®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w k Universititsbibliothek

Verification of medical guidelines by model checking - a
case study

Simon Baumler, Michael Balser, Andriy Dunets, Wolfgang Reif, Jonathan
Schmitt

Angaben zur Veroéffentlichung / Publication details:

Baumler, Simon, Michael Balser, Andriy Dunets, Wolfgang Reif, and Jonathan Schmitt.
2006. “Verification of medical guidelines by model checking - a case study.” In Mode/
Checking Software: 13th International SPIN Workshop, Vienna, Austria, March 30 - April 1,
2006, proceedings, edited by Antti Valmari, 219-33. Berlin: Springer.
https://doi.org/10.1007/11691617_13.

Nutzungsbedingungen / Terms of use: licgercopyright
P -'_-T.\",rl-;!_

Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions:

https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

A >ﬁ
Deutsches Urheberrecht I a‘fv%‘ | =
Weitere Informationen finden Sie unter: / For more information see:) &
57
A B

https://doi.org/10.1007/11691617_13
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Verification of Medical Guidelines by Model
Checking — A Case Study

Simon Baumler, Michael Balser, Andriy Dunets,
Wolfgang Reif, and Jonathan Schmitt

Lehrstuhl fiir Softwaretechnik und Programmiersprachen,
Institut fiir Informatik, Universitat Augsburg,
Augsburg, 86135 Germany
{baeumler, balser, dunets, reif, schmitt}@informatik.uni—augsburg.de
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/

Abstract. This paper presents a case study on how to apply formal
modeling and verification in the context of quality improvement in med-
ical healthcare. The aim is to verify quality requirements of medical
guidelines and clinical treatment protocols that are used to standardize
patient care both for general practitioners and hospitals. This research
is supported by the European Commission’s IST program and brings to-
gether experts from computer science, artificial intelligence in medicine,
hospitals, and the Dutch Institute for Healthcare Improvement (CBO).
We present the process of formal modeling and verification of guide-
lines using the modeling language Asbru, temporal logic for expressing
the quality requirements, and model checking for proof and error de-
tection. The approach is illustrated with a case study on a guideline
from the American Association for Pediatrics on “Jaundice in healthy

Newborns”!.

Keywords: Model checking, verification, formal methods, Asbru,
abstraction, medical guidelines.

1 Introduction

Over the last decade, the approach of evidence-based medicine has increased the
application of clinical guidelines in medical practice. Medical guidelines provide
clinicians with healthcare recommendations based on valid and up-to-date em-
pirical evidence. Usually they consist of “systematically developed statements to
assist hospital staff with appropriate healthcare decisions” [12]. Application of
guidelines improves the quality of medical treatment and it has been proven that
adherence to guidelines and protocols may reduce healthcare costs up to 25%.
Many practical guidelines and protocols still contain ambiguous, incomplete or
even inconsistent elements. Recent efforts have tried to address quality improve-
ment of guidelines [21]. Our general approach to verification of guidelines is based

! This work has been partially supported by the European Commission’s IST program,
under contract number IST-FP6-508794 Protocure II.

220

Medical modeling | Asbru translaltion= KIV

»

Guideline Plan Plan

N /!

Formal
Semantics

interactive proof

formal proof
satisfies? satisfies? (satisfies!)

model checking

) y / \ y KIv

modeling | Intentions, translation‘ Temporal
Effects Logic

Properties

Fig. 1. Formalization and verification of protocols in the Protocure project

on the observation that guidelines can be viewed as parallel programs. Therefore
the classical formal methods for the quality assurance of software can be applied for
the case of medical guidelines, especially because guidelines are highly-structured,
systematic documents that are amenable for formal verification.

Because most parts of a guideline consist of informal plain text an appropri-
ate representation language with clear and well-defined semantics is required. For
this purpose we use Asbru[19]. Asbru is a temporal, skeletal plan-representation
language which was especially designed for the medical domain. The most impor-
tant advantage of using Asbru as a modelling language is its formal semantics[3].
Figure 1 shows the flow of documents in the overall verification process. The orig-
inal guideline is depicted in the upper left corner of Fig. 1. It is modeled as Asbru
plan using the knowledge-representation language Asbru.

The Asbru model is the basis for further tasks, e.g. to build decision sup-
port systems. For these tasks it is necessary to ensure the quality of the model.
Thus, we are interested in tools to efficiently debug the model, e.g. to ensure
its consistency. [10] defines a number of structural properties which should be
fulfilled by a good quality Asbru model. Some of these properties can be checked
by syntactic analysis. Other properties require formal analysis. Furthermore, we
are interested in the formal verification of more complex medical properties such
as medical indicators. Complex, infinite state properties in general require inter-
active theorem proving. For structural and simple medical properties we aim for
efficient techniques which can be automatically applied. For this, we automati-
cally translate the model into a formal representation for an interactive theorem
prover KIV[2]. In order to apply model checking, we further translate the model
into the input language of SMV model checker[18]. In this paper, we focus on
model checking of properties.

Simultaneously to the above transformation, in Figure 1, a number of inter-
esting properties have been identified while analyzing both the original protocol
and its Asbru model. We distinguish between Medical Properties and Structural
Properties (see 3.2).

221

To evaluate our approach we have considered the medical guideline for “Jaun-
dice in healthy newborns”, a medical guideline from the American Association
of Pediatrics, that covers various features of Asbru. We will use the jaundice
protocol in the following sections as running example for our paper.

The identified properties do not depend on timing constraints. Therefore, it
has been possible to abstract away from time which reduces the complexity of
the model. For the verification of these properties, we have chosen SMV as a
model checker, because to our knowledge this is one of the most efficient tools to
verify large models without complex timing constraints. For real-time properties,
the use of timed model checkers, e.g. UPPAAL[22], will be of interest.

We have used Cadence SMV version 10-11-02 with default settings on a
computer with a 3 GHz Pentium processor and 2 GB of RAM.

Our main contributions are: (i) a validated formal model of a concrete medical
guideline where the quality has been assured by automatic techniques, (ii) tool
support for automatic verification of all of the properties from [10], (iii) case
study to assess the possibilities of light-weight model checking techniques to
verify structural or simple medical properties of medical guidelines; this case
study could serve as a reference case study for other model checkers and other
automatic techniques in the field of medical guidelines. We do not present new
strategies for model checking SMV models in general.

The paper is organized as follows. Section 2 gives a short overview of the
Jaundice guideline and the Asbru language with its formal semantics. Section
3 gives a description of a concrete infinite state model of the jaundice protocol
and describes its reduction to a finite state model using an abstraction. In sec-
tion 4 we summarize our experiences from this case study and describe possible
improvements of the current process planned for future work.

2 Asbru: A Knowledge Representation Language for
Protocols

We describe Asbru and its use by a simple example. Details on Asbru can be
found in [19].

2.1 The Jaundice Protocol

Jaundice, or hyperbilirubinemia, is a common disease in newborns which is
caused by increased bilirubin levels in blood. Under certain circumstances, high
bilirubin levels may have destructive neurological effects and thus must be ac-
curately treated. Often jaundice disappears without treatment, but sometimes
a phototherapy is needed to reduce the level of total serum bilirubin(TSB). In a
few cases, however, jaundice is a sign of a severe disease, which must be treated
appropriately.

The jaundice reference guideline[1] is a 10 pages document which contains
various notations: the main text; a list of factors to be considered when assessing
a jaundiced newborn; two tables - one for the management of the healthy term

222

newborns and another for the treatment options for jaundiced breast-fed ones;
and a flowchart describing the steps in the protocol. The Protocol consists of two
parts performed sequentially: diagnosis and treatment. Treatment is performed
if disease symptoms are detected. During the application of the protocol, as soon
as the possibility of a more serious disease is uncovered, the recommendation is
to exit without any further action. The further treatment is not considered in
the guideline.

2.2 Modeling the Jaundice Protocol in Asbru

Medical guidelines are represented as hierarchical skeletal plans, i.e. plans with
subplans. Figure 2 shows the hierarchy of plans representing the Asbru model of
jaundice protocol. It is made up of about 40 plans. Two phases in the protocol
control flow clearly emerge: diagnostics and treatment parts which are executed
sequentially. Three “Check-for-...” plans model two check-ups at specific time
intervals and a continuous monitoring of the TSB level. We focus here on the
treatment phase, which is more interesting from the verification point of view.
It comnsists of two parallel plans, namely the actual treatment and a cyclical
plan asking for the input of new TSB and age values every 12 to 24 hours.
Depending on the current bilirubin level, either the regular-treatments or an
exchange-transfusion can take place. The plan-body of regular-treatments plan
contains two subplans which are executed in parallel without any ordering. The

Hyperbilirubinemia Legend:

T T / el D ‘mandatory plans

Check—for—jaund Check—for—jaund
after—2-weeks after-3-weeks

Diagnostics-and-treatment— [optiona plans

hyperbilirubinemia

Check—for-rapid
TSB-increase

[optional plans with wait-for-one

y Al%lx /[J\ AN T
Treatment— sequntial anyorder parallel unordered
hyperbilirubinemia

on abort 1~ retry aborted
med

Diagnostics—
hyperbilirubinemia

Anamnesis—
hemolytic—
desease

Anamnesis—
abnormal-signs

Jaundice—
determination

se
perfor

Blanc.— Trans.— Det.—
2 Regular- =
Perform— skin— jaundice— ext. . e
treatments transfusion
blood— pressure— meter— progress. B
test— test test P Tl PN
ul..--- - . ~
child o]] . ! - » N
Fee Prescribe— Prescribe—
oatfons intensive— exchange
phototherapy transfusion
o] o]
Chose-
: P ¥ Observation
;“’"‘“?’ intensive normal normal—
lternative
prescription recommendation
— Prescribe-. Prescribe-. Prescribe-. Prescribe-.
reast— Formula-only —

feeding—

with—formula intensive

normal— normal—
prescription recommendation

[u] (v]

Fig. 2. Asbru plans modeling jaundice protocol

223

regular-treatments® subplan (which is abbreviated with * in Figure 2) represents
a group of therapies, which are executed sequentially without any order. All of
the therapy plans are optional with the exception of the observation plan which
must complete for the successful completion of the parent plan. Any of these
therapies can be restarted, in case if it is eventually aborted.

Figure 3 shows an example of two Asbru plans from the jaundice guideline. An
Asbru model of a plan contains the definitions of different descriptive elements
like intentions, conditions, plan body and control structures. In the following we
describe these main elements.

The intentions are the high-level goals of a plan. Intentions can be ex-
pressed in terms of achieving, maintaining or avoiding certain states or actions.
The states or actions to which intentions refer can be intermediate or final.

plan regular-treatments
intentions
conditions
plan-body type=unordered, wait-for all
feeding-alternatives
/* implicit subplan regular-treatments*: */
do type=any-order, retry-aborted-subplans=yes, wait-for observation
phototherapy-intensive
photottherapy-normal-prescription
photottherapy-normal-recommendation
observation

plan phototherapy-intensive
intentions
achieve-overall-state: (bilirubin=observation)
maintain-intermediate-state:
(and(TSB-decrease=yes in [[4h,-],[-,6h],[-,-]1] SELF)
(TSB-change>1 in [[4h,-],[-,6h],[-,-]1] SELF))
conditions
setup-condition: (or(bilirubin=phototherapy-intensive in NOW)
(normal-phototherapy-failure))
abort-condition: (or(and(bilirubin!=phototherapy-intensive)
(not normal-phototherapy-failure))
(intensive-phototherapy-failure))
intensive-phototherapy-failure:
(and(bilirubin=phototherapy-intensive in NOW)
(or(and(TSB-decrease=yes in [[4h,-],[-,6h],[-,-]1] SELF)
(TSB-change<1 in [[4h,-1,[-,6h],[-,-1]1 SELF))
(TSB-decrease=no in [[4h,-],[-,6h],[-,-1] SELF)))
plan-body
prescribe-intensive-phototherapy

Fig. 3. Regular-treatments and Phototherapy-intensive plans

224

Thus, the intention label “maintain-intermediate-state” means that always dur-
ing the execution of the plan a certain condition must be satisfied. Generally
there are twelve possible forms of intention: [achieve/maintain/avoid] [interme-
diate/overall] [state/action]. Most of the medical properties we considered in
the verification are gained from the intentions (see Sec. 3.2). For example, one
of the intentions of the phototherapy-intensive plan (see Fig. 3) is to maintain a
certain intermediate state, i.e. in all cases in 4 to 6 hours after the activation of
the plan the bilirubin level decreases. As all intentions of the jaundice guideline
this is an universal property.

Every plan-body contains the actions to be performed by the plan and/or
subplans to be executed as part of the plan. A wide variety of control structures
can be used to specify the execution order of the actions in the plan-body. There
are the following types of plan-bodies in Asbru:

— user-performed: an action to be performed by the user, which requires user
interaction and thus is not modeled further

— single step: an action which can be either an activation of a subplan, an
assignment of a variable, or request for an input value

— subplans: a set of steps to be performed in a given order. The possible
execution orders are: sequential, parallel, in any possible sequential or-
der(anyorder) and in parallel without any restrictions on the synchroniza-
tion (unordered)

— cyclical plan: a repetition of actions over time periods

When a plan-body contains subplans it is possible to define the completion of
some (or all) subplans as a necessary precondition for the successful completion
of the parent plan. For example wait-for-all type of the plan-body means, that
the successful completion of parent plan requires successful completion of all of
its subplans. Similarly wait-for-one or wait-for someplan can be defined.

The regular-treatments plan (Fig. 3) is a good example for a more compli-
cated structure of the plan-body. It has an unordered plan-body with wait-for-all
option and two subplans: feedings-alternatives and reqular-treatments*. The im-
plicit plan regular-treatments* consists of several different therapies executed in
any order (see Fig. 2 and Fig. 3). Its subplan phototherapy-intensive (Fig. 3),
for instance, describes one of the therapies. Its plan-body simply contains the
activation of the subplan prescribe-intensive-phototherapy.

A variety of conditions can be associated with a plan, which influence con-
trol of an execution of the plan. The most important types of conditions are the
following: filter-, setup-, activate-, abort-, and complete-condition. The meaning
of these conditions is described more closely in the section 2.3. Conditions can
not only specify a set of satisfying current states? but also they can be mon-
itored over time, if they are formulated using time annotations, e.g. in 4 to 6
hours after the activation of plan the bilirubin level change decrease is greater
then 1.

2 An Asbru state is composed of the state of execution of all plans and the state of
the patient. Further we have the Asbru history which is defined as a mapping from
the Asbru clock to an Asbru state and allows to specify time annotated conditions.

225

Time annotations can occur in conditions. They specify the time period
where a parameter condition used in the time annotation is monitored. A time
annotation is defined by the following eight entities: reference point (REF),
earliest starting shift (ESS), latest starting shift (LSS), earliest finishing shift
(EFS), latest finishing shift (LFS), minimum duration (MinDu), maximum du-
ration (MaxDu) and parameter proposition ParamProp. These components are
combined in the data structure:

(ParamProp in [[ESS,LSS|, [EFS,LFS|, [MinDu,MaxDu|| REF)

Reference points like NOW (current time) and SELF (time of activation of this
plan) are commonly used. Consequently a time annotation defines a set of time
intervals (also called set of possible occurrences). A time annotation is TRUE if
and only if there exist a time interval in the set of possible occurrences where
the condition ParamProp is evaluated to TRUEFE in all time points within this
interval.

As example consider the following time annotation from the phototherapy-
intensive plan:

(TSB-decrease = yes in [[4h,-], [-,61], [-,-]] SELF)

This time annotation monitors the bilirubin level on the time interval between 4
to 6 hours after the plan start. It is evaluated to TRUE if there is a new bilirubin
measurement with a value smaller than the latest measured value before the plan
started. It has the following meaning: there exist time interval (or point as special
case of interval) with earliest starting at 4h after the plan activation and latest
finishing at 6h after activation where TSB-decrease=yes is true. The predicate
TSB-decrease=yes is evaluated to TRUE on the given interval if and only if for
all time point ty on this interval the bilirubin value is smaller than bilirubin
value at the time of plan activation.

2.3 Formal Semantics of Asbru

We use the formal semantics of Asbru defined in [3]. The semantics follows
two goals: first it should document Asbru and be understandable for users; on
the other hand it should be formal enough. We use the example of regular-
treatments™® plan to explain the semantics here.

The operational semantics of Asbru is defined using statecharts. It uses the
formal semantics of statecharts defined in [9]. Asbru plans are modeled as stat-
echarts which run in parallel and communicate via shared variables and signals.
Asbru conditions are monitored over time. The evaluated conditions trigger tran-
sitions of the statecharts. The evaluation of conditions depends on the data inputs
from the environment usually describing dynamics of patient. Shared variables like
patient parameters or state of other plans can also influence the evaluation of As-
bru conditions. For example the abort-condition of phototherapy-intensive plan
(see Fig. 3) triggers the abort of the plan as soon as it fails to reduce bilirubin level
in 4 to 6 hours after the plan activation.

226

Terminated

Rejected

Aborted

Lm’(Setup_Reject j

4A>(Condition_triggered j

ﬁ’(Parent_Aborted j

il’(Parent_Aborted j

i’(Parent_Completed j

iz’(Parent_Completed j

Completed

n regular_treatments*_Control
_
IS
Selection Execution I La|y[Try 2ry 2a
@
«@4—0 ‘Activated o all_Select
4.a 4.(} 3.[}
F 4T S =
g regular_treatments*_Control
Possible
* ¢t /phc py_intensive_plan.consider;
phototherapy_normal_plan.consider;

phototherapy_recommendation_plan.consider;
observation_plan.consider;

1.a : [in(phototherapy_intensive_plan.Selected)]
/phototherapy_intensive_plan.activate;

1.T : [in(phototherapy_intensive_plan.Terminated)]

L.r : [in(phototherapy_intensive_plan.Aborted)]
/Iphototherapy_intensive_plan.retry;

2a:...

not F
o Filter_Reject j

i}»(wait—for violated j

SC : consider

F: [satisfied(filter_tp)]

E : activate[..]/..

S : [satisfied(setup_tp)]

A : [satisfied(abort_tp)]

C : [satisfied(complete_tp) AND ..]
RA :retry

Fig. 4. Statecharts modeling regular-treatments* plan

The regular-treatments* plan is an implicit subplan of the regular-treatments
plan (see Fig. 2 and Fig. 3). The behavior of the regular-treatments* plan is de-
fined by the statechart in Figure 4. This statechart is divided into a Selection
phase and an Execution phase. Initial state of the plan is Inactive. An exter-
nal signal consider triggers the selection phase (transition SC). In the state
Considered the condition filter tp is checked. In case this condition is satisfied,
the plan changes to the state Possible and so on. In the state Activated the
subplans are executed. The execution of subplans is controlled by the regu-
lar treatments® Control statechart (Fig. 4), which models an anyorder control
of subplans. It is responsible for the generation of the consider-, activate- or
retry-signals, which control the execution of subplans. All subplans are selected
in parallel (transition c) and executed such that at most one subplan is active
at the same time (transitions i.a). If the activated plan terminates(transitions
i.T) another one can be activated. If several subplans reach state Selected si-
multaneously, one of them is activated nondeterministically. If parameter flag
“retry-aborted” is set, then the transition i.r initiates a restart.

The original infinite state model of the system is a composition of statecharts
running in parallel and reacting on environment inputs. Interaction with the
environment happens in micro- and macro-steps. One macro-step consists of
many micro-steps which describe reactions of the system on certain environment
input. When a system achieves a stable state the corresponding macro-step is
completed and in the first micro-step of the next macro-step new input from
the environment is read. This model corresponds to the assumption that the
system, which models the guideline, always reacts quick enough to changes of
the environment. It is also intuitively the proper modeling for medical plans,

227

Patient
(Environment)

as (Biliubin_|
statecharts |4 Blood pressure

Asbru Plans

Fig. 5. Original infinite state model of medical guideline

i.e. control of plans does not take time to activate or cancel some plans. The
notion of time is defined using macro-steps. Time passes only at the begin of
every macro-step.

In Asbru we have no explicit model of the patient, i.e. we do not model
specific patient behavior. We assume that the patient has chaotic behavior, i.e.
parameter values blood pressure, bilirubin level in blood, etc., change arbitrarily
over time. This allows us to investigate whether the medical protocol reacts
adequately in all possible cases. Consequently the infinite state concrete model is
the composition of statecharts modeling medical plans, the environment and the
Asbru clock modeling current time, see Figure 5. This model resembles somehow
the model of parallel processes communicating using shared variables.

3 Model Checking Process

The crucial point in model checking and verification in general is computing an
optimal abstraction of the examined system. Much research has concentrated on
tackling the state explosion problem. A variety of abstraction techniques have
been developed, for example [15], [16], [4], [14] and [8]. The basis for these inves-
tigations is an important observation: there are various aspects of the concrete
model that have no impact on the checked property and can be abstracted in
such a way that the size of the model is drastically reduced, but the property
is still safely verified, i.e. the satisfaction of a property over an abstract model
implies satisfaction over the concrete model. Methods that derive an abstract
model directly from some high-level description of the system are needed.

3.1 Abstract Finite State Model

Generally, it is a hard task to construct a correct abstract finite state model
for the generic Asbru model completely automatically, since Asbru is a very
expressive language.

The infinite parameters describing the patient (or environment) can be ab-
stracted to finite state variables using data abstraction [4], [17]. The more prob-
lematic issue is time, which usually requires some kind of history variable. All
plans, in order to proceed, must know whether their setup-, filter-, abort- or
complete-condition is satisfied or not. Some of these conditions contain time

228

annotations, as for example the abort-condition of phototherapy-intensive plan
does (see Fig. 3). In order to evaluate time annotated conditions an Asbru plan
must access its history.

Our goal is an abstraction which can be constructed automatically for the
given Asbru model. In order to construct a finite state model an appropriate
abstraction which eliminates time and history is needed. We use a simple ab-
straction that maps all time annotations to atomic propositions whose logi-
cal value is randomly assigned in every macro step. Those random inputs can
eventually generate behavior in the abstract model that is not present in the
concrete model. This abstraction preserves only ACTL? properties, as it is an
over-approximation, which adds extra behavior to the abstract model. Never-
theless, this is not a problem for us, because most interesting properties we aim
to verify are intentions, which are ACTL properties.

The main weakness of this abstraction is the generation of false negatives
during the verification of properties. On the other hand the important advantage
is its automatic generation. By this abstraction we shift the complexity of time
and history to the environment. According to the statechart semantics inputs
from the environment happen in the first micro-step of every macro-step and
provide the required information about the patient needed for the controls of
plans, e.g. up-to-date value of blood pressure or information about change of the
bilirubin level in blood over the period of 6 hours after the start of the plan.

For the generation of the SMV model we translate the statecharts from the
Asbru semantics into an equivalent flat state transition system, which can be
directly encoded in the SMV input language. This part models the control flow
of the guideline. On the other hand, data flow and time is modeled using the
abstraction techniques described above.

3.2 Properties

The results from the verification of properties should help to improve the qual-
ity of medical guideline. Structural properties specify the general correctness
requirements, which must be satisfied by every Asbru protocol, regardless of
its content. For example, every plan should eventually terminate, every plan
must have a chance to execute or be able to complete. Our experiences from
the jaundice case study has shown that verification of structural properties
helps to discover errors produced during the translation of informal medical
guideline into the formal Asbru model. The following structural properties have
been considered: termination (Asbru plans should always terminate), every plan
can eventually be activated (completed), there are no redundant conditions (i.e.
every condition can eventually have influence on the control flow of plans) and
all wait states are eventually quitted. These properties have been formalized as
CTL formulas and are automatically generated for every Asbru plan as SMV
specifications. Most of them are originally not ACTL properties, but their veri-
fication can be indirectly accomplished by the verification of the corresponding

3 The logic ACTL is the set of all well-formed state formulas from CTL[11] containing
no existential operators (EX and EU).

229

term_pti_plan: SPEC AG(!ptip_state = inactive ->
AF (ptip_state = completed |
ptip_state = rejected |
ptip_state = aborted))
satisf_abort_pti_plan: SPEC AG(!(ptip_state=activated &
ptip_abort_condition))
reach_activated_pti_plan: SPEC AG(!(ptip_state=activated))
wait_possible_pti_plan: SPEC AG(ptip_state = possible ->
AF (ptip_setup_condition |
ptip_is_terminated))

Fig. 6. SMV specification of structural properties for Phototherapy-intensive plan

ACTL properties, as described in Section 3.3. For example, the corresponding
ACTL properties (in SMV syntax) for the plan phototherapy intensive(pti) are
depicted in Figure 6. The property term pti plan formulates a termination
property, i.e. every plan that was previously selected always terminates in the
future. By the satisf abort pti plan property we try to verify whether the
abort-condition of the phototherapy-intensive plan is redundant or not. In case
we find a non-spurious counter-example for satisf abort pti plan we know
that abort-condition is not redundant, i.e. it has an influence on the plan execu-
tion. Similar properties can be formulated for all other Asbru conditions. Reacha-
bility of important states is tested by properties like reach activated pti plan.
The property wait possible pti plan tests whether wait state possible is even-
tually quitted.

In contrast to structural properties medical properties address high level as-
pects of medical protocols, such as relevant clinical parameters or general safety
requirements concerning actions of physicians or overall intentions of the guide-
line. As an example, when treating jaundice, it is required that 6 hours after
application of phototherapy the bilirubin level must drop significantly. In the
jaundice case study we considered only plan intentions as conceptual properties.
For instance, plan phototherapy-intensive has two intentions, which can be spec-
ified as ACTL properties, as Figure 7 shows. With the intermediate state in the
second property we mean only stable states, i.e. states in which the reaction of
the plan on the environment inputs is completed. Therefore, the variable tick

—-achieve overall state: bilirubin = observation
SPEC AG(ptip_state = completed -> AF AG bilirubin = observation)

--maintain intermediate state: tsb_decrease = yes & tsb_change>=1

SPEC AG((ptip_state = activated & tick) ->
(pti_tsb_decrease_yes_signal &
'pti_tsb_change_less_one_signal))

Fig. 7. SMV specification of medical properties for Phototherapy-intensive plan

230

is used to describe the activated state of the pti plan where it is stable, i.e. no
transitions of the corresponding statechart are activated.

3.3 Verification Process

The abstraction we use is described in 3.1. It allows us to generate the SMV
model fully automatically. On the other hand it can introduce unrealistic be-
havior, which has an impact on the verification process. Figure 8 illustrates the
general scheme of verification. Due to property preservation considerations we
examine only ACTL properties although it is also indirectly possible to verify
ECTL properties. The medical properties we considered are the intentions of the
plans, which are formulated as ACTL formulas.

CONCRETE abstraction ABSTRACT
MODEL MODEL

REFINE
(false negative)

verifyACTL property

(counter—example)

Error in guideline YES

found
property doesn’t hold . property holds
in concrete model in concrete model

Fig. 8. Verification scheme

IF ACTL property is proved to be false the corresponding counter exam-
ple is generated. In the next step we have to analyze this trace to find out
whether it is a real bug in the concrete model or just some unrealistic trace
added by the over-approximation. We also have to verify ECTL properties since
most implementation level (structural) properties are existential properties, e.g.
satisfiability of Asbru conditions or non-redundancy of plans. If, for instance, a
ECTL formula FF¢ must be verified, we first verify the ACTL formula AG—¢.
If it is true then original formula is false. On the other hand, if a counter ex-
ample is found then we analyze whether it is realistic one. If the found counter
example trace is realistic then the original formula is true and the generated
counter example is the trace that satisfies the original formula.

3.4 Results and Experiences from Verification of Jaundice

The abstracted model of the jaundice guideline was constructed in the SMV
language and model checking was used to verify different properties. In partic-
ular we verified structural and medical properties of approximately 30 Asbru

231

abort condition intention is not achieved
is not triggered

bilirubin level \

A

phototherapy—normal

Time

SELF 4h 6h

el

phototherapy—intensive plan start

Fig. 9. Counter example visualization

plans from the jaundice hierarchy of plans. Automatic generation of the SMV
model consisting of 3000 lines of code and including 360 structural and 40 med-
ical properties has accelerated the whole process. Checking one property takes
about 2 minutes on average whereby 2x10% BDD-nodes were allocated. Complete
verification of circa 400 properties lasted 3.5 hours and 4x10% BDD-nodes were
allocated.

In the whole verification process the manual effort of analyzing the counter
examples and refining the abstract model was rather small and acceptable. The
verification of structural properties uncovered several nontrivial modelling errors
and therefore helped immensely to gain more confidence in the formal Asbru
model.

During the process of formalization and verification of the medical proper-
ties, a number of errors and ambiguities were discovered. We have found special
cases of treatment that violate plan intentions. These special cases have been
overlooked by the Asbru modelers and were consequently not appropriately con-
sidered in the Asbru model. Figure 9 illustrates a possible execution sequence
that violates the intention of the phototherapy-intensive plan, see Figure 3. The
intention postulates that in 4 to 6 hours after plan start the bilirubin level must
decrease in the other case plan must abort. As we see in Figure 9 bilirubin level
does not decrease in the corresponding time interval and the plan does not abort.
The reason for the violation of the plan intention is that the abort-condition was
two weak and did not consider all possible cases. Using model checking verifi-
cation method we have discovered many other similar “forgotten” cases in the
overall plan hierarchy containing 30 plans.

4 Summary and Outlook

In this paper we have described the automated verification of medical guidelines
using the jaundice case study as an example. The simple abstraction we applied
yielded surprisingly good results in the jaundice case study. In fact only few

232

refinements and fine tuning were needed while verifying properties. This simple
abstraction allows us to construct the SMV model fully automatically, which
is an important advantage as we plan to apply this method on further case
studies. The approach as a whole is not completely automatic but partly an
interactive one (see Fig. 8) because our abstraction is over-approximation. Due
to the high expressiveness of the Asbru modeling language it is practically not
possible to construct a correct abstraction for the general case of an Asbru-
model automatically without any user interaction. Nonetheless the degree of
automation of this process is very high.

The first errors we have found were consequence of too coarse abstraction.
In some cases our first verification experiments have shown that the used ab-
straction is too coarse. Therefore, to avoid the interactive component ANALYZE
in the process, see Figure 8, we plan to construct the correct abstraction. We
see this as promising direction for further work on verification of Asbru. Fur-
ther we plan to use the KIV theorem prover to show the correctness of the
constructed abstraction by proving the corresponding bisimulation equivalence.
Another profitable improvement can be a visualization of model checking re-
sults. The graphical interpretation of counter examples can make verification
more efficient as it makes the interpretation of traces easier.

Our approach to verify simple properties of medical guidelines by model
checking were surprisingly successful. Therefore, it is promising to also apply
other automatic techniques to the verification of more complex properties, e.g.
real-time properties, and larger guidelines.

Currently, we are applying our method on a second guideline, which describes
the treatment of breast cancer. This guideline is considerably larger but our first
experiences with it are very promising.

References

1. American Academy of Pediatrics, Provisional Committee for Quality Improvement
and Subcommittee on Hyperbilirubinemia. Practice parameter: management of
hyperbilirubinemia in the healthy term newborn Pediatrics, 94:558-565, 1994.

2. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, A. Thums. Formal system devel-
opment with KIV. In T.Maibaum, editor, Fundamental Approaches to Software
Engineering, number 1783 in LNCS. Springer, 2000.

3. M. Balser, C. Duelli, W. Reif. Formal Semantics of Asbru- An Overview In Proc. of
the 6th World Conference on Integrated Design and Process Technology(IDPT-02),
June 2002.

4. E.M. Clarke, O. Grumberg, D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512-1542, Septem-
ber 1994.

5. E.M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 2000.

6. P. Cousot, R. Cousot. Abstract interpretation : A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. ACM Sympo-
sium of Programming Language, pages 238-252, 1977.

7. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD Thesis, Eindhoven University of Technology, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

233

D. Dams, R. Gerth, O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2):253-291,1997.

. A. Pnueli, B. Josko, H. Hungar, W. Damm. A Compositional Real-time Semantics

of STATEMATE Designs. Lecture Notes in Computer Science, pages 186-238,
Springer Verlag, Berlin, Proceedings COMPOS’97.

G. Duftschmid, S. Miksch. Knowledge-based verification of clinical guidelines by
detection of anomalies OEGAI Journal 1999, pages 37 — 39.

E. Allen Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics 1990, J. van Leeuwen, ed., North-
Holland Pub. Co./MIT Press, Pages 995-1072.

M.J. Field, K.N. Lohr. Clinical Practice Guidelines: Directions for a New Program.
National Academy Press, Washington D.C., USA, 1992.

J. Fox, N. Johns, C. Lyons, A. Rahmanzadeh, R. Thomson, P. Wilson. PROforma:
a general technology for clinical decision support systems. Computer Methods and
Programs in Biomedicine, 54:59-67, 1997.

P. Godefroid, M. Huth, R. Jagadeesan. Abstraction-based Model Checking using
Modal Transition Systems. Proceedings of CONCUR’2001, Aalborg, August 2001.
Lecture Notes in Computer Science, vol. 2154, pages 426-440, Springer-Verlag.

O. Grumberg. Abstractions and Reductions in Model Checking. Nato Science
Series, Vol. 62, Marktoberdorf summer school, 2001.

S. Graf, H. Saidi. Construction of abstract state graphs with PVS. In Computer
aided verification, volume 1254 of LNCS, pages 72-83, June 1997.

D.E. Long. Model checking, Abstraction, and Compositional Reasoning. PhD
Thesis, Carnegie Mellon University, 1993.

K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic, 1993.

Y. Shahar, S. Miksch and P. Johnson. The Asgaard project: a task-specific frame-
work for the application and critiquing of time-oriented clinical guidelines. Artificial
Intelligence in Medicine 1998, pages 29 — 51.

R. Milner. A Calculus of Communicating Systems. Springer, 1980.

A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli, F. van
Harmelem, P. Lucas, S. Miksch, W. Reif, K. Rosenbrand, A. Seyfang, J. Coltel, A.
Jovell. Supporting the development of medical protocols through formal methods.
In Proc. of the Symposium on Computerized Guidelines and Protocols (CGP-04),
10S Press, 200/.

K.G. Larsen, P. Peterson, Wang Yi. UPPAL in a nuttshell. Journal of Software
Tools for Technology Transfer, 1(1-2):134-152, 1997.

