
Formal safety analysis of a radio-based railroad crossing
using deductive cause-consequence analysis (DCCA)

Frank Ortmeier, Wolfgang Reif, Gerhard Schellhorn

Angaben zur Veröffentlichung / Publication details:

Ortmeier, Frank, Wolfgang Reif, and Gerhard Schellhorn. 2005. “Formal safety analysis of
a radio-based railroad crossing using deductive cause-consequence analysis (DCCA).” In
Dependable Computing - EDCC 2005: 5th European Dependable Computing Conference,
Budapest, Hungary, April 20-22, 2005, proceedings, edited by Mario Cin, Mohamed Kaâniche,
and András Pataricza, 210–24. Berlin: Springer. https://doi.org/10.1007/11408901_15.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/11408901_15
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

1 Introduction

The central question of safety analysis is to determine what components of a
safety-critical system must fail to allow the system to cause damage. Most safety
analysis techniques rely only on informal reasoning which depends heavily on
skill and knowledge of the safety engineer. Some of these techniques have been
formalized.

In this paper we present a new safety analysis technique: Deductive Cause-
Consequence Analysis (DCCA). This technique is a formal generalization of
well-known safety analysis methods like FMEA [10], FMECA [4] and FTA [3].
The logical framework of DCCA may be used to rigorously verify the results
of these informal safety analysis techniques. It is also strictly more expressive

(in terms of what can by analyzed) than traditional FMEA. We show, that the
results of DCCA have the same semantics as those of formal FTA [11]. Because
of this DCCA may be used to verify fault trees without formalizing inner nodes
of the tree.

Formal Safety Analysis of a Radio-Based
Railroad Crossing Using Deductive

Cause-Consequence Analysis (DCCA)

Frank Ortmeier, Wolfgang Reif and Gerhard Schellhorn

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg

{ortmeier, reif, schellhorn}@informatik.uni-augsburg.de

Abstract. In this paper we present the formal safety analysis of a radio-
based railroad crossing. We use deductive cause-consequence analysis
(DCCA) as analysis method. DCCA is a novel technique to analyze safety
of embedded systems with formal methods. It substitutes error-prone in-
formal reasoning by mathematical proofs. DCCA allows to rigorously
prove whether a failure on component level is the cause for system fail-
ure or not. DCCA generalizes the two most common safety analysis tech-
niques: failure modes and effects analysis (FMEA) and fault tree analysis
(FTA).

We apply the method to a real world case study: a radio-based rail-
road crossing. We illustrate the results of DCCA for this example and
compare them to results of other formal safety analysis methods like for-
mal FTA.

Keywords: Formal methods, safety critical systems, safety analysis, fail-
ure modes and effects analysis, fault tree analysis, dependability.

,

In Sect. 2 the semantics of DCCA is presented. A comparison to FMEA and
FTA is done in Sect. 3. We illustrate the application of DCCA and report on
practical experiences in Sect. 4. In Sect. 5 some related approaches are discussed
and Sect. 6 summarizes the results and concludes the paper.

2 DCCA

In this section we describe the formal semantics of DCCA. The formalization
is done with Computational Tree Logic(CTL) [5]. We use finite automata as
system models. The use of CTL and finite automata allows to use powerful
model checkers like SMV [8] to verify the proof obligations.

In the following we assume that a list of hazards on system level and a list of
possible basic component failures modes is given. Both data may be collected by
other safety analysis techniques like failure-sensitive specification [9] or HazOp
[6]. We assume that system hazards H and primary failures � are described by
predicate logic formula. This is true for most practical problems. We call the set
of all failure predicates �.

2.1 Failure/ azard utomata

For formal safety analysis failure modes must be explicitly modeled. We divide
the modeling into two steps. First we model the occurrence pattern of the failure
mode and second we model the failure mode itself. By “occurrence pattern” we
understand how and when the failure mode occurs. For example does the failure
mode occur indeterministically (like packet loss in IP traffic) or does it occur
once and forever (like a broken switch) or does it occur only during certain
time intervals (like until the next maintenance). To model this we use failure
automata. Figure 1 shows two such failure automata.

Fig. 1. Failure automata for transient and persistent failures

The left automaton models a transient failure which can indeterministically
occur and disappear. The right one models a persistent failure, which happens
once and stays forever (e.g. a broken relay). Maintenance etc. may be modeled
analogously. Failure predicates � are then defined as “failure automaton for fail-
ure mode �̃ in state yes”. For readability the symbol � is used for both the
predicate and the automaton describing the occurrence pattern.

AH

211

The second step is to model the direct effects of failure modes. This is usually
done by adding transitions to the model with conditions of the form ’ ∧ �. This
mean these additional transitions – which reflect erroneous behavior – may only
be taken, when a failure automaton is in state yes i.e. when a failure occurs.

A similar approach may be used to define predicates for system hazards. If
the system hazard can not be describe by a predicate logic formula directly,
then often an observer automaton may be implemented such that whenever the
automaton is in an accepting state, the hazard has occurred before [12]. This
allows to describe the hazard as predicate logic formula on the states of the
observer automaton. However in practical applications hazards may usually be
described by predicate logic formulas.

2.2 Critical ets

The next step is to define a temporal logic property which says, whether a certain
combination of failure modes may lead to the hazard or not. This property is
called criticality of a set of failure modes.

Definition 1. critical set / minimal critical set
For a system SYS and a set of failure modes � a subset of component failures
� ⊆ � is called critical for a system hazard, which is described by a predicate
logic formula H if

SY S |= E(� until H) where � :=
∧

δ∈(∆\Γ)

¬ �

We call � a minimal critical set if � is critical and no proper subset of � is
critical.

Here, E(’ until) denotes the existential CTL-UNTIL-operator. It means
there exists a path in the model, such that ’ holds until the property holds.
The property critical set translates into natural language as follows: there exists
a path such that the system hazard occurs without the previous occurrence of
any failures except those which are in the critical set. In other words this means,
it is possible that the systems fails, if only the component failures in the critical
set occur. Intuitively, criticality is not sufficient to define a cause-consequence
relationship. It is possible that a critical set includes failure modes, which have
nothing to do with the hazard.

Therefore, the notion minimal critical set also requires that no proper subset
of is critical. Minimal critical sets really describe what one would expect for a
cause-consequence relationship in safety analysis to hold: the causes may - but
not necessarily - lead to the consequence and second all causes are necessary
to allow the consequence to happen. So the goal of DCCA is to find minimal
critical sets of failure modes. Testing all sets by brute force would require an
effort exponential in the number of failure modes. However, DCCA may be used
to formally verify the results of informal safety analysis techniques. This reduces
the effort of DCCA a lot, because the informal techniques often yield good “initial

S

212

guesses” for solutions. Note that the property critical is monotone with respect to
set inclusion i.e. ∀�1; �2 ⊆ � : �1 ⊆ �2 ⇒ (�1 is critical set ⇒ �2 is critical set).
This helps to reduce proof efforts a lot.

3 Comparison to ther afety nalysis ethods

DCCA formalizes different methods of formal safety analysis in a generic way.
We can identify different cases according to the number of elements in the set of
failure modes being analyzed and relate them to other existing safety analysis
techniques.

|� | = 0

If the empty set of failure modes is examined, then the proof obligation of min-
imal criticality corresponds to the verification of functional incorrectness. Min-
imality is of course satisfied (the empty set does not have real subsets). The
property of criticality states that there “exists a path where no component fails
but eventually the hazard occurs” (in CTL: EF H). This is the negation of the
standard property of functional correctness “on all paths where no component
fails, the hazard will globally not occur” (in CTL: AG ¬H). In other words, if
the empty set can be proven to be a critical set, then the system has design
errors and is functionally incorrect.

|� | = 1

The analysis of single failure modes corresponds to traditional FMEA. Tradi-
tional FMEA analyzes the effects of a component failure mode on the total
system in an informal manner. If the failure modes appears to be safety criti-
cal than this cause-consequence relationship is noted as one row of a (FMEA)
spreadsheet. If a singleton set is minimal critical for a hazard H, then a correct
FMEA must list the hazard H as effect of the analyzed failure mode. Note that
functional correctness is a pre-condition for formal FMEA. If the system is not
functionally correct, then there will be no singleton sets of failure modes which
are minimal critical.

|� | > 1

This is a true improvement to FMEA. Combinations of component failure modes
are traditionally only examined by FTA. FTA analyzes top-down the reasons of
system failure. Cause and consequence are linked by certain gates. The gates of

a fault tree state if all causes (AND-gate C) or any of the causes (OR-gate

C) are necessary to allow the consequence to occur. Iteration builds a tree
like structure where the root is the system hazard and the leaves are component
failures.

The result of FTA is a set of so called minimal cut sets. These sets may be
generated automatically from the structure of the tree. Each minimal cut set
describes a set of failure modes, which together may make the hazard happen.
This corresponds to the definition of minimal critical sets obtained by DCCA.
So FTA may be seen as a special case of DCCA. An introduction to FTA may
be found in [3].

MS AO

213

FTA has been enhanced with formal semantics. Formal FTA [12] allows to
decide whether failure modes have been forgotten or not. The idea is to assign
a temporal logic formula to each gate. If this formula is proven correct for the
system, then the gate is complete. This means no causes have been forgotten.
An example is given in figure 2.

ϕ2ϕ1

C

ψ

A ((ϕ1∧ϕ2) P ψ)

Fig. 2. Fault tree gate and formalization

The figure shows a synchronous cause-consequence AND-gate. The seman-
tics is that both reasons ’1 and ’2 must occur simultaneously, before the conse-
quence may occur. Here, A(’ P) denotes the derived CTL-operator PRE-
CEDES, which is defined as ¬E(¬’ until (∧ ¬’)). Informally PRECEDES
means that whenever holds, ’ must have happened before.

Altogether formal FTA distinguishes 7 different types of gates, which reflect
temporal ordering, environment constraints and synchronous vs. asynchronous
dependencies between cause and consequence. A detailed description of formal
FTA may be found in [13].

One of the main results of FTA is the minimal cut set theorem. This theorem
states that for a complete fault tree the prevention of only one failure mode of
every minimal cut set, assures that the system hazard will never occur. A fault
tree is called complete, if all its gates have been proven to be complete.

DCCA may be used to verify the completeness of a fault tree analysis as well.
To apply DCCA to FTA we must first introduce the notion of a complete DCCA.
We call a DCCA complete if all minimal critical sets have been identified.

If a DCCA has been shown to be complete, then it is proven that the minimal
critical sets of the DCCA have the same meaning as the minimal cut sets of a
fault tree done with formal FTA. In particular the following theorem holds:

Theorem 1. Minimal critical sets
For a complete DCCA prevention of one element of every minimal critical set
will prevent the hazard H from occurring.

The proof of this theorem is very easy. The statement may be directly derived
from the definition of minimal critical sets and the semantics of CTL. In the
following SY S denotes a CTL model, s0 is the initial state of the model, minimal
critical sets are called � , the set of all minimal critical sets is
 and individual
failure modes are labeled with �. We define (CTL*-) formulas [�] for “there exist

a path in the system, such that eventually a critical set of failures � occurs” and
[[
]] for “there does not exist a path, such that any of the minimal critical sets
� ∈
 occurs”.

214

[�] := E
∧

δ∈Γ

F�

[[
]] :=
∧

Γ∈Ω

¬[�] =
∧

Γ∈Ω

¬E
∧

δ∈Γ

F�

With this abbreviations theorem 1 rewrites to SY S |= [[
]] ⇒ SY S |=
AG¬H. In the following traces of system SYS are called � and states si. The
proof for theorem 1 is then as follows:

Proof.

Assume : SY S 6|= AG¬H
⇔ SY S; s0 6|= AG¬H
⇔ SY S; s0 6|= ¬EF¬¬H
⇔ SY S; s0 |= EFH
⇔ SY S; s0 |= E(trueUH)

⇔ ∃� = (s0; s1; :::) ∈ SY S : SY S; � |= (trueUH)

⇔ ∃i : SY S; si |= H ∧ ∀j < i : SY S; sj |= true
Let �† := {� ∈
 | ∃ j < i : SY S; sj |= �}

⇒ SY S; � |= (�†UH)

⇔ �† is critical set

⇒ ∃�̃† ⊆ �† : �̃† is minimal critical set

Furthermore SY S; � |=
∧

δj∈Γ†

F�j

⇒ SY S; � |=
∧

δj∈Γ̃†

F�j

⇒ SY S; s0 |= E
∧

δj∈Γ̃†

F�j

⇔ SY S |= [�̃†]

⇒ SY S 6|= [[
]]; as �̃† ∈
; because DCCA is complete

⇒ � 2

For a complete DCCA even the following, stronger result holds:

SY S; s0 |= A((
∧

Γi∈Ω

¬
∧

δj∈Γi

F�j) → G¬H)

This is the same property that holds for formal fault tree analysis with the
semantics of [12]. However there is a difference as DCCA is more precise. Formal

FTA may yield weaker cut sets than DCCA. For example, assume a systems
SYS has two redundant units A and B. The hazard H may only occur if both
units fail. So the system has only one minimal critical set of failures: “A fails

215

AND B fails”. As an intuitively consequence the fault tree in figure 3 is correct
and the fault tree in figure 4 is incorrect.

BfailsAfails

C

H

A ((Afails ∧Bfails) P H)

Fig. 3. Correct fault tree

BfailsAfails

C

H

A ((Afails ∨Bfails) P H)

Fig. 4. Incorrect fault tree

With formal FTA both fault trees may be proven to be complete, as both
formulas may be proven correct for this system. But the fault tree of figure 3 will
yield only one minimal cut set � = {Afails; Bfails} while the fault tree of figure
4 will yield two singleton minimal cut sets �1 = {Afails} and �2 = {Bfails}. It
is not possible to distinguish the two fault trees with formal FTA. On the other
hand DCCA will discover that {Afails} resp. {Bfails} is not critical, because the
formula correspondind DCCA formula evaluates to false and thus the sets are
not critical. The set � = {Afails; Bfails} can be proven to be minimal critical.

The reason for this difference is that formal fault tree semantics does NOT
require that all causes must occur before the consequence, but only that pre-
vention of causes prevents the consequence. Here, DCCA yields more precise
results than formal FTA. A second advantage is that DCCA does not require
inner nodes to be formalized. This is a big advantage in practical applications.
Inner nodes are often very hard to formalize. For example an inner node of the
fault tree of the example of Sect. 4 is “Release sent and barriers opening”. Since
“Release sent” refers to the past, this is not directly expressible in CTL. This
problem was discovered in many case studies and was one of the motivating
factors that led to the development of DCCA.

A problem of showing completeness of DCCA is of course the exponential
growth of the number of proof obligations. However, only big minimal critical sets
will result in a lot of proof effort. In many real applications minimal critical sets
are rather small. In addition, informal safety analysis helps to find candidates
for minimal cut sets in advance. FTA is one possibility, FMEA is another. This
reduces the combinatorial effort of checking all possible sets of failure modes a lot.
Finally, monotony of the property critical may be exploited; if e.g. a singleton
set is minimal critical, then other minimal critical sets must not contain this
element.

4 Application

As an example for the application of DCCA we present an analysis of a radio-
based railroad crossing. This case study is the reference case study of the german
research councils (DFG) priority program 1064. This programs aims at bringing

216

together field-tested engineering techniques with modern methods of the domain
of software engineering.

The German railway organization, Deutsche Bahn, prepares a novel technique
to control railroad crossings: the decentralized, radio-based railroad crossing con-
trol. This technique aims at medium speed routes, i.e. routes with maximum
speed of 160 km/h. An overview is given in [7].

Fig. 5. Radio-based railroad crossing

The main difference between this technology and the traditional control of
railroad crossings is that signals and sensors on the route are replaced by radio
communication and software computations in the train and railroad crossing.
This offers cheaper and more flexible solutions, but also shifts safety critical
functionality from hardware to software.

Instead of detecting an approaching train by a sensor, the train computes the
position where it has to send a signal to secure the level crossing. To calculate the
activation point the train uses data about its position, maximum deceleration
and the position of the crossing. Therefore the train has to know the position
of the railroad crossing, the time needed to secure the railroad crossing, and
its current speed and position. The first two items are memorized in a data
store and the last two items are measured by an odometer. For safety reasons
a safety margin is added to the activation distance. This allows compensating
some deviations in the odometer. The system works as follows:

The train continuously computes its position. When it approaches a cross-
ing, it broadcasts a ‘secure’-request to the crossing. When the railroad crossing
receives the command ‘secure’, it switches on the traffic lights, first the ‘yellow’
light, then the ‘red’ light, and finally closes the barriers. When they are closed,
the railroad crossing is ‘secured’ for a certain period of time. The ‘stop’ signal
on the train route, indicating an insecure crossing, is also substituted by compu-
tation and communication. Shortly before the train reaches the ‘latest braking

217

point’ (latest point, where it is possible for the train to stop in front of the cross-
ing), it requests the status of the railroad crossing. When the crossing is secured,
it responds with a ‘release’ signal which indicates, that the train may pass the
crossing. Otherwise the train has to brake and stop before the crossing. The
railroad crossing periodically performs self-diagnosis and automatically informs
the central office about defects and problems. The central office is responsible for
repair and provides route descriptions for trains. These descriptions indicate the
positions of railroad crossings and maximum speed on the route. The safety goal
of the system is clear: it must never happen, that the train is on the crossing and
a car is passing the crossing at the same time. A well designed control system
must assure this property at least as long as no component failures occur. The
corresponding hazard H is “a train passes the crossing and the crossing is not
secured”. This is the only hazard which we will consider in this case study

4.1 Formal odel

We now give a brief description of the formal system model. We used SMV [8]
as model checker. Altogether the system consists of 16 automata: two automata
modeling the control of the crossing and the train, five timer automata, six failure
automata and three automata modeling the physics of the train. Altogether the
model has roughly 1100 states. In the following we give brief descriptions of the
most interesting automata. For better readability - we use a graphical notation
instead of SMV input language.

Primary ailure and azards We will now briefly explain the analyzed failure
modes and hazards and how they are modeled. The modeling of failure modes
generally splits into two different tasks: the modeling of the occurrence pattern
and the direct effect of the failure mode. The occurrence pattern describes, when
and how the failure occurs resp. when it does not occur. We model occurrence
patterns with failure automata (see Sect. 2.1).

In the following we give a summary of the failure modes, which we analyzed.
In this example only one hazard is interesting i.e. the train passes an insecure
crossing. We call this hazard collision HCol. This is modeled by the following
formula:

HCol := Pos ≤ Posds ∧ Pos+ Speed > Posds ∧ ¬Crossing = closed

In this formula Posds is an abbreviation for the position of the crossing (ds =
danger spot). It describes the location of the crossing. HCol evaluates to true,
iff the train passes the crossing and the barriers are not closed. We investigated
the following six different types of component failures:

– Failure of the brakes: error brake -This error describes the failure of the
brakes. It has direct effects on automaton Dec.

– Failure of the communication: error comm - This error describes the
failure of the radio communication. It has direct effects on automata

timerclosercv
; timerstatusrcv

; timerackrcv
.

M

F H .

218

– Failure of the barriers closed sensor: error closed - This error describes
that the crossing signals closed, although it is not closed. It has direct effects
on automaton crossing.

– Failure of the barriers’ actuator: error actuator - This error describes
that the actuator of the crossing fails. It has direct effects on automaton
crossing.

– Failure of the train passed sensor: error passed - This error describes
that the sensor detecting trains which passed the crossing fails. It has direct
effects on automaton crossing.

– Deviation in the odometer: error odo - This error describes that the
odometer does not give 100% precise data. It has direct effects on automaton
train control.

The occurrence of each of these failure modes is modeled by a failure automa-
ton. All failure modes - except error actuator - are assumed to be transient. As
abbreviation we write error brake for error brake = yes.

Model of the rossing The automaton in figure 6 shows the model of the
crossing. Initially the barriers are opened. When the crossing receives a close
request from an arriving train - i.e. condition comm close rcv becomes true, the
barriers start closing. This process takes some time. This is modeled by timer
automaton timer closing. After a certain amount of time the barriers are closed.
They will remain closed until the train has passed the crossing (detected by a
sensor). The barriers reopen automatically after a defined time interval. This is a
standard procedure in railroad organization, as car drivers tend to ignore closed
barriers at a railroad crossing if the barriers are closed too long. So it is better
to reopen the barriers, than having car drivers slowly driving around the closed
barriers. The reopening is modeled using another timer automaton timer closed.

A faulty signal from the sensor, which detects when the train has passed the
crossing will also open the crossing. This is modeled by error passed = true. The
barriers may get stuck, if the actuator fails (error actuator).

Model of the rain ontrol The train control supervises the position of the
train, issues closing requests to the crossing and ultimately decides, if an emer-
gency stop is necessary or not. The train control is implemented in software
on-board the train. The formal model is given in figure 7. Starting from its ini-
tial state idle the automaton goes into state wfc (‘wait for close’), if the train
approaches the crossing (pos close reached). Simultaneously the train sends a
signal requesting to close the barriers.

Some time later the train sends a status request message to the crossing and
waits for an answer (state wfs - ‘wait for status answer’). If the positive answer

reaches the train in time, then the control allows passing the crossing and enters
state �nish. If no acknowledge is received, the control issues an emergency stop
(state brake). In this case the crossing must be secured manually, before the
train may pass the crossing.

C

C .

.T

219

Fig. 6. Model of the crossing

Fig. 7. Model of the train control

The three important predicates pos close reached, pos status reached and
pos brake reached are computed from position and speed data. Possible errors
result by deviation of the speed sensor of the train (called odometer). This means
the control might calculate braking distances etc. wrongly.

Model of the ommunication It is part of the case study to take communica-
tion delay explicitly into account. To model this three additional timer automata
(timerclosercv

; timerstatusrcv
; timerackrcv

) are built. Timer automata allow to de-
lay certain transitions for n steps and have respectively n states. If, for example,
the train sends a close signal to the crossing, timer timerclosercv

starts a count-
down (in every step it makes transition from state n to state n-1). When finally
timerclosercv

reaches state 0, the condition comm close rcv becomes true which
means close signal is received by the crossing. Failure of communication pre-
vents the signal comm close rcv from being received. The others communication
request are modeled analogously.

Model of the rain The physical train is modeled by three important prop-
erties: position, speed and acceleration. To improve readability, we give textual
representation of these automata.

C .

.T

220

The position of the train is given as an integer value between 0 and PosMax.
The automaton modeling the position of the train is defined as follows:

Pos : 0::PosMax

Post=0 := 0

Post=n+1 :=







0 or 1; if Post=n = 0
Post=n + Speedt=n; if Post=n + Speedt=n ≤ PosMax

PosMax; otherwise

This automaton models monotone movement of the train. State Pos = 0 is
an abstraction for “the train has not reached the crossing”. At every step in time
it is possible that the train either stays absent Pos = 0 or enters the region in
front of the crossing Pos = 1. Between 1 and Posmax the train moves according
to its speed. When the train reaches the upper bound of PosMax, we abstract
this state to “train has passed the crossing”.

The speed of the train is assumed to be constant, unless an emergency break
is signaled. This is modeled as follows:

Speed : 0::SpeedMax

Speedt=0 := SpeedMax

Speedt=n+1 :=

{

Speedt=n − dect=n; if Speedt=n −Dect=n ≥ 0
0; otherwise

For the case study only deceleration is analyzed. The model can however easily
extended to acceleration as well. Deceleration is controlled by TrainControl. It
is by default 0 unless TrainControl is in state brake. Error brake may prevent
braking.

Dec : 0::DecMax

Dect=0 := 0

Dect=n+1 :=

{

DecMax; if TrainControl = brake ∧ ¬error actuator
0; otherwise

4.2 DCCA

This model was used to analyze the system with DCCA as described in Sect. 2.
All proofs were done using the SMV model checker tool. The proofs took less
than 1 minute (for PosMax = 1000 and SpeedMax = 16).

First we proved that the system is functionally correct. We showed that
the empty set of failure modes is not critical. The next step was to examine
the singleton sets. We found that {error passed} and {error odo} were the only
critical sets. Because the system is functional correct, these two are also minimal

critical. To find minimal critical sets with two elements, we had to check only
those sets, which do not include {error passed} or {error odo}. So 6 proofs

221

of criticality were needed. Four of the examined sets them were found to be
critical. No more sets of failure modes existed, which not already included on of
the minimal critical sets. Altogether DCCA yielded the following complete list
of minimal critical sets:

– {error passed}
– {error odo}1

– {error comm, error close}
– {error comm, error brake}
– {error close, error actuator}
– {error brake, error actuator}

This example shows that the effort for a complete DCCA does not grow expo-
nentially in real applications, if monotony is used and an adequate methodology
is used. This can be quickly computed with set algorithms. In conclusion, by
use of monotony instead of 26 proof obligations only 13 proofs were necessary
to determine all minimal, critical sets.

The results were very surprising for us. We already did a formal FTA with the
semantics of [12] for this system using the interactive theorem prover KIV [1].
The fault tree we have proven to be complete consisted of only OR-gates. This
means all leaves of the fault tree are single point of failures. DCCA now shows
that only error passed and error odo are single points of failure. Other failure
modes, which seem to be very safety critical - like for e.g error brake - are only
critical in conjunction with other failures. But this result is also intuitively cor-
rect. For example if only the brakes fail and everything else works correctly, then
the crossing will be secured in time and there will be no need for an emergency
stop at all. This means failure of the brakes is NOT a single-point-of-failure for
this system. So this example is a proof of concept that the results of DCCA are
not only in theory more precise than formal FTA but also in practice.

5 Related Work

There exist some other methods of formally verifying dependencies between com-
ponent failures and system failure modes. One such technique is formal FTA [12].
Formal FTA requires, that all inner nodes of a fault tree are formalized. This
can be very time consuming and difficult (see the example in Sect. 4). A second
problem with formal FTA is, that it relies on universal theorems. But, proof

1 This failure mode is only critical, if the safety margin in the calculation of
pos closed reached is to small.

obligations for gates must be universal, since only universal properties can tran-
sitively lead to properties for the whole system. DCCA uses existential proof
obligations. This allows to distinguish whether an (failure) event is a necessary
or sufficient condition.

222

Another related approach has been developed in the ESACS project [2]. Here
again model checking and FTA is used as basis. The ESACS approach does not
require inner nodes of the fault tree to be formalized. However, the approach
requires to adjust the model for different proofs. This can be time consuming
(building BDDs for model checking is expensive) and

6 Conclusion

We presented a general formal safety analysis technique: DCCA. DCCA is a
generalization of the most widely spread safety analysis techniques: FMEA and
FTA. In the formal world, verification of functional correctness, formal FMEA
and formal FTA may be found as special cases of DCCA. So DCCA may be used
to verify different types of safety analysis techniques in a standardized way. The
proof obligations of DCCA may be constructed automatically and the proofs
can be done - for finite state systems - by model checking.

DCCA formalization is strictly more precise, than other formal formal safety
analysis techniques like formal FTA. Theoretically, the effort for DCCA grows
exponentially. But we have not found this case to happen in real world applica-
tions. The costs are more likely to grow linear (for non redundant systems) or
polynomial by n (for systems with n-times redundancy), if monotony is used.

We showed the application of DCCA to a real world case study: the refer-
ence case study “radio-based railroad crossing” of german research foundations
priority program 1064. DCCA has rigorously identified critical sets of failure
modes and the results of the analysis were much more precise than what can be
achieved with informal or formal FTA.

References

[1] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In T. Maibaum, editor, Fundamental Approaches to Soft-

ware Engineering, number 1783 in LNCS, pages 363–366. Springer-Verlag, 2000.

[2] P. Bieber, C. Castel, and C. Seguin. Combination of fault tree analysis and model
checking for safety assessment of complex systems. In Dependable Computing

EDCC-4: 4th European Dependable Computing Conference, volume 2485 of LNCS,
pages 19–31, Toulouse, France, 2002. Springer-Verlag.

[3] J. Fragole J. Minarik II J. Railsback Dr. W. Vesley, Dr. Joanne Dugan. Fault

Tree Handbook with Aerospace Applications. NASA Office of Safety and Mission
Assurance, NASA Headquarters, Washington DC 20546, August 2002.

[4] ECSS. Failure modes, effects and criticality analysis (FMECA). In European Co-
operation for Space Standardization, editor, Space Product Assurance. ESA Pub-
lications, 2001.

[5] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, pages 996–1072. Elsevier Science Publishers B.V.:
Amsterdam, The Netherlands, 1990.

223

[6] T. A. Kletz. Hazop and HAZAN notes on the identification and assessment of haz-
ards. Technical report, The Institution of Chemical Engineers, Rugby, England,
1986.

[7] J. Klose and A. Thums. The STATEMATE reference model of the reference
case study ‘Verkehrsleittechnik’. Technical Report 2002-01, Universität Augsburg,
2002.

[8] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1990.
[9] F. Ortmeier and W. Reif. Failure-sensitive specification: A formal method for

finding failure modes. Technical Report 3, Institut für Informatik, Universität
Augsburg, 2004.

[10] Michael R. Beauregard Robin E. McDermott, Raymond J. Mikulak. The Basics

of FMEA. Quality Resources, 1996.
[11] G. Schellhorn, A. Thums, and W. Reif. Formal fault tree semantics. In Proceed-

ings of The Sixth World Conference on Integrated Design & Process Technology,
Pasadena, CA, 2002.

[12] A. Thums. Formale Fehlerbaumanalyse. PhD thesis, Universität Augsburg, Augs-
burg, Germany, 2004. (in German), (to appear).

[13] A. Thums and G. Schellhorn. Model checking FTA. In K. Araki, S. Gnesi, and
D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 739–757.
Springer-Verlag, 2003.

224

