
Developing provable secure m-commerce applications

Holger Grandy, Dominik Haneberg, Wolfgang Reif, Kurt Stenzel

Angaben zur Veröffentlichung / Publication details:

Grandy, Holger, Dominik Haneberg, Wolfgang Reif, and Kurt Stenzel. 2006. “Developing
provable secure m-commerce applications.” In Emerging Trends in Information and
Communication Security: International Conference, ETRICS 2006, Freiburg, Germany, June 6-9,
2006; proceedings, edited by Günter Müller, 115–29. Berlin: Springer.
https://doi.org/10.1007/11766155_9.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/11766155_9
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/


Developing Provable Secure M-Commerce
Applications

Holger Grandy, Dominik Haneberg, Wolfgang Reif, and Kurt Stenzel

Lehrstuhl für Softwaretechnik und Programmiersprachen
Institut für Informatik, Universität Augsburg

86135 Augsburg Germany
{grandy, haneberg, reif, stenzel}@informatik.uni-augsburg.de

Abstract. We present a modeling framework and a verification tech-
nique for m-commerce applications1. Our approach supports the devel-
opment of secure communication protocols for such applications as well
as the refinement of the abstract protocol descriptions into executable
Java code without any gap. The technique is explained using an interest-
ing m-commerce application, an electronic ticketing system for cinema
tickets. The verification has been done with KIV [BRS+00].

1 Introduction

Many m-commerce applications (e.g. electronic ticketing) transmit and store
confidential user data and digital data that represents business goods. Data that
is transmitted or stored is subject to modification or duplication. This poses a
threat to the applications because it may lead to fraud, therefore such problems
must be ruled out in order to offer a secure application. One major problem are
design errors in the security protocols, another are programming errors in the
protocol implementation.

Many cryptographic protocols initially had weaknesses or serious errors (see,
e.g. [AN95] [WS96] [BGW01]). Different approaches have been proposed to verify
the protocols, e.g. model checking based approaches [Low96] [BMV03], special-
ized logics of belief [BAN89], interactive theorem proving [Pau98] [HRS02] and
specialized protocol analyzers [Mea96]. To cope with the problem of erroneous
implementations the generic techniques for program verification can be used,
but must be adapted.

This paper presents an interesting m-commerce application called Cindy for
buying cinema tickets using mobile phones. It is modeled and formally analyzed
using Abstract State Machines (ASM). We deal with the formal verification of
the security protocols and verify a refinement step to a Java implementation.
While not highly security critical, the Cindy application is simple to understand
and serves to illustrate the relevant issues.

The usual verification of cryptographic protocols is focused on proving stan-
dard properties like secrecy or authenticity. We, however, focus on application
1 This work is supported by the Deutsche Forschungsgemeinschaft.



116

specific properties. We also do not use the common Dolev-Yao attacker model
[DY83]. Instead the abilities of our attacker are tailored to realistically represent
the application scenario. Additionally, the properties that must be proved are
more complicated than the standard properties. Secrecy or authenticity of data
is just the basis for proving the properties we are interested in, e.g. ‘only tick-
ets issued by the cinema permit entry to it’. An especially important difference
to the usual protocol analysis is that we also deal with availability properties
that are of interest to the customer and prove such properties without using a
temporal logic.

This paper is structured as follows: Section 2 introduces the example appli-
cation Cindy. In section 3 the formal application model is described, followed
by the refinement to Java (section 4). Section 5 presents the security properties
and their proofs, and section 6 contains a conclusion.

2 The Cindy Application

Cindy introduces electronic tickets for a cinema. A ticket is stored on the vis-
itor’s mobile phone and displayed for inspection. The service works as follows
(see Fig. 1): The user orders a ticket in advance, either by Internet or with an
application running on a mobile phone. Payment is handled either by credit
card number or by the usual phone bill. Then the ticket is sent to the phone as a
MMS (Multimedia Messaging Service) message. It contains the ticket data and

Fig. 1. The Cindy Application



117

an image that is unique for this ticket. On entry this image is scanned from the
phone’s display. This can be done automatically using a special entrance with
a turnstile.2 The application exists in the Netherlands for seven cinemas [Bee];
the authors are not aware of any other deployments in Europe.

Electronic tickets are attractive for customers because the typical moviegoer
has a mobile phone, and can buy the ticket everywhere, any time without a PC
and without waiting in a queue. The cinema, on the other hand, can reduce the
ticket sales staff, and save on specialized paper and ink for printing tickets.

One important question for the cinema is, of course, how to avoid fraud. The
idea is simple: Every ticket contains a nonce, a unique random number that is
too long to guess. Therefore, it is virtually impossible to ‘forge’ a ticket. This
nonce is displayed as a data matrix code, a two-dimensional matrix bar code that
can be scanned from a handheld’s display. The scanner must be connected to a
server that keeps track of issued and presented tickets. It is possible to copy a
ticket: A user can buy one ticket and send it to his friends. However, this is easy
to detect. On entry, the server must check if this number was already presented.
If this was the case the second visitor is not admitted.

The more interesting question in the context of this paper is: What can be
guaranteed for the user of the service? The user must register in advance and
provide payment information. Then tickets can be ordered either with a PC
by Internet (with a password and using a standard SSL (Secure Sockets Layer)
connection) or with a mobile phone. The ticket can be sent to an arbitrary phone
number, for example as a gift. Furthermore, it is possible to pass on a ticket from
one phone to another (e.g. one person buys the tickets for a group of people).
We will assume that the cinema is honest, but the user should be secure from
third-party attacks. We want to guarantee (and formally prove) the following
properties:

1. If the user orders a ticket he will eventually receive it.
2. If the user is charged for a ticket he ordered it.
3. If the user has a ticket and presents it at the turnstile, then he will be

admitted.

These properties are quite natural, and describe what one would expect. How-
ever, they do not hold in this general form. They all have preconditions, for
example concerning the user’s behavior: If a user sends the ticket to another
phone, another person has access to the ticket and could pass the turnstile
before the user, who then will be rejected.

(Maybe not) surprisingly, these properties are usually not considered in the
world of formal (cryptographic) protocol verification. First, they do not deal with
confidentiality, but rather with availability, or with things that can or will hap-
pen. This, however, is usually difficult to express formally unless temporal logic
is used. Second, the usual attacker in formal protocol verification is a Dolev-Yao
attacker that may analyze, modify, or suppress any protocol message between

2 However, this is not unique to electronic tickets, but could be done with paper tickets
as well.



118

any participants in real time. But if any message concerning our user is sup-
pressed he will not be admitted to the cinema. Due to that we model a limited
attacker, that cannot manipulate all communication channels.

Going to the movies requires three ‘messages’: 1. the ticket order (by PC or by
SMS), 2. delivery of the ticket (by MMS), 3. ticket inspection at the turnstile (by
visual scan). In principle, all three messages can be suppressed by an attacker.
However, suppressing, manipulating, or faking the originator of a GSM (Global
System for Mobile Communications) message requires either insider access or
sophisticated equipment, and is out of proportion for this application. It is also
very difficult to eavesdrop on a GSM connection. Suppression of the ticket pre-
sentation at the turnstile requires physical force, and can also be discounted for
protocol verification purposes. The PC/Internet connection, on the other hand,
can be suppressed or manipulated, but can be considered confidential if we as-
sume that an underlying SSL protocol is secure enough. To summarize, even
though the application does not actually use cryptography, it is an interesting
m-commerce application with several features that are usually not considered in
formal protocol verification.

3 The Abstract Model of Cindy

The formal model of the Cindy application uses a combination of Abstract
State Machines (ASM) and algebraic specifications. The algebraic part contains
the necessary information on the participants of the application (the so-called
agents), the communication between the agents, the abilities of the attacker and
so on. The dynamic aspects of the application, i.e. the possible actions of the
agents, are described by the rules of the ASM. ASMs are an abstract specifica-
tion formalism [BS03] [Gur95] that has a programming language-like syntax and
an exact semantics. ASMs can be used for a variety of specification tasks, from
programming language semantics to distributed systems. The protocol ASM de-
scribes the possible traces of the application. In this context the term ‘trace’
designates a possible run of the application. A trace is a list of events that may
happen within the application, e.g. an activity by the attacker or a protocol step
consisting of receiving some input and sending an output.

3.1 The Formal Application Model

The formal application model consists of two parts. The first part is an algebraic
specification and the second part is the protocol ASM. The algebraic specifica-
tion defines the used data types (e.g. the messages that are exchanged between
the agents are represented by the freely generated data type Document, cf.
[HGRS05]) and describes the communication structure of the application and
how the attacker can influence the communication. The protocol ASM is a set of
rules each describing a step possible for one agent type. These include, of course,
the actual protocol steps by the different systems appearing in the application,
but also steps that represent actions of the attacker or steps of the infrastructure



119

representing the environment in which the application is operating, e.g. changes
to the established connections. The agents consist of the users, their mobile
phones, the PCs, the cinema, and the attackers. In the Cindy application we
must consider attacks that involve several people, e.g. one person buys a ticket
and all his buddies are admitted to the cinema as well.

3.2 Communication in the Cindy Application

The Cindy application uses different communication techniques each with very
specific features. The most important ones are:

– The usage of MMS to send tickets. The GSM network guarantees3 that a
transmitted MMS cannot be manipulated and the attackers cannot eaves-
drop into the communication. Also important is that the receiver of a MMS
is determined uniquely (by the phone number to which the MMS is sent)
and that the sender of a MMS is known to the receiver (because the phone
number of the sender is contained in the MMS).

– A SSL connection between the Internet PC and the cinema. The attack-
ers cannot eavesdrop on or manipulate the data transmitted using the SSL
connection. Additionally, the user can identify the cinema as his communica-
tion partner (by checking the SSL certificate) but the cinema cannot directly
identify the Internet PC.

– The visual scan of the ticket at the turnstile. We assume that the attacker
can eavesdrop on the presentation of the ticket (e.g. taking a photo of the
data matrix code on the customer’s mobile phone display) but he cannot
manipulate the presentation of the ticket. (Something that is shown on a
display should never be considered secret.)

All these communication techniques are different from the Internet-like commu-
nication assumed in the formal analysis of cryptographic protocols which uses an
attacker model based on the Dolev-Yao attacker [DY83]. The Dolev-Yao attacker
has access to all communication, and the infrastructure does not guarantee the
identity of sender and receiver. This is inadequate for the Cindy application.

All the specific features of the communication must be specified in the formal
model, because they are essential for the security of the application (otherwise
the security goals would not be provable). For example, the algebraic specifica-
tion of the infrastructure ensures that the sender of a MMS cannot be forged by
the attackers.

3.3 State of an Agent

The state of an agent is defined by the values that are currently contained in
the fields of the agent (this is an object-oriented view of the agents). Therefore

3 Although this is not entirely true, for the scope of this application an attack against
the infrastructure seems unlikely.



120

the content of the fields of all agents must be stored. This is done using dynamic
functions, as usual in ASM.

The state of the attackers and the users only consists of sets of documents
(containing data) that they may use to generate new documents. Each user
knows his personal login secret for Internet orders. The attackers initially have
an empty knowledge. Since in the worst case all attackers cooperate they share
a common knowledge. The state of a mobile phone consists of three lists of
documents, one for the tickets stored on the cell-phone (tickets), one for the
tickets that were passed on to another mobile phone (passedOn) and one for
the bookings that were done by the phone (booked). The cinema state contains
one list of documents containing the issued tickets (issued), all the nonces that
were presented at the turnstile (presented), the ones that were rejected (rejected)
and those that were accepted (accepted). In order to express a specific security
property the information which visitor was admitted for a given ticket is stored,
too (accepted-with-presenter). A PC stores all the ticket orders it sends to the
cinema in the list booked.

3.4 The Protocol ASM

The protocol ASM is a nondeterministic machine built in a modular way. The
ASM on top-level only chooses nondeterministically the agent that should per-
form its next protocol step. The nondeterministic selections ensure that the
ASM can construct all possible traces of the application. On the agent level of
the ASM there is a rule for each type of agent that exists in the application.
After the agent was chosen the protocol ASM branches into the ASM rule that
describes its behavior. All these rules consist of a case statement that tests the
applicability conditions of all protocol steps specified for this type of agent until
the first condition is found that holds in the current state. Then the protocol
step that belongs to this condition is executed.

. . .
1) if is-comdoc(indoc) ∧ indoc.inst = loadTicket
2) ∧ inport = 2 ∧ is-doclist(indoc.data)
3) ∧ # indoc.data.list = 2 ∧ is-intdoc(get-part(indoc.data, 1))
4) ∧ is-noncedoc(get-part(indoc.data, 2))
5) ∧ #(tickets)(agent) < MAX-NO-TICKETS
6) then tickets(agent) := tickets(agent) + inmsg ’

. . .

Fig. 2. ASM rule for receiving tickets

For example, the protocol step that is performed by a mobile phone after it
received a MMS containing a new ticket is on described in figure 2. The condition
part (lines 1 to 5) states that this step will be performed only if the message
that is processed is a command to load a new ticket (line 1 to 4), is-comdoc(doc)
is a predicate that is true if doc has a certain form. Basically, the condition



121

means that the data part of the MMS is well-formed, i.e. it contains an encoded
ticket in a format that is accepted by the mobile phone. Line 5 demands that
the list of tickets stored in the mobile phone has not yet reached its maximal
accepted length. The change of the internal state for this protocol step is limited
to extracting the new ticket from the MMS and appending it to the list of already
stored tickets. This is done in line 6. The new ticket is represented by the variable
inmsg which contains the message that is currently processed by the agent.

4 Refinement

Refinement is a well-established method for proving concrete implementations
correct with respect to an abstract specification [HHS86] [BDW99] [WD96]
[dRE98] [DB01]. When the concrete implementation adheres to certain rules,
all properties of the abstract specification (especially security properties in our
case) are automatically satisfied by the concrete implementation.

Refinement is difficult because when writing the specification on the abstract
level, one usually does not consider how things should be implemented later. For
example, when specifying a list of tickets for the mobile phone, the first thought
on the abstract level would be to use an algebraically specified list of arbitrary
length. To permit a later refinement and an implementation, the writer of the
abstract specification has to keep such things in mind. Additionally, the encoding
of certain types is different on the abstract and on the concrete level.

4.1 Refining a Protocol ASM

After specifying the protocol on an abstract level and proving security we now
verify that the real implementation running on a mobile phone is correct with
respect to the abstract specification. For this purpose we developed a refinement
method for ASM protocol specifications. In our approach the concrete imple-
mentation contains the Java source code for the real application. In the Cindy
scenario this implementation is based on the Java Micro Edition [Sun].

The KIV system supports the verification of Java source code. It includes a
calculus and semantics for sequential Java [Ste04] [Ste05]. The calculus has been
proven correct regarding the semantics. Verification support has been tested and
improved in many case studies.

Additionally, we use a verification kernel approach [GSR05]. Verification ker-
nels allow to extract the security relevant part of the Java source code running
on the mobile phone, thereby separating e.g. the GUI (Graphical User Interface)
or the Communication subsystem without losing security properties.

The general idea of the refinement approach is to combine the Java calculus
with the ASM methodology in KIV. The protocol ASM is refined to another
ASM in which the Java source code running in the real application is embedded.
Due to the modular specification on the abstract level it is possible to do a
stepwise refinement and substitute the abstract protocol part of one agent after
another by a Java implementation.



122

The Java calculus in KIV uses a store st, which contains all the information
relevant for the behavior of a certain piece of Java source code. E.g. all the
Java objects of the program with their actual field values are inside the store.
Basically, the store can be seen as the heap together with the internal state of
the Java Virtual Machine. This store st is now part of the state of the ASM on
the concrete level.

The refinement is based on Downward Simulation, which has been adapted
to ASM [Sch01] [Bör03] [Sch05]. We use the following notations:

– st is the Java store
– as is the state of the abstract ASM, cs is the state of the concrete ASM,

both given by the state functions (the fields of the agents)
– stepa is the relation of type as×as describing one step of the abstract ASM,

and stepc of type (cs × st) × (cs × st) the one for the concrete ASM
– inita is the initialization condition on as, initc the one for cs × st
– fina is the finalization condition (condition for termination of the ASM) on

as, finc the one for cs × st
– R with type as × (cs × st) is the retrieve relation between the states

Figure 3 shows the relation between the abstract protocol ASM and the con-
crete one in the Cindy scenario.

abstract ASM level

refinement of 

the mobile phone

refinement of 

the cinema

TOSTORE FROMSTORE

JAVA−CINEMA

CINEMA

CINEMA

TOSTORE FROMSTORE

TOSTORE FROMSTORE

R

R’

R

R’

R

R’ R’

R

R’

R

R’

R

init_a

init_c

init_c

init_c’

cons_mp

cons_cin

fin_a

fin_c

fin_a

fin_c

JAVA−MOBILEPHONE

JAVA−MOBILEPHONE

MOBILEPHONE

cons_mp

cons_mp

Fig. 3. Refinement Diagram

Figure 3 shows two subsequent refinements. All Java parts are shown as
dashed lines. CINEMA and MOBILEPHONE are two of the possible abstract
steps (stepa). JAVA-MOBILEPHONE and JAVA-CINEMA are possible con-
crete steps (stepc). The upper layer describes the abstract protocol specification.
The middle layer represents the first refinement, in which the abstract mobile
phone specification is replaced by a Java implementation. The third layer addi-
tionally contains a refinement of the cinema.

For this paper we refine the mobile phone which means that the following
explains the upper two layers of figure 3.



123

4.2 The Cindy Implementation

The concrete ASM specification is an extension of the abstract specification,
since all the agents that are not refined work as on the abstract level. What is
added is the Java implementation for the phone.

As an example, the mobile phone implementation of Cindy is partially listed
below:

public class Cindy {
private CommInterface comm;
private static Protocol theinstance;
private Doclist tickets;

public Cindy(CommInterface comm){ ... }

public void step(){
if(comm.available()){

Document inmsg = comm.receive();
phoneStep(inmsg);

} else { ... } }

private void phoneStep(Document inmsg) {
Document originator = inmsg.getPart(1);
inmsg = inmsg.getPart(2);
Doclist ticket = getTicket(inmsg, originator);
if(ticket != null && tickets.len() < MAXTICKETLEN){

tickets = tickets.attach(ticket);} }
...}

The class Cindy is responsible for executing the protocol steps. Communi-
cation with other participants is handled by the CommInterface comm, which
is a field of class Protocol. The CommInterface implements a mechanism for
sending and receiving objects of the class Document, which is the Java coun-
terpart for the abstract Document type used in the protocol ASM. For every
abstract document there exists one Java class which represents this document.
The source code above is the main skeleton for receiving a ticket from the
cinema. The method step() first tests whether a MMS message is available
in the phone (comm.available()). Afterwards the incoming MMS is received
and converted to a Java Document (inmsg = comm.receive()). The method
phonestep(inmsg) extracts the ticket from this message and stores it in the
local ticket store (tickets.attach(ticket)). This implementation is closely
related to the abstract ASM rule for receiving a ticket, but has to deal with Java
specific details like Nullpointer Exceptions.

During the initialization step of the concrete ASM the Java constructor of
the Cindy class is called. In figure 3 this is shown by the Java step consmp for
the mobile phone and conscin for a further refinement of the cinema’s server
application. The object resulting from the constructor call is assigned to the
static field theinstance of the Cindy class. All further method calls are done
on this object.



124

5 Proving Properties

For Cindy we consider two different kinds of security properties. Two security
properties for the cinema are formalized and proved within the model, but we
chose the customer’s point of view as a main focus of the analysis of the Cindy
application. Therefore we formalized and proved three properties that a user of
the service will expect (cf. section 2). All formal specifications, theorems and
proofs can be inspected on our project web page [KIV].

5.1 Security Properties of the Cinema

The following two important security properties are proven for the cinema:

1. Only tickets (i.e. nonces) issued by the cinema are accepted at the turnstile.
2. Each ticket is accepted at most once.

Given the representation of the state of the cinema (cf. section 3.3) the properties
can be expressed as follows:

1. ∀ ticket. ticket ∈ accepted(cinema) → ticket ∈ issued(cinema)
2. ¬ duplicates(accepted(cinema))

If these two properties hold in every state that can be reached by the agent
representing the cinema the corresponding security property holds at any time.
Proving that these properties hold in every state is quite simple. It is just proved
that the properties are invariant with respect to the protocol ASM. This is done
by symbolic execution. The proof contains one branch for each possible step of
the ASM and in each branch (i.e. after each protocol step) it must be proved
that the property holds in the modified state given it was true in the initial state.
The KIV verification systems achieves a high degree of automation in the proofs
(approximately 80 percent). E.g. the proof obligation for the second property is:

tickets-accepted-only-once:
¬ duplicates(accepted(cinema))

→ [CINDY-STEP(as)] ¬ duplicates(accepted(cinema))

This theorem uses as as abbreviation for the complete state of the ASM. It states
that if the accepted tickets initially had no duplicates then it holds that after
all possible steps4 of the protocol ASM the list still contains no duplicates. The
proof of this property is done by symbolic execution of the ASM and almost
automatic (317 proof steps and 2 interactions).

5.2 Security Properties of the Customer

In section 2 three properties that the customers of the service would expect
were introduced. Formulating these security properties is not straightforward
4 This is expressed using the box-operator of Dynamic Logic [HKT00]. [α] ϕ states

that after all terminating runs of program α the property ϕ holds.



125

because they deal with availability and we do not use a temporal logic that offers
operators like eventually. Instead, the look ahead contained in formulations like
‘he will eventually receive it’ is replaced by a backward analysis of all traces
of the application that end in a well-formed final state. The well-formedness
condition wfc(as) of the final state is used as termination criteria for the ASM,
i.e. when the ASM terminates, the state is well-formed. In the Cindy scenario
the termination condition demands that all the tickets that were issued by the
cinema (and that were not lost because they were sent to a phone number that
does not exist or to a phone that has no space left) were presented at the turnstile
and that there are no more unprocessed messages. This can be seen as the closing
of the cinema at the end of the day, when all shows are finished and all tickets
were presented5.

The properties from section 2 have the following formal representations:

1. ∀ agent. mobile-phone?(agent)
→ ∀ ticket. ordered-for(ticket, agent, booked)

→ ticket ∈ tickets(agent)
(If the user orders a ticket he will eventually receive it)

2. ∀ agent. user?(agent)
→ # bill(agent, issued) ≤ # booked(agent, booked)

(If the user is charged for a ticket he ordered it.)
3. ∀ ticket, agent. owner-accepted(ticket, agent, tickets, passedOn,

presented, accepted-with-presenter, inputs)
(If the user has a ticket and presents it at the turnstile, then he will be
admitted.)

The definitions given above are, of course, just a snippet of the real properties.
E.g. the predicate owner-accepted used in property 3 has the following definition
which states that each ticket that is stored in a mobile phone, and that was not
passed on to another phone, and that was received from the cinema, and that
was presented at the turnstile was accepted. The definition of owner-accepted is:

owner-accepted(ticket, agent, tickets, passedOn, presented,
accepted-with-presenter, inputs)

↔ mobile-phone?(agent)
∧ cinema-ticket-tickets(ticket, tickets(agent))
∧ ¬ ticket-forwarded(ticket, agent, passedOn)
∧ ticket ∈ presented(cinema)

→ doclist(intdoc(agent.no) + noncedoc(ticket))
∈ accepted-with-presenter(cinema)

However, to actually prove the invariance of one of the security properties a
lot of additional information is necessary. To prove property three more than
10 additional preconditions are necessary, e.g. stating that certain parts of the
agent’s states are well-formed. Additionally, the history of each ticket must be
represented in the invariant. Basically this means that for all tickets stored in
5 We assume that anybody who has a cinema ticket actually comes to see the movie.



126

a mobile phone their complete life-cycle must be expressed. In total, the state
invariant contains almost 30 predicates, each describing a different aspect of the
state of the application.

5.3 Correctness of the Refinement

In general we show that for every concrete step stepc starting in a state cs that
corresponds to an abstract state as via the retrieve relation R there exists an
abstract step stepa whose result state also corresponds to the concrete result
state via the retrieve relation. The ASM refinement methodology leads to the
following proof obligation:

∀as, cs, cs′, st, st′ .
as R (cs × st) ∧
(cs × st) stepc (cs′ × st′) →

∃ as′. as stepa as′ ∧ as′ R (cs′ × st′)

Additionally, it must be proven that the initialization and finalization steps
are correct:

∀as, cs, st . initc(cs, st) ∧ as R (cs × st) → inita(as)
∀as, cs, st . as R (cs × st) ∧ finc(cs, st) → fina(as)

To prove these obligations we need a model in which the Java implementation
can interact and communicate with the other agents in the scenario that are still
specified by the rules of the protocol ASM and working on a state given by state
functions. The following code snippet is taken from the ASM rule for the mobile
phone on the concrete level:

. . .
if(agent = mobile-phone) then //rule for Java part

TOSTORE(cs, st);
choose st1 with 〈st; Cindy.theinstance.step(); 〉 (st = st1) in

FROMSTORE(st1, cs)
else . . . // rules for other agents

If the agent is the mobile phone, a Java step is done. Otherwise, the rule
for the agent is specified as on the abstract level. The Java step requires the
store for the concrete Java method call of the mobile phone implementation.
For this, the refined ASM also contains the state of the mobile phone given
by state functions. Before calling a Java method, the current abstract state
is converted into Java objects and put into the store (TOSTORE(cs, st)).
The Java method works on this converted state by executing the Java pro-
tocol step (Cindy.theinstance.step();). Afterwards the state of the refined
agent is extracted from the store and transformed back into the state functions
(FROMSTORE(st1, cs)).

For the refinement we need the retrieve relation which links abstract and
concrete state. With the integration mechanism for Java described above, this
relation is quite simple:



127

as R cs × st ↔ as = cs ∧ INV(st) ∧ INV(as)

Since the refined ASM is an extension of the protocol ASM, the states of the
agents have to be the same. Additionally, we need some technical invariants on
the Java store and an invariant on the abstract state. The invariant on the Java
store basically says that the objects in the store are well-formed, meaning that
e.g. the list of tickets is not null and contains no other documents than tickets.
The invariant on the abstract state as is used e.g. to express that messages
are always well-formed (e.g. every MMS received by the phone contains the
originator’s phone number).

The proofs of the refinement properties pose some difficulties. One major
problem is the encoding of the abstract state into Java objects and the cor-
responding backward transformation. Many lemmas are needed that are used
during the proofs to close side goals. Additionally, a quite complex invariant
about the concrete Java store is needed to ensure that the pointer structures
and types of objects are all correct.

An example of a typical problem of this type of refinement is the encoding
of abstract documents. It is fairly straightforward to write an encode-function
that transforms instances of the abstract data type Document into Java ob-
jects. This means that an abstract data type is implemented by a Java pointer
structure. But on the concrete level, more pointer structures are possible than
abstract documents. Those are e.g. pointer structures containing null pointers
or cyclic pointers. These are valid Java objects, but have no abstract data type
counterpart. However, they can be constructed by an attacker in the real applica-
tion and are a typical reason for errors in the implementations. As a consequence
the refinement has to treat those documents during the step of the refined agent.
Since they can occur in reality, they must be legal inputs for the refined agent.
This is achieved by integrating them in the TOSTORE rule. The implementa-
tion has to ensure that those undesired pointer structures are treated with an
error handling mechanism without crashing.

Since many of the problems during refinement do not depend on the particu-
lar application we have a library of reusable functions and predicates for those
aspects of the refinement proof. The automation of the proofs is enhanced with
every case study.

6 Conclusion

We presented an approach for the development of secure m-commerce applica-
tions. Electronic cinema tickets were used as an example. The approach supports
the full development process starting from specification and continuing down to
an implementation. The approach supports different means of communication
and different attacker models. In the example, we considered availability prop-
erties instead of the standard confidentiality or authentication properties.

We start with the specification of the security protocol as an ASM, and prove
application specific security properties. The proof method uses symbolic execu-
tion of the ASM and invariants over the possible traces. Additionally, we refine



128

the abstract specification into real Java source code and verify that this code is a
correct implementation of the security protocol. This is not trivial: It is very easy
to make the protocol specification too abstract (so it cannot be implemented).
The refinement is based on the ASM refinement method, which is a well-known
and established technique for the stepwise development of concrete implementa-
tions. The whole method is fully supported by the KIV system [BRS+00], our
interactive theorem prover. All specifications and proofs can be found on our
webpage [KIV].

References

[AN95] R. Anderson and R. Needham. Programming Satan’s Computer. In J. van
Leeuwen, editor, Computer Science Today: Recent Trends and Develop-
ments. Springer LNCS 1000, 1995.

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
Proceedings of the Royal Society of London, (Series A, 426, 1871), 1989.

[BDW99] C. Bolton, J. Davies, and J.C.P. Woodcock. On the refinement and sim-
ulation of data types and processes. In K. Araki, A. Galloway, and
K. Taguchi, editors, Proceedings of the International conference of In-
tegrated Formal Methods (IFM), pages 273–292. Springer, 1999.

[Bee] Tickets on your Mobile. URL: http://www.beep.nl [last seen 2006-03-16].
[BGW01] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting Mobile

Mommunications: The Insecurity of 802.11. In MobiCom ’01: Proceed-
ings of the 7th annual international conference on Mobile computing and
networking, pages 180–189, New York, NY, USA, 2001. ACM Press.

[BMV03] David Basin, Sebastian Mödersheim, and Luca Viganò. An On-The-Fly
Model-Checker for Security Protocol Analysis. In Proceedings of Es-
orics’03, LNCS 2808, pages 253–270. Springer-Verlag, Heidelberg, 2003.

[Bör03] E. Börger. The ASM Refinement Method. Formal Aspects of Computing,
15 (1–2):237–257, November 2003.

[BRS+00] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal
system development with KIV. In T. Maibaum, editor, Fundamental
Approaches to Software Engineering, number 1783 in LNCS. Springer-
Verlag, 2000.

[BS03] E. Börger and R. F. Stärk. Abstract State Machines—A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[DB01] J. Derrick and E. Boiten. Refinement in Z and in Object-Z : Foundations
and Advanced Applications. FACIT. Springer, 2001.

[dRE98] W. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison, volume 47 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1998.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. In IEEE
Transactions on Information Theory, volume 29, 1983.

[GSR05] H. Grandy, K. Stenzel, and W. Reif. Object-Oriented Verification Kernels
for Secure Java Applications. In B. Aichering and B. Beckert, editors,
SEFM 2005 – 3rd IEEE International Conference on Software Engineer-
ing and Formal Methods. IEEE Press, 2005.

http://www.beep.nl


129

[Gur95] M. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9 – 36. Oxford University
Press, 1995.

[HGRS05] D. Haneberg, H. Grandy, W. Reif, and G. Schellhorn. Verifying Security
Protocols: An ASM Approach. In D. Beauquier, E. Börger, and A. Slis-
senko, editors, 12th Int. Workshop on Abstract State Machines, ASM 05.
University Paris 12 – Val de Marne, Créteil, France, March 2005.

[HHS86] He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In
B. Robinet and R. Wilhelm, editors, Proc. ESOP 86, volume 213 of Lec-
ture Notes in Computer Science, pages 187–196. Springer-Verlag, 1986.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[HRS02] D. Haneberg, W. Reif, and K. Stenzel. A Method for Secure Smart-

card Applications. In H. Kirchner and C. Ringeissen, editors, Alge-
braic Methodology and Software Technology, Proceedings AMAST 2002.
Springer LNCS 2422, 2002.

[KIV] Web presentation of KIV projects. URL: http://www.informatik.uni-
augsburg.de/swt/projects/.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 1055, pages 147–166. Springer-Verlag, 1996.

[Mea96] Catherine Meadows. The NRL protocol analyzer: An overview. Journal
of Logic Programming, 26(2):113–131, 1996.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

[Sch01] G. Schellhorn. Verification of ASM Refinements Using Generalized For-
ward Simulation. Journal of Universal Computer Science (J.UCS),
7(11):952–979, 2001. URL: http://hyperg.iicm.tu-graz.ac.at/jucs/.

[Sch05] G. Schellhorn. ASM Refinement and Generalizations of Forward Simula-
tion in Data Refinement: A Comparison. Journal of Theoretical Computer
Science, vol. 336, no. 2-3:403–435, May 2005.

[Ste04] K. Stenzel. A formally verified calculus for full Java Card. In C. Rat-
tray, S. Maharaj, and C. Shankland, editors, Algebraic Methodology and
Software Technology (AMAST) 2004, Proceedings, Stirling Scotland, July
2004. Springer LNCS 3116.

[Ste05] Kurt Stenzel. Verification of Java Card Programs. PhD thesis, Uni-
versität Augsburg, Fakultät für Angewandte Informatik, URL: http://
www.opus-bayern.de/uni-augsburg/volltexte/2005/122/, 2005.

[Sun] Sun Microsystems Inc. Java Micro Edition. URL: http://java.sun.com/
j2me/index.jsp.

[WD96] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and
Refinement. Prentice Hall International Series in Computer Science, 1996.

[WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol.
In 2nd USENIX Workshop on Electronic Commerce, November 1996. A
revised version is available at http://www.schneier.com/paper-ssl.html.

http://www.informatik.uni-augsburg.de/swt/projects/
http://www.informatik.uni-augsburg.de/swt/projects/
http://hyperg.iicm.tu-graz.ac.at/jucs/
http://www.opus-bayern.de/uni-augsburg/volltexte/2005/122/
http://www.opus-bayern.de/uni-augsburg/volltexte/2005/122/
http://java.sun.com/j2me/index.jsp
http://java.sun.com/j2me/index.jsp



