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Abstract. We present a trajectory-based model for describing hybrid
systems. For this we use left quantales and left semirings, thus providing
a new application for these algebraic structures. Furthermore, we sketch
a connection between game theory and hybrid systems.

1 Introduction

Hybrid systems are heterogeneous systems characterised by the interaction of
discrete and continuous dynamics. They are an effective tool for modelling, de-
sign and analysis of a large number of technical systems. Such models are used
for example in (air-)traffic controls, car-locating systems, chemical and biological
processes and automated manufacturing.

This paper is based on work about hybrid systems by Sintzoff [16], Da-
voren/Nerode [4], Henzinger [7] and Lynch et al. [13]. In the latter two cases,
the authors present two different ways to encode hybrid systems in a kind of finite
state machines. These descriptions are very unhandy in calculations concerning
liveness and safety properties.

The paper shows how a number of concepts can be recast and thus be made
more workable in the setting of (left) semirings and (lazy) Kleene algebras [5,
15] and other algebras (e.g [2, 11]), thus providing an interesting application for
them. Furthermore, we show how to express and calculate properties of hybrid
systems and, more generally, of Boolean left test quantales, using some temporal
operators. Finally, we sketch a connection to game theory to show how to adapt
results from that area (see e.g. [1]) to an algebra of hybrid systems.

2 Trajectory-Based Model

We motivate the coming definitions by an example.

Running Example (Temperature Control)
The hybrid automaton of Figure 1, adapted from [7], models a thermostat. The
variable x represents the temperature. Initially, it is equal to 20 degrees and
the heater is off (control mode Off). The temperature falls according to the
flow condition ẋ = −0.1x. If the jump condition x < 19 is reached, the heater
may start. The invariant condition x ≥ 18 ensures that the heater will start
at the latest when the temperature is equal to 18 degrees. In control mode
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Fig. 1. Thermostat automaton

On, the temperature rises according to the flow condition ẋ = 5 − 0.1x. If the
temperature reaches the second jump condition, the heater is switched off and
the procedure starts again (with another initial value). ⊓⊔

For modelling this kind of system, we use trajectories (cf. e.g. [16]) that
reflect the variation of the values of the variables over time. Let V be a set of
values and D a set of durations (e.g. IN, Q, IR, . . .). We assume a cancellative
addition + on D and an element 0 ∈ D such that (D, +, 0) is a commutative

monoid and the relation x ≤ y
def
⇔ ∃ z . x + z = y is a linear order on D. Then

0 is the least element and + is isotone w.r.t. ≤. Moreover, 0 is indivisible, i.e.,
x + y = 0 ⇔ x = y = 0. D may include the special value ∞. If so, ∞ is
required to be an annihilator w.r.t. + and hence the greatest element of D (and
cancellativity of + is restricted to elements in D − {∞}). For d ∈ D we define
the interval tim d of admissible times as

tim d
def
=

{

[0, d] if d 6= ∞
[0, d[ otherwise

A trajectory t is a pair (d, g), where d ∈ D and g : tim d → V . Then d is the
duration of the trajectory, the image of tim d under g is its range ran (d, g). The
set of all trajectories is denoted by TRA.

We define composition of trajectories (d1, g1) and (d2, g2) as

(d1, g1) · (d2, g2)
def
=







(d1 + d2, g) if d1 6= ∞ ∧ g1(d1) = g2(0)
(d1, g1) if d1 = ∞
undefined otherwise

with g(x) = g1(x) for all x ∈ [0, d1] and g(x + d1) = g2(x) for all x ∈ tim d2.
For a zero-length trajectory (0, g1) we have (0, g1) · (d2, g2) = (d2, g2) if

g1(0) = g2(0); otherwise the composition is undefined. Likewise, (d2, g2)·(0, g1) =

(d2, g2) if g1(0) = g2(d2) or d2 = ∞. For a value v ∈ V , let v
def
= (0, g) with

g(0) = v be the corresponding zero-length trajectory.
A process is a set of trajectories, consisting of possible behaviours of a hybrid

system. The finite and infinite parts of a process A are defined as

inf A
def
= {(d, g) ∈ A | d = ∞} fin A

def
= A − inf A

Composition is lifted to processes as follows:

A · B
def
= inf A ∪ {a · b | a ∈ finA, b ∈ B}



The set I of all zero-length trajectories is the neutral element. A restricted
form of composition, the chop A⌢B, yields only trajectories that, after a finite

trajectory of A, actually enter the second process. It is defined as A⌢B
def
=

(fin A) · B, which implies A · B = inf A ∪ A⌢B.

Running Example To use trajectories, we first set V = D = IR. Now we
define two processes, one for each control mode:

AOff
def
= {(d, g) | d ∈ D, ġ(t) = 0.1t} ,

AOn
def
= {(d, g) | d ∈ D, ġ(t) = 5 − 0.1t} .

AOff models all possible behaviours when the heater is off, whereas AOn de-

scribes the thermostat when the heater is on. The initial state is R20
def
= {20}

(= {(0, g) | g(0) = 20}). Hence, we can formalise the starting sequence of the
thermostat described above as

R20 · AOff · AOn .

Since we want to describe the whole behaviour of the thermostat, we need the
possibility for iteration. Let ∗ be an operator for finite iteration (we will show
the existence of ∗ in Section 3). Then we can describe the system as

R20 · (AOff · AOn)∗ .

In this way, the automaton is replaced by a corresponding regular expression.
In Section 4 we show how to model jump and invariant conditions by restricting
the ranges of trajectories. ⊓⊔

3 Left Semirings and Domain

Now, let’s have a closer look at the algebraic structure of the trajectory-based
model.

A left semiring is a quintuple (S, +, 0, ·, 1) such that (S, +, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · is left-distributive over + and left-
strict, i.e., 0 · a = 0. The left semiring is idempotent if + is idempotent and ·
is right-isotone, i.e., b ≤ c ⇒ a · b ≤ a · c, where the natural order ≤ on S is

given by a ≤ b
def
⇔ a+ b = b. Left-isotony of · follows from its left-distributivity.

Moreover, 0 is the ≤-least element. A semiring is a left semiring in which · is
also right-distributive and right-strict.

A left idempotent semiring S is called a left quantale if S is a complete lattice
under the natural order and · is universally disjunctive in its left argument.
Following [3], one might also call a left quantale a left standard Kleene algebra.
A left quantale is Boolean if its underlying lattice is a completely distributive
Boolean algebra.



An important left semiring (that is even a semiring and a left quantale) is
REL, the algebra of binary relations over a set under relational composition.

A left test semiring (quantale) is a pair (S, test(S)), where S is an idempotent
left semiring (a left quantale) and test(S) ⊆ [0, 1] is a Boolean subalgebra of the
set [0, 1] of S such that 0, 1 ∈ test(S) and join and meet in test(S) coincide with
+ and ·, respectively. This definition corresponds to the one given in [12]. We will
use a, b, c . . . for arbitrary S-elements and p, q, r, . . . for tests. By ¬ we denote
complementation in test(S).

An important property of left test semirings is distribution of test multipli-
cation over meet [15]: if a ⊓ b exists then

p · (a ⊓ b) = p · a ⊓ b = p · a ⊓ p · b .

A left domain semiring (quantale) is a pair (S, p), where S is a left test semi-
ring (quantale) and the domain operation p: S → test(S) satisfies

a ≤ pa · a (d1), p(p · a) ≤ p (d2), p(a · pb) ≤ p(a · b) (d3).

The axioms are the same as in [5]; their relevant consequences can still be proved
over left semirings (quantales) (see [15]). In particular, p is universally disjunctive
and hence p0 = 0. In contrast to arbitrary complete Boolean test semirings [14],
the domain operation is guaranteed to exist in left test quantales.

Checking all the axioms for the case of processes, we get

Lemma 3.1 1. The processes form a Boolean left domain quantale

PRO
def
= (P(TRA),∪, ∅, ·, I, p)

with test(PRO) = P({v | v ∈ V }) and pA = {g(0) | (d, g) ∈ A}.
2. Additionally, · is positively disjunctive in its right argument, and chop in-

herits the disjunctivity properties from · and is associative, too.
3. Since 0 is indivisible, the meet with a test distributes over composition:

P ∈ test(PRO) ⇒ P ∩ A · B = (P ∩ A) · (P ∩ B)

As in [15], we can extend an idempotent left semiring by finite and infinite
iteration. A left Kleene algebra is a structure (S, ∗) consisting of an idempotent
semiring S and an operation ∗ that satisfies the left unfold and induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗ · b ≤ c .

To express infinite iteration we axiomatise an ω-operator over a left Kleene
algebra. A left ω algebra [2] is a pair (S, ω) such that S is a left Kleene algebra
and ω satisfies the unfold and coinduction axioms

aω = a · aω , c ≤ a · c + b ⇒ c ≤ aω + a∗ · b .



Lemma 3.2

1. Every left quantale can be extended to a left Kleene algebra by defining a∗ def
=

µx . a · x + 1.
2. If the left quantale is a completely distributive lattice then it can be extended

to a left ω algebra by setting aω def
= νx . a · x. In this case,

νx . a · x + b = aω + a∗ · b .

The proof uses fixpoint fusion.
Since by Lemma 3.1 PRO forms a left quantale, we also have finite iteration ∗

and infinite iteration ω with all their laws available. Moreover, being Boolean,
the quantale is separated, which provides a number of useful laws about the
interaction of inf and fin with the semiring and iteration operations [15].

4 Range Assertions, Safety and Liveness

Often, it is necessary to restrict the range of a process A. Here, the range ran A

is defined as ran A
def
=

⋃

t∈A ran t.

Running Example We model the jump and invariant conditions for the tran-
sition from Off to On. First, we generally set

R[l,u]
def
= {x |x ∈ [l, u]} .

Then the sequence “Off–jump–On” equals AOff · R[18,19] · AOn. As a safety con-
dition for the thermostat of Figure 1 we want to guarantee the temperature to
be between 18 and 22 degrees, i.e., we want to restrict the range of AOff · AOn

and (AOff · AOn)∗. Thus we need to define a process containing all trajectories
that never leave the range [18, 22]. ⊓⊔

We do this by observing that every test P ∈ test(PRO) is isomorphic to a
subset of the value set V of the trajectories.

With ⊤
def
= TRA and F

def
= fin (TRA) we define, for P ∈ test(PRO),

3P
def
= F · P · ⊤ , 2P

def
= 3¬P , .

Hence, 2P describes a safety aspect, viz. the set of all trajectories whose range
satisfies the “invariant” P , i.e., 2P = {t ∈ TRA | ran t ⊆ P}. Thus, the re-
quested safety condition for the thermostat can be modelled as 2R[18,22]. Dually,
3P can be used to describe liveness aspects.

We now generalise these operators to an arbitrary general Boolean left test

quantale S. Let ⊤ be the greatest element of S and set F
def
= fin⊤ and N

def
=

inf ⊤. By general results in [15] we have F · 0 = 0, N = ⊤ · 0 = N · a for all a
and F = N. Moreover, F is downward closed and 1 ≤ F, so that also p ≤ F for all
p ∈ test(S). Finally, F · F ≤ F. Let now, for p ∈ test(S),



3p
def
= F · p · ⊤, 2p

def
= 3¬p.

Thus, 2p corresponds to the “always p” operator of von Karger [11], whence
the notation. Since 3 and 2 do not yield tests as their results, they cannot be
nested. This does no harm, since nested safety requirements do not seem to be
useful anyway. Moreover, all other algebraic operations are available for them.
Our goal is now to derive a number of useful algebraic laws for 3 and 2.

Lemma 4.1 Assume a left test quantale in which · is also positively right-
disjunctive. Then 3 is universally disjunctive and 2 is universally conjunctive.
In particular, both operators are isotone.

Therefore we can define a general operator ran : S → test(S) by the Galois
connection

ran a ≤ p
def
⇔ a ≤ 2p . (1)

Running Example Looking again at the safety requirement of the thermostat
we see that by the condition AOff ·AOn ≤ 2R[18,22] we indeed restrict the range
of AOff · AOn as claimed in the beginning of this section. Using the meet

AOff · AOn ⊓ 2R[18,22] (th-rest)

is another way to enforce the restriction. ⊓⊔

By (1), ran is universally disjunctive. Moreover, we obtain

a ≤ 2(ran a) , ran (2p) ≤ p , p ≤ 2p ⇒ ran p ≤ p .

For the following proofs and properties we introduce shorthands for the finite
and infinite parts of boxes:

fp
def
= fin (2p) = F ⊓ 2p , ip

def
= inf (2p) = N ⊓ 2p .

Now we can show

Lemma 4.2 Assume a right-distributive left test quantale S and p ∈ test(S).

1. 2p = p · (2p) = (2p) · p.
2. If additionally p ≤ 2p then p(2p) = p.

Proof. 1. We first show 2p = p · (2p).
(≥) is clear by p ≤ 1 and isotony.
(≤) We first show 2p ≤ p·⊤. By shunting this is equivalent to ⊤ ≤ 2p+p·⊤,
i.e., to ⊤ ≤ F ·¬p ·⊤+p ·⊤, which holds by 1 ≤ F, distributivity and Boolean
algebra. Now we obtain ¬p ·2p ≤ 0 and hence 2p = p ·2p+¬p ·2p = p ·2p.
Next, we show 2p = (2p) · p.
(≥) follows as above.
(≤) Splitting 2p into its finite and infinite parts and using distributivity, we
get the equivalent claim fp + ip ≤ fp · p + ip · p = fp · p + ip. Since finite and



infinite elements have empty intersection, this reduces to fp ≤ fp ·p. For this
we first show fp ≤ F · p. By shunting, this is equivalent to ⊤ ≤ fp + F · p,
i.e., to ⊤ ≤ N + F · ¬p · ⊤ + F · p, which holds by 1 ≤ ⊤, distributivity,
Boolean algebra and ⊤ = N + F. Now we obtain fp · ¬p ≤ 0 and hence
fp = fp · p + fp · ¬p = fp · p.

2. Axiom (d2) and 1. imply p(2p) ≤ p. The reverse inequation follows from the
assumption p ≤ 2p, isotony of domain and pp = p. ⊓⊔

Some of the following properties are satisfied only in a special kind of left
semirings. Since elements of the form 2p correspond to safety properties, we call
a left semiring (quantale) S safety-closed if (2p) · (2p) ≤ 2p. In a safety-closed
left semiring, (2p)+ = 2p and

a ≤ 2p ⇔ a+ ≤ 2p ⇔ a+ ≤ (2p)+ , (2)

where b+ def
= b · b∗. In Section 5 we will present a sufficient condition for safety-

closedness. By that result, PRO is safety-closed.

Lemma 4.3 Suppose that S is right-distributive and safety-closed.

1. 2p ⊓ a · b = (2p ⊓ a) · (2p ⊓ b).
2. 3p ⊓ a · b = (3p ⊓ a) · b + fina · (3p ⊓ b).
3. The box is multiplicatively idempotent, i.e., (2p) · (2p) = 2p.

Proof. 1. We show the claim first for finite a, i.e., for a ≤ F.

Let, for abbreviation, s
def
= 2p and d

def
= s = 3¬p. By Boolean algebra and

distributivity,

a · b = (a ⊓ s) · (b ⊓ s) + (a ⊓ s) · (b ⊓ d) + (a ⊓ d) · b

Now we observe that, by definition of d, we have F · d ≤ d and d · ⊤ ≤ d, so
that the last two summands are ≤ d by isotony. Hence,

a · b ⊓ s = (a ⊓ s) · (b ⊓ s) ⊓ s ≤ (a ⊓ s) · (b ⊓ s) .

The converse inequation holds by isotony and safety-closedness.
For arbitrary a we calculate, using fin/inf decomposition, Boolean algebra
and the claim for fina ≤ F,

a · b ⊓ s = (inf a + fina · b) ⊓ s
= (inf a ⊓ s) + ((fin a · b) ⊓ s)
= inf (a ⊓ s) + (fin a ⊓ s) · (b ⊓ s)
= inf (a ⊓ s) + fin (a ⊓ s) · (b ⊓ s)
= (a ⊓ s) · (b ⊓ s) .

2. We show the claim for finite a; for infinite a the proof proceeds analogously

to that of 1. Set d
def
= 3p and s

def
= d = 2¬p. By Boolean algebra and

distributivity,

d ⊓ a · b = d ⊓ (d ⊓ a) · b + d ⊓ (s ⊓ a) · (d ⊓ b) + d ⊓ (s ⊓ a) · (s ⊓ b) .



The first of these summands is below (d ⊓ a) · b, the second one is below
a · (d ⊓ b) and the third one is 0 by isotony, safety-closedness and d ⊓ s = 0.
Hence, the sum is below (d ⊓ a) · b + a · (d ⊓ b).
The converse inequation follows by d · b ≤ d, a ≤ F, F · d ≤ d and isotony.

3. This is a consequence of 1., since

2p = 2p ⊓ ⊤ = 2p ⊓ ⊤ · ⊤ = (2p ⊓ ⊤) · (2p ⊓ ⊤) = 2p · 2p .

⊓⊔

Running Example Returning to requirement (th-rest), we can transform the
safety requirement R20 · (AOff ·AOn)∗ ⊓2p into R20 · ((AOff ⊓2p) · (AOn ⊓2p))∗

by (2) and Lemma 4.3.1. Hence, it suffices to guarantee the safety requirement
for the two processes AOff and AOn. ⊓⊔

Lemma 4.4 Assume a right-distributive and safety-closed left test quantale S,
in which p ⊓ a · b = (p ⊓ a) · (p ⊓ b).

1. p ≤ 2q ⇔ p ≤ q.
2. p ≤ 2p.
3. ran p = p.

4. p ≤ 1 · 1.

Proof. 1. p ≤ 2q

⇔ {[ definition and shunting ]}

p ⊓ F · ¬q · ⊤ ≤ 0

⇔ {[ assumption twice ]}

(p ⊓ F) · (p ⊓ ¬q) · (p ⊓ ⊤) ≤ 0

⇔ {[ p ≤ F and meet on tests ]}

p · p · ¬q · p ≤ 0

⇔ {[ commutativity and idempotence of tests ]}

p · ¬q ≤ 0

⇔ {[ test shunting ]}

p ≤ q .
2. Set q = p in 1.
3. Using the Galois connection (1) and 1., we have

ran p ≤ q ⇔ p ≤ 2q ⇔ p ≤ q .

Now the claim follows by indirect equality.
4. We have p ⊓ 1 · 1 = (p ⊓ 1) · (p ⊓ 1) = 0 · 0 = 0. ⊓⊔

By Lemma 3.1.3 properties 1. to 4. hold in PRO. In REL, however, subiden-
tities can be decomposed into non-subidentities (unless the underlying base set



is a singleton); so these properties do not hold there. The element 1 · 1 has
been called step in von Karger’s work; it represents the elements that cannot
be decomposed into non-subidentities. Note that in arbitrary Boolean semirings
property 4. is equivalent to 1 · 1 ≤ 1, which roughly says that progress in time
cannot be undone.

5 A Sufficient Criterion for Safety-Closedness

For the technical developments of this section we need additional operators. In
any left quantale, the left residual a/b exists and is characterised by the Galois
connection

x ≤ a/b
def
⇔ x · b ≤ a .

In PRO, this operation is characterised pointwise by t ∈ V/U ⇔ ∀ u ∈ U :
t · u ∈ V (provided t · u is defined). Based on the left residual, in a Boolean
quantale the right detachment a⌊b can be defined as

a⌊b
def
= a/b .

The pointwise characterisation in PRO reads t ∈ V ⌊U ⇔ ∃ u ∈ U : t · u ∈ V .
By de Morgan’s laws, the Galois connection for / transforms into the exchange
law a⌊b ≤ x ⇔ x · b ≤ a for ⌊ that generalises the Schröder rule of relational
calculus. A straightforward consequence is (2p)⌊a ≤ 2p (box detachment). Now
we can prove

Lemma 5.1 If S is locally linear [11], i.e., (a · b)⌊a = a · (b⌊c) + a⌊(c⌊b), and
right-distributive then S is safety-closed.

Proof. First, by the definition of diamond, local linearity and box detachment,

(3¬p)⌊(2p) = F · ¬p · (⊤⌊(2p)) + (F · ¬p)⌊((2p)⌊⊤)
≤ F · ¬p · (⊤⌊(2p)) + (F · ¬p)⌊(2p)
≤ 3¬p + (F · ¬p)⌊(2p) .

(∗)

Hence

(2p) · (2p) ≤ 2p

⇔ {[ exchange law ]}

(3¬p)⌊(2p) ≤ 3¬p

⇐ {[ by (∗) ]}

3¬p + (F · ¬p)⌊(2p) ≤ 3¬p

⇔ {[ lattice algebra ]}

(F · ¬p)⌊(2p) ≤ 3¬p

⇔ {[ exchange law ]}

(2p) · (2p) ≤ F · ¬p



⇔ {[ Boolean algebra ]}

(2p) · (2p) ≤ N + F · p

⇔ {[ by Lemma 4.2.1 ]}

(2p) · (2p) · p ≤ N + F · p

⇔ {[ 2p = fp + ip (p. 6), distributivity and fin /inf laws ]}

fp · fp · p ≤ F · p

⇔ {[ fp finite and F closed under · ]}

TRUE .
⊓⊔

Local linearity of PRO can be proved as in the case of the semiring of formal
languages, as done in [8]; hence PRO is safety-closed. Next, we have

Lemma 5.2 Assume a right-distributive and safety-closed left test quantale S.

1. a · b ⊓ fp · 2q = (a ⊓ fp) · (b ⊓ fp · 2q) + (a ⊓ fp · 2q) · (b ⊓ 2q).
2. a · b ⊓ ip = (a ⊓ fp) · (b ⊓ ip) + (a ⊓ ip).
3. a · b ⊓ 2p · 2q = (a ⊓ fp) · (b ⊓ 2p · 2q) + (a ⊓ 2p · 2q) · (b ⊓ 2q).

The proofs are straightforward and omitted for lack of space. An application
of Lemma 5.2.1 is to combine safety requirements like R[l,u]. Since fp · 2q =
2p⌢

2q, a safety requirement of this form guarantees that the process 2q is
actually entered.

6 Temporal Operators

Specifications are particular processes that express desired patterns. Following
Sintzoff [16], we define the following quantifier-like operators relating a specifica-
tion W with a process B supposed to implement it. If one considers the values in
V as states then the set {t(0) | t ∈ B ∩W} gives all starting states of the trajec-
tories in B admitted by W as well. However, it is more convenient to represent
this set as a test in the left test semiring of processes, viz. as {t(0) | t ∈ B ∩W}.
But this compacts simply into p(B∩W ). Therefore, a first definition of Sintzoff’s
quantifiers reads as follows (the primes indicate that we will use a different def-
inition later on):

E′B . W
def
= p(B ∩ W ) , A′B . W

def
= ¬E′B . W = ¬p(B ∩ W ) ,

AE′B . W
def
= A′B . W ∩ E′B . W .

This definition works in general Boolean left domain semirings. However, as
the resulting quantifiers are operators of type PRO → (PRO → test(PRO)),
they cannot easily be composed. Therfore, Sintzoff gives a different semantics
to combinations of these quantifiers. We want to avoid this by introducing new
quantifiers that omit the final projection into test(PRO). Doing this, we also



allow a look into the “future” of trajectories and not only at the starting states.
In other words, our new quantifiers in PRO should model formulas like

t ∈ EB . W
def
⇔ ∃ u ∈ B : t · u ∈ W,

t ∈ AB . W
def
⇔ ∀ u ∈ B : t · u ∈ W.

These quantifiers are operators of type PRO → PRO and their sequential
composition simply is function composition. If a projection into test(PRO) is
desired it can be added at the outermost level by finally applying one of the
three quantifiers above. For their algebraic characterisation we use again the
detachment operator.

Lemma 6.1 In a Boolean test quantale, one has

p(b ⊓ w) = w⌊b ⊓ 1 = b⌊w ⊓ 1 .

In the detachment formulas of this lemma, forming the meet with 1 performs
the projection into the test algebra, and we obtain our revised operators by
omitting this meet. There is a choice in which of these two formulas to use. We
take the first one, since it results in a more direct translation of the universal
quantifier A′. Assume a Boolean quantale S and a, b ∈ S. Then

Eb . w
def
= w⌊b , Ab . w

def
= Eb . w = w/b ,

AEb . w
def
= (Ab . w) ⊓ (Eb . w) .

In PRO the process EB . W consists of all trajectories that can be completed
by a B-trajectory to yield a trajectory in W . Thus, EB . W is the inverse image of
W under the operation ·B, while AB . W is the largest process whose image under
·B is contained in W . This suggests the following modal view of these quantifiers:
E is a kind of diamond, whereas A forms a box operator. Correspondingly, we
have the following properties that are typical for modal operators.

Lemma 6.2

1. Ea is universally disjunctive and Aa is universally conjunctive.
2. E(a · b) . c = Ea . (Eb . c) and A(a · b) . c = Aa . (Ab . c).
3. If · is positively disjunctive in its right argument then E is positively disjunc-

tive and A is positively antidisjunctive.

7 Linking With Game Theory

As Sintzoff [16] has shown, the theory of games helps in understanding control
systems as well as hybrid and reactive ones, since it deals with interaction be-
tween dynamics. For example, a control system can be presented as a game where
the controlling and the controlled components are, respectively, the proponent
and the opponent [10]. As the controller has to counteract all possible failures



induced by “moves” of the controlled system, it has to force the opponent into
a “losing” position where nothing can go wrong anymore. In PRO, moves cor-
respond to process transformers of the shapes EB and AB. They describe the
possible and guaranteed reachabilities from a game position using B-trajectories.

Abstractly, a game consists of one or more players who interact with each
other. A move is an action of one player. Obviously, there are various kinds of
games, like games with finite or infinite duration. In the second case, one can
distinguish games with finite and infinite move duration. Another possibility
of classifying games are the categories of cooperate, non-cooperate and semi-
cooperate games, depending on the methods by which the players will interact.
Further, we can split all games into disjoint and non-disjoint ones. Non-disjoint
games allow several moves at the same time, while in a disjoint game there is
one move at a time.

In the remainder, we restrict ourselves to disjoint games with finite move
duration. In a game round, each player, one by one, makes a move. Hence, if Si

is defined as the a move of player i, a game round is represented by (S1 ·S2 · · ·Sn).
In that case, we can use the ∗ and ω operators; (S1 · S2 · · · · · Sn)∗ describes a
finite game and (S1 · S2 · · · · · Sn)ω a game with infinitely many game rounds. In
the latter case, the game has infinite duration if the Si have positive durations.

In a game with player X and opponent Y , represented by their respective
moves Ea and Ab, we can interpret a game round in which X has the possibility
of “winning” as the product Ea ◦ Ab (cf. [6]), where ◦ is composition of process
transformers. Finite or infinite games can then be described as (Ea ◦ Ab)∗ or
(Ea ◦ Ab)ω from which winning and losing “positions” can be calculated by
fixpoint iteration (e.g according to Kleene’s theorem); for details see e.g. [1,
5]. Since we have now established the connection to the modal view of games
started in [1] and treated abstractly in [5], we can re-use the analysis of winning
and losing positions provided in these papers. This allows us to unify several
results (e.g. [16]). A more thorough analysis of the game-theoretic connection
will be the subject of further papers.

8 Conclusion and Outlook

This paper provides a starting point for developing an algebraic theory of hybrid
systems. The theory of Lazy Kleene algebras [15] finds a useful further application
here, generalising some similar results for the strict setting in [11]. Although one
has to take some care with the modified laws relative to standard (modal) Kleene
algebra, things work out reasonably well and many results come for free.

The aim of further work in this area is to develop a suitable specialisation
of the general results to form new, more convenient algebraic calculi, both for
safety and liveness proofs, and to provide a connection with the algebraic view of
the duration calculus started in [11, 9]. Another aim is to use the game-theoretic
approach to obtain improved controllers for hybrid systems. Finally, it has to be
checked in how far hybrid (I/O) automata can be treated in this style to make
the theory even more useful. It seems that the semantic models used in [4, 13]



can be made into left domain quantales, too, so that our results would carry
over to these frameworks.
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