®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w k Universititsbibliothek

A construction kit for modeling the security of
m-commerce applications

Dominik Haneberg, Wolfgang Reif, Kurt Stenzel

Angaben zur Veroéffentlichung / Publication details:

Haneberg, Dominik, Wolfgang Reif, and Kurt Stenzel. 2004. “A construction kit for
modeling the security of m-commerce applications.” In Applying Formal Methods: Testing,
Performance, and M/E-Commerce: FORTE 2004 Workshops, The FormEMC, EPEW, ITM, Toledo,
Spain, October 1-2, 2004, edited by Manuel Nufiez, Zakaria Maamar, Fernando L. Pelayo,
Key Pousttchi, and Fernando Rubio, 72-85. Berlin: Springer.
https://doi.org/10.1007/978-3-540-30233-9_6.

Nutzungsbedingungen / Terms of use: licgercopyright
P -'_-T.\",rl-;!_

Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions:

https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

A >ﬁ
Deutsches Urheberrecht I a‘fv%‘ | =
Weitere Informationen finden Sie unter: / For more information see:) &
57
A B

https://doi.org/10.1007/978-3-540-30233-9_6
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

A Construction Kit for Modeling the Security
of M-commerce Applications

Dominik Haneberg, Wolfgang Reif, and Kurt Stenzel

Lehrstuhl fiir Softwaretechnik und Programmiersprachen
Institut fiir Informatik, Universitat Augsburg
86135 Augsburg Germany
{haneberg,reif,stenzel}@informatik.uni-augsburg.de

Abstract. In this article we present a method to avoid security prob-
lems in modern m-commerce applications. The security problems that we
are addressing are breaches of security due to erroneous cryptographic
protocols. We describe a specification technique that gives way to a for-
mal, and thereby rigorous, treatment of the security protocols used in
such applications. Security of communication is important in modern
m-commerce applications. As parts of the specification of the security
protocols, we describe how to specify the behavior of the agents, how to
specify the attacker and how further aspects of the application reflect
in the formal specification. The problem is that such formal specifica-
tions are difficult to get right, so we propose a construction kit for their
development.

1 Introduction

1.1 Mobile-Commerce

Mobile-commerce applications appear in a large variety of forms. They can
be customer-oriented (electronic selling of goods) or they can be intra-
organizational (electronic business processes). Although the electronic selling
is better known in the society, the mobile reorganization of business processes is
getting more and more important. The devices used for m-commerce are man-
ifold. Smart cards for high-secure applications, mobile phones or mobile digital
assistants for smart mobile services or notebooks with mobile Internet access
for heavyweight applications. Independent of the device used for the service, the
requirements of m-commerce services are quite similar: Security of transmitted
data, identification of the agents, exclusion of fraud. Yet these goals seem to be
quite simple and even though they are claimed in all applications, realizing them
properly is quite tricky. Differences in the application design, different possible
forms of fraud in different applications and the large differences in the techni-
cal features of the mobile devices result in securing an m-commerce application
being a challenging task.

73

1.2 Security Protocols for Communication

One important aspect of innovative m-commerce applications is the transfor-
mation of business goods into digital data. Examples for such applications are
electronic ticketing or electronic purses. It is crucial for such applications that
the business goods cannot be manipulated or multiplied because this would per-
mit fraud. For example, someone could increment the amount of money in an
electronic purse. Another aspect is that m-commerce applications can require
the transfer of customer data that must not be disclosed, e. g. credit card data
or other personal information. Communication in m-commerce therefore means
a lot of data that must be protected against different threats. The means for pro-
tecting data and ensuring authenticity are cryptographic methods. For the dif-
ferent functions of the application, security protocols (also called cryptographic
protocols) must be developed that ensure the security of the data. The problem
is that these protocols are very error prone [1].

There are quite a few well-known security protocols that can be used to
ensure many of the more common security demands (e. g. non-disclosure of
the transmitted data and authenticity of the agents). One such protocol, often
used in WWW-based e-commerce applications, is SSL [6]. The problem is that
such standard protocols are not usable in all scenarios because they do not
necessarily guarantee the application specific security goals. In smart card based
applications, which are the main focus of the work presented here, the additional
problem arises that smart cards do not offer the resources necessary to execute
such standard protocols.

Our work is a method for the specification and verification of cryptographic
protocols for m-commerce applications and we therefore address the security
problems arising from erroneously designed cryptographic protocols.

1.3 Designing Secure M-commerce Protocols

Cryptographic protocols are difficult to design. They may contain subtle errors
that are not detected for several years (see [2] for examples). It is commonly
agreed that formal methods give the highest assurance that the protocols are
secure. This means that we can formally prove that a given protocol adheres
to all required security properties (which must be given in a suitable mathe-
matical description). As basis of such a formal treatment of security protocols,
a specification that unambiguously describes the protocols is needed.

However, creating such specifications is quite complex. The commonly used
specification techniques are unsatisfying because they are either to detailed, for
example the full EMV standard [5] or they lack a lot of relevant information,
e. g. treatment of errors or checks of the data exchanged [2]. The formal proofs
are surprisingly difficult, because an informal argumentation necessarily con-
tains holes. And there is a graver problem: If the formal specification does not
adequately reflect the real world, a ‘proof’ that a protocol is secure may be
possible, but in the real world the protocol is not secure: In [2] the security of

74

a version of the Needham-Schroeder protocol is ‘proven’, but in fact the protocol
was flawed [8]. Even an expert in formal methods is at risk.

Therefore we propose a ‘construction kit” to design formal protocol specifica-
tions. While every application requires its own protocols and security properties,
experience shows that the remaining parts of a formal specification can be stan-
dardized. Using standard components reduces the risk of errors and allows to
reuse previous proofs.

1.4 A Construction Kit for Formal Protocol Specifications

We propose a construction kit to design correct formal protocol specifications
without much effort. The kit contains the following building blocks:

1. A UML [10] class diagram for the agents in the application, and UML activity
diagrams for the protocols (described in section 2).
2. Security properties (described in section 3).
These can be either class invariants or formulas of the formal specification.
Additionally, the formal specification should be validated, i. e. it should fulfill
some properties. These properties are: a successful protocol run is possible;
and a modified protocol is insecure. The diagrams and security properties
are specific for every application and must be designed by the application
designer.
3. One of three different attacker models (described in section 4):
— An attacker that may receive and modify every message.
— An attacker that receives every message, but cannot modify a message.
— An attacker that cannot eavesdrop on or modify messages between other
agents.
4. The communication structure (described in section 5).
This includes the number of agents, and the manner of communication. The
more realistic this aspect is modeled the more complex the specification and
proofs will be. However, a too simple model may be not an adequate model
of reality.

Some parts of the building blocks are generated automatically, some are taken
from a library and a small part must be added by hand. The building blocks are
unified in one large formal specification in which the correctness and security of
the cryptographic protocols are proven.

2 Modeling Applications

In this section we describe our technique to specify the communication protocols
and those parts of the application that contain data relevant for the security
(most often the application logic but not the user interface). A specification of an
application consists of two parts, the description of the agents and the protocols.
The agents are all the entities that play an active role in the application. They are
represented by their internal state. Unlike the common descriptions of security

75

protocols we explicitly model the internal state of the agents. We therefore can
describe which data is stored in each agent and when and how an agent modifies
its state. Multiple agents of the same type are possible, similar to multiple objects
that are different instances of the same class. The communication protocols of
an application describe how the different agents work together, which messages
are exchanged and which computations take place.

Specifications that are written in a way that they are usable for verification,
e. g. algebraic specifications, are hard to develop and require expert knowledge in
formal methods. Our goal was to enable the application developer to contribute
to the specification by using an UML-based approach. The scenario and the
protocols are described in a graphical notation and are automatically converted
into an algebraic specification.

2.1 An Example

The example we use to illustrate the specification is a simplified electronic purse.
A user of this service can use special terminals to load money onto his smart card
by inserting the smart card and the money he wants to load. Then the smart
card stores the amount of money in the electronic purse. The smart card with
the stored money can be used for payments of small amounts, e. g. in a canteen
or in public libraries for using the copying machines.

2.2 UML Diagrams

We use two kinds of diagrams for the specification of an application. The state
of the agents and the methods used to manipulate data are described in a class
diagram. Class diagrams are mainly used in a standard manner and not further
discussed.

The protocols which describe the communication between the different agents
are specified as activity diagrams. In general each function that is to be per-
formed by the application requires its own protocol. The protocols define at
what time what message is to be sent by which agent. Also the structure of the
messages is defined by the protocols. Most important thereby is how the data
is secured, i. e. what cryptographic primitives are used in what way. Figure 1
shows one of the protocols of the electronic purse, the pay-function. This func-
tion is used if the user wants to pay for goods or services and use the money
on his card for it. The example application has another function, the function
used to load money onto the card. This function has its own protocol which is
omitted here. The diagram for pay contains two swimlanes, one for each agent
participating in the protocol. The left swimlane represents the terminal, in the
case of the pay-function this would be a merchant terminal, and the other swim-
lane stands for the smart card. The protocols all start at the start-node in the
terminal swimlane. In smart card applications the communication is always ini-
tiated by a terminal, a smart card cannot begin an operation on its own. The
course of events in the protocol is described by the control flow of the diagram.
Activities stand for calculations being performed and for modifications of the

76

Fig.1. The Protocol for Payments

state of the agent. A branch node is used for tests that have to be performed,
e. g. correctness of received data, object nodes and the notes attached to them
describe the exchanged messages. The path from the start node to the last end
node describes the intended successful run of the protocol. Signal sending nodes
and the other end nodes represent early ends of a protocol run, e. g. because of
wrong data.

2.3 Algebraic Specifications

The graphical notation described in the last section is good for the specification
process, because the notation enables non-experts in formal methods to con-
tribute to the specification. Unfortunately, for the verification we need another
description mechanism, one that contains the specification in the language of the
theorem prover used. This theorem prover input is, in large parts, automatically

T

generated from the diagrams. In our case we use the KIV theorem prover [3]
which works with algebraic specifications [7] and therefore the generation of the
formal specification currently targets on algebraic specifications. Of course it
would be possible to use other specification techniques, e. g. temporal logics or
state machines.

As a result of the automatic transformation process a structured algebraic
specification is generated. An algebraic specification consists of a set of data type
definitions, functions manipulating the data types and also predicate symbols.
Combined with quantifiers we have a powerful formal description mechanism
for software systems. The specification created from the diagrams contains the
data types for the agents of the application, a document data type describing
how messages are built in the communication and a function that describes the
agents behavior in the protocols.

Fach agent is represented by its internal state, i. e. the value of all fields
of the data type. When generating the data type for an agent, the fields are
taken from the agents description in the class diagram. This explicit model of
the internal state of the agents participating in an application is a significant
difference to the other approaches for modeling and verifying security protocols.
As we are ultimately aiming at a verified implementation of the application, we
think that a model that is close to the actual software is better than the stateless
descriptions in other modeling techniques.

The function describing the agents behavior is the central part of the protocol
specification. It defines for all agents how they react, i. e. what they answer and
how they modify their state, if they receive a certain message. The function

agent — says : (agent, document) — (agent,document)

takes the current state of an agent and the document the agent receives and
returns the state of the agent after the modifications and the document the agent
produces as answer. The axioms for this function are generated from the activity
diagrams. Note that all the different activity diagrams are brought together in
one function. This is due to the fact that each one of the activity diagrams only
contains the information how the agents mentioned in the diagram behave in one
specific function of the application, but for a description of an agent as a whole
all these parts must be aggregated.

A great deal of the algebraic specification can be generated automatically,
yet some parts must be added by hand. It is possible to use methods in the
activity diagrams describing the protocols (e. g. generateNonce () in Figure 1).
These methods must be present in the class diagram, but only the signature can
be taken from the class diagram and added to the specification. The semantics
of these functions has to be added by hand. They are usually functions that deal
with the treatment of data, e. g. a function storeTicket () to store a ticket in
an array.

78

3 Security Properties

Apart from the specification of the behavior of the agents in an m-commerce
application we need two further ingredients in order to prove the security of the
communication protocols. At first we need to know what exactly security of the
protocols means in a specific application. This is discussed in this section. For
the electronic purse the claim of the service provider would be that at no time
the sum of the money spent with the cards is higher than the sum of all the
money collected in the load stations. In the example, this property is expressed
quite elegantly using two fields of the terminal to count the loaded and collected
money:

term.collected < term.issued

This class invariant is translated into (the additional parts of the formula will
be explained later)

sec_glob : admissible(tr)

— Vn.tr[n].env.term.collected < tr[n].env.term.issued

This theorem guarantees that at no time more money is collected by the point-
of-sales terminals than was issued by the load terminals. This rules out fraud
because it cannot happen that money is spent that was not previously loaded on
a card by a genuine load station. Other applications have completely different
security claims. In an electronic shopping scenario, e. g. the customer would
demand that his payment information (e. g. credit card data) is not disclosed to
anyone other than the merchant.

Finding, respectively determining, the security goals for an m-commerce ap-
plication is part of the application design. The security demands, most certain
at first just as some informal ideas, must be put in rigorous formalization to
allow for their formal verification. Therefore the informal demands become log-
ical formulas in the verification process. The theorems representing the security
goals are the main object of the protocol correctness proofs.

Besides the actual security goals some additional properties for the applica-
tion should be proven. They can be seen as ‘sanity’ checks because they validate
the specification. Most important are the following:

— It is possible to successfully execute the protocols. This ensures that the
specification of the possible traces is not malformed in a way that entirely
disables the communication.

— A insecure version of a protocol should be formulated and using this a suc-
cessful attack should be proven. This ensures that the attacker is not acci-
dently disabled by the specification of the possible traces.

4 Specifying the Attacker

The second building block that has to be added is the description of the threats
the application is facing. The threats we are dealing with are not such unwanted

79

events limiting the availability of the service, e. g. hardware failures. Our focus
are the threats resulting from accidental or deliberate misuse by one or more
individuals. In the design and analysis of security protocols such individuals are
usually called the attackers. To what extent an attacker poses a threat to an
application is determined by his abilities. In security protocol analysis in general
an instance of the Dolev-Yao attacker [41] model is used. This attacker is the
most powerful attacker that still permits secure protocols.

The problem is that such a powerful attacker is not realistic in all possi-
ble application scenarios. Designing the protocols in a way that they are secure
against the Dolev-Yao attacker always guarantees that the application is also
secure if the real attacker is less powerful. Therefore we do not have a security
problem but we have an economical problem. A more powerful attacker usually
means that the security protocols must be more elaborate. They are harder to
design and use more advanced cryptographic features. To make things worse,
more advanced cryptographic primitives (e. g. asymmetric instead of symmetric
cryptography) can necessitate more capable hardware. Additionally the usage
of public-key systems could require the build up of a public-key infrastructure,
which means a great deal of administrative effort. This all results in increasing
costs. For example a smart card that can only perform symmetric cryptogra-
phy is cheaper than a smart card with support for an asymmetric cryptographic
algorithm. All in all we have the problem that an application can become un-
necessary complex and expensive if an attacker is selected who is too powerful
and therefore inappropriate for the application.

Classical security protocol analysis generally assumes communication over
a wide area network such as the Internet. Especially m-commerce scenarios make
use of a wider range of possible communication channels:

— Infrared (IrDA),

— radio-based, e. g. Bluetooth for short-range and GSM for long-range com-
munication,

LANs and WANS,

— but also exclusive point-to-point connections, e. g. a smart card in a terminal.

The different characteristics of the communication channels should reflect in
the attacker model. This is another reason why a limitation to the Dolev-Yao
attacker is not adequate. We therefore developed several other attackers with
different abilities. They represent different levels of realistic adversaries in real
life applications.

4.1 Aspects Common to All Attacker Models

Certain aspects of the attacker are common to all the attacker models we use. The
central idea of the attacker is that he collects as much information as possible and
tries to use the information he gathered to cheat on other agents. The information
the attacker has collected is called his knowledge. The attacker’s knowledge
is a set of documents that initially contains often just the attacker’s personal
cryptographic keys but it grows when the attacker intercepts new messages.

80

One common aspect of the attacker models is how they treat the messages
they obtain. A document that is received by the attacker is always added to
his knowledge. But some documents are made up of sub-documents, e. g. an
encrypted document contains the plaintext of the message as sub-document. In
case of compound documents special rules apply. Not all sub-documents may
go into the attacker’s knowledge. The process of adding additional documents
to the attacker’s knowledge is specified using several functions (similar to [11]),
most important:

. / + . : documentset x document — documentset

|+ computes a new set of documents by adding a document to a given set of
documents and adding all documents that can be derived. If an attacker, with
present knowledge docset, receives a document his knowledge is extended to
docsety = docset [+ doc. Some other functions are used in the specification
of [+ and explain how the new knowledge can be computed. In this process,
the knowledge of the attacker is extended with all documents derivable from
his present knowledge. What the derivable direct sub-documents of a document
are depends on the document and the knowledge. For example a document en-
crypted with key key, encdoc(key, doc), contains the plaintext as sub-document
but this sub-document is derivable only if the knowledge contains the informa-
tion necessary to decrypt messages encrypted with key:

sub-enc-yes :

can_decrypt(key, docset) — sub-docs(encdoc(key, doc), docset) = {doc};
sub-enc-no :

= can_decrypt(key, docset) — sub-docs(encdoc(key, doc), docset) = 0;

Note that the algebraically specified abstract documents can contain addi-
tional information which their real counterparts do not contain, e. g. the key
in an encrypted document. The information that is not contained in the real
documents must of course not be a derivable sub-document.

Also common to all attacker models is how they build new messages from
the knowledge they have collected so far. They can guess non-confidential data,
but they cannot guess confidential data such as nonces or keys. This means they
can only use keys and nonces that they acquired by eavesdropping. Otherwise it
would be impossible to ensure most of the common security goals.The attacker’s
ability to derive documents is covered by a special predicate = with signature

E . :documentset x document

docset = doc states that the document doc can be constructed from the set of
documents docset which contains the attacker’s knowledge. There are axioms
for all kind of documents describing if they can be built given a certain set of
documents. As mentioned above the attacker cannot guess keys, therefore he can
build an encrypted document only if he possesses the key. This is covered by the
axiom

81

encdoc : docset |= encdoc(key, doc)
— encdoc(key, doc) € docset
V docset = keydoc(key) A docset = doc;

and it states that the attacker can derive an encrypted document if the document
is part of his knowledge or if the plaintext of the document and the used key
can be derived from his knowledge.

4.2 Attacker Models

The Dolev-Yao Attacker The Dolev-Yao attacker model is the most powerful
attacker model used. This attacker has complete control over the communica-
tion, i. e. he can eavesdrop into every data exchange and manipulate all mes-
sages traveling through the communication channels. The attacker decomposes
all messages he intercepts and decrypts encrypted messages, provided that he
has the necessary key. The attacker can arbitrarily generate messages from his
knowledge.

It is easy to see that it is not very common that someone has the abilities of
this attacker. The attacker must have access to all agents participating in the
communication.

An Attacker with Limited Access to the Communication This attacker is devel-
oped from the Dolev-Yao model by limiting his access to the communication.
First of all this attacker can only eavesdrop into the data exchanges but he
cannot manipulate the messages sent. This does not mean that he cannot par-
ticipate in the communication at all. This attacker can still generate his own
messages and send them over a communication channel as a regular participant
of the service. Another possible limitation is that the attacker cannot eavesdrop
on all data exchanges but just a few, i. e. he does not have control over the
complete communication infrastructure but on some systems with an installed
Trojan horse program.

Prohibiting the attacker to manipulate messages is also necessary in order to
prove certain reliability properties. For example it can only be guaranteed that
an electronic railway ticket can successfully be presented to the conductor if the
attacker cannot simply inhibit all communication by elimination of all messages.
Availability of a service cannot be guaranteed with a Dolev-Yao attacker [9].

Attacker Without Access to the Communication This is the most restricted at-
tacker we use. This attacker cannot eavesdrop on any communication taking
place. What he can do is communicating with his own genuine device, e. g. his
own smart card, and he can program a faked device, e. g. using a programmable
smart card, that can be used to communicate with real agents and try to trick
them into revealing interesting information. This is a quite realistic attacker. Ev-
ery person with programming knowledge and a smart card reader is an instance
of this attacker model. As the attacks that can be performed by this attacker do

82

not require great effort and are not expensive, attacks of this kind must be ex-
pected in every m-commerce application, even if the possible gain of a successful
attack is limited.

4.3 Further Aspects

What kind of attacker should be used in the verification of the application is
a design decision that must be taken in an early step of the application devel-
opment because it has a direct impact on the protocols and probably on the
hardware selection. Some factors must be observed when trying to decide on the
most realistic threat. In general one must anticipate more elaborate attacks if
the result of a success is more severe. For example a smart card based credit card
will attract more and technologically more advanced attacks than for example
a loyalty card.

There is another aspect of the attackers that must be kept in mind. It has no
direct consequence for the formalization of the attackers but for the design of the
security protocols. It is generally assumed that an attacker is trying to achieve
a personal benefit by attacking a service. This is not necessarily true. When
designing a service one should keep in mind that the service may have to deal
with attacks whose only purpose is to annoy others, see e. g. denial of service
attacks on the Internet. Preparing for such attacks is especially important if the
availability of the service is crucial.

4.4 In Brief

The attacker is a very important concept in our treatment of security protocols.
There are different aspects to be considered. In brief the following things are
important:

— How can the attacker decompose messages and build new ones.

— Which communication channels can be eavesdropped by the attacker, which
cannot.

Can the attacker replace messages in transfer by his own messages.

Does the attacker participate as a normal user of the service. (This is the
case in most scenarios.)

Does the attacker use faked devices, e. g. a self-programmed smart card.
Does one attacker suffice or should a set of attackers be considered.

— Is an ‘annoy only’ attacker relevant?

5 The Communication Structure

After modeling the protocols and the agents, and after selecting the attacker the
communication structure remains to be modeled. This requires further choices:

83

. The number of agents.

It may be sufficient to consider only one attacker, one customer, and one
merchant. This reduces the complexity of the specification and proofs con-
siderably compared to one that considers an arbitrary number of agents. So
this choice is desirable. On the other hand, there may be attacks against
the protocol involving several agents, that are not possible otherwise. In this
case the formal specification must consider an arbitrary number of agents.
Otherwise the specification is not an adequate model of reality.

. The manner of communication.

This can be either broadcast (one to all for radio based communication) or
one to one, and may contain one channel or several. For example, there may
be an ‘insecure’ radio based channel like WAP and a ‘secure’ channel based
on GSM. Again, the choice influences the complexity of the specification and
proofs, and how adequate the formal model is.

. Interleaving of operations.

Is it adequate to assume that every software component immediately an-
swers to a received message? Or is it necessary to assume that things can
happen interleaved or even in parallel? Since we are dealing only with the
logical properties of the protocols the first possibility is sufficient. However,
one agent may have exclusive access to a communication partner. (E. g. a
terminal to a smart card if an attacker without access to the communication
is used.)

. Occurrence of state changes.

Every agent has an internal state. This is important when the specification
is refined into an implementation. If interleaving is used an agent receives
a message and some time later issues an answer. Usually, the internal state
is modified. The question is when? When a message is received, when an
answer is issued, or sometimes between?

With these choices the formal specification can be completed. An environment
contains all agents with their internal state, an event consists of an environment
and a communication between two or more agents, and a trace is a sequence of
events. A trace is admissible if all agents adhere to their specified behavior. In
the electronic purse example this means that the smart card, the load stations
and the pay stations follow their protocols, and that the attacker sends only
messages that are derivable from his knowledge. An admissible trace can be
viewed as a sequence of events that can happen in the real world. Consequently
the security properties must be proven for all admissible traces (see sec_glob in
section 3). The definition of admissible can be divided into several parts that
are to some degree independent of each other:

admissible(trace)

— attacker_admissible(trace)
A protocol_admissible(trace)
A state_admissible(trace)
AL

84

For example, attacker_admissible(trace) may look like:

attacker_admissible([ev, evy, trace])
— (ev.from = attacker — ev.env.known = ev.doc)
A (evg.to = attacker — ev.env.known = evg.env.known f+ evg.doc)
A (evg.to # attacker — ev.env.known = evg.env.known)
A attacker_admissible([evy, trace])

Here, a trace consisting of a last event ev, a previous event evg, and a remaining
trace is considered. (For verification purposes the first element in a trace is the
last event that occurred.) The first part of the axiom specifies that if a document
is sent by the attacker (ev.from = attacker), he must be able to generate it from
his knowledge (ev.env.known = ev.doc); the second part specifies that if he
received a document (evg.to = attacker) in the next to last event it is added to his
knowledge and all derivable documents as well (ev.env.known = evg.env.known
J+ evg.doc) so that the knowledge is present in the last event; the third part
specifies that if the document is not sent to the attacker his knowledge remains
unchanged. This implies an attacker without access to the communication.

protocol_admissible(trace) specifies that if a normal agent issues a message
in event ev it is the answer to a received document in some event evy and follows
the protocol as defined by agent-says:

protocol_admissible([ev, trace])
— (ev.from # attacker
— 3 evy € trace: agent-says(evp.agent, evg.doc) = (ev.agent,
ev.doc)
A evy = matching_event([ev, trace]))
A protocol_admissible(trace)

If interleaving is used event evy is not necessarily the next event, but can occur
somewhere in the trace. This must be specified with matching _event. Further-
more, the axiom does not define the internal state of the agent between the two
events, or when the state changes. The predicate state_admissible specifies that
the state of all agents that do not participate in a communication remains un-
changed. Further predicates are needed to specify the communication structure
exactly.

The problem is that the different building blocks described so far cannot be
specified completely separate. Actually, they are interwoven and may contain
subtle interactions. This means it is very easy to introduce errors if the spec-
ification is written ‘by hand’. A faulty specification is not an adequate model
of the real world. In the best case it is not possible to prove that a protocol is
indeed secure. In the worst case a ‘proof’ is possible for an insecure protocol.
For example, the axioms used to describe admissible traces may be inadvertently
contradictory (one axiom may say that a state change must occur, another that
a state change may not occur). In this case there are no admissible traces (in
the formal model) and every security property is trivially fulfilled. Especially the
combination of interleaving and exclusive access to an agent is very difficult to
specify correctly.

85

6 Conclusion

In this paper we discuss questions concerning the security of m-commerce appli-
cations. We introduce a method to avoid security problems by formally analyzing
the application. The problem is that building a formal model is difficult and it
is easy to introduce errors. Therefore we propose a ‘construction kit’ that allows
an automatic generation of large parts of the specification. The kit consists of
several parts: We describe how security protocols can be modeled. We also de-
scribe different attackers relevant for m-commerce applications. It is described
what different abilities these attackers posses and how some of these abilities
are represented in an algebraic specification. We also discuss further aspects
that influence the modeling of the application and especially how these factors
influence which traces (list of events) are possible and which not.

References

[1] R. Anderson and R. Needham. Programming satan’s computer. In J. van
Leeuwen, editor, Computer Science Today: Recent Trends and Developments.
Springer LNCS 1000, 1995. 73

[2] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1), Feb 1990. 73

[3] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In T. Maibaum, editor, Fundamental Approaches to Soft-
ware Engineering, number 1783 in LNCS, pages 363-366. Springer-Verlag, 2000.
7

[4] D. Dolev and A.C. Yao. On the security of public key protocols. In Proc. 22th
IEEE Symposium on Foundations of Computer Science, pages 350-357. IEEE,
1981. 79

[5] EMVCo LLC. EMYV 4.0 Specifications Book 1 — Application independent ICC' to
Terminal Interface requirements, December 2000.
http://www.emvco.com/documents/specification/view /bookl.pdf. 73

[6] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Protocol Version 3.0.
Netscape Communications, November 1996. http://wp.netscape.com/eng/ssl3/.
73

[7] J. Loeckx, H. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wiley-
Teubner, 1996. 77

[8] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055, pages 147-166. Springer-Verlag, Berlin Germany, 1996.
74

[9] Catherine Meadows. Formal methods for cryptographic protocol analysis: Emerg-
ing issues and trends. IEEE Journal on Selected Areas in Communication,
21(1):44-54, January 2003. 81

[10] The Object Management Group (OMG). OMG Unified Modeling Language Spec-
ification Version 1.5, 2003.
http://www.omg.org/technology /documents/formal /uml.htm. 74

[11] Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 6:85-128, 1998. 80

