spectral density times the thermal occupation of the bath.
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Figure 12.3: Time evolution of the state |0 L) at the center of the singlet-doublet crossing found for 
D = 2, F  =  1 0 '3 , and Q =  1.5 The full line depicts the return probability and the broken line the 
occupation probability of the state at the top of the barrier. The dotted line marks the Renyi entropy Si- 
Panel (b) is a blow-up of the marked region on the left of panel (a).

Dissipative time evolution

We have studied dissipative tunneling at the particular singlet-doublet crossing introduced in 
Sec. 12.3 (see Fig. 12.2). The time evolution has been computed numerically by integrating 
the master equation (12.24). As initial condition, we have chosen the density operator p(0) =  

te . a pure state located in the left well.
In the vicinity of a singlet-doublet crossing, the tunnel splitting increases and during the 

tunneling, the singlet |0 t ) at the top of the barrier becomes populated periodically with fre
quency 162 -  cf. Eq. (12.21) and Fig. 12.3b. The large mean energy of this singlet 
results in an enhanced entropy production at times when it is well populated (dashed and 
dotted line in Fig. 12.3b). For the relaxation towards the asymptotic state, also the slower 
transitions within doublets are relevant. Therefore, the corresponding time scale can be much 
larger than ¿c oh (dotted line in Fig. 12.3a).

To obtain quantitative estimates for the dissipative time scales, we approximate ¿c oh by the 
growth of the Renyi entropy, averaged over a time fp ,

f  f ” d i'S 2 (i') =  2  ( s 2 (t„) -  S 2 (0))) . (12.28)

Because of the stepwise growth of the Renyi entropy (Fig. 12.3b), we have chosen the propa
gation time t p  as an n-fold multiple of the duration 27rh/\c2 — c f  | of a tunnel cycle. For this 
procedure to be meaningful, n  should be so large that the Renyi entropy increases substantially 
during the time tp  (in our numerical studies from zero to a value of approximately 0.2). We 
find that at the center of the avoided crossing, the decay of coherence, respectively the entropy 
growth, becomes much faster and is essentially independent of temperature (Fig. 12,4a). At a 
temperature k ^ T  — 10- 4 /kuo it is enhanced by three orders of magnitude. This indicates that 
transitions from states with mean energy far above the ground state play a crucial role.
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Figure 12.4: Decoherence time (a) and Renyi entropy S2 of the asymptotic state (b) in the vicinity of 
the singlet-doublet crossing for D  =  2, F  =  10- 3 , and Q =  1.5 The temperature is given in units 
of

12 Decoherence in Resonantly Driven Bistable Systems

As the dynamics described by the master equation (12.24) is dissipative, it converges in 
the long-time limit to an asymptotic state Pooit}. In general, this attractor remains time de
pendent but shares the symmetries of the central system, i.e. here, periodicity and generalized 
parity. However, the coefficients (12.25) of the master equation for the matrix elements pQ0 
are time independent and so the asymptotic solution also is. The explicit time dependence of 
the attractor has been effectively eliminated by the use of a Floquet basis.

To gain some qualitative insight into the asymptotic solution, we focus on the diagonal 
elements

~  2 ^ a a \n |^ a a ',n | , Oi OL (12.29)
n

of the dissipative kernel. They give the rates of direct transitions from to 1^«)- Within a 
golden rule description, these were the only non-vanishing contributions to the master equa
tion to affect the diagonal elements paQ  of the density matrix.

In the case of zero driving amplitude, the Floquet states |0a ) reduce to the eigenstates of 
the undriven Hamiltonian How- The only non-vanishing Fourier component is then 
and the quasienergies eQ reduce to the corresponding eigenenergies Ea . Thus CaOi^>a > only 
consists of a single term proportional to N (E a  — E a >). It describes two kinds of thermal 
transitions: decay to states with lower energy and, if the energy difference is less than k^T , 
thermal activation to states with higher energy. The ratio of the direct transitions forth and 
back then reads

^ a a , a 'a '  (  E a  E a ' \
7 ^ -----=  e x p ------- ’ (12.30)

We have detailed balance and therefore the steady-state solution is

(12.31)
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In particular, the occupation probability decays monotonically with the energy of the eigen
states. In the limit kBT  —> 0, the system tends to occupy mainly the ground state.

For a strong driving, each Floquet state |0 a ) contains a large number of Fourier compo
nents and C a a ^ a ' is given by a sum over contributions with quasienergies ea  — ea > + kh^l. 
Thus, a decay to states with “higher” quasienergy (recall that quasienergies do not allow for a 
global ordering) becomes possible due to terms with k  <  0. Physically, it amounts to an inco
herent transition under absorption of driving-field quanta. Correspondingly, the system tends 
to occupy Floquet states comprising many Fourier components with low index k. According 
to Eq. (12.8), these states have a low mean energy.

The effects under study are found for a driving with a frequency of the order tug. Thus, for 
a quasienergy doublet, not close to a crossing, we have |eQ — | and Ca >a ^ aCi is dom
inated by contributions with n  <  0, where the splitting has no significant influence. However, 
except for the tunnel splitting, the two partners in the quasienergy doublet are almost identical. 
Therefore, with respect to dissipation, both should behave similarly. In particular, one expects 
an equal population of the doublets even in the limit of zero temperature in contrast to the 
time-independent case.

In the vicinity of a singlet-doublet crossing the situation is more subtle. Here, the odd 
partner, say, of the doublet mixes with the singlet, cf. Eq. (12.16), and thus acquires compo
nents with higher energy. Due to the high mean energy of the singlet, close to the top 
of the barrier, the decay back to the ground state can also proceed indirectly via other states 
with mean energy below E ^ .  Thus, ) and | ^ )  are depleted and mainly will be 
populated. However, if the temperature is significantly above the splitting 2b at the avoided 
crossing, thermal activation from |</>Q ) to accompanied by depletion via the states be
low E ^ ,  becomes possible. Asymptotically, all these states become populated in a cyclic 
flow.

In order to characterize the coherence of the asymptotic state, we use again the Renyi en
tropy (12.22). According to the above scenario, we expect S2 to assume the value In 2, in a 
regime with strong driving but preserved doublet structure, reflecting the incoherent popula
tion of the ground-state doublet. In the vicinity of the singlet-doublet crossing where the dou
blet structure is dissolved, its value should be of the order unity for temperatures k ^ T  2b 
and much less than unity for kBT 2b (Fig. 12.4b). This means that the crossing of the 
singlet with the doublet leads asymptotically to an improvement of coherence if the temper
ature is below the splitting of the avoided crossing. For temperatures above the splitting, the 
coherence becomes derogated. This phenomenon compares to chaos-induced coherence or 
incoherence, respectively, found in Ref. [3] for dissipative chaos-assisted tunneling.

12.5 Conclusions
For the generic situation of the dissipative quantum dynamics of a particle in a driven double
well potential, resonances play a significant role for the loss of coherence. The influence of 
states with higher energy alters the splittings of the doublets and thus the tunneling rates. We 
have studied decoherence in the vicinity of crossings of singlets with tunnel doublets under 
the influence of an environment. As a simple intuitive model to compare against, we have 
constructed a three-state system which in the case of vanishing dissipation, provides a faithful
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description of an isolated singlet-doublet crossing. The center of the crossing is characterized 
by a strong mixing of the singlet with one state of the tunnel doublet. The high mean energy of 
the singlet introduces additional decay channels to states outside the three-state system. Thus, 
decoherence becomes far more effective and, accordingly, coherent oscillations fade away on 
a much shorter time scale.
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