AOSE and Organic Computing —
How Can They Benefit from Each Other?
Position Paper

Bernhard Bauer and Holger Kasinger

University of Augsburg, 86135 Augsburg, Germany
{bauer, kasinger}@informatik.uni-augsburg.de

Abstract. Organic computing is an upcoming research area with strong
relationships to the ideas and concepts of agent-based systems. In this
paper, we therefore will have a closer look at agent systems, organic
computing systems (as well as autonomic computing systems) and state
commonalities and divergences between them. We then propose a com-
mon view on these technologies and show, how they can benefit from
each other with regard to software engineering.

1 Introduction

Over the past few years technical systems as airplanes, vehicles, telecommunica-
tion networks or manufacturing installations became more and more complex.
This is not only a result of the continuing evolution in microelectronics but also
of the immense embedding of huge hardware and software complexes into these
systems. But the producer’s painful experiences show that these systems already
today are difficult to manage. Thus, with respect to the future evolution, new
advanced management principles have to be developed. A feasible principle is an
autonomic behavior of the systems which is addressed by two research directions,
namely agent technology and organic/autonomic computing.

Agent technology is believed to be able to play a key role in this "revolution”,
e.g. by automating daily processes, enriching higher level communication or en-
abling intelligent service provision. An intelligent agent is ”a computer system,
situated in some environment that is capable of flexible autonomous actions in
order to meet its design objectives” [1]. The real strength of agents is based on
the community of a multi-agent system and the negotiation mechanisms and co-
ordination facilities. A multi-agent system is ”a dynamic federation of software
agents that are coupled through shared environments, goals or plans and that
cooperate and coordinate their actions” [2]. It is this ability to migrate, com-
municate, coordinate and cooperate that makes agents and multi-agent systems
a worthwhile metaphor in computing and that makes them attractive when it
comes to tackling some of the requirements in next-generation systems.

Another worthwhile metaphor is provided by organic computing (OC) sys-
tems [3] that can be seen as an extension to autonomic computing (AC) systems
[4]. The latter — driven by IBM since 2001 — draw analogies from the human

110

body, in particular from the autonomic nervous system where all reactions oc-
cur without explicit override by the human brain — so to say autonomous. By
embedding this behavior into technical systems, the administrative complexity of
next-generation systems can be left to the systems themselves. IBM refers to this
autonomy as ”"self-management” that includes four so-called "self-x properties”,
namely self-configuration (configuration and reconfiguration according to poli-
cies), self-optimization (permanent improvement of performance and efficiency),
self-healing (reactive and proactive detection, diagnostics and reparation of local-
ized SW/HW-problems) and self-protection (defense of the system as a whole).
Furthermore, AC systems are self-aware, context-sensitive, non-proprietary, an-
ticipative and adaptive. OC systems instead draw analogies from the biological
world and try to use perceptions about the functionality of living systems for the
development and management of artificial and technical systems respectively. In
addition to the properties of AC systems they are defined as being self-organizing
(hence they do not necessarily have to be self-aware).

As OC systems basically have the same objectives and concepts as AC sys-
tems, we will mostly treat them as one single technology for the rest of the paper,
which is organized as follows: In section 2 we present the concepts of agents as
well as autonomic/organic computing and the existing software-engineering ap-
proaches for these technologies. Section 3 relates the technologies and presents
a common view on them. Based on this view, in section 4 we present a develop-
ment process, which helps to benefit AOSE and OC from each other before we
conclude with open issues and an outlook for further research in section 5.

2 Concepts

In this section we give an overview on agent technology as well as on auto-
nomic/organic computing and consider the associated methodologies.

2.1 Agents

Software agents are software components characterized by autonomy (to act
on their own), reactiveness (to process external events), proactiveness (to reach
goals), cooperation (to efficiently and effectively solve in common tasks), adapta-
tion (to learn by experience) and mobility (migration to new places). For further
details on agent technology see e.g. [5] or [6].

Often, agents arc subdivided into three functional sections: The agent body
wraps a software component (e.g. a database, a calendar or an external service)
and controls it through the software API. Connected to external software, the
agent acts as an application agent by transforming the application API into
agent communication language (ACL) and vice versa. Messages of such ACLs
are highly structured and must satisfy standardized communicative (speech) acts
which define the type and the content of the messages (like FIPA-ACL [7] or
KQML [8]). The order of exchanged messages is fixed in protocols according to
the relation of agents or the intention of the communication.

111

The agent head is responsible for the agent’s intelligence. It is connected to
the agent body on one side and to the agent communicator on the other side.
The agent head contains knowledge bases storing knowledge of certain types like
facts, beliefs, goals or intentions, preferences, motivations and desires concerning
the agent itself or associated ones. Further, it contains a world model as an
abstraction of relevant states of the real world. It is updated by information
from other agents or through real world interfaces, e.g. sensors. The agent head
is able to evaluate incoming messages with respect to its goals, plans, tasks,
preferences and to the world model.

The agent communicator converts logical agent addresses into physical ad-
dresses and delivers messages on behalf of the agent head through appropriate
channels to the receivers. Furthermore, the communicator listens for incoming
messages (e.g. by running an event loop) and forwards them to the agent head.
The agent behavior should be benevolent, which means that an agent at least
understands the interaction protocols and reacts accordingly.

2.2 Autonomic/Organic Computing

According to [9], AC systems are composed of four levels: On the lowest level
managed resources (MR), e.g. HW/SW-components as servers, databases or
business applications, are located, together making up the complete IT infras-
tructure. So-called touchpoints on the next level provide a manageability inter-
face — similiar to an API — for each MR by mapping standard sensor and effector
interfaces on the sensor and effector mechanisms (e.g. commands, configuration
files, events or log files) of a specific MR. The next level is composed of so-called
touchpoint autonomic managers (TAM) directly collaborating with the MRs and
managing them through their touchpoints.

An autonomic manager (AM) in general implements an intelligent control
loop (closed feedback loop) called MAPE loop. The latter is composed of the
components monitor (collects, aggregates, filters and reports MR’s details), ana-
lyze (correlates and models complex situations), plan (constructs actions needed
to achieve goals) and ezecute (controls execution of a plan). Additionally, a
knowledge component provides the data used by the four components, includ-
ing policies, historical logs and metrics. Together with one or more MRs, an
AM represents an autonomic element (AE) (see Fig. 1). A TAM also provides
a sensor and an effector to orchestrating autonomic managers (OAM) residing
on top level. The latter achieve system-wide autonomic behavior, as TAMs are
only able to achieve autonomic behavior for their controlled MRs.

As (strong) self-organizing systems (like OC systems) are defined as systems
“that change their organization without any explicit — internal or external — cen-
tral control” [10], there can be no single instance within an OC system that is
aware of all system’s components or states. From our point of view, system-wide
autonomic behavior in OC systems is in contrast to AC systems therefore an
emergent behavior of the system’s component interactions and not the achieve-
ment of a single OAM. This issue has significant impact on software engineering
but not on the concepts mentioned above which are also used in OC systems.

112

Sensor B Effector =

Autonomic Manager
A

£

Autanomic Element

Sensor H Effector

Touchpaint
——

Managed Resource

e

Fig. 1. Logical structure of an autonomic element

2.3 Software Engineering Methodologies

Agent-oriented Software Engineering Methodologies. A considerable
number of AOSE methodologies and tools are available today (see our work
in [11] or [12] for a more detailed survey), and the agent community is facing
the problem of identifying a common vocabulary to support them.

The knowledge engineering community inspired most early approaches sup-
porting the SE of agent-based systems: The CommonKADS [13] was developed
to support knowledge engineers in modeling expert knowledge and developing
design specifications in textual or diagrammatic form. To consider agent-specific
aspects CoMoMAS [14] and MAS-CommonKADS [15] were developed.

Gaila [16] is a methodology designed to deal with coarse-grained computa-
tional systems, having static organization structures and agents with static abili-
ties and services. ROADMAP [17] extends Gaia by adding elements to deal with
the requirements analysis in more detail by using use cases, handling open sys-
tem environments and specification of interactions. SODA [18] addresses aspects
like open systems or self-interested agents, based on the analysis and design of
agent societies (exhibiting global (emergent) behavior not deducible from the
behavior of the individual agents) and agent environments.

One of the first methodologies for the development of BDI agents based on
OO technologies was presented in [13] and [19]. The methodology distinguishes
between the external viewpoint — the system is decomposed into agents, modeled
as complex objects characterized by their purpose, their responsibilities, the
services they perform, the information they require and maintain, and their
external interactions — and the internal viewpoint — the elements required by
a particular agent architecture must be modeled for each agent, i.e. an agent’s
beliefs, goals and plans.

MESSAGE [20] is a methodology that extends UML by agent-related con-
cepts (inspired e.g. by Gaia). TROPOS [21] uses UML for the development of

113

BDI agents. Prometheus [22] it is an iterative methodology covering the com-
plete SE process and aiming at the development of intelligent agents using goals,
beliefs, plans and events, resulting in a specification which can for example be
implemented with JACK [23]. MaSE [24] has been developed to support the com-
plete software development life cycle. PASSI [25] is an agent-oriented iterative
requirement-to-code methodology for the design of multi-agent systems mainly
driven from experiments in robotics.

Autonomic / Organic Computing Methodologies. Continuous and con-
sistent SE methodologies for AC/OC systems are more or less not available now,
since most of the research activities are in the area of algorithms, middleware,
hardware concepts as well as application areas. Nevertheless, the objective in par-
ticular of OC has to be on the control of such systems by engineering methods.
Traditional SE methods are strictly hierarchic and follow a top-down approach
by transforming the entire specification into detailed modules. For emergent and
self-organizing systems this strict approach is abandoned. System states have to
be reached that are not imagined beforehand. This is a fundamental contradic-
tion between a top-down-control and a creative bottom-up-behavior.

Today it is not clear, how to combine these opposite tendencies. However,
there are some approaches based on constraint propagation, the use of asser-
tions and so-called observer/controller architectures. Assertions can be used for
monitoring values of special variables. Yet, the limitation of emergent behavior
of OC systems will be crucial for their technical application. Thus, constraints
play an important role to the limitation of learning in self-organizing systems as
constraint violations result in warnings.

3 Relating Agents and Organic Computing

Based on the presented concepts we try to relate agents and OC in this section
and propose a common view on these technologies.

Both technologies incorporate managed objects, either software components
wrapped in the agent body or managed resources on the OC-side. In addition,
both technologies have an institution for intelligent and autonomic behavior,
namely the agent head and the autonomic manager respectively. Moreover an
agent communicator is in a sense comparable to a touchpoint in OC.

Thus, in order to bring the technologies together, we view an autonomic el-
ement from now on as the combination of agents and organic computing with
the following properties: Having a BDI mental model about other autonomic
elements; using a MAPE loop similar to the control loop of agents, with moni-
toring and analyzing the environment and messages, consulting the knowledge
base, planning and execution; managing the internal behavior automatically, like
OC does it, without interaction with the environment; interacts with its envi-
ronment, not only via direct messages but also via e.g. stigmergy — therefore
the environment has to be modeled explicitly, like for swarm intelligence, or ant
algorithms. Moreover, an autonomic element community consists of cooperating

114

Permission Obligation Prohibition
I I
Environment Norm
R g * N 1.* Fmea *
egular Managed Managed
Event L & Role Agent].
* * ™ .
Event Role controls Autoriomis
T * Element
Irregular handles / throws | t Autonomic | 1.* Autonomic | *]
Event 2. * Role Agent
* 1
Plan
generates
implements Lok * L
Interaction l 1 : : > 1 .
[nteraction Action Service
Protocol 1.* T
W\I..* r implemenis 1 I

Fig. 2. The meta model for organic computing systems

autonomic elements explicitly communicating based on speech acts and interac-
tion protocols or implicitly via the environment. Additionally these cooperating
elements have to satisfy global system rules such that no unintentional behavior
of the system takes place.

Having this in mind we propose a meta model for both a MASs with OC
properties and OC systems as MASs (see Fig. 2). Therefore, we have combined
different proved concepts of existing agent architectures and their SE method-
ologies as well as AC/OC concepts.

Similar to many existing agent methodologies a role is the central architec-
tural concept. The complete set of roles builds up the environment. The life
cycle of a role is traditionally: A role or rather the enacting agent recognizes a
situation, makes a decision based upon it and executes appropriate activities.
The recognition of situations is based on events. Regular events are familiar to
a role, e.g. by design or by adaption, whereas irreqular events are new to a
role, e.g. by failure appearance. Norms regulate the behavior of a role and are a
generalization of either a permission, an obligation or a prohibition and consist
of a goal and activation as well as deactivation events. The decision making is
based on plans that fire certain events at the end (as notification of being in a
certain state) which may correspond to a norm’s goal or event respectively. A
plan consists of actions (internal activities of a role) and interactions (external
activities between different roles) and are chosen accordingly to a goal of an acti-
vated norm. Interactions are implemented by specific interaction protocols. The
relation between interactions and interaction protocols is the same as between
interfaces and their implementations. Thus, according to diverse requirements,
an interaction may be implemented by different kinds of protocols for direct
(e.g. by auctions) or indirect (e.g. by stigmergy) communication. Interactions
and actions are both implemented by services with different visibilities.

115

Roles are logically divided into managed roles (MR) and autonomic roles
(AR) (similar to the AC concepts). MRs are responsible for the business logic of a
system and reside on versatile resources. They are controlled by one or more ARs
that are responsible for the self-management of a system. ARs do not necessarily
have to be located at the same resource as its MRs. In contrast to MRs the ARs
are able to generate new plans based on the received data of their MRs. The
latter do not have to generate new plans as they communicate the occurrence
of irregular events to their monitoring ARs and mostly are not in possession of
further required information. Both roles are taken over dynamically by managed
agents and autonomic agents respectively. Autonomic elements contain one or
more autonomic agents and managed agents at the same time.

4 Software Engineering for OC and AO Systems

As a result of the common view presented in the previous section, we propose a
development process in this section which can be used for both AOSE and OC.
The process is based on the Model Driven Architecture (MDA), a framework
for software development driven by the Object Management Group (OMG). It
comprises a Computation Independent Model (CIM) (model of a system that
abstracts from any computation), a Platform Independent Model (PIM) (model
of a system that abstracts from any specific platform) and a Platform Specific
Model (PSM) (model of a system that is tailored to one or more specific imple-
mentation platforms). For a more detailed description see [26].

The process consists of 19 activities and encompasses an analysis phase (ac-
tivities 1-5) and a design phase (activities 6-19). Each activity results in a specific
model either in the CIM (analysis phase) or the PIM (design phase) (see Fig. 3).
An implementation phase is not considered yet, but can be added smoothly in
the future. Notice, the process does not prescribe a process model.

The analysis phase consists of the activities (1) Definition of the business
context’, (2) 'Definition of business processes being supported’; (3) ’Characteri-

Business " Business | Environ- | e
; : Use Case Ontology
CIM Context Process — ment —» Model Model
Model Model | Model ¢ ’
MRN r AR N i
SO 1, | MR Model AR Model [— “570M Lo Apatysis
Maodel Maodel ;
] == o
|] MR | AR %
MR Service =5 MR Plan AR Plan y AR Service
PIM Interaction [— s Interaction —
Madel Maodel Model Maodel
[Model Maodel

mterac tion | Aumnonuc
Protocol Element | Fnstame
Maodel Model | Madel

Fig. 3. MDA-based development process models for agent and OC systems

116

zation of the environment’, (4) ’Assembly of potential use cases’ and (5) 'Assem-
bly of common vocabulary’. The resulting models are: Business Context Model:
As a result of (1) the business context of the future system is modeled by an
UML activity diagram. This model only considers higher level correlations and
abstracts from concrete business processes; Business Process Model: As a result
of (2) the business processes supported by the later system are modeled by an
UML activity diagram; Environment Model: As a result of (3) important envi-
ronment objects of all types are modeled by an UML class diagram; Use Case
Model: As a result of (4) the system application is declared abstractly in an
UML use case diagram. The model is supported by an UML sequence diagram
to explain the message flow of the system clearly; Ontology Model: As a result
of (5) all important knowledge blocks and common vocabulary are categorized
in an UML class model.

The design phase consists of the activities (6) 'Identification of MRs’, (7)
’Specification of norms for MRs’, (8) 'Development of plans for MRs’, (9) 'Deriva-
tion of interactions between MRs’, (10) ’Specification of services of MRs’, (11)
"Tdentification of ARs’, (12) 'Specification of norms for ARs’; (13) 'Development
of an analysis for ARs’, (14) 'Development of plans for ARs’, (15) 'Derivation of
interactions between ARs’, (16) *Specification of services of ARs’, (17) "Develop-
ment of interaction protocols’, (18) "Identification of AE’ and (19) 'Deployment
of AE’. The resulting models of this phase are: Managed Role Model: As a re-
sult of (6) the MRs are identified and modeled similar to a class in an UML
composition structure diagram; MR Norm Model: As a result of (7) the norms
(containing goals, activation and deactivation events) of MRs are specified and
modeled similar to a class in an UML class model; MR Plan Model: As a result of
(8) the plans (containing input and output parameters, actions and interactions,
and events) of MRs are modeled in an UML activity diagram; MR Interaction
Model: As a result of (9) the interactions between MRs are derived and the
exchanged objects (information carriers) are modeled in an UML sequence dia-
gram; MR Service Model: As a result of (10) the signature of provided services
(containing visibility, input and output parameters) of a MR are specified and
modeled similar to a class in a UML class diagram again.

The results of activities (11), (14), (15) and (16), the Autonomic Role Model,
the AR Plan Model, the AR Interaction Model and the AR Service Model are
similar to the corresponding MR models. Further resulting models are: AR Norm
Model: As a result of (12) and parallel to (11) the norms for ARs are specified
according to desired self-x properties. Notice, a norm of an AR realizes a part of
a certain self-x property of a system; AR Analysis Model: As a result of (13) the
monitoring and analysis of events and data by an AR is modeled in an UML ac-
tivity diagram as a premise for the right choosing of a plan; Interaction Protocol
Model: As a result of (17) the interaction protocols for the (direct/indirect) in-
teractions between all types of roles are specified in an UML sequence diagram;
Autonomic Element Model: As a result of (18) MRs and ARs are combined
into AEs that are modeled similar to a class in an UML composition structure
diagram again; Autonomic Element Instance Model: As a result of (19) the de-

117

ployment of the AEs onto resources is defined similar to an UML deployment
diagram. Note, activities (11)-(16) are logically separated and represent the way
of self-x property development.

5 Conclusion, Open Issues and Outlook

As described in this paper, agent systems and OC systems have many conceptual
commonalities which result in benefits for both AOSE and OC: On the one side
open agent systems can be developed that exhibit OC properties, on the other
side OC can make use of the experiences in AOSE and adopt existing concepts.

The open issues in this context for us are: Where are the borders between
an autonomic element, an agent or multi-agent system? How to deal with the
emergent behavior of the system such that no unintentional behavior of the sys-
tem occurs? How to define emergency strategies if the system is out of control,
with regard to the emergent behavior? Should we have an hierarchical compo-
sition, like grouping autonomic elements to autonomic communities, view these
communities as autonomic elements and grouping them to autonomic commu-
nities, etc.? How to model self-x properties in the local as well as in the global
sense and how does the local behaviors result in a global behavior? How to inte-
grate interaction (communication protocols) in such OC systems? What is the
appropriate middleware /platform for OC systems (web services, grid computing
middleware, agent platforms, ...)?7

In this context our vision is to combine different but related technologies,
like grid computing, semantic web, (semantic) web services and web service
composition, P2P, business processes and OC with its self-x properties, since
these technologies deal with similar aspects (service provisioning, service access,
service and data distribution, service and resource work loading, processes in
distributed environments) and use similar standards.

References

1. Jennings, N.R., Sycara, K., Wooldridge, M.J.: A Roadmap of Agent Research and
Development. Autonomous Agents and Multi-Agent Systems, 1(1) (1998) 7-38
2. Huhns, M.N.: Multiagent Systems. Tutorial at the European Agent Systems Sum-
mer School (EASSS 99) (1999)
Organic Computing website: http://www.organic-computing.org
. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Infor-
mation Technology. http://www.research.ibm.com/autonomic/manifesto/ auto-
nomic_computing.pdf (2001)
5. Miiller, J. P.: The design of intelligent agents. A layered approach. Lecture Notes
of Artificial Intelligence, Volume 1177. Springer-Verlag (1996)
6. Huhns, M.N., Singh, M.P.: Agents and Multiagent Systems: Themes, Approaches,
and Challenges. Readings in Agents, Morgan-Kaufmann (1998), 1-24
FIPA: http://www.fipa.org
. Finin, T., Fritzson, R., McKay, D., McEntire, R..: KQML as an Agent Communica-
tion Language. Proceedings of the Third International Conference on Information
and Knowledge Management (CIKM’94). ACM Press (1994) 456-463

B

© N

118

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

IBM: An architectural blueprint for autonomic computing. http://www-
03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf (2004)

Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A.: Self-Organisation in
Multi-Agent Systems. AgentLink News (16) (2004) 23-24

Bauer, B., Miiller, J.P.: Methodologies and Modeling Languages. In: Luck M.,
Ashri R. D’Inverno M. (eds.): Agent-Based Software Development. Artech House
Publishers, Boston, London (2004)

Iglesias, C.A., Garijo, M., Centeno-Gonzélez, J.: A Survey of Agent-Oriented
Methodologies. In Proceedings of Fifth International Workshop on Agent Theo-
ries, Architectures, and Languages (ATAL 98) (1998) 317-330

Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modeling Technique for
Systems of BDI Agents. 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW 96), LNAI 1038, Springer (1996) 56-71
Glaser, N.: Contribution to Knowledge Modelling in a Multi-Agent Framework
(the Co-MoMAS Approach). PhD thesis, L’Universtité Henri Poincaré, Nancy I,
France (1996)

Iglesias, C.A., Garijo, M., Centeno-Gonzélez, J., Velasco, J.R.: A methodological
proposal for multiagent systems development extending CommonKADS. In Pro-
ceedings of 10th Knowledge Acquisition for Knowledge-Based Systems Workshop
(KAW 96), Banoe, Canada (1996)

Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems, 3 (3) (2000) 285-312

Juan, Th., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology
for Complex Open Systems. In Proc. of the First Int. Joint Conf. on Autonomous
Agents and Multiagent Aystems (AAMAS 02), ACM Press (2002) 3-10

Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design Of
Agent-based Systems. In Proceedings of Agent Oriented Software Engineering
(AOSE 00), LNCS 1957, Springer (2000) 185-193

Kinny, D., Georgeff, M: Modelling and Design of Multi-Agent Systems. Intelli-
gent Agents III: Proceedings of Third International Workshop on Agent Theories,
Architectures, and Languages (ATAL 96), LNAI 1193, Springer (1996)

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Massonet, P., Leal, F.,
Chainho, P., Kearney, P., Stark, J., Evans, R.: Agent Oriented Analysis using
MESSAGE/UML. In Proceedings of the Second International Workshop on Agent-
Oriented Software Engineering IT (AOSE 01), Springer (2002) 119-135

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An Agent-Oriented Software Development Methodology. Journal of Autonomous
Agent and Multi-Agent Systems, 8 (3) (2004) 203-236

Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley & Sons (2004)

Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents -
Components for Intelligent Agents in Java. AgentLink News (2) (1999) 2-5.
DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering.
The International Journal of Software Engineering and Knowledge Engineering, 11
(3) (2001) 231-258

Cossentino, M., Potts, C.. A CASE tool supported methodology for the design
of multi-agent systems.. In Proceedings of the 2002 International Conference on
Software Engineering Research and Practice (SERP’02), Las Vegas, USA (2002)
Model Driven Architecture website: http://www.omg.org/mda

