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Abstract. Recently, there has been a significant amount of work on the
recognition of emotions from visual, verbal or physiological information.
Most approaches to emotion recognition so far concentrate, however, on a
single modality while work on the integration of multimodal information,
in particular on fusing physiological signals with verbal or visual data, is
scarce. In this paper, we analyze various methods for fusing physiological
and vocal information and compare the recognition results of the bimodal
recognition approach with the results of the unimodal approach.

1 Introduction

Recent work by Picard and others [1] has aroused considerable awareness for the
role of emotions in human-computer interaction. Indeed, there is evidence that
human-computer interaction is more likely to be accepted by the user if it is
sensitive towards the user’s affective states. An important prerequisite to realize
affective interfaces is a reliable emotion recognition system which guarantees
acceptable recognition accuracy, is robust against artefacts, and easily adapts
to pragmatic constraints. Most research so far has focused on the analysis of
a single modality or an integrated analysis of audio-visual information (see [2]
for a comprehensive overview). On the one hand, the integration of multiple
modalities raises the expectation of higher recognition rates compared to those
obtained from a single modality. On the other hand, more complex classification
problems arise.

In this paper, we concentrate on the integration of physiological measures
(biosignals) and speech signals for emotion recognition based on short-term ob-
servations. Several advantages can be expected when combining biosensor feed-
back with affective speech. First of all, biosensors allow us to continuously gather
information on the users’ affective state while the analysis of emotions from
speech should only be triggered when the microphone receives speech signals
from the user. Secondly, it is much harder for the user to deliberately manipulate
biofeedfack than external channels of expression which allows us to largely cir-
cumvent the artifact of social masking. Finally, an integrated analysis of biosig-
nals and speech may help to resolve ambiguities and compensate for errors.

When combining multiple modalities, the following questions arise: (1) How
to handle conflicting cases between the single modalities? For instance, a user
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may consciously or unconsciously conceal his/her real emotions by external chan-
nels of expression, but still reveal them by internal channels of expression. (2)
At which level of abstraction should the single modalities be fused in order to
increase the accuracy of the recognition results? (3) How should the window
sizes of different modalities be synchronized when same emotional cues in the
modalities occur with a time discrepancy?

In the next section, we discuss selected previous work. Section 3 reports on the
data set we used and describes the features we extracted from 5-channel biosignal
and speech signal. Several classification methods are presented including feature-
level fusion, decision-level fusion, and a hybrid fusion scheme. In Section 4, we
analyze the classification results with respect to the effect of bimodal integration.
We conclude this work with a short outlook on future work.

2 Related Work

There is a vast body of literature on the automatic recognition of emotions. With
labelled data collected from different modalities, most studies rely on supervised
pattern classification approaches for automatic emotion recognition.

Following the long tradition of speech analysis in signal processing, many ef-
forts were taken to recognize affective states from vocal information. As emotion-
specific contents in speech, suprasegmental prosodic features including intensity,
pitch, and duration of utterance have been widely used in recognition systems.
To exploit the dynamic variation along an utterance, Mel-frequency cepstral co-
efficients (MFCC) are extensively employed. For example, Nwe and colleagues
[3] achieved an average accuracy of 66% for six emotions acted by two speakers
using 12 MFCC features as input to a discrete hidden Markov model (HMM).
A rule-based method for emotion recognition was proposed by Chen [4]. The
data used in this work contained two foreign languages (Spanish and Sinhala)
for the judges who did not comprehend either language and were therefore able
to make their judgment based on vocal expression without being influenced by
linguistic/semantic content. Batliner et al. [5] achieved about 40% for a 4-class
problem with elicited emotions in spontaneous speech.

Relatively little attention has been paid so far to physiological signals for emo-
tion recognition compared to other channels of expression. A significant series
of work has been conducted by Picard and colleagues at MIT Lab. For example,
they showed that certain affective states may be recognized by using physio-
logical measures including heart rate, skin conductivity, temperature, muscle
activity and respiration velocity [1]. Eight emotions deliberately elicited from a
subject in multiple weeks were classified with an overall accuracy of 81%. Nasoz
et al. [6] used movie clips to elicit target emotions from 29 subjects and achieved
the best recognition accuracy (83%) by applying the Marquardt Backpropaga-
tion algorithm. More recently, Wagner et al. [7] presented an approach to the
recognition of emotions elicited by music using 4-channel biosignals which were
recorded while the subject was listening to music songs, and reached an overall
recognition accuracy of 92% for a 4-class problem.
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In order to improve the recognition accuracy obtained from unimodal recog-
nition systems, many studies attempted to exploit the advantage of using multi-
modal information, especially by fusing audio-visual information. For example,
De Silva and Ng [8] proposed a rule-based singular classification of audio-visual
data recorded from two subjects into six emotion categories. Moreover, they
observed that some emotions are easier to identify with audio, such as sadness
and fear, and others with video, such as anger and happiness. Using decision-
level fusion in bimodal recognition system, a recognition rate of 72% has been
reported. A set of singular classification methods was proposed by Chen and
Huang [9], in which audio-visual data collected from five subjects was classified
into the Ekman’s six basic emotions (happiness, sadness, disgust, fear, anger,
and surprise). They could improve the performance of decision-level fusion by
considering the dominant modality, determined by empirical studies, in case sig-
nificant discrepancy between the outputs of each unimodal classifier has been
observed. Recently, a large-scale audio-visual database was collected by Zeng et
al. [10], which contains five HCI-related affective responses (confusion, interest,
boredom, and frustration) in addition to seven affects (the six basic emotions +
neutral). To classify the 11 emotions subject-dependently, they used the SNoW
(Sparse Network of Winnow) classifier with Naive Bayes as the update rule and
achieved a recognition accuracy of almost 90% through bimodal fusion while the
unimodal classifiers yielded only 45-56%.

Most previous studies have shown that the performance of emotion recogni-
tion systems can be improved by the use of audio-visual information. However,
it should be noted that the achieved recognition rates depend rather on the type
of the underlying database, whether the emotions were from acted, elicited or
real-life situation, than the used algorithms and classification methods. More-
over, apart from our previous work [11], work on the integration of biosignals
and speech is rare. In this paper, we will investigate in how far the robustness of
an emotion recognition system can be increased by integrating both vocal and
physiological cues. We will evaluate two fusion methods that combine bimodal in-
formation at different levels of abstraction as well as a hybrid integration scheme.
Particularly we focus on shorter observations compared to or earlier work.

3 Methodology

3.1 Dataset

We use the same Quiz data set as in our prior work [11]. The dataset con-
tains speech (sampled with 48Kz/16Bit), physiological (using 6-channel biosen-
sors1), and visual information from three male German-speaking subjects in their
twenties.

To acquire a corpus of spontaneous vocal and physiological emotions, we used
a slightly modified version of the quiz “Who wants to be a millionaire?”. Ques-
tions along with options for answers were presented on a graphical display whose
1 ECG (electrocardiogram), BVP (blood volume pulse), EMG (electromyogram), RSP

(respiration), SC (skin conductivity), Temp (finger temperature).
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design was inspired by the corresponding quiz shows on German TV. In order to
make sure that we got a sufficient amount of speech data, the subjects were not
offered any letters as abbreviations for the single options (as very common in
quiz shows on TV), but were forced to produce longer utterances. Furthermore,
the users current score was indicated as well as the amount of money s/he may
win or loose depending on whether his/er answer is correct or not. Each of the
session took about 45 minutes to complete. The subjects were equipped with a
directed microphone to interact with a virtual quiz master via spoken natural
language utterances. The virtual quiz master was represented by a disembodied
voice using the AT&T Natural Voices speech synthesizer. While the users inter-
acted with the system, their bio and speech signals as well as the interaction
with the quiz master were recorded.

The quiz experiment was designed in a Wizard-Of-Oz fashion where the quiz
agent who presents the quiz is controlled by a human quiz master who guides the
actual course of the quiz, following a working script to evoke situations that lead
to a certain emotional response. The wizard was allowed to freely type utter-
ances, but also had access to a set of macros that contain pre-defined questions
or comments which made it easier for the human wizard to follow the script
and to get reproducible situations (see Fig. 1). The wizards working script can
be roughly divided into four situations which serve to induce certain emotional
states in the user. We make use of a dimensional emotion model which char-
acterizes emotions in terms of the two continuous dimensions of arousal and
valence (see [12]). Arousal refers to the intensity of an emotional response. Va-
lence determines whether an emotion is positive or negative and to what degree.
Apart from the ease of describing emotional states that cannot be distributed
into clear-cut fixed categories, the two dimensions valence and arousal are well
suited for emotion recognition. The four phases of the experiment correspond
to extreme positions on the axes of the emotion model: (1) low arousal, positive
valence, (2) high arousal, positive valence, (3) low arousal, negative valence and
(4) high arousal, negative valence.

First, the users are offered a set of very easy questions every user is supposed
to know to achieve equal conditions for all of them. This phase is characterized
by a slight increase of the score and gentle appraisal of the agent and serves to

Fig. 1. Interface for the wizard (left) and for the user (right)
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induce an emotional state of positive valence and low arousal in the user. In phase
2, the user is confronted with extremely difficult questions nobody is supposed
to know. Whatever option the user chooses, the agent pretends the users answer
is correct so that the user gets the feeling that s/he hits the right option just
by chance. In order to evoke high arousal and positive valence, this phase leads
to a high gain of money. During the third phase, we try to stress the user by a
mix of solvable and difficult questions that lead, however, not to a drastic loss of
money. Furthermore, the agent provides boring information related to the topics
addressed in the questions. Thus, the phase should lead to negative valence and
low arousal. Finally, the user gets frustrated by unsolvable questions. Whatever
option the user chooses, the agent always pretends the answer is wrong resulting
in a high loss of money. Furthermore, we include simple questions for which we
offer similar-sounding options. The user is supposed to choose the right option,
but we make him/er believe that the speech recognizer is not working properly
and deliberately select the wrong option. This phase is intended to evoke high
arousal and negative valence.

3.2 Synchronized Segmentation of the Bimodal Signals

In our previous work [11], we segmented and labelled the data based on the four
experimental phases taking into account that the agreement between coders an-
notating material of everyday emotions is usually not very high [13]. All speech
and physiologial signals that may be interpreted as a response to the same ques-
tion have been segmented into one chunk and labelled with the emotion corre-
sponding to the experimental phase in which they occurred.

For the analysis described in this paper, the segmentation and labelling was
refined by two expert labellers considering the situative context as well as the
audio-visual expression of the subjects. In this way, we tried to handle cases
where we did not succeed in eliciting the intended emotion. To segment speech
and physiological data, we started from verbal phrases. The borders of the seg-
ments for both modalities were chosen to lie in the middle of two verbal phrases
so that they cover the same time span. For the analysis of speech, we only
consider the part of the segment when the verbal phrase occurs while for the
analysis of physiological data the complete segment is taken. As a consequence,
the observations for speech are usually shorter than the observations for the
physiological data, but the length of the corresponding segments is the same
which facilitates the later fusion proces. In total, we got 343 samples for classi-
fication (343 x 6 channels = 2058 segments in total) from the data set. Based
on the four phases of the experiments, our labellers relied on dimensional rating
(i.e. labelling within the 4 quadrants of the 2D emotion model). Disagreements
between the ratings of the two labellers were discussed and resolved after the
annotation process.

Fig. 2 shows a sample segmentation for data from the used channels. The
length of the observations varies from 2 to 6 seconds for the speech and from 3
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Fig. 2. Segmentation of bimodal signals based on verbal phrases: (a) speech, (b) BVP,
(c) EMG, (d) RSP, (e) SC, (f) Temp

to 15 seconds for the biosignals. That is the observations are rather short-term
compared to previous studies that start from a segment length between 50 and
300 seconds2 [15].

3.3 Feature Extraction

An essential step in pattern classification is to extract class-relevant features
(preferrably in a compressed form) from the raw signal. Moreover the classifi-
cation of short-term observations requires more reasonable treatments in signal
processing stages, e.g. extracting spectral features in biosignals (containing very
low frequencies) within limited bandwidth due to the very short window size.

From physiological data: To remove noisy signals, all segments of the 5-
channel biosignals (BVP, EMG, SC, RSP, Temp) are lowpass-filtered using per-
tinent cut-off frequencies that are empirically determined for each biosensor
channel. Differing from [11], we employ the BVP signal instead of the ECG signal
and use the Temp signal as an additional channel from the data set. Generally the
ECG is measured by using electrodes which do need a firm skin contact, whereas
the BVP is measured by using a photoplethysmograph. Hence, using the BVP
signal has some advantages such as robustness against motion artefacts during
recording process and stable baseline in the signal flow. From the raw signal, we
first calculated the 8 subband spectral powers using the conventional 512 points
short-time Fourier transform (STFT). To capture the irregularity and the local
2 Haag et al. [14] used 2 seconds observation of 6-channel biosignals and classified

arousal and valence by using a range of specified distance. However, their obser-
vation length might be difficult to be compared to our synchronized segmentation
of bimodal signals. Moreover using such short length of segment restricts range of
usable features, e.g. spectrum features and HRV. They used a limited feature set
including 7 fundamental features from each channel for the classification.
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Fig. 3. Example of BVP Analysis: (a) detected pulse interbeats, (b) interpolated PRV
like series, (c) Poincaré plot of the PRV

spectral distribution, the spectral entropy is calculated from each subband by
converting the spectrum into a PMF-like (Probability Mass Function) form.

Heart rate variability (HRV) is the most frequently used characteristic of the
heart activity in biomedical engineering to assess cardiac health. Using the QRS
detection algorithm of Pan and Tompkins [16], the HRV like time series (we refer
to as PRV)3 is obtained and typical statistics (mean value, standard deviation,
slope, etc.) are calculated from the time series. By calculating the standard
deviations in different distances of pulse-pulse interbeats, we also added the
Poincaré geometry in the feature set to capture the nature of pulse interval
fluctuations. Figure 3 shows an example plot of the geometry. Lastly from the
spectrum of the PRV time series, power spectrum densities (PSD) from three
subbands are calculated from the ranges of VLF(0-0.04Hz), LF(0.05-0.15 Hz),
and HF (0.16-0.4 Hz), respectively and the ratio of LF/HF. Since the RSP signal
is quasi periodic we calculated similar types of features like the BVP features
including the typical statistics, except for the geometric features and the PSDs.
After appropriate detrending the signals using mean value and lowpass filter,
we calculated the BRV (time series of the breathing rates) by detecting the
peaks using the maxima ranks within zero-crossing. From the SC and EMG
signal respectively we calculated 10 features including the mean value, standard
deviation, and mean values of first and second derivations. Particularly because
of the nature of the signal, the EMG signal required additional pre-processing,
such as deep smoothing. The number of transient changes (occurrences) within
4 seconds in SC and EMG signals are calculated from two low-passed signals,
very low-passed (SC: 0.08 Hz, EMG: 0.3 Hz) and low-passed signals (SC:0.2 Hz,
EMG: 0.8 Hz) respectively. From the Temp signals, three statistical features are
calculated: mean value, standard deviation, and ratio of max/min. Finally, we
obtained a total of 77 features from the 5-channel biosignals.

From the speech signal: For all segments, the conventional statistics in time
domain are calculated, such as mean, absolute extremum, root mean square,
standard deviation, energy/power, intensity in dB etc. In frequency domain,
three spectrum contents are obtained using the STFT; pitches using a window
3 Strictly speaking, it is the pulse rate variability (PRV) we use when relying on the

BVP instead of the ECG signal.
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length of 40 ms,energy spectrum, and formant object using a window length
of 25 ms. In addition, 10 MFCCs from each segment are calculated using a
window length of 15 ms. From pitch and energy spectrum, also the series of the
minima and maxima, and of the distances, magnitudes and steepness between
adjacent extrema were obtained. For the MFCCs, we first exponentiated the
cepstral coefficients to obtain non-negative values and calculated the spectral
entropy as in the case of the biosignal in order to capture the distribution of
cepstral energy. From each feature content above, we tried to extract single
features (i.e., mean, standard deviation, mean of first and second derivative)
representing characteristics (i.e., variance and slop) of each time series vector of
spectrum, instead of taking all feature vectors. As a result, we obtained a total
of 61 features from the speech segments.

3.4 Feature Selection and Classification

In the next step, we tried to determine which features are most relevant to
differentiate each affective state. Reducing the dimension of the feature space has
two advantages. First of all, the computational costs are lowered and secondly
the removal of noisy information may lead to a better separation of the classes. In
all cases, we achieved indeed considerably higher accuracy rates (an increase of
about 30 %) when applying sequential backward selection (SBS) to reduce the set
of features. Of course, the success of the selection process heavily depends on the
employed classifier. Several features were selected by SBS for all three subjects,
e.g., the subband spectral entropy from BVP, the number of occurrences in SC
and EMG, and the mean values of the MFCCs in the speech features. However,
due to the small number of subjects, these findings should not be generalized.

After testing several classification schemes, such as kNN (k-nearest neighbour),
MLP (multilayer perception), and LDA (Linear discriminant analysis), we have
chosen the LDA classifier which gave the highest accuracy in our case and which
we already used for emotion recognition from physiological data in [7].To com-
bine multiple modalities, we need to decide at which level the single modalities
should be fused. A straightforward approach is to simply merge the features cal-
culated from each modality (feature-level). An alternative would be to fuse the
recognition results at the decision-level based on the outputs of separate unimodal
classifiers (decision-level). Finally, we may combine both methods by applying a

Feature set 2

Feature set 1

Feature set 2

Feature set 1

Classifier

Classifier

Classifier

+ Decision+

Feature-level Fusion Decision-level Fusion

Hybrid Fusion

Fig. 4. Considered fusion schemes for integrating bimodal information
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Table 1. Recognition results in rates (1.0=100% accuracy) achieved by using SBS,
LDA, and leave-one-out cross validation

System high/pos high/neg low/neg low/pos Average

Subject A
Biosignal 0.95 0.92 0.86 0.85 0.90
Speech signal 0.64 0.75 0.67 0.78 0.71
Feature Fusion 0.91 0.92 1.00 0.85 0.92
Decision Fusion 0.64 0.54 0.76 0.67 0.65
Hybrid Fusion 0.86 0.54 0.57 0.59 0.64

Subject B
Biosignal 0.50 0.79 0.71 0.45 0.61
Speech Single 0.76 0.56 0.74 0.72 0.70
Feature Fusion 0.71 0.56 0.94 0.79 0.75
Decision Fusion 0.59 0.68 0.82 0.69 0.70
Hybrid Fusion 0.65 0.64 0.82 0.83 0.73

Subject C
Bio Single 0.52 0.79 0.70 0.52 0.63
Speech Single 0.55 0.77 0.66 0.71 0.67
Feature Fusion 0.50 0.67 0.84 0.74 0.69
Decision Fusion 0.32 0.77 0.74 0.64 0.62
Hybrid Fusion 0.40 0.73 0.86 0.71 0.68

All: Subject-independent
Bio Single 0.43 0.53 0.54 0.52 0.51
Speech Single 0.40 0.53 0.70 0.53 0.54
Feature Fusion 0.46 0.57 0.63 0.56 0.55
Decision Fusion 0.34 0.50 0.70 0.54 0.52
Hybrid Fusion 0.41 0.51 0.70 0.55 0.54

hybrid integration scheme (see Figure 4). We performed both feature-level fusion
and decision-level fusion using LDA in combination with SBS. Feature-level fusion
is performed by merging the calculated features from each modality into one cu-
mulative structure, selecting the relevant features using SBS, and feeding them to
the LDA classifier. Decision-level fusion caters for integrating asynchronous, but
temporally correlated modalities. Each modality is first classified independently
by the LDA classifier, and the final decision is obtained by fusing the output from
the modality-specific classification processes. Three criteria, maximum, average,
and product (see [17]) were applied to evaluate the posterior probabilities of the
unimodal classifiers at the decision stage. As a further variation of decision-level
fusion, we employed a new hybrid scheme of the two fusion methods in which the
output of feature-level fusion is also fedas an auxiliary input to the decision-level
fusion stage. In Table 1 the best results are summarized that we achieved by the
classification schemes we described above. We classified the bimodal data subject-
dependently (Subject A, B, and C) and subject-independently (All) since this
gave us a deeper insight on what terms the multimodal systems could improve the
results of unimodal emotion recognition.
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4 Analysis of Results

Table 1 shows that the performance of the unimodal systems varies not only
from subject to subject, but also for the single modalities. During our exper-
iment, we could observe individual differences in the physiological and vocal
expressions of the three test subjects (see Table 1). As shown in Table 1, the
emotions of subject A were more accurately recognized by using biosignals (90
%) than by his voice (71 %) whereas it was inverse for subject B and C (70 %
and 67 % for voice and 61 % and 63 % for biosignals). In particular for sub-
ject A, the difference between the accuracies of the two modalities is sizable.
However, no suggestively dominant modality could be observed in the results of
subject-dependent classification in general, which may be used as a decision cri-
terion in the decision-level fusion process to improve the recognition accuracy.
Different accuracy rates were also obtained by using the single fusion meth-
ods. Overall, we obtained the best results from feature-level fusion. Generally,
feature-level fusion is more appropriate for combining modalities with analo-
gous characteristics. For instance, we got an acceptable recognition accuracy
of 92 % for subject A when using feature-level fusion which considerably went
down, however, when using decision-level or hybrid fusion. As our data show,
a high accuracy obtained from one modality may be declined by a relatively
low accuracy from another modality when fusing data at the decision level.
This observation may indicate the limitations of the decision-level fusion scheme
we used, which is based on to a pure arithmetic evaluation of the posterior
probabilities at the decision stage rather than a parametric assessment process.
Actually, the design of optimal strategies for decision-level fusion, such as the
integration of a parametric refinement stage, is still an open research issue. As ex-
pected, the accuracy rates for subject-independent classification were not compa-
rable to those obtained for subject-dependent classification. Figure 5 illustrates
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examples of Fisher projection which is often used to preview the distribution
of the features. Obviously, merging the features of all subjects does not refine
the information related to target emotions, but rather leads to scattered class
boundaries.

5 Conclusion

In this paper, we treated all stages of emotion analysis, from data collection to
classification using short-term observations, and evaluated several fusion meth-
ods as well as a hybrid decision scheme. We also compared the results from
multimodal classification with the unimodal results. As in our earlier work [11]
where we relied on longer observation phases and a different set of features, the
best results were obtained by feature-level fusion in combination with feature se-
lection. In this case, not only user-dependent, but also user-independent emotion
classification could be improved compared to the unimodal methods.

We did not achieve the same high gains that were achieved for audio-visual
data which seems to indicate that speech and physiological data contain less
complementary information. Furthermore, in a natural setting like ours, we can-
not exclude that the subjects are inconsistent in their emotional expression.
Inconsistencies are less likely to occur in scenarios where actors are asked to
deliberately express emotions via speech and mimics which explains why fusion
algorithms lead to a greater increase of the recognition rate in this case. Ambi-
guities in emotional expressions are also reflected by work on corpus annotation.
For instance, Cowie and colleagues [13] noticed that the agreement between hu-
man coders labelling multimodal corpora of everyday emotions was lower when
considering both audio and video than when relying on a single modality.

Furthermore some important problems are pointed out, such as the use of pos-
terior probabilities when fusing information with high disparity in accuracy. Most
of the existing classifiers used in the literature are generalized methods based on
statistics or estimating linear regression of given data. Such classifiers may not
be able to capture emotion-specific features and to apply self-adapting decision
rules that consider contextual information, for instance. Therefore, the design of
an emotion-specific classification scheme is one of the most important issues for
the future, and this issue becomes even more critical when classifying combined
multimodal observations. To overcome these problems, we need to develop a mul-
tilayer fusion scheme with parametric refinement stages in each decision layer.

Acknowledgements

We would like to thank Olena Kuzik for her help with the annotation of the
bimodal corpus. All stages from feature extraction to classification are imple-
mented using Matlab/Statistics Toolbox (www.mathworks.com), except for
speech feature calculation using Praat (www.praat.org).



64                 

References

1. Picard, R., Vyzas, E., Healy, J.: Toward machine emotional intelligence: Analysis
of affective physiological state. IEEE Trans. Pattern Anal. and Machine Intell. 23
(2001) 1175–1191

2. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W.,
Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal
Processing Mag. 18 (2001) 32–80

3. Nwe, T.L., Wei, F.S., Silva, L.C.D.: Speech based emotion classification. In: IEEE
Region 10 International Conference on Electrical Electronic Technology. Volume 1.
(2001) 297–301

4. Chen, L.S.: Joint processing of audio-visual information for the recognition of
emotional expression in human-computer interaction. PhD thesis, University of
Illinois at Urbana-Champaign, Dept. of Electrical Engineering (2000)

5. Batliner, A., Zeissler, V., Frank, C., Adelhardt, J., Shi, R.P., Nöth, E.: We are not
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