®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w k Universititsbibliothek

Formal modeling and verification of systems with self-x
properties

Matthias Gidemann, Frank Ortmeier, Wolfgang Reif

Angaben zur Veroéffentlichung / Publication details:

Gudemann, Matthias, Frank Ortmeier, and Wolfgang Reif. 2006. “Formal modeling and
verification of systems with self-x properties.” In Autonomic and Trusted Computing: Third
International Conference, ATC 2006, Wuhan, China, September 3-6, 2006, edited by Laurence
T.Yang, Hai Jin, Jianhua Ma, and Theo Ungerer, 38-47. Berlin: Springer.
https://doi.org/10.1007/11839569_4.

Nutzungsbedingungen / Terms of use: licgercopyright
P -'_-T.\",rl-;!_
Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions:

A >ﬁ
Deutsches Urheberrecht I a‘fv%. =
s ,{y;

Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

https://doi.org/10.1007/11839569_4
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Formal Modeling and Verification of Systems
with Self-x Properties*

Matthias Giidemann, Frank Ortmeier, and Wolfgang Reif

Lehrstuhl fiir Softwaretechnik und Programmiersprachen,
Universitat Augsburg, D-86135 Augsburg
{guedemann, ortmeier, reif}@informatik.uni-augsburg.de

Abstract. In this paper we present a case study in formal modeling and
verification of systems with self-x properties. The example is a flexible
robot production cell reacting to system failures and changing goals.
The self-x mechanisms make the system more flexible and robust but
endanger its functional correctness or other quality guarantees. We show
how to verify such adaptive systems with a “restore-invariant” approach.

1 Introduction

Still today, many technical systems are tailored very rigidly to the originally
intended behaviour and the specific environment they will work in. This some-
times causes problems when unexpected things happen. A possible way to make
such systems more dependable and failure tolerant is to build redundancy in
many components. Another approach is to design systems from the beginning
in such a way, that they can dynamically self-adapt to their environment. The
benefit of these adaptive systems is that they can be much more dependable
than conventional systems, without increasing system complexity too much, as
not every scenario must be modeled explicitly.

From the point of view of formal methods, these systems are more difficult to
describe as their structure may change with the adaption. This can lead to prob-
lems when functional correctness of such a system is to be proven. Nevertheless,
in many safety critical fields like production automation, avionics, automotive
etc., functional correctness and quality guarantees are crucial. We show how an
adaptive system can be modeled with formal methods and its functional correct-
ness be proven under adaption. We illustrate this technique with a case study
from production automation.

2 Case Study

The case study describes an automated production cell which is self-organizing
in case of failures and adapts to changing goals. It consists of three robots, which
are connected with autonomous transportation units.

* This research is partly sponsored by the priority program “organic computing” (SPP
OC 1183) of the German research foundation (DFG).

39

Fig. 1. Valid configuration of robot cell

2.1 Description

In the production cell every robot can accomplish three tasks: drilling a hole
in a workpiece, inserting a screw into a drilled hole and tightening an inserted
screw. These tasks are done with three different tools that can be switched.
Every workpiece must be processed by all three tools in the given order (drill,
insert, tighten = DIT). Workpieces are transported from and to the robots by
autonomous carts. Changing the tool of a robot is assumed to require some time.
Therefore the standard configuration of the system is to spread out the three
tasks between the three robots, and the carts transfer workpieces accordingly.
This situation is shown in fig. 1.

2.2 Self-organization

The first interesting new situation occurs when one or more tools break and the
current configuration allows no more correct DIT processing of the incoming
workpieces. In fig. 2 the drill of one robot broke and DIT processing is not
possible, as no other robot is configured to drill.

As the robots can switch tools it should be possible for the adaptive system
to detect this situation and reconfigure itself in such a way, that DIT processing
is possible again.

This can be resolved as shown in fig. 3. Now the left robot drills, the right
robot tightens the screws and the middle robot is left unchanged. For this error
resolution, not only the assignment of the tasks to the robots must be changed,
but also the routes of the carts and the direction of the incoming and outgoing

Fig. 2. Hazard due to broken drill Fig. 3. Reconfigured robot cell

40

workpieces. If only the tools were switched, the processing of all tasks would be
possible, but not in the correct order.

2.3 Self-adaption and Self-optimization

Another form of adaption is possible in the production cell when partially
processed workpieces arrive. A RFID tag can be used on the workpieces that
indicates whether they have already a drilled hole. Those that have the hole
drilled do not have to be processed by the robot assigned the drill task. If there
is an additional transport cart available, then it can bring the partially processed
workpieces directly to the robot that inserts the screws.

When this has happened, the robot that has been assigned the task to insert
the screws might become the bottleneck in the system. If an additional robot
and cart are available, they can be integrated to self-optimize the throughput of
the production cell.

Again, self-x properties are only possible because of internal redundancy in
the system. This includes redundant tools that can be switched and redundant
robots or transport carts. The difference to traditional redundant systems is that
they are dynamically configured and may be used for other tasks if not needed
at the moment.

The production cell is also capable to self-adapt using graceful degradation to
fulfill at least parts of its functions as long as possible. In this example this could
be drilling holes in a workpiece and inserting screws but not tighten them. Yet
another form would be to use one robot to accomplish more than one task. This
is also a case of graceful degradation because it preserves the functionality but
diminishes the throughput of the production cell considerably.

Although small, the example exhibits several aspects of self-x properties and
especially self-adaption. Nevertheless, several interesting questions arise: How
does the dynamically changing organization of the production cell affect func-
tional correctness? What happens while a reconfiguration takes place? Does the
system produce correctly after a reconfiguration?

3 Formal Model

When trying to build a formal model for an adaptive system, the question arises
how to represent the dynamically changing characteristics of such a system.
We found that these can be modeled with techniques similar to conventional
systems. We used transition automata as representation for the robots, the carts,
the workpieces and the reconfiguration control. The functional properties of the
system can be expressed using temporal logic formulas.

The crucial point of the modeling is the treatment of the reconfiguration. We
regard a run of a system as separated in production phases and reconfigura-
tion phases. A production phase is characterized by the invariant “The system
configuration allows for processing a workpiece in DIT order”. The end of a pro-
duction phase is marked by the violation of this invariant. The purpose of the

41

reconfiguration phase is the restoration of the invariant. When this is achieved,
the reconfiguration phase is over and a new production phase starts. We use the
term “restore-invariant” for this approach.

We did not implement a specific reconfiguration algorithm in the model but
only specified it in a “top-down” way, as restoration of a functional invariant.
This technique can also be applied to the other mentioned self-x properties. The
crucial point here is that the algorithm must be able to decide whether these
invariants hold and restore them if not. Seeing reconfiguration in this abstract
way gives us the advantage that it is sufficient to prove that an algorithm can
restore the invariant to show that the algorithm provides correct reconfiguration,
thus modularizing our model.

We implemented the formal model of the adaptive production cell as transition
system in the SMV model checker [7]. This formalization allows specification of
functional correctness in CTL (computational tree logic) and LTL (linear time
logic), or their semantics see[3].

3.1 Transition Systems

Due to space restrictions not all transition systems are shown for the automata.
The respective transition preconditions are explained in the text. Dashed lines
indicate the effect of an interrupting reconfiguration. If used, this confines re-
configuration from normal functioning.

Control Transition System. The Control performs the reconfiguration of the
production cell. Its transition system is shown in fig. 4. It waits in state Recon f
until all robots and carts are in their respective reconfiguration states. Then
it enters the state Initialize. After this, one of the states of the Robot1Conf
multi-state is entered, then one of the Robot2Conf states and finally one of the
Robot3Conf states. Which one of the states is entered, decides which task is
assigned to the corresponding robot. The assignment of the routes to the carts
is done analogously in the Cart1Conf and Cart2Con f multi-states. Which task
is assigned is chosen indeterministically. Correct assignment for processing work-
pieces is assured by the specification of the reconfiguration algorithm explained
in Sect. 3.3.

Robot Transition Systems. The initial state Reconf is left when the Control
assigns a new task to the corresponding robot. The succeeding states are either
readyD, readyl or readyT for the respective tasks.

When the robot is in ready D state it waits for a new workpiece to arrive. When
this happens it enters state busyD. If the workpiece has already been processed
with the tool the robot uses, it enters directly doneD, simulating passing through
of the already processed workpiece. After busyD the doneD state is entered
indicating that the workpiece processing is complete and the robot waits for a
cart that fetches the workpiece. When this happens, the robot enters readyD
again. The same holds for the other possible tasks. When a reconfiguration is
initiated by the Control, then the robot leaves its current state and reenters
Reconf.

42

K
,’,f"“ \\\\\\\\\\

Robot1Conf

RobolZCont Carthonl

\ Camor
R()bol3C0nt Cart2Conf

~_

Fig. 4. Control transition system

Workpiece Transition Systems. The workpieces are defined via two au-
tomata. The first one is WPP?®. It describes the position of the workpiece i in
the production cell.

The initial state is Before if the cell is configured, then the next state is
infrontD as the workpieces are delivered to the driller not with the aid of
carts but with a conveyor that is not modeled. When the robot that has been
assigned the drill task is ready, then W PP® enters the state inD. When the task
is done, it enters behindD. When the workpiece is fetched, it enters either the
state Cartl or Cart2, depending on which cart arrived. After the respective cart
arrives at either the infrontI or infontT position, the W PP?® enters the state
corresponding to this position. The other tasks are modelled in a similar way,
the only difference is, that after behindT, the W PF°® enters the state Before
again, instead of being put on a cart.

The second transition system for the workpiece is W Pt Tt indicates which
tasks have already been completed on the workpiece. It consists of an 3-bit
array, each bit corresponds to one of the possible tasks and has the value 1 if the
task has been done and 0 otherwise. When the workpiece leaves the production
cell, then WPs' is reset to its initial state and it is reintroduced into the
production cell. When a reconfiguration takes place, the workpieces that are in
the production cell are brought to the Before state again, but their completed
tasks are preserved.

Cart Transition System. The carts are represented as the product automa-
ton of three different automata. The first one is C2”"/ | see fig. 5. Its initial state
is Recon f. The succeeding state is either DI or [T depending on the configura-
tion that the Control automaton assigns. If CY onf — DI then the corresponding

43

N b
:::;\\\
N

Fig. 5. Cart configuration Fig. 6. Cart state

]

O

¥

D

cart is assigned the route between the drilling and the screw-inserting robot,
C™ = IT is then the route between the screw-inserting robot and the screw-
tightening one. When a reconfiguration starts, then C;’ onf enters Recon f again,
to get a new configuration.

The second automaton for describing a cart is C§'%¢, see fig. 6. The initial
state is idle and indicates that the cart is waiting behind a robot and waiting
for a workpiece processed by this robot. The state loaded is entered when a
workpiece has been processed by the robot the cart waits behind, and is to
be transported on the assigned route. When the cart arrives at the next robot
and the workpiece is fetched, then the state back is entered. The idle state is
reentered when the position of the cart is again behind the robot.

The third automaton for the description of the carts is C¥°°. It represents the
position the cart is at. The positions correspond to the possible positions of the
workpieces. The initial state is Unde fined. Its route is abstracted to three states,
behind a robot, between two robots and in front of the next robot. Depending
on the assigned configuration these are either the drilling and inserting or the
inserting and tightening robot.

Failure Automata. For the modeling of failures we use failure automata. These
can be either transient or persistent see fig. 7. The initial state of a failure au-
tomaton is no, i.e. there is no error at the moment. The automaton can indeter-
ministically enter state yes, indicating that an error has occurred. A transient
failure can disappear, again in an indeterministic way.

Transient Failure Persistent Failure

=
Cenlees| B cewRews

Fig. 7. Failure automata for transient and persistent failures

44

3.2 Predicates

For the predicates we use the notion A = s as abbreviation for the predicate
“automaton A is in state s”. For the formal model we define the predicates R
with ¢ € {1,2,3} and a € {d,,t}. These variables are true if robot ¢ has been
assigned task a by checking whether the corresponding automaton is in one of
the states corresponding to task a. Together with the configuration automata of
the carts we define:

robotConf := (RIV R,V RY) A (REV Ry V RE) A (REV RSV RY)
cartConf := (C¢™ # Reconf) A (CS™ # Reconf)
conf :=robotConf A cartConf
ditCapable:= N (\/ RBRIA(A -Rp)
ac{d,i,t} je{1,2,3} ke{1,2,3}\j
cartCapable := (C™ £ C£™ Y A (CO™ £ Reconf) A (CSP™ # Reconf)

This means that robotConf holds when all robots have a task assigned. The
same holds for the carts with cartConf. The variable ditCapable is true when
the assignment of tasks to robots includes all three tasks. As the variables R} are
defined via the states of the robot automata, the formula Rf — Ayciq; ip\a -R?
always holds.

To model broken tools as failures in the model of the production cell we define
transient failure automata as explained in Sect.3.1 for all tools of all robots. A
complete list of possible failure modes can be found with techniques like failure-
sensitive specification [8] or HazOp [5]. These failure automata are called fails?
with ¢ € {1,2,3} and a € {d,4,t}. Using these automata we define additional
boolean variables:

ditFailure; := \/ (R} A (fails] = yes))
a€{d,i,t}

ditFailure := \/ ditFailure;
j€{1,2,3}

This means that ditFailure; holds if robot j has been assigned a task it
cannot perform as the corresponding tool is broken and ditFailure indicates
that one or more robots have been assigned a task that is impossible at the
moment. Whenever the external Control detects that ditFailure holds, then a
reconfiguration is triggered.

For proving functional properties and specifying a correct reconfiguration al-
gorithm the predicate dit Possible is needed that holds if a correct configuration
is still theoretically possible. We used the disjunction of all correct robot config-
urations for this. It is important to mention, that this is not needed in the model
itself but only to specify the reconfiguration algorithm and to prove functional
correctness. That means that ditPossible may also be defined in another way,
e.g. to model graceful degradation adaption.

45

3.3 Specification of Reconfiguration

For this specification of the reconfiguration we used LTL. SMV allows LTL
formulas in assumed properties. The two specifications are as follows:

confDIT := G ((robotConf A cartConf) — ditCapable A cartCapable
confCorrect := G ((Control = EndReconf) —
X (ditPossible — —dit Failure))

That is, confDIT specifies that every reconfiguration results in a sensible
configuration of the production cell. Every tool must be available and the carts
have distinct routes assigned. The property con fCorrect specifies that whenever
a reconfiguration has just been finished, ditFailure is false as long as correct
configuration is still possible. All functional properties in the next section are
proven under the assumption that confDIT and confCorrect hold.

4 Verification

We see a run of the system divided in phases of production and reconfiguration.
In a production phase, workpieces are processed in a straightforward way. When
a tool breaks, then a reconfiguration takes place that changes the organization
of the cell. The propositions we want to prove are the same as in a conventional
system, i.e. that processing of the workpieces is done in correct DIT order and
on all workpieces that enter the production cell.

Proposition 1 assures that as long as dit Possible holds every workpiece will
finally be processed by all tools. Therefore, as long as processing is theoretically
possible, all tasks are executed on all the workpieces.

AG (ditPossible — (AF W Pstate = [1,1,1])) (1)

This does not yet guarantee that processing is done in the correct DIT order.
For this property we prove the following;:

AG W Pftete = 10,0,0] v

A WP = (0,0, 0] until W P = [1,0,0] v

(A [WPF = [1,0,0] until W P = [1,1,0] v

(A [W Pt = [1,1,0] until W P = [1, 1, 1]])])] 2)

Proposition 2 proves that processing is never done in a wrong order. Together
with proposition 1 we know that as long as processing is possible, processing
with all three tools is done.

The next propositions show that the modeling of our cell is sensible Proposi-
tion 3 shows that workpieces never occupy the same position “in” a robot.

Proposition 4 shows that carts are never at the same position. Their position
is not tracked in a reconfiguration phase. Proposition 5 shows that if for a cart

46

is loaded, then it carries a workpiece, i.e. a workpiece has the same position as
the cart.

AG (WPP* = WPP* — WP ¢ {inD,inl,inT}) (3)
AG ((C{°™ # Reconf N C5°™ # Reconf) — (CP”° # C?*)) (4)

AG (configured — (C$'' = loaded — Jj WP]POS =CP”)) (5)

These proposition show that the modeling of the production cell is correct
according to the requirement that failures can occur and processing is correctly
adapted to these failures as long as possible. Furthermore we provided several
propositions that showed that the cell is modeled in a sensible way beyond the
adaption capabilities.

5 Related Work

Much of the available work on adaptive systems and verification thereof is based
on agent-oriented programming. These mentioned papers have no similar concept
to our “restore-invariant” technique for top-down design for systems with self-x
properties.

Bussman et al. [1] define several functional requirements and software engi-
neering requirements that an agent-oriented system must fulfill in order to be
qualified for industrial control problems. Both functional and software engineer-
ing requirements are met by our model of the production cell, although it was
not designed having agent-orientation in mind.

In [2] Bussmann et al. describe an adaptive production system based on agent-
technology. An auction based approach is taken where agents bid for tasks and
a self-organization of material flow takes place. They prove that their approach
is free of deadlocks and give good reasons and empirical observations for in-
creased productivity. This differs from our approach as it is more directed to
increasing throughput and not to make the system more dependable to failure
of components.

Kiriakidis and Gordon-Spears describe in [4] an approach to restore super-
vision and assure specified behaviour of robot teams. It it based on transition
automata and a language that is expressed by these automata. This language is
changed by learning algorithms triggered by unforeseen events. This approach
is directed more to team composition instead of robot functionality as in our
example.

Another approach is taken by Cornejo et al. in [6]. A dynamic reconfiguration
protocol is specified and verified using the LOTOS language. It consists of a
configurator agent and application agents that communicate over a software
bus. Its asynchronous communication would be an interesting way to implement
a reconfguration algorithm that fulfills the mentioned invariant.

47
6 Conclusion

We presented a case study in formal modeling and verification of self-adaptive
systems. The example production cell exhibits several self-x properties, particu-
larly self-organization.

We have shown a way how to guarantee functional correctness under the pres-
ence of failures and reconfiguration. The idea is to impose invariants to be main-
tained by the system. In case of failures, the invariant is violated and the task of
the reconfiguration or the adaption is to restore these invariants. This leads to a
“top-down” design approach for self-adaptive systems, separating specifications
from their implementations. We call this approach “restore-invariant”.

In the example we focused on functional correctness but the invariants could
also express other goals like throughput performance, load-balancing or graceful
degradation.

The next step is to look at the additional self-x properties of the production
cell mentioned in Sect. 2.3. Other interesting topics are overcoming the limita-
tions of finite state spaces and measuring the benefit of adaptive systems. Of
course we will also generalize the concepts from this case study to make this
approach applicable to general forms of self-adaptive systems.

References

[1] S. Bussmann. Agent-oriented programming of manufacturing control tasks, 1998.

[2] S. Bussmann and K. Schild. Self-organizing manufacturing control: An industrial
application of agent technology, 2000.

[3] Doron A. Peled Edmund M. Clarke Jr., Orna Grumberg. Model Checking. The
MIT Press, 1999.

[4] K. Kiriakidis and D. F. Gordon-Spears. Formal modeling and supervisory control
of reconfigurable robot teams. In FAABS, pages 92-102, 2002.

[5] T. A. Kletz. Hazop and HAZAN notes on the identification and assessment of
hazards. Technical report, Inst. of Chemical Engineers, Rugby, England, 1986.

[6] R. Mateescu M. A. Cornejo, H. Garavel and N. De Palma. Specification and verifi-

cation of a dynamic reconfiguration protocol for agent-based applications. In Proc.

of the IFIP TC6, pages 229-244, Deventer, The Netherlands, The Netherlands,

2001. Kluwer, B.V.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1990.

[8] F. Ortmeier and W. Reif. Failure-sensitive specification: A formal method for
finding failure modes. Technical Report 3, Institut fiir Informatik, Universitat
Augsburg, 2004.

=

