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Lehrstuhl fiir Softwaretechnik und Programmiersprachen,
Universitat Augsburg, D-86135 Augsburg, Germany
{schellhorn, grandy, haneberg, reif}@informatik.uni-augsburg.de

Abstract. The Mondex case study about the specification and refine-
ment of an electronic purse as defined in [SCJ00] has recently been pro-
posed as a challenge for formal system-supported verification. This paper
reports on the successful verification of the major part of the case study
using the KIV specification and verification system. We demonstrate that
even though the hand-made proofs were elaborated to an enormous level
of detail, we still could find small errors in the underlying data refinement
theory as well as the formal proofs of the case study.

We also provide an alternative formalisation of the communication
protocol using abstract state machines.

Finally the Mondex case study verifies functional correctness assuming
a suitable security protocol. Therefore we propose to extend the case
study to include the verification of a suitable security protocol.

1 Introduction

Mondex smart cards implement an electronic purse [MCI]. They have become
famous for having been the target of the first ITSEC evaluation of the highest
level E6 [CB99], which requires formal specification and verification.

The formal specification and proofs were done in [SCJ00] using the Z speci-
fication language [Spi92]. Two models of electronic purses were defined: an ab-
stract one which models the transfer of money between purses as elementary
transactions, and a concrete level that implements money transfer using a com-
munication protocol that can cope with lost messages using a suitable logging of
failed transfers. A suitable data refinement theory was developed in [CSWO02].

Although the refinement proofs based on this theory were done manually
(with an auxiliary type checker) they were elaborated to the detail of almost
calculus level. The Mondex case study has been recently proposed as a challenge
for theorem provers [Woo06].

In this paper we show that verifying the refinement mechanically, using the
KIV theorem prover, can be done within a few weeks of work. We verify the
full Mondex case study except for the operations that archive failure logs from a
smart card to a central archive. These are independent of the protocol for money
transfer.
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The Mondex case study is too big to be presented completely within a paper
of 16 pages ([SCJ00] has 240 pages, [CSWO02] additional 54 pages). Therefore we
unfortunately will have to refer to these papers quite often. To view the details
of the KIV proofs we have prepared a technical report [SGHR06] and a Web
presentation of the full KIV specifications and of all proofs, which can be found
at [KIV]. The interested reader can find all details there.

Nevertheless we have tried to extract the core of the refinement problem and
to give a concise definition of the case study in section 2. To this purpose we
introduce the case study using abstract state machines (ASM, [Gur95], [BS03]).
Since the relational approach of Z is quite different from the operational de-
scription of ASMs, this paper can also be used to compare the two specification
styles. To check the adequacy of the ASM formalization we have also verified the
central proof obligations of [SCJ00]: backward simulation and an invariant for
the concrete level. We discuss these proofs in section 3. Doing them was sufficient
to uncover small problems in the invariant of the concrete level.

While the proofs could be elaborated to a full ASM refinement proof which
would be our traditional verification approach ([BR95], [Sch01], [B6r03]), we
decided to mimic the data refinement proofs faithfully to succeed in verifying
the challenge. Therefore we formalised the underlying data refinement theory.
We report on a correction for this theory and an extension using invariants in
section 4.

Finally we instantiated the data refinement theory with the operations of
the Mondex case study. Our proofs improve the ones of [SCJ00] by using one
refinement instead of two. Section 5 also reports on the additional complexity
caused by using operations similar to Z instead of a simple ASM, and gives some
statistics of the effort required.

When we discovered the Mondex case study, we were astonished to find that
it has been given the highest security level ITSEC E6, when in fact the case
study assumes a suitable security protocol rather than proving it. Since the real
security protocol of Mondex smart cards has never been published, we discuss a
probable security protocol in section 6 and propose a refinement of the concrete
Mondex level to a specification that includes such a security protocol as an
extension of the case study.

2 Two Simple ASMs for the Mondex Case Study

The Mondex case study is based on smart cards that are being used as electronic
purses. Each card has a balance and may be used to transfer money to other
cards. Unfortunately it is very hard to get a clear picture of their use in real life.
The original web site [MCI] says that the smart cards are used to transfer money
over the internet using a card reader on each end. [RE03] says one card reader
is used, the ‘from’ purse (where money is taken from) is first put in the card
reader, then the 'to’ purse (which receives the money). This seems not really
compatible with the protocol given later on. Finally, the Mondex paper [SCJ00]
and the ITSEC evaluation [CB99] suggest an interface device, which seems to be
a card reader with two slots, where both cards can be inserted simultaneously.
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It is also not clear how cryptography is used, [CCW96] suggest that this was
never disclosed, and that the Mondex card therefore is a classical example of
“security by obscurity”. Maybe this is the reason why a security protocol is not
considered in the Mondex case study.

The smart cards of the formal specification are specified on two levels: An ab-
stract level which defines transfer of money between purses as an atomic trans-
action, and a concrete level which defines a protocol to transfer money.

In this section we now give an alternative version of the Mondex refinement
problem using abstract state machines (ASMs, [Gur95], [BS03]) and algebraic
specifications as used in KIV [RSSBYS].

The abstract state machines can also be found on the Web [KIV] in the
Mondex project as simple-AASM and simple-BASM. We have tried to stay as
close as possible to the notation of the original Mondex case study, but we have
removed all details that we thought were not essential to understand the problem
described by the Mondex refinement.

2.1 The Abstract Level

The abstract specification of a purse consists of a function balance from purse
names to their current balance. Since the transfer of money from one to another
purse may fail (due to the card being pulled abruptly from the card reader, or
for internal reasons like lack of memory) the state of an abstract purse also must
log the amount of money that has been lost in such failed transfers.

In the formalism of ASMs this means that the abstract state consists of two
dynamic functions

balance : name — IN
lost : name — IN

Purses may be faked, so we have a finite number of names which satisfy a
predicate authentict. How authenticity is checked (using secret keys, pins etc.)
is left open on both levels of the specification, so the predicate is simply left
unspecified. We will come back to this point in section 6.

Transfer of money between authentic purses is done with the following simple
ASM rule?

ABTRANSFER#
choose from, to, value, fail?
with authentic(from) A authentic(to) A from # to A value < balance(from)
in if — fail? then balance(from) := balance(from) — value
balance(to) := balance(to) + value
else balance(from) := balance(from) — value
lost(from) := lost(from) + value

! In the original Z specification, authentic is defined to be the domain of partial
AbAuthPurse and ConAuthPurse functions. For simplicity, we use total functions in-
stead, and use authentic to restrict their domain.

2 By convention our rule names end with a # sign to distinguish them from predicates.
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The rule nondeterministically chooses two different, authentic purses with
names from and to, and an amount value for which the from purse has enough
money and transfers it. The transfer may fail for internal reasons as indicated
by the randomly chosen boolean variable fail?. In this case the from purse logs
the lost money in its lost component.

This already completes the specification of the abstract level. Compared to
the Z specification in [SCJ00] we have left out the operation ABIGNORE# which
skips (i.e. does nothing): In data refinement such a skip operation is needed,
since every operation must be refined by a 1:1 diagram. ASM refinement directly
allows to use 0:1 diagrams, therefore such a skip operation is not needed.

2.2 The Concrete Level

On the concrete level transferring money is done using a protocol with 5 steps.
To execute the protocol, each purse needs a status that indicates how far it has
progressed executing the protocol. The possible states a purse may be in are
given by the enumeration status = idle | epr | epv | epa. Compared to [SCJ00] we
have merged the two states eaFrom and eaTo into one idle state. The behavior
of a purse in eaTo state is exactly the same as that of a purse in eaFrom state,
so we saw no necessity to distinguish them.

Purses not participating in any transfer are in the idle state. To avoid replay
attacks each purse stores a sequence number nextSeqNo that can be used in the
next transaction. This number is incremented during any run of the protocol.
During the run of the protocol each purse stores the current payment details in
a variable pdAuth of type PayDetails. These are tuples consisting of the names
of the from and to purse, the transaction numbers these use for this transaction
and the amount of money that is transferred. In KIV we define a free data type
PayDetails =

mkpd(. .from : name; . .fromno : nat; . .to : name; . .tono : nat; . .value : nat)
with postfix selectors (so pd.from is the name of the from purse stored in payment
details pd). The state of a purse finally contains a log exLog of failed transfers
represented by their payment details. The protocol is executed sending messages
between the purses. The ether collects all messages that are currently available.
A purse receives a message by selecting a message from the ether. Since the
environment of the card is assumed to be hostile the message received may be
any message that has already been sent, not just one that is directed to the
card (this simple model of available messages is also used in many abstract
specifications of security protocols, e.g. the traces of [Pau98|). The state of the
concrete ASM therefore is:

balance : name — IN

state : name — status

pdAuth : name — PayDetails
exLog : name — set(PayDetails)
ether : set(message)

The protocol is started by two messages startFrom(msgna, value, msgno) and
startTo(msgna, value, msgno) which are sent to the from and to purse respectively
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by the interface device. These two messages are assumed to be always available,
so the initial ether already contains every such message. The arguments msgna
and msgno of startFrom(msgna, value, msgno) are assumed to be the name and
nextSeqNo of the to purse, value is the amount of value transfered. Similarly, for
startTo(msgna, value, msgno) msgna and msgno are the corresponding data of the
from purse.

On receiving a startFrom message msg from ether (selecting a message from
ether is defined in the full ASM rule BOP# at the end of this section) in the idle
state a purse named receiver® executes the following step:

STARTFROM#
let msgna = msg.name, value = msg.value, msgno = msg.nextSeqNo
inif  authentic(msgna) A receiver # msgna
A value < balance(receiver) A — fail?
then choose n with nextSeqNo(receiver) < n in
pdAuth(receiver) := mkpd(receiver, nextSeqNo(receiver),
msgna, msgno, value)
state(receiver) := epr
nextSeqNo(receiver) :=n
outmsg := L
else outmsg := L
If the purse msgna which shall receive money is not authentic, the receiver
purse has not enough money or the transition fails due to internal reasons (a
flag fail? is used for this purpose just as on the abstract level), then the purse sim-
ply produces an empty output message | and does nothing else. Otherwise the
purse stores the requested transfer in its pdAuth component, using its current
nextSeqNo number as one component and proceeds to the epr state (“expect-
ing request”). Thereby it becomes the from purse of the current transaction.
nextSeqNo is incremented to make it unavailable in further transactions. An
empty output message | is generated in the success case too that will be added
to the ether (see the full ASM rule below).
The action for a purse receiving a start To message in idle state is similar except
that it goes into the epv state (“expecting value”) and becomes the to purse of
the transaction. Additionally it sends a request message to the from purse:

STARTTO#
let msgna = msg.name, value = msg.value, msgno = msg.nextSeqNo
in if authentic(msgna) A receiver # msgna A — fail?
then choose n with nextSeqNo(receiver) < n in
pdAuth(receiver) := mkpd(msgna, msgno, receiver,
nextSeqNo(receiver), value)
state(receiver) := epv seq
outmsg := req(pdAuth(receiver))
nextSeqNo(receiver) := n
else outmsg := L

3 Receiver is always a purse receiving a message. This can be a from purse sending
money as well as a to purse receiving money and should not be confused with the
latter.
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The request message req(pdAuth(receiver)) contains the payment details of the
current transaction. Although this is not modeled, the message is assumed to
be securely encrypted. Since an attacker can therefore never guess this message
before it is sent, it is assumed that the initial ether does not contain any request
message. When the from purse receives the request in state epr, it executes

REQ#

if msg = req(pdAuth(receiver)) A — fail?

then balance(receiver) := balance(receiver) — pdAuth(receiver).value
state(receiver) := epa
outmsg := val(pdAuth(receiver))

else outmsg := |

The message is checked to be consistent with the current transaction stored in
pdAuth and if this is the case the money is sent with an encrypted value message
val(pdAuth(receiver)). The state changes to epa (“expecting acknowledge”). On
receiving the value the to purse does

VAL
if msg = val(pdAuth(receiver)) A = fail?
then balance(receiver) := balance(receiver) 4+ pdAuth(receiver).value
state(receiver) := idle
outmsg := ack(pdAuth(receiver))
else outmsg := |

It adds the money to its balance, sends an encrypted acknowledge message
back and finishes the transaction by going back to state idle. When this acknowl-
edge message is received, the from purse finishes similarly:

ACK#
if msg = ack(pdAuth(receiver)) A — fail?
then state(receiver) := idle
outmsg := |
else outmsg := |

To put the steps together it finally remains to define the full ASM rule BOP#*
which executes all the steps above:

BOP#
choose msg, receiver, fail? with msg € ether A authentic(receiver) in
if isStartTo(msg) A state(receiver) = idle then STARTTO#
else if isStartFrom(msg) A state(receiver) = idle then STARTFROM#
else if isreq(msg) A state(receiver) = epr then REQ#
else if isval(msg) A state(receiver) = epv then VAL#
else if isack(msg) A state(receiver) = epa then ACK#
else ABORT#
seq ether := ether ++ outmsg

The ASM rule chooses an authentic receiver for some message msg from ether.
Like in the abstract ASM the fail? flag indicates failure due to internal reasons. At

4 BOP+# is called BSTEP+# in the web presentation.
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the end of the rule the produced message outmsg is added to the set ether of avail-
able messages. Therefore our ASM corresponds to the “between” level as defined
in [SCJ00]. For the concrete level the ether is assumed to lose messages randomly
(due to an attacker or technical reasons like power failure). Therefore the ASM
rule COP# that models the concrete level replaces ether := ether ++ outmsg in
BOP# with LOSEMSG# where:

LOSEMSG#
choose ether’ with ether’ C ether ++ outmsg in ether := ether’

If a purse is sent an illegal message 1 or a message for which it is not in the
correct state, the current transaction is aborted by

ABORT#

choose n with nextSeqNo(receiver) < n in
LOGIFNEEDED#
state(receiver) := idle
nextSeqNo(receiver) := n
outmsg := |

LOGIFNEEDED#
if state(receiver) = epa V state(receiver) = epv
then exLog(receiver) := exLog(receiver) ++ pdAuth(receiver)

This action logs if money is lost due to aborting a transaction. The idea is
that the lost money of the abstract level can be recovered by comparing the two
logs of the from and to purses involved. Logging takes place if either the purse
is a to purse in the critical state epv or a from purse in critical state epa.

This completes the description of the concrete level. Although the ASM is
much simpler than the full Z specification (no promotion was used, none of the
Z schemas in [SCJ00] that describe which variables are not allowed to change in
operations are necessary, STARTFROM# is not prefixed with ABORT#, since
the ASM can do this step separately by choosing L from ether, etc.) it still
captures the essence of the refinement as we will see in Section 5.

3 Verification of Backward Simulation and Invariance for

the ASMs

The ASMs of the previous section were not intended to be a 1:1 representation
of the original Z operations. Rather they were intended as a concise description
of the essential refinement problem contained in the case study. To check this
we tried to prove the main theorems of the Mondex case study for these ASMs,
namely

— The concrete ASM preserves the invariant BINV, that is used to restrict the
“concrete” state to the “between” state ([SCJ00], sections 28-29).

— The concrete ASM satisfies the correctness condition of backward refinement
using a backward simulation ABINV ([SCJ00], sections 14-20).
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This section reports on the results. The first thing we had to do is to extract
the properties of the invariants from the Z specification. We found that they are
distributed in 3 places in [SCJ00]: The property of payment details that requires
pd.from # pd.to for every relevant pd used (section 4.3.2), the properties of purses
P-1 to P-4 (section 4.6) and the properties B-1 to B-16 of the intermediate state
that define an invariant for the concrete state (section 5.3).

Collecting these properties and the required definitions of AuxWorld (section
5.2) gives a suitable definition of BINV: full details can be found in the technical
report [SGHRO6] and in specification BINV in project Mondez [KIV].

There is one interesting modification: we had to strengthen properties P-3 and
P-4. We found that although the proofs of [SCJ00] are very detailed they still
contain minor flaws. The problems were detected when the proof for invariance
theorem BINV failed. This theorem is written using Dynamic Logic [HKT00]
and proved in KIV using sequent calculus:

BINV(cs) - (BOP#:(; cs)) BINV(cs)

F is the sequent arrow (semantics: the conjunction of antecedent formulas be-
fore the sequent arrow implies the disjunction of succedent formulas after the
sequent arrow). cs is the vector of variables that denote the concrete state, i.e.
cs = balance, state, nextSeqNo, pdAuth, ether. (BOP#(; cs)) BINV(cs) states that
all runs of BOP# terminate in a state where BINV holds again.

The first proof for the invariance theorem used the original properties P-3
and P-4. Specification BINV-orig on [KIV] contains a failed proof attempt.
Its first open premise is one of the subgoals for proving invariance for the
VAL# rule. The case can be traced back to the original Mondex paper. The
problem is in section 29.4 in the proof of B-10 where it must be proved that
tolnEpv V tolLogged = req A — ack for every payment details pd. Now the prob-
lem is as follows: the implication can be proved for pdAuth(receiver), where
receiver is the (to) purse receiving the val message (to which it responds with an
ack message). But this is not sufficient: if it would be possible that receiver
is different from some na := pdAuth(receiver).to but has state(na) = epv and
pdAuth(na) = pdAuth(receiver), then for this na the implication would be vio-
lated. The solution to this problem is obvious: add pdAuth(receiver).to = receiver
when state(receiver) = epv to P-3.

A similar problem also exists for state(receiver) = epa (property P-4) where
pdAuth(receiver).from = receiver has to be known (second open goal in the proof).
Finally, we had to add the fact that every val(pd) message in the ether has
authentic(pd.from). Like property authentic(pd.to) (B-1) is needed to make the
application of partial function ConAuthPurse to pd.to defined in B-2, this prop-
erty is needed in order to have a determined value for ConAuthPurse pd.from in
B-3 (the proof of BINV in BINV-orig already has this property added).

We also added the requirement that pdAuth(receiver).to resp. .from must be
authentic to P-3 and P-4. In early proof attempts this seemed necessary since
these lacked the authentic clauses in the definition of the predicates tolnEpr,
tolnEpv and tolnEpa. After adding such clauses this addition to P-3 and P-4
may be redundant.
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With these additions the invariant proof was successful. The standard heuris-
tics and automation features of KIV (simplifier rules and problem specific pat-
terns to guide the proof search as described in [RSSB98]) were sufficient for the
proof. None of the complex lemma structure of [SCJ00] was necessary, although
in some situations where it was not clear why our proof got stuck, it was helpful
to cross-check details with the original proofs.

After this proof we verified the backward simulation condition:

ABINV(as’, cs’), BINV(cs), (BOP#(cs)) cs = cs’
F 3 as.ABINV(as,cs) A ((AOP#(as)) as = as’ V as = as’)

ABINV (as, cs) is the backward simulation. The definition is basically identical
to the simulation relation defined in [SCJ00].

The meaning of (BOP#(cs)) cs = cs’ is that BOP# called with cs terminates
and yields cs’. This is equivalent to BOP(cs, cs’). The proof obligation for ASM
refinement allows a 1:1 diagram, where the concrete rule BOP# refines an ab-
stract operation AOP# as well as a 0:1 diagram, where the concrete operation
refines skip (second disjunct).

The proof for the simulation condition has 655 proof steps and 197 inter-
actions. Compared to the invariance proof, which has 447 proof steps with 71
interactions, it is somewhat harder to achieve a high degree of automation due
to the more complex quantifier structure of ABINV compared to BINV.

The proofs can be found in project Mondez in the web presentation [KIV].
Specification BINV contains the proof for invariance (theorem BINV'), spec-
ification Mondez-ASM-refine contains the proof for the simulation condition
(theorem correctness).

4 Specifying the Data Refinement Theory

The data refinement theory underlying the Mondex case study is defined in
[CSWO02] in 3 steps: first, the general data refinement theory of [HHS86] is given.
Second the contract embedding [WD96] of partial relations is defined and cor-
responding proof rules for forward and backward simulation are derived. Third
the embedding of input and output into the state is discussed.

We have formalised the first two parts of the theory already for [Sch05]. The
corresponding algebraic specifications in KIV are available in the project named
DataRef on the Web [KIV]. The third part is formalised in theory Z-refinement.

The central specification construct used in these projects (apart from stan-
dard constructs like enrichment, union, actualisation and renaming as present
in all algebraic specification languages with lose semantics, e.g. CASL [CoF04])
is specification instantiation. Instantiating a subspecification PSPEC (the pa-
rameter) of a generic specification GSPEC with an actual specification ASPEC
using a mapping ¢ (a morphism, that allows to instantiate sorts resp. operations
with tuples of types resp. arbitrary expressions) requires to prove the axioms of
o(PSPEC) over ASPEC. The resulting specification is ¢(GSPEC), with all theo-
rems of ASPEC available as lemmas. Instantiating specifications is used to prove
that forward and backward simulation imply refinement correctness and to prove
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that the contract approach instantiates the original approach [HHS86] for total
relations (sections 3 and 4 in [CSW02]).

While the specifications and proofs in project DataRef mimic the ones of
chapter 2 and 3 of [CSWO02], those in Z-refinement differ from the ones in chapter
4. We found, that the embedding used is not correct: input and output sequences
are embedded into the initialisation and finalisation relation using an empty/X, Y]
relation (e.g. empty[GO, CO]J in section 4.4.1 to embed output in initialisation).
This relation is defined in Appendix A.4 as the relation that comprises only
a pair of empty sequences. This is not a total relation, and leads to a partial
initialisation relation. The correct definition should relate every sequence to the
empty sequence (e.g. for empty[GO, CO] the global output GO of the initial global
state is discarded, so that the initial concrete state has empty output CO) just
as it has been done in the closely related approach of [DBO01].

The correction results in an additional proof obligation (from the finalisation
proof) for refinement correctness: every concrete input must be related to some
abstract input via relation ¢,: Our web presentation calls this relation IT using
the notation of theorem 10.5.2 in [DBO01], which also requires totality. Adding the
proof obligation it can be proved that backward simulation implies refinement
correctness.

In the Mondex case study the proof obligations are applied restricting the
state space of the concrete level to those states for which an invariant holds:
this implies that all refinement proof obligations can assume the invariant for
every concrete state. While this is adequate for the total operations of Mondex,
it seems there is a problem when using invariants to restrict the state space for
the general case of partial operations. More details on this can be found in the
technical report [SGHRO6].

Nevertheless it is possible to use invariants without restricting the state space,
but a backward simulation theorem using invariants cannot be derived as an in-
stance of the contract approach. Therefore we proved the following theorem
directly by instantiating the original approach of [HHS86]. The theorem is given
here for the approach without IO in a slightly simplified form with total ini-
tialisation and finalisation relations. The theorem with IO can be derived from
this theorem with a similar proof as in [CSWO02] (but with the corrected empty
relation). It is given in the technical report [SGHRO06]. The proof obligations can
also be found as axioms without and with IO in the theories conbackward-INV
in project DataRef and IOconbackward-INV in project Z-refinement.

Theorem 1. (Backward Simulation using Invariants)

Given an abstract data type ADT = (AINIT, AIN, AOP, AFIN, AOUT) with total
AINIT C GS x AS, AOP; C AS x AS, total AFIN C AS x GS, a similar data type
CDT = (CINIT, CIN, COP, CFIN,COUT) which uses states from CS instead of
AS, a backward simulation T C CS x AS and two invariants AINV C AS and
CINV C CS, then the refinement is correct using the contract approach provided
the following proof obligations hold:

— CINIT C CINV, AINIT C AINV (initially invariants)
— ran(AINV < AOP) C AINV, ran(CINV < COP) C CINV (invariance)
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— (CINIT > CINV) g T C AINIT (ingtialisation)

— (CINV < CFIN) C T g (AINV < AFIN) (finalisation)

— dom(COP;) < CINV C dom((T < AINV) < dom(AOP;)) (applicability)
— dom(T < dom(AOP;)) < (COP; s T) C T g (AINV < AOP;) (correctness)

Instead of the usual embedding of the contract approach T=TU {1} x AS}

the proof uses T= (T AINV) U {CS, \ CINV} x AS, . The idea is that those
concrete states that do not satisfy the invariant behave like the undefined L
state and therefore get mapped to every abstract state. The proof proceeds as
usual by eliminating 1 from the resulting proof obligations.

5 Verification of the Data Refinement

Our specification faithfully replicates the data types and operations of the origi-
nal Mondex refinement. The operations are defined in the specifications Mondezx-
AOP and Mondex-COP. The only difference to the original Mondex refinement
is that we used ASM rules as an auxiliary means to specify operations:

OP(cs, cs’) <> (OP#(cs)) cs = cs’

This equivalence defines the relation OP(cs,cs’) to hold if and only if ASM
rule OP# started with cs can compute cs’ as one possible result. Because of
the relational semantics of programs, ASM rules adequately represent opera-
tion schemas: schema composition becomes sequential composition of programs.
For example the composition ABORT g STARTFROM V IGNORE is represented
as (ABORT#; STARTFROM# or IGNORE#) where or is the nondeterministic
choice between two programs. Compared to using operations on relations di-
rectly, using auxiliary ASM rules allows to execute programs symbolically (see
[RSSB98]), which improves proof automation.

Apart from the auxiliary use of operational definitions instead of pure re-
lations the specification mimics the structure of the Z specifications faithfully:
STARTFROM# is now prefixed with ABORT#, input is read from a list of in-
puts, disjunctions with IGNORE# operations that skip have been added etc.

The use of auxiliary operational definitions has the effect that the main
proof obligations for data refinement, “Correctness” and “Concrete invariant
preserved”, have proofs which are nearly identical to the ones we did for ASM
refinement (see the proofs of theorems correctness and cinv-ok in specification
Mondex-refine in project Mondex on the web [KIV]). The only important dif-
ferences are that instead of one proof for the full ASM rule we now have several
proof obligations for the individual operations corresponding to cases in the ASM
proof (lemmas ABORT-ACINV, REQ-ACINV etc. for correctness, ABORT-
CINV, REQ-CINV etc. for invariance) and that the lemmas for ABORT# and
IGNORE# are used several times, since several operations now refer to it.

We have decided to merge the two refinements of the Mondex case study into
one, so each operation calls LOSEMSG# at the end, just as described for the
ASM at the end of section 2.
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This means that our concrete invariant cannot be BINV since the properties
of the ether which have been specified with a predicate etherok(ether,...), that
is part of the definition of BINV, do not hold for an ether where messages have
been dropped. Instead we replace the old definition of etherok with

newetherok(ether, ...) < 3 fullether. ether C fullether A etherok(fullether, .. .)

The new predicate® claims the existence of fullether, where no messages have
been dropped, such that fullether has the properties specified in the old etherok
predicate. fullether does not change during LOSEMSG#, otherwise it is modified
just like ether. The new definition of etherok is used in the definition of the new
invariant CINV for the concrete level. The backward simulation ABINV is left
unchanged. It is just renamed to ACINV.

Summarizing, there is a little extra work required to cope with the redundancy
of operations and the lossy ether, but essentially proofs are done by “copy-paste”
from the ASM proofs.

Summarizing, the effort to do the full case study was as follows:

— 1 week was needed to get familiar with the case study and to set up the
initial ASMs (Section 2).

— 1 week was needed to prove the essential proof obligations “correctness” and
“invariance” for the ASM refinement as shown in (Section 3).

— 1 week was needed to specify the Mondex refinement theory of [CSW02] and
to generalise the proof obligations to cope with invariants (Section 4).

— Finally, 1 week was necessary to prove the data refinement and to polish the
theories for the web presentation (this section).

Of course the four weeks needed for verification are not comparable to effort for
the original case study, which had to develop the formal specifications, refinement
notions and proofs from scratch: in private mail, Jim Woodcock sent us an
estimation of 1.5 pages of specification/proof per day, which results in at least
10 person months of effort.

The task we solved here is the mechanisation of an already existing proof.
This time was of course significantly reduced by having a (nearly) correct simu-
lation, since usually most of the time is needed to find invariants and simulation
relations incrementally. On the other hand, sticking to ASM refinement would
have shortened the verification time. The main data refinement proofs for the
Mondex refinement consist of 1839 proof steps with 372 interactions.

The effort required can be compared to the effort required for refinement
proofs from another application domain which we did at around the same time
as the original Mondex case study: verification of a compiler that compiles Prolog
to code of the Warren abstract machine ([SA97], [SA98], [Sch99], [Sch01]). This
case study required 9 refinements, and the statistical data ([Sch99], Chapter 19)
show that proving each refinement needed on average about the same number
of proof steps in KIV as the Mondex case study.

5 The web presentation [KIV] uses the modified etherok definition given in specification
Mondex-CINV, not a new predicate.
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The ratio of interactions to proof steps is somewhat better in the Prolog
case study, since automation of refinement proofs increases over time: investing
time to improve automation by adding rewrite rules becomes more important
when similar steps are necessary in several refinements and when developing
simulation relations iteratively. Summarizing our proof effort shows that the
Mondex case study is a medium-sized case study and a good benchmark for
interactive theorem provers.

6 A Security Model for Mondex Purses

Although the Mondex case study was the basis of an ITSEC E6 certification
([CB99)]), the formal model abstracts away an important part of the security of
the application. As the cryptographic protocols used to realize the value transfer
were and are still, to our knowledge, undisclosed ([CCW96]) the formal model
assumes the existence of unforgeable messages for requesting, transferring and
acknowledging the transfer of a value. To complete the analysis of the application
a model based on a theory of messages with abstract representations of the
used cryptographic mechanisms should be specified and used to proof that the
‘dangerous’ messages actually cannot be forged.

The Mondex application is prepared to use different cryptographic algorithms
in the value transfer protocol. It is generally assumed that DES and RSA were
used to authenticate the value transfer ([CB99)). It is not too difficult to come up
with a cryptographic protocol that ensures that its messages have the properties
that are required for the abstract messages req, val and ack. Using DES as cryp-
tographic algorithm a shared secret key is used for authentication of messages
([BGJY98]). A possible protocol written in a commonly used standard notation
for cryptographic protocols is:

1. to — from : {REQ,pdAuth(to)}«

2. from — to : {VAL,pdAuth(from)}«,
3. to — from : {ACK,pdAuth(to)}k,

In this protocol Kg : key denotes a secret key shared between all valid Mondex
cards. REQ, VAL and ACK are pairwise distinct constants used to distinguish
the three message types.

Using RSA makes things somewhat more complicated since individual key
pairs and digital certificates should then be used. To ensure security for the next
years keys with at least 1024 Bit length must be used. Given this key size the
public key and the associated certificate of a Mondex card and the payload of
the protocol messages cannot be transferred to the smart card in one step, due
to restrictions of the communication interface of smart cards. Therefore some of
the steps that are atomic on the concrete level of Mondex would have to be split
up into several steps on the implementation level. This further complicates the
refinement.

Assuming the DES-based protocol, the challenge to be solved is to verify the
security of the Mondex application with this real cryptographic protocol instead
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of the special messages postulated as unforgeable in the Mondex case study in
Z. Possible approaches generally used in the verification of cryptographic proto-
cols are model-checking ([Low96], [BMV03]) or interactive verification ([Pau98]).
Paulson’s inductive approach has proven to be especially powerful by tackling
complex industrial protocols ([Pau01]). We plan to use our ASM-based model for
cryptographic protocols ([HGRS05]) for verification. Particularly interesting is
the question whether the protocol with cryptographic operations can be proven
to be a refinement of the concrete protocol of the original Mondex case study.
We think such a refinement is possible, and the Mondex case study shows an
elegant way to separate functional correctness and security into two refinements.

7 Conclusion and Further Work

We have specified and formally verified the full communication protocol of the
Mondex case study with the KIV system. We have slightly improved the protocol
to use one idle instead of two eaFrom and eaTo states. We have improved the
theory of backward simulation in the contract approach to include invariants for
the data types. Using the improved theory, the correctness proof for Mondex
could be done as one refinement instead of two. We think that the additional
effort to do this was rather small compared to the effort needed to write down
the proofs in [SCJ00] at nearly calculus level. Despite this great detail we were
still able to find two small flaws: one in the underlying data refinement theory,
where a proof obligation was missing and one in the invariant, where we had to
add a totality property. Therefore we feel justified to recommend doing machine
proofs as a means to increase confidence in the results.

As a second contribution we gave an alternative, concise specification of the
refinement problem using ASMs. The fact that the main proofs are nearly iden-
tical to those for the original refinement indicates, that the ASMs are a good
starting point to further improve the invariant and the verification technique.

One idea for further work is therefore to take the ideas of [HGRSO05] to do
a proper ASM refinement proof (that probably would use generalised forward
simulation [Sch01] instead of backward simulation).

Another idea contained in the Mondex case study that we will try to address
is that functional correctness and a security protocol as proposed Section 6 may
be verified independently as two separate refinements.

Acknowledgement. We like to thank Prof. Borger for pointing out the Mondex
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