Combining Multi-Agent-System Methodologies
for Organic Computing Systems

Holger Kasinger, Bernhard Bauer
Department of Computer Science, University of Augsburg, 86135 Augsburg, Germany
{ kasinger | bauer }@informatik.uni-augsburg.de

Abstract

As the complexity of computing systems steadily
increases, self-managing systems — as Autonomic
Computing Systems (ACS) proposed by IBM — are an
adequate approach to minimize human effort spent on
system administration. While ACS primarily are
limited to servers and networks, Organic Computing
Systems (OCS) are intended for widespread
applications in various domains. In addition to the
self-x properties of ACS, OCS are adaptive and
context-aware. Thus agent technology is particularly
suitable for an implementation of OCS. Nevertheless a
key prerequisite for a successful, industrial application
remains in a systematical engineering of OCS
according to accepted standards. However no single
agent methodology is applicable to OCS as self-x
properties are not supported directly. Therefore we
have combined different proved agent concepts into a
system architecture for OCS and developed an
adequate, — model-driven software engineering
methodology based on the Unified Modeling Language
(UML) and the Model Driven Architecture (MDA).

1. Introduction

Considering the last 40 years, faster processors,
wider memory capacities and higher data transfer rates
resulted in more and more multi-functional computing
systems. But in the same way as the increasing
functionality and interoperability offer great benefits to
users, the accruing complexity exhibits enormous
challenges to administrators. Today a database expert
has to tune hundreds of parameters for optimizing a
single company’s database. Multiple databases from
different vendors working together additionally
multiply the administrational effort. Consequently
there will be not enough skilled I/T people to keep the
world's future computing systems running (see [1]).

Thus the objective of Organic Computing (OC) [2]
— as well as Autonomic Computing (AC) [3] — is to
confer the administration of future computing systems
on the systems themselves and thereby relieve human
administrators. While AC addresses this by drawing
analogies from the human nervous system, OC draws
analogies from complex biological systems, e.g. ant
colonies. An OCS is defined as self-organizing system
being self-configuring, self-optimizing, self-healing,
self-protecting, adaptive and context-aware. For an
implementation agent technology is particularly
suitable, as agents are autonomous, reactive, proactive
and possess social capabilities (see [4]).

However an important key prerequisite to a
successful, industrial application of OCS resides in
their systematical software engineering. Without an
appropriate approach it is almost impossible to cope
with the complexity of OCS, especially with their self-
x properties. But taking existing agent methodologies
into consideration, no approach is applicable, as there
is no continuous and consistent development process
for self-x properties provided. Thus we have combined
appropriate and proved concepts of different multi-
agent-system (MAS) methodologies into a system
architecture for OCS and designed an adequate
development process — with explicit support of self-x
properties — to obtain a complete software engineering
methodology for OCS.

Section 2 explains the proposed OCS architecture,
whereas section 3 presents the related development
process. In section 4 we give a brief example of adding
a self-optimizing property to a system according to the
proposed process. Section 5 concludes with some
remarks and gives an outline of future work.

2. The OCS architecture

Figure 1 depicts the metamodel of the proposed
OCS architecture. Similar to many existing agent
methodologies (for a detailed overview see [5]) a role

is the central architectural concept. The set of roles
forms the complete environment whereas the lifecycle
of a single role (and accordingly the enacting agent) is
traditionally: It recognizes a certain situation, makes a
decision and possibly takes advisable measures.

The recognition of situations (context-awareness) is
based on events. Regular events are already known to
roles, e.g. by design or adaptation, whereas irregular
events (similar to ADELFE’s concept of NCS [6]) are
unknown and may emerge in failure situations (self-
healing) or by intrusion detections (self-protection).
Events activate or deactivate morms which in turn
regulate a role’s behavior. A norm is a generalization
of an obligation, a permission and a prohibition
(similar to the NoA Agent Architecture [7]), consisting
of a goal, activation and deactivation events.

The decision making is based on plans that at the
end fire regular events (as state-notification) which
may correspond to a norm’s goal or event respectively.
A plan consists of actions (internal activities of a role)
and interactions (external activities between different
roles) and is chosen according to a goal of an activated
norm. Interactions are implemented by one or more
interaction protocol(s). The relation between
interactions and interaction protocols is similar to
interfaces and their implementations. Thus an
interaction may be implemented by different kinds of
protocols for direct (e.g. by auctions), or indirect (e.g.
by stigmergy) communication. Interactions and actions
are both implemented by services with different
visibilities (public / protected / private).

Permission | Obligation Prohibition
[‘ | Interaction
J7 Protocol
Regul o 1.7
;s:nir | Norm ‘ Environment ¥ limplemems
L l ’1'—? +| Interaction |-
Event - Role - Plan
t 2
handles / throws " . 5
generates - Action g
: B
Irregular Managed Autonomic 1.7 implements -
Event Role Role 1 P

[~ T

Managed |+ +| Autonomic [~
controls.
Agent controls Agent %

Autonomic
Element

Figure 1. OCS architecture meta model

Roles are divided into Managed Roles (MR) and
Autonomic Roles (AR) (similar to the concepts by the
AC reference architecture [3]). The system’s business
logic is spread over the MRs which may reside on

versatile resources (applications, sensors, handhelds,
etc.) and are supervised by one or more ARs. The latter
are responsible for the self-management of a system
and do not necessarily have to be located on the same
resource as their MRs. Only ARs are able to generate
new plans based on the received data of their MRs
(self-configuration, self-optimization, adaptivity). Both
roles are dynamically taken over by Managed or
Autonomic Agents respectively. An Autonomic
Elements in turn contains one ore more Autonomic
Agent(s) and Managed Agent(s) at the same time.

3. The OCS development process

The proposed development process is based on the
UML and the MDA [8]. In the context of MDA the
system’s functionality is separated from the technology
specific implementation. This is addressed by different
levels of abstraction (Computational Independent
Model (CIM), Platform Independent Model (PIM) and
Platform Specific Model (PSM)), constructive models
over all phases of the process and transformations
between the models on different levels. The models are
not only used for an abstract description of the later
system but for the (semi-)automatic generation of later
models and finally components of the system.

The development process consists of 19 specified
activities and encompasses an analysis and design
phase whereas an implementation phase is not
considered yet, but can be added easily in future. Each
activity results in a specific model (see Figure 2).
Notice, the process does not prescribe a process model.

3.1 The analysis phase

The analysis phase encompasses five activities: (1)
Definition of the business context, (2) Definition of
supported business processes, (3) Characterization of
the environment, (4) Assembly of potential use cases
and (5) Assembly of common vocabulary.

As result of (1) the business context of the future
system is modeled in the Business Context Model by
an UML activity diagram. This model only considers
relationships between business processes. As result of
(2) only the supported business processes are modeled
by the Business Process Model by an UML activity
diagram again. Each activity of a business process has
to be assigned to an actor (e.g. worker, machine or
database) of the company (represented as partitions).
As result of (3) affected environment objects of
arbitrary types are modeled by the Environment
Model by an UML class diagram. Thus the system
environment is specified in detail by e.g. attributes. As

result of (4) the usage of the system is abstractly
declared by the Use Case Model by an UML use case
diagram. This model is supported by an UML
sequence diagram to explain the system’s message
flow clearly. As result of (5) the common vocabulary
is categorized by the Ontology Model by an UML
class model.

s Business Business Environ- Use Case Ontology
= Context Process ment Model Model
w2 Model Model Model
—
MR Norm AR Norm
Model H MR Model AR Model H Model
et P
MR . MR Plan AR Plan I‘ AR AR ;
Interaction Model Model Interaction Analysis
= Model Model Maodel
I
MR AR
Setvice Service
Model Interaction Autonomic AE Model
Protocol Element Instance
Model Model Model

Figure 2. OCS development process models
3.2 The design phase

The design phase encompasses 14 activities: (6)
Identification of MRs, (7) Specification of norms for
MRs, (8) Development of plans for MRs, (9)
Derivation of interactions between MRs, (10)
Specification of services of MRs, (11) Identification of
ARs, (12) Specification of norms for ARs, (13)
Development of an analysis for ARs, (14)
Development of plans for ARs, (15) Derivation of
interactions between ARs, (16) Specification of
services of ARs, (17) Development of interaction
protocols, (18) Identification of Autonomic Elements
and (19) Deployment of Autonomic Elements.

As result of (6) MRs are identified by the Managed
Role Model. As UML defines no notation element for
roles we have defined a new element similar to a class
in an UML composition structure diagram. As result of
(7) norms of MRs are specified by the MR Norm
Model. Again there is no existing UML notation
which gets us to the definition of a notation similar to a
class in an UML class model. However there are no
attributes or methods but goals, activation and
deactivation events. As result of (8) plans of MRs are
modeled by the MR Plan Model by an UML activity
diagram. Plans contain input and output parameters,
actions and interactions, and events as well.
Additionally they are separated into partitions
corresponding to the MRs. As result of (9) the
interactions between MRs are derived and modeled by

the MR Interaction Model by an UML sequence
diagram. In this model only the exchanged objects
(information carriers) are embodied, not a concrete
protocol. As result of (10) signatures of provided
services of a MR are specified by the MR Service
Model. They are modeled similar to a class in a UML
class diagram again. Instead of attributes and methods
it contains visibility, input and output parameters.

As result of (11) ARs are identified by the
Autonomic Role Model. The notation of these roles is
the same as in the Managed Role Model. This activity
is to be executed in parallel with activity (12). As
result of (12) norms for ARs are specified according to
desired self-x properties by the AR Norm Model.
Notice, a norm of an AR symbolizes a part of a certain
self-x property of a system. As result of (13)
monitoring and analysis of events and data by an AR is
modeled by the AR Analysis Model by an UML
activity diagram. This is an important premise for the
appropriate choosing of a plan to satisfy an AR’s
norm. As result of (14), (15) and (16) plans,
interactions and services of an AR are modeled by the
AR Plan Model, AR Interaction Model and AR
Service Model, similar to the respective MR models.

As result of (17) the interaction protocols for the
interactions between arbitrary roles are specified by the
Interaction Protocol Model by an UML sequence
diagram. Depending on requirements the kind of
interaction can be direct or indirect. As result of (18)
MRs and ARs are combined to Autonomic Elements
by the Autonomic Element Model. The notation of an
Autonomic Element is similar to a class in an UML
composition structure diagram. As result of (19) the
deployment of the Autonomic Elements on resources is
defined by the Autonomic Element Instance Model
which is similar to an UML deployment diagram.

In addition we have defined a set of transformations
between various models (depicted as arrows) which
will not be described in this paper. Thereby some of
the process activities were completely automated.

4. Case study: Manufacturing control

In order to evaluate the development process we
have redesigned an existing MAS and added different
self-x properties according to the proposed process.
We only will illustrate activities (12), (13) and (14) by
a short example in what way an application can be
extended with self-optimization.

4.1 A MAS production planning system

Today’s manufacturing industry is facing a major
shift from a supplier’s to a customer’s market. Thus

the requirements on the manufacturing process itself
increase permanently: Instant demand satisfaction,
higher product variety and cost reducing are just some
of them. Thus Valckenaers et al. [9] developed a multi-
agent coordination and control system based on
stigmergy (coordination mechanism based on indirect
communication, e.g. used by food foraging ants).

The system consists of three different types of
agents: Resource agents, ecach assigned to a machine
or switch in the manufacturing plant, order agents,
each routing a product instance through the plant while
reserving processing time on appropriate machines,
and product agents, each containing the construction
plan for a specific product. In addition resource and
order agents use intelligent ant agents propagating and
collecting information throughout the plant.

The coordination mechanism works as follows:
Resource agents assigned to machines permanently
send ant agents opposite to the production line through
the plant. These ants deposit the processing capabilities
of their sending resource agent/machine as so called
pheromones (information carriers for indirect
communication, used by ants) on every switch they
cross. Order agents also create ant agents in a certain
interval and send them down the production line.
Based on the deposited pheromones on a switch the
ants decide to which machine they will travel next.
When they arrive at this machine, they request an offer
for a specific process step (e.g. duration, earliest start)
and as soon as they receive the offer they continue
traveling. If the end of the plant is reached the ants
return to their order agents and report their chosen
route. An order agent decides which of its ants has
found the best way and routes its product instance
accordingly.

4.2 Adding Self-Optimization

The existing system already copes with machine
breaks and short-termed changes. Nevertheless the
system can be improved by certain self-x properties,
e.g. self-optimization.

Consider a single resource agent simultaneously
responding to a multitude of offer requests of present
ant agents, the response time can exceed in a way that
the performance of the complete production system
may slow down. In order to prevent this situation we
added an AR - resource to the MR - resource which
measures the response time and if needed informs the
order agents to reduce their ant agent generation
interval to minimize the amount of concurrent offer
requests. For the measurement the norm offer request
response time optimization (see Figure 3) has been

specified for the AR - resource as result of (12). This
<<obligation>> forces the AR to achieve the goal
offer request response time in bounds, is activated
by the event offer request response time out of
bounds and deactivated by the event homonymous to
the goal.

<<obligation>>
offer request response time
optimization

achieve:
offer request response time in bounds

activation:
offer request response time out of
bounds

expiration:
offer request response time in bounds

Figure 3. Norm for self-optimization

ad analyze offer request response time)

analyze offer request

response time

o offer request offer request
= offer request response time response tme
§ in bounds in bounds
& \
=
| offer request \ otter request
"-é offer sent response time response time
out of bounds out of bounds

)

Figure 4. Monitoring and analysis of events

ad offer request response time optimizing)

b5t offer request response time optimization
’g
2 generate offer offer request
‘I' request adjust- adjustment
o~ ment desire desire
<
offer request
adjustment
- desire
o
E
= offer request adjusting
|
Eé offer request generate offer offer request
adjustment request adjust. adjustment
desire instruction instruction

Figure 5. Plans for Autonomic Roles

To provide the AR - resource with the ability to
analyze if this norm is activated or not, the monitoring
and analysis (see Figure 4) of specified events is
modeled as result of (13). The AR - resource listens to
offer request events and offer sent events fired by the
MR - resource. Within the analysis action the

response time is determined according to given rules
(not modeled in this figure) and — depending on the
result — a corresponding event is fired. By catching this
event the AR - resource can determine whether or not
the above norm is activated or deactivated.

If the analysis marks the norm as activated, the AR
- resource has to choose a plan for informing the order
agents to reduce their generation interval. Such a plan
is modeled within an action (see Figure 5) as result of
(14). The AR - resource generates an offer request
adjustment desire and sends it to every order agent or
rather to every AR - order (similar to a broadcast),
possibly propagated by ant agents again. Such an AR
in turn generates an offer request adjustment
instruction for its controlled MR - order which on its
part slows down the generation interval (not modeled
in this figure).

5. Conclusion

The combination of different proved agent concepts
led to an appropriate system architecture for OCS
which may be implemented by agent technology. The
corresponding development process incorporates the
ability to develop both a (multi-agent-)system based on
this architecture and additionally certain self-x
properties for the system’s self-management. In
contrast to other role-based agent methodologies, e.g.
Gaia [10], ROADMAP [11] or TROPOS [12], this
separation clearly yields to two advantages: On the one
hand the development process is applicable for a
continuous and consistent engineering of ordinary
MAS within the framework of the MDA, on the other
hand self-x properties can be developed independently
from the business logic of a system. Moreover the use
of MDA as framework establishes a basis for various
implementations, as the PIM only depends on platform
independent concepts. By construction of different
model transformations between the PIM and PSM
(implementation phase) further technologies can be
applied.

Nevertheless much future work has to be done: In
order to prove the proposed system architecture we
have to implement an OCS according to the
development process. This will lead us to detailed
experiences and possibly to an improvement of the
process as a whole. Thereby implementation, project
and quality management phases will be added to obtain
a complete methodology. Furthermore a tool support
has to be developed as this is the only way quality
OCS can be engineered efficiently in time.

6. References

[1] IBM Research, Autonomic Computing Manifesto,

http://www.research.ibm.com/autonomic/manifesto/autonom
ic_computing.pdf

[2] Gesellschatt fiir Informatik: VDE/ITG/GI-Positionspapier
zum Organic Computing, 2003 (german), http:/www.gi-
ev.de/download/VDE-ITG-GIPositionspapier%200rganic%2

0Computing.pdf.

[3] IBM Research, An architectural blueprint for autonomic
computing, 2004, http:/www-306.ibm.com/autonomic/pdfs/
ACBP2 2004-10-04.pdf

[4] M. Wooldridge and P. Ciancarini, “Agent-Oriented
Software Engineering: The State of the Art”, Agent-Oriented
Software Engineering, P. Ciancarini and M. Wooldridge
(eds), LNAI 1957, 2000, pp. 1-28.

[5] B. Bauer and J.P. Miiller, “Methodologies and Modelling
Languages”, Agent-Based Software Development, M. Luck,
R. Ashri and M. d’Inverno (eds), Artech House, 2004, pp.
77-131.

[6] C. Bernon, M.-P. Gleizes, G. Picard and P. Glize, “The
ADELFE methodology for an intranet system design”,
presented at AOIS2002, Toronto, 2002.

[71 M.J. Kollingbaum and T.J. Norman, “Supervised
Interaction - Creating a Web of Trust for Contracting Agents
in Electronic Environments”, Proceedings of the AAMAS
2002, ACM Press, New York, 2002, pp. 272-279.

[8] Object Management Group, Model Driven Architecture:
A Technical Perspective, ormsc/01-07-01, 2001.

[9] P. Valckenaers, H. Van Brussel, M. Kollingbaum and O.
Bochmann, “Multiagent coordination and control using
stigmergy applied to manufacturing control”, Multi-Agent
Systems and Applications, LNAI 2086, 2001, pp. 317-334.

[10] M. Wooldridge, N. Jennings and D. Kinny, “The Gaia
Methodology for Agent-Oriented Analysis and Design”,
Journal of Autonomous Agents and Multi-Agent Systems,
3(3), 2000, pp. 285-312.

[11] T. Juan, A. Pierce, and L. Sterling, Roadmap:
“Extending the Gaia methodology for complex open
systems”, Proceedings of the 1st ACM Joint Conference on
Autonomous Agents and Multi-Agent Systems, Bologna,
Italy, 2002, pp. 3-10.

[12] J. Castro, M. Kolp, and J. Mylopoulos, “Towards
requirements-driven information systems engineering: the
TROPOS project”, Information Systems, 27, 2002, pp. 365-
389.

