UNIVERSITAT AUGSBURG

Preference Structures
and their Lattice Representations

M. Endres T. Preisinger

Report 2016-02 March 2016

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright © M. Endres T. Preisinger
Institut fiir Informatik
Universitdat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

Preference Structures
and their Lattice Representations

Markus Endres® and Timotheus Preisinger”

aUniversity of Augsburg, Germany, endres@informatik.uni-augsburg.de
PDEVnet Holding GmbH, Germany, t.preisinger@devnet.de

Abstract

Preferences are an important natural concept in real life and are well-
known in the database and artificial intelligence community. The integra-
tion of preference queries in database systems enables satisfying search re-
sults by delivering best matches, even when no object in a dataset fulfills
all preferences perfectly. Skyline queries are the most prominent repre-
sentatives of preferences queries. The target is to select those tuples from
a dataset that are optimal with respect to a set of designated preference
attributes. But users do not only think of finding the Pareto frontier,
they often want to find the best objects concerning an explicit specified
preference order. While preferences themselves often are defined as gen-
eral strict partial orders, almost all algorithms are designed to evaluate
Pareto preferences combining weak orders, i.e., Skylines. In this paper,
we consider general strict partial orders and we present a method to eval-
uate such explicit preferences by embedding any strict partial order into a
lattice. This enables preference evaluation with specialized lattice based
algorithms.

1 Introduction

The Skyline operator [2] has emerged as an important and popular technique
for searching the best objects in multi-dimensional datasets. A Skyline query
selects those objects from a dataset D that are not dominated by any others.
An object p having d attributes (dimensions) dominates an object ¢, if p is
strictly better than ¢ in at least one dimension and not worse than ¢ in all other
dimensions, for a defined comparison function.

An example for a Skyline query is the search for a car that is cheap and
has high horse power (hp). Unfortunately, these two goals are complementary
as cars with high power tend to be more expensive, cp. Table 1. The Skyline
consists of all cars that are not worse than any other car in both dimensions.
In our example these are the cars with id € {3,4,7}.

Table 1: Sample dataset of cars.

car | id | make color | price | hp
1 | Ford black 70K | 180
2 | Mercedes | purple 75K | 200
3 | BMW red 50K | 230
4 | Audi blue 45K | 170
5 | Mercedes | cyan 55K | 190
6 | GMC yellow 70K | 150
7 | BMW green 48K | 220

Skyline queries and the more general concept of preference database queries
have been subject to research for more than one decade [38]. Preferences enable
users to specify a pattern that describes the type of information he is searching
for. Since preferences express soft constraints, the most similar data will be
returned when no data exactly matches that pattern. From this point of view,
preference database queries are an effective method to reduce very large datasets
to a small set of highly relevant tuples that are optimal compromises for the
user.

In many approaches, preferences are modeled as strict partial orders (SPO),
and therefore transitivity holds, cf. e.g., [22, 5]. When evaluating a preference
P on a dataset D, the tuples in D that are not dominated by any other tuple in
D w.r.t. P are called the mazimal values or the Skyline in the case of a Pareto
preference query. The objective of a preference query is to find the tuple(s) in
a dataset that are maximal with respect to a given set of preferences.

Example 1. Figure 1 expresses a simple user preference on the domain of colors
dom(color) = {red, blue, green, yellow, purple, black, cyan} when searching for
a car in Table 1. The colors red, blue, and green are preferred over yellow and
purple, which are better than black and cyan. Thereby, all colors in the same
set should be considered as equally good and as substitutable (we refer to this
as regular Substitutable Values (SV) semantics later on in this paper [23]).

(0) L, = {red, blue, green}

(1) L = {yellow, purple}

(2) L3 = {black, cyan}

Figure 1: Preference on colors.

A Better-Than Graph (BTG, also known as Hasse diagram) is a visual rep-
resentation of the domination of domain elements for a preference as can be seen
in Figure 1. The nodes in this BTG represent equivalence classes. Each equiv-
alence class contains objects which are mapped to the same level by a wutility
function. The edges in the BTG state dominance.

The preference order in Figure 1 forms a weak order, because all values in the
same equivalence class are considered as substitutable and for each equivalence
class we can specify a numerical value which represents a node in the BTG. In
real life a user does not have necessarily such simple preferences, but specifies
his wishes in a more explicit way.

Example 2. A general strict partial order which does not form a weak order
is giwen in Figure 2. In fact, red, blue, and green are the best values, but
they are not considered as substitutable (trivial SV-semantics). In addition,
green is not better than yellow or purple, i.e., the ’best values’ cannot lie in
the same equivalence class, we cannot represent red, blue, and green with one
single numerical value as in Figure 1.

red blue green

yellow purple

|~

black cyan

Figure 2: Hasse diagram for a general SPO.

Based on such simple preferences on single domains, we can build complex
preferences on multiple attributes of a database relation. For example, the
Pareto preference renders all included preferences as equally important. In the
literature this kind of data selection is also called the Skyline operator [2]. Typi-
cally such techniques are used to find optimal tuples w.r.t. potentially conflicting
goals.

There are many algorithms for the computation of preference queries (see [6]
for an overview). Many of them rely on a nested-loop and tuple-to-tuple com-
parison approach (e.g., Block-Nested-Loop, BNL [2]). The major advantage of
the BNL algorithm is its simplicity and suitability for computing the maxima of
general strict partial orders. However, most of the tuple-comparison algorithms
have a quadratic worst-case time complexity, O(n?d) — where n is the size of
the d-dimensional input data.

On the other hand there are many algorithms which exploit the lattice
structure induced by a Pareto preference for efficient preference evaluation,
cp. [30, 33, 12, 11, 26, 21, 14]. In a lattice, two arbitrary elements have an
infimum and a supremum. Most of these algorithms offer excellent performance
for domains with low cardinalities. The lattice based algorithms are the only
ones with a linear runtime complexity, O(dV + dn), where V is the product
of the cardinalities of the d low-cardinality domains. Apart from the domain

size restriction, lattice based algorithms can only deal with Pareto preferences
consisting of preferences that form weak orders on their domains. But this is
not always suitable for real life applications as in Figure 2.

In this paper, we present a method to embed any strict partial order into
a lattice. That means, we overcome the weak order restriction and thus make
lattice-based algorithms capable of dealing with general strict partial orders. For
this, we show 1.) how to transform general strict partial orders into lattice
structures, 2.) how to construct smaller lattices in the case of special base
preferences, and 3.) how to combine weak orders and general strict partial
orders into lattices.

The rest of this paper is organized as follows: Section 2 contains the formal
background. Section 3 presents the embedding of general database preferences
into lattices, and in Section 4 we present a method to construct smaller lattices
for base preferences. In Section 5 we show how to combine weak order prefer-
ences and general strict partial orders. In Section 6 we discuss some implemen-
tation details. Section 7 provides some related work and Section 8 contains our
concluding remarks.

2 Background

Preference queries in database systems have been in focus for some time, leading
to diverse approaches, e.g., [5, 22]. We review [22, 23], where preferences are
modeled as strict partial orders.

2.1 Preference Modeling

Following [22] a database preference P is defined as P := (A, <p), where A is
a set of attributes and <p is a strict partial order (SPO) on the domain of A.
The term = <p y for z,y € dom(A) is interpreted as “I like y more than z”, “is
preferred to”, or “is more probable than”, and so forth. As strict partial orders
are transitive, better-than relations in this model are, too. The mazimal values

of P = (A, <p) are defined as
M(P) := {v € dom(A4)| Aw € dom(4) : v <p w} (1)

If of two different objects none is better w.r.t. a preference, we call them indif-
ferent, cp. [22, 10, 15]. The indifference relation ||p is defined as:

zllpye ~(r<pyVy<px)

Keep in mind that, in general, || p is reflexive, symmetric, but not transitive [15].

2.2 Weak Order Preferences

An important subclass of strict partial orders are weak order preferences (WOP).
Following [15, 16], a weak order preference is a strict partial order in which
indifference is transitive. For any WOP we can define a wutility function [15]
mapping each attribute value to a number to determine dominance between
two values. The utility function depends on the type of preference as can be
seen in the next section.

Lemma 1 (Utility Function for WOPs [15]). Fach weak order preference P =
(A, <p) has a utility function to determine the dominance between values:

up : dom(A) — RY
x <py<= up(x)>up(y)

For weak order preferences indifferent values belong to the same equivalence
class. The equivalence class of an attribute value x can be identified by up(z).
Note that if P is a weak order then ||p is an equivalence relation (reflexive,
symmetric, transitive).

Definition 1 (max(P)). max(P) € Ry is the maximum up value for a weak
order preference P.

max(P) := max{up(v) | Vv € dom(A)}

2.3 Base Preferences

Preferences on single attributes like discrete (categorical) or continuous (numer-
ical) domains are called base preferences, cp. [24]. Usually they can be defined
as WOPs having a utility function, such that

fv) it d=0
up(v) :z{w(dﬂ £ d>0 (2)

where f : dom(A) — R{ is a score function and d € R{. In the case of d = 0
the function f(v) models the distance to the best value. A d-parameter d > 0
represents a discretization, which is used to group ranges of scores together. The
d-parameter maps different function values to a single integer number. Choosing
d > 0 effects that attribute values with identical up(v) value become indifferent
and stay in the same equivalence class.

The definition of the function f depends on the type of preference. The
BETWEEN (A, [low, up]) preference for example expresses the wish for a value
between a lower and an upper bound. If this is infeasible, values having the
smallest distance to [low, up] are preferred, where the distance is discretized
by the parameter d. The scoring function is f(v) = max{low — v,0,v — up}.
The AROUND,(A,v) is a special case of the former, where low = up =: v.
The preferences LOWEST (A, inf 4) and HIGHEST 4(A, sup 4) express the wish

for the minimum and maximum, where inf4 and sup, are the infimum and
supremum of dom(A).

In a categorical domain LAYERED,,, (A, {L1,..., L,}) expresses that a user
has a set of preferred values given by the disjoint sets L;, which form a partition
of dom(A). Thereby the values in L; are the most preferred values. The scoring
function equals f(v) =i — 1< z € L;. Figure 1 shows an example for such a
preference.

2.4 Complex Preferences

Complex preferences combine other preferences and determine the relative im-
portance of these. Intuitively, people speak of “this preference is more important
to me than that one” or “these preferences are all equally important” (Pareto)
[22, 5]. Hence, we need a notion of equality w.r.t. a preference.

A simple approach for the notion of equality w.r.t. a preference is to use
strict equality of the domain values. But equivalence classes can be applied
here as well. For example, if for two values z,z’, up(z) = up(z’'), i.e., the
tuples have the same utility value; they belong to the same equivalence class
and hence x <p y < 2’ <p y for all y.

The substitutable value semantics has been introduced in [23] to have in-
difference as a transitive relation and every preference P is associated with
an SV-relation =p on dom(A), where the equivalence classes contain “equally
good” objects.

Definition 2 (Substitutable Values (SV)).
Let P = (A,<p). =p is P’s substitutable values relation (SV) iff Va,y,z €
dom(A)

) x=py = zpy
b) (x<py NyZpz)V@=Zpy N y<pz)=x<p=z
¢) =p is reflexive, symmetric, and transitive

The identity relation on attribute set A is called trivial SV-relation (=p). The
regular SV-relation ~p is the equivalence relation induced by the equivalence
classes computed by up.

Note that this definition of SV-semantics is needed to preserve the strict
order property of complex preferences, cp. [23, 15].

The intuition behind SV-relations is that a tuple x can be substituted by
2, if x &2p 2’ holds. For base preferences regular SV-semantics ~p does not
affect <p itself, but expresses that it is admissible to substitute values for each
other. The difference occurs when such preferences are combined to complex
preferences, e.g., a Pareto preference, where ~p does affect <p. Then, the

value of the utility function up alone is not sufficient to determine domination.

Definition 3 (Pareto Preference). Given m preferences P; = (A;, <p,) and
objects x = (x1,...,&m), ¥y = (Y1,--.,Ym) € dom(A; x --- X A,,). A Pareto
preference P := P, ® ... ® Py, is defined as:

r<py &= F:z; <p yi N
(Vi,je{l,....om},j#i:(z; <p,y; V zj Zp, y;))

Note that although we have only WOPs as input preferences for a Pareto
preference P, P itself forms a strict partial order, but not a WOP anymore [5].
All input values leading to the same utility value combination (up, (v),...,up, (v))
for the WOPs P; in P belong to the same equivalence class.

Example 3. Reconsider Example 1. The preference Py on colors (Figure 1) now
should be equally important to Py := AROUND;(price, 50K) (Pareto preference
query). Let x = (red,50K) and y = (blue,45K) be two tuples as in Table 1.
Using trivial SV-semantics the tuple (red,50K) is not better than (blue,45K),
although a price of $50K (up,(50K) = 0) is better than $45K (up, (46K) =1).
Due to the trivial SV-semantics ‘red’ and ’blue’ are not substitutable. Note that
the same holds for (green,48K), i.e., the result are the cars with id € {3,4,7}.

Having regular SV-semantics, 'red” and ’blue’ (and ’green’) become substi-
tutable in the preference on the colors. Hence, (red,50K) is equally good as
(blue,45K) concerning the color, but a price of $50K is better than $45K con-
cerning the preference AROUND5. This means, (red,50K) is the only tuple
i the result set which corresponds to the car with id = 3. It also dominates
(green,48K).

2.5 Better-Than-Graph and Lattices

A Better-Than-Graph (BTG) is a visualization of the partial order induced by
a preference. A graph like this is equivalent to a Hasse diagram (directed and
acyclic) [10]. An edge between two nodes in a BTG denotes dominance of the
upper node over the lower.

Definition 4 (Better-Than Graph (BTG)). The better-than graph of a pref-
erence P = (A, <p) is the Hasse diagram of <p with the additional character-
18tics:

a) A node in the BTG corresponds to a value or a set of substitutable values
(equivalence class) in dom(A).

b) The utility function value of a node is the length of a longest path leading
from the best node to it.

The BTG for weak order preferences forms a total order where each node
represents one equivalence class up, cp. Figure 1. A Pareto preference P has one
node for each possible utility value combination of the P;s of P and constitutes
a lattice [10, 30], where each node in the BTG stands for one equivalence class
of the preference.

Definition 5 (Lattice [10]). A partially ordered set D with operator <p is a
lattice, if Va,b € D, the set {a,b} has a least upper bound (supremum) and
a greatest lower bound (infimum) in D. If a least upper bound and a greatest
lower bound is defined for all subsets of D, we have a complete lattice.

Lemma 2 (#Nodes of a BTG [33]). Let P := P, ® ... ® Py, be a Pareto
preference on the domain dom(A) := dom(A;) x ... x dom(A4,,) and P;, i =
1,...,m WOPs with max(P;) as in Definition 1. Then

m

#nodes(BTGp) = [[(max(P;) + 1) (3)

i=1
More properties of BTGs (#edges, height, width, etc.) can be found in [33].

Example 4. Consider our car sample in Table 1. Let Py be a LAYEREDg
preference as in Figure 1, i.e., the up mapping is as follows:

red, blue, green — 0
yellow, purple — 1
black, cyan - 2

Let Py be a LAYEREDj preference on the make in Table 1, where each make
forms its own layer in the order GMC — 0, BMW — 1, Ford — 2, Mercedes
— 3, Audi — 4.

Figure 8 shows the BTG for the Pareto preference Py ® Py with the mazimum
values max(Py) = 2 and max(Py) = 4. The node (0,0) presents the best node,
i.e., the supremum, whereas (2,4) is the worst node (infimum). The bold num-
bers next to each node are unique identifiers (ID) for each node in the lattice,
cp. [35].

A dataset D does not necessarily contain tuples for each lattice node. In Fig-
ure 3, the gray nodes are occupied (non-empty) with elements from the dataset
in Table 1 whereas the white nodes have no element (empty). Fach node con-
tains the objects mapped by up to the same feature vector of the preference query.
For exzample, the tuples (red, BMW) and (green, BMW) both correspond to the
node (0,1). All values in the same node / equivalence class are indifferent and
considered substitutable. The number of nodes is (2+1)-(4+ 1) = 15.

2.6 Lattice Skyline Revisited

Lattice based algorithms like LS-B [30] and Hezagon [33] exploit the observa-
tions from the last section to find the maximal values of a dataset w.r.t. some
preferences. The elements of the dataset D that compose the mazimal values
is formed by those nodes in the BTG that have no path leading to them from
another non-empty node. All other nodes have direct or transitive edges from
the maximal nodes, and therefore are dominated.

For the implementation of such algorithms the lattice is usually represented
by an array, where each position stands for one node in the lattice [30] (ac-
cording to the ID for each node as in Example 4). The array stores the

7777777 OO0y -------====, [level = 0]
I o ’:»,A/ [level = 1]
2(072) 6(1, 1) 10(2,0) [level = 2]
3(0,3) 7(1,2) 11(2,1) [level = 3]
[level = 4]

9(T,4) [level = 5]

14(2,4) [level = 6]

Figure 3: BTG for a Pareto preference.

empty, non-empty, and dominated state of a node. For each element ¢t € D
the algorithms compute the unique position in the array and mark this posi-
tion as non-empty. Next, the nodes are visited in a breadth-first order (BFT,
dashed line in Figure 3). Non-empty nodes cause a depth-first traversal (DFT,
thick black edges in Figure 3) where the dominance flags are set. Finally
those nodes represent the maximal values which are both non-empty and non-
dominated. In Example 4, only the nodes (0, 1) ~ {(red, BMW), (green, BMW)}
and (1,0) ~ {(yellow, GMC)} are not dominated. All other nodes have direct
or transitive edges from these two nodes, and therefore are dominated. Note
that in general strict partial orders do not form lattices (e.g., Figure 2) and
therefore the above approach cannot be applied.

The original lattice based algorithms have linear runtime complexity w.r.t. the
number of input objects and the size of the BTG. More precisely, the complex-
ity is O(dV + dn), where d is the dimensionality, n is the number of input
tuples, and V is the product of the cardinalities of the d domains from which
the attributes are drawn.

3 General Strict Partial Orders

In Section 2 we have seen that the BTG of a Pareto preference is a lattice.
Now, we will use such lattices as an abstraction from the underlying preference
to integrate general strict partial orders. This will enable us to handle arbitrary
preferences in the same way as Pareto preferences.

3.1 Embedding General SPOs into Lattices

To define general strict partial orders the preference constructor EXPLICIT(A, E)
was introduced in [22]. Tt constructs a preference from a given set of edges E.

Unmentioned values are considered worse than any value in some element of

E. The transitive hull of F is the Better-Than-Graph of the strict partial or-

der expressed by EXPLICIT. In contrast to other base preferences it does not

construct a weak order.

Example 5. A typical simple general strict partial order expressed as EXPLICIT
18

I like red more than black. And I like blue.

Figure 4 shows the Hasse diagram of this preference, which does not construct
a weak order.

red blue

black

Figure 4: Hasse diagram for a general SPO.

Unfortunately there is no efficient algorithm to evaluate arbitrary database
preferences as above but BNL, because BNL compares each tuple to all other
tuples in the dataset (worst-case complexity O(dn?), cp. [2]). To be able to
apply efficient algorithms like [30, 33, 12, 11, 14] on EXPLICIT, we have to
embed the strict partial order defined by it into a distributive lattice.

For this embedding, we start with a Hasse diagram representing a general
strict partial order. Since lattices need a least upper bound and a greatest
lower bound (cp. Definition 5) we just add virtual nodes to the existing Hasse
diagram. Then, we will assign a so-called signature to each node. This signature
is a combination of integers that is unique for each node and hence can be used
to identify it.

For nodes in the same level (which are indifferent) we construct Pareto in-
comparable signatures. A node m which is directly dominated by a node m
needs a “worse” signature than the dominator. For this we just increase one
position in the signature of m and assign it to n. Which position we use is
determined by a depth-first traversal. When the construction of the distributed
lattice structure is complete, the signature of a node is identical to the inte-
ger combination of the BTG node it is mapped to. Algorithm 1 describes our
approach in detail.

Algorithm 1. (Embedding SPOs into Lattices).

The mapping is done in the following steps:

1) Identify non-dominated nodes and generate an unlabeled virtual top node A\
for them. Add edges from /\ to the non-dominated nodes. Also add a virtual
bottom node <7 that is dominated by all the nodes not dominating other values
in the graph.

2) Do a depth-first search beginning at the top node. The algorithm used for
the depth-first search is irrelevant, but the following issues have to be kept in
mind:

10

a) Keep a counter. Fach time the search finds a dead end, increase the
counter by one.

b) Annotate each edge during the search with the counter value.

¢) Do not follow annotated edges.

3) Do a breadth-first search on the graph, starting at the top node again. There
are two possibilities in each node n:

a) n is directly dominated by exactly one node and reached by an edge with
an annotated value of v. The signature value of n is the signature value
of its dominating node increased by one at position v.

b) n is directly dominated by a number of nodes dy, da, ..., dr. The signa-
ture of n at each position i is given by the mazimum value of the d; at
the same position.

If two nodes n and m (or more) are dominated directly by exactly the
same set of nodes dy,...,d;, this yields the same signature. In this case,
increase the value of n (resp. m) at the position of the edge on which it
was reached first by the depth-first search.

4) Check the maximum values in use at each position of the node signature and
remove those positions with a mazimum value of zero.

Please note that in step 3b also signature values at other positions could be
increased. This can lead to smaller BTGs. It is only necessary that n’s and
m’s signatures are increased at different positions, preserving their indifference.
Step 4 is unnecessary for the correctness of the algorithm. It is simply removing
elements not containing any information for any node to reduce the signature
length. For an EXPLICIT preference, all domain values not mentioned in its
constructor are mapped to the virtual bottom node.

We now prove that Algorithm 1 preserves the original strict partial order.

Proof. We have to show that 1.) the signatures can be used to determine a
supremum and an infimum for each pair of nodes, which is the basic character-
istic of a lattice, cp. Definition 5. Apart from that, 2.) the relation between any
two nodes of the SPO has to be preserved.

1.) Let’s assume for a SPO our algorithm yields node signatures with n posi-
tions. Using the signatures, the supremum for any two nodes a and b with
signatures (ai,...,ay) and (by,...,b,) is defined as

sup(a, b) := (min(ay,by), ..., min(a,, b,)) ,
their infimum as

inf(a, b) := (max(ay, b1),...,max(an,by)) .

11

Both infimum and supremum of two nodes might not be elements of the
original SPO (like A and v7), cp. [10]. The top node A by definition has
the signature (¢1,...,t,) = (0,...,0). The supremum of any node x and A
is /A, while their infimum is x. In this sense Algorithm 1 constructs a lattice
from the node signatures.

Given two nodes a and b in the SPO with b <p a. Then there is a path
from a to b.

e For any node g = (¢1,. .., ¢gn) on this path that is dominated by exactly
one node, the signature is increased at the position given by the edge’s
annotation. Assume this position is i. So for all such nodes g on that
path it holds that g; > a;. This holds for b as well.

A node h on the path dominated by two nodes f’ and f” will have
signature values defined by the maximum values of the dominating
nodes (a generalization to more than two nodes is obvious). As f' ||p
f”, it holds that
i, g fi > i1 N f; < fj ,and
VE:hy > fi A hi > f
A (32,] s hy > f,:/ A hj > fJ/)

In summary, nodes which are dominated by one or more nodes in the
original SPO are modeled as dominated in the lattice structure, too.

e We have to consider indifferent nodes in the original SPO. For this
consider two nodes s ||p t. We can find a supremum as

x :=sup(s,t) := (min(sy,%1),...,min(s,,t,)) .

We assume a path from x to s starting with an edge annotated with 4,
reaching the node z’ with

x’
(min(si,t1),...,min(s;, t;) + 1, ..., min(s,, ty,))

A path from x to t starts with an edge annotated with j, leading to a

node
x// =

(min(sq,1),...,min(s;,t;) + 1, ..., min(s,, t,))
Note that ¢ # j, as otherwise 2’ and z”" would be the equal node and
the supremum of s and t. So 2’ ||p 2" in the lattice, since " and z”

cannot dominate a node that dominates both s and ¢ as this would be
their supremum. Hence s and ¢ must be indifferent.

We see that domination between nodes is preserved.

12

Based on our algorithm we are now able to embed any strict partial order
into a lattice. After constructing the lattice and mapping the nodes to an array
as described in Section 2.6, we apply a lattice based algorithm like LS-B or
Hexagon. The remaining nodes contain the maximal values. Note that our
approach still has a linear runtime complexity. The construction of the lattice
in Algorithm 1 only relies on a DFT and a BFT, both are linear in the number
of nodes and edges.

The exponential lattice size is not a major limitation, because in most cases
preferences are specified only over a few items, all others can be considered as
worse then the mentioned objects and hence can reside in the virtual bottom
node of the lattice. That means, it is not necessary to construct the lattice on
the complete domain, but only on the objects specified by the user. Therefore
we create small lattices which can be handled efficiently.

3.2 Examples

We now present some examples on how to embed general strict partial orders
into BTGs.

Example 6. Reconsider the preference given in Figure 4. Following Algorithm
1, we add a virtual top and bottom node. Then, the depth-first traversal anno-
tates all edges as shown in Figure 5a. The highest annotation is 2 and hence
the virtual top node corresponds to /A — (0,0). Then the mapping into a lattice
is “red” — (0,1), “blue” — (1,0), and “black” — (0,2). In this case the signa-
ture for the virtual bottom node is V. — (1,2) which characterizes the complete
structure of the lattice. Figure 5b shows the lattice with the order embedded into
it. The nodes with frames represent the original Hasse diagram’s nodes.

A (0,0)

Figure 5: Lattice for the SPO in Figure 4.

13

Example 7. Another Hasse diagram for a general partial order is known from
the introductory Fxample 2 and presented again in Figure 6a, where we use the
abbreviations red (r), blue (b), green (g), black (k), etc.

oQ
t)e]

&

oo —o

<o
]

©B T
®

AN
v

W@%@HQD
/
QD
&

g
%

(a) (b) (C)
Figure 6: Embedding a SPO into a BTG (1).

—~
[}
=

Following Algorithm 1, we add top and bottom nodes in Figure 6b. Then, the
depth-first marking of the edges begins. Figure 6¢ shows the moment when the
counter value is “3” and the first edge has been marked with it. In Figure 6d,
all edges are marked. The depth-first orders leads to annotations on the edges
which make each path from the top node to any other node in the Hasse diagram
unique.

Then, we determine the node signatures, starting at /\. As the highest num-
ber assigned to an edge is 4, the node signatures consists of four integer values.
The top node has a signature of (0,0,0,0). For r, we get the signature (1,0,0,0),
as it is dominated by the top node by an edge marked with 1 and so the signature
value of A\ is increased by one at position 1. Table 2 shows signatures for all
nodes after step 3 of the algorithm.

Table 2: Signatures for all nodes after step 3.

node r y k
signature | (1,0,0,0) | (2,0,0,0) | (3,0,0,0)

b p c g
(0,0,1,0) | (0,0,2,0) | (2,0,2,0) | (0,0,0,1)

We see that the mazimum value at position 2 is 0. Hence it is removed. So
we keep the mazximum signature values 3, 2, and 1. The resulting BTG can be
seen in Figure 7 showing all signature values and the framed nodes connected
to a value of the original order. Note that the max(P) values are 3, 2, and 1,
hence the BTG has 4 -3 - 2 = 24 nodes.

14

gremml\ed
/ ’4 ellow
(0,1,1)
PUpIES——— =5 > =7\ black
0,2,1) (1,1,1) (1,2,0) (2,0,1) (2,1,0) ((3.0,0)]
,/

(12,1) (2,1,1) 1(2,2,0)) (3,0,1) (3,1,0)

Cyan

(2,2,1) (3,1,1) (3,2,0
(3,2,1)

Figure 7: Lattice structure for the preference expressed in Figure 6a.

Our algorithm has no problem in integrating any kind of strict partial order.
Isolated nodes in a Hasse diagram belong to the set of top nodes that is linked
to the virtual single top node created in step one of the algorithm. Please note
that our algorithm for embedding a strict partial order into a distributive lattice
like a BTG is not necessarily producing minimal BTGs.

Example 8. We will have another look at the strict partial order in Figure
6a. Some depth-first search algorithm yields the edge annotation of Figure 8.
Then, the mazimum integer values for the embedding are 2, 1, 2, 1. With those
mazimum values, the BTG that is constructed has 36 nodes; it is 50% bigger
than the one shown in Example 7.

<
o{%*@ @O“QD
o B

8

Figure 8: Embedding a SPO in a BTG (2).

3.3 Remarks

Another mapping of partial orders to distributive lattices has been presented
in [36]. Using only two integer numbers to represent each value in a partial
order, a BTG constructed according to the maximum signature levels tends to
be smaller than when using Algorithm 1. But not all partial orders can be
expressed when such a mapping is used, as we will see in Lemma 3.

Lemma 3. We have some values a, b, ..., f and a partial order on them
defined byd < a,d<b,e<a,e<c, f<b, and f <c. The Hasse diagram for
this order is given in Figure 9. Then a mapping of each node to a BTG node
defined by two integer values is not able to preserve the original partial order.

a b C
d e f

Figure 9: SPO needing more than two integer values.

Proof. Let a = (a1,a2), b= (b1,b2), and ¢ = (¢, ¢2) the indifferent two integer
representations of the corresponding nodes. We will assume a; < by < ¢; and
ag > by > co. From the strict partial order we know:

e<alNe<c=ar<eNag<eaNcy <e Nca < eg

Hence, the combination of smallest possible values for e is (e1, e2) = (c1,a2). So
e always is dominated by b, too, which is a contradiction to the original partial
ordered set. O

Using the Hasse diagram structure of Figure 9 as a pattern, similar proofs
for more than two values in a signature can be found. The number of integers
needed to construct a BTG to embed a partial order depends on the partial
order and does not have an upper border. In Example 9, a possible embedding
of the given partial order into a BTG using three integer values can be seen.

Example 9. Consider the partial order in Figure 9. A possible embedding to a
distributed lattice is shown in Figure 10. The mazimum values are (1,1,1).

4 WOPs with Trivial SV-Semantics

Our approach of embedding general SPOs does not necessarily construct mini-
mal lattices. We assume that finding a minimal lattice is an NP-hard problem.
Therefore, we leave this for further investigations and future work. Never-
theless, in this section we show a method which in general constructs smaller
lattices than Algorithm 1. However, this only applies for base preferences like
LAYERED,,, and BETWEEN, and their sub-constructors.

16

00,0
node | signature /(’)\
(0,0,1

0,0,1) (0,100 (1,00

0,1,1) (10,1) (1,1,0)

(1,1,1)
() ()

Figure 10: Mappings (a) and lattice structure (b) for the SPO in Figure 9.

We have seen that graphs of WOPs (with regular SV-semantics (=p)) build
a total order and therefore always construct a minimal lattice (cp. Section 2.5).
A Pareto preference consisting of WOPs also constitutes a complete lattice,
which is minimal w.r.t. the base preferences. Therefore, we now consider base
preferences with trivial SV-semantics (=p). Keep in mind that for regular SV-
semantics all objects in an equivalence class are substitutable, but in the case of
trivial SV-semantics they are not. That means each object in a dataset forms
its own (single valued) class.

4.1 Categorical Base Preferences with Trivial SV-Semantics

Modeling incomparability of values in categorical base preferences is straightfor-
ward. Using trivial SV-semantics in LAYERED,,, (A4, {L1,...,L.,}), all values
in one of the L; are incomparable.

Theorem 1. Let P := LAYERED,,(A,{L1,...,Ln}) and P’ derived from P
by replacing regular with trivial SV-semantics. Each value in dom(A) is mapped
to a pair of integer values.

The elements of the L; are labeled with indeves: L; == {l;1,li2,...,li |5, }-
Every element of L; has to get a unique index value. Then, the integer combi-
nation for each l; j can be found as follows:

liJ’ — (ll, lr)

where
—i47

L = ’Ui_:lle
[A— ’Uizlequf(iJrj)Jr
{x | 2 <iA|Ly| =1A|Lyp_q] =1}

17

Proof. Consider three categorical values l; j, l; 1, liy1,4 € dom(A) with j < k. A
value I, is mapped to (I3,4[0],1z,4[1]). We have to prove that P’ constructs
the same order as P on elements of different layers and renders elements of the

same layer indifferent. For readability, we will abbreviate ’Ui;ll L, | with s and

H{z | 2 <iA|Lg| =1A|Ly—1] =1} with ¢(3).

L4 li,j HP’ li,k3
- 11,3[0] — lz,k[O] = (8 —1 -l—j) — (S —1 +k) =j—k= ll’][O] < ll)k[O]

— Ui i[1]=l; k[1] = (s+]|Li|+1—=(i47)+t(i)) — (s+|L; | +1—(i+k)+t(3)) =
—j + k= li,j [0] > lz’k[O}

With li,j [0] < lz,k[o] AN li,j [0] > lz,k[o] it follows that l@j ||p/ li,k~

® lit1,q <prliy:

= 1ij[0] < lit14[0] & § < [Lil =144
This always holds as j < |L;| A(=14¢) >0
=j=|Li|-1-g&j=[Llrg=1land j <|Lj|-1-q&j<
|Li| Vg >1

o lij[1] <liyig[l] & —j + () < |Lipa| =1 —q+t(i+1)

—case l: |L;| =1A|Lipi|=1<t
= —j+t(i)) < |Liqa| - 1—q+t

i+1)=tli)+1=>j=1Aqg=1
i)+1

—case 2: |L;| > 1V |Liy1| > 1< t(i +1) =1t(3)
= —j + (i) < |Lis1| — 1 — g+ t(3)
For j = 1Aq = |L;11], both sides are equal. As (j > 1)A(¢—|Lit+1] <
0), the inequation holds in all other cases, too.

—_— —_—

To sum up the preceding points, we showed that
lit1,4 <pr l;; always holds:

o j=1Aq=|Li|
= 1;, (0] < liy1,[0]ALi 1] = lit1,4[1]

o 1<j<|L|ALl<q<|Lis1]
= 1;,j[0] < liy1,q[0IALi 5[1] < lit1,4[1]

o j=|LijNg=1
= 1; j[0] = liv1,q[0]ALi j[1] < lig1 4[1]

As we can see, all elements of the same layer are indifferent and better than
all elements of (w.r.t. their indexes) higher layers. O

18

Example 10. Consider the color preference in Figure 1. We derive a preference
P’ with the same sets but trivial instead of reqular SV-semantics. This means
for example that 'red’, ’blue’, and ’green’ are not substitutable. Table 3 shows the
integer combinations (1;,1,.) for each color. For example, for 'red’ we compute
L=0—-14+1=0andl, =34+1—-(141)+0=2, i.e., 'red’”— (0,2).

Table 3: Mappings for Example 10.

[color | Li |up [Lij | (1) |

red L1 0 11’1 (0, 2)
blue Ll 0 ll_yg (]., 1)
green | Ly | 0 |lis]| (2,0
yellow L2 1 l271 (2, 3)
purple | Ly | 1 |l | (3,2)
black Lg 2 l371 (3, 4)
cyan Ly | 2 |32] (43)

Figure 11 shows the lattice for P'. Nodes with invalid level combinations are
white, nodes with other colors filled and labeled with the color and its assigned
integer combination. Following FEq. 3, the size of the BTG is 5-5 = 25. Note that
the number of occupied nodes is the size of the categorical domain, |dom(A)| = 7.

Figure 11: BTG for LAYERED,,, with trivial SV-semantics.

4.2 Numerical Base Preferences with Trivial SV-Semantics

In the case of numerical preferences it is sufficient to analyse the problem only
for BETWEEN,, because all other numerical base preferences are special cases
of the former. However, embedding BETWEEN, into a lattice is not a trivial
task, because if two values exist in the same equivalence class, they are not sub-
stitutable when using trivial SV-semantics and must be modeled incomparable
in the lattice structure.

19

Example 11. Let P := AROUNDj(price, 50K) be a preference with dom(price)
= {45K,48K,50K}. The value 50K is the maximal value, whereas 45K,48K
lie in a distance of d from the best value. Since 45K,48K € [A5K,50K], they
share the same up wvalue 1, but are not substitutable and must be modeled as
incomparable in the lattice which they should be embedded in.

Since the domain of an attribute could be infinite, this makes the embedding
of numerical base preferences with trivial SV-semantics difficult. However, in
database relations we generally assume a closed-world, hence we have a finite
number of objects in an equivalence class. In this case, BETWEEN, could be
modeled in the same way as LAYERED,,. That means, construct a prefer-
ence LAYERED,,, based on the numerical values preferred by BETWEEN, and
compute /; ; as in Theorem 1.

Under some assumptions we can produce smaller lattices, e.g., when we
have single occupied equivalence classes, or if a user specifies an “interval as
the preferred value”. In these cases we avoid the problem of several indifferent
objects in the same equivalence class; objects having the same up function value
are either identical or lie “left and right” of the maximal value.

Theorem 2. Given P := BETWEEN(A, [low, up]) and let P" be derived from
P by replacing reqular by trivial SV-semantics. Assume each equivalence class
contains at most one element. We map x € dom(A) to the integer combination
(I1,12) in P as follows:

(up(x) , up(x)—1) if z>wu
x%(ll’h):{ (ui(x)fl ,ul;(:c)) if x<lfw

For z € [low, up] we set x — (0,0). Then, P’ models the same order w.r.t. dom(A)
as P, but distinguishes between values lower and values higher than the interval
borders.

This can be interpreted as two WOPs being connected and used to model a
strict partial order. A “virtual” Pareto preference is constructed by the numer-
ical base preference.

Proof. Consider a value v mapped to (v1, v2), and a value w mapped to (w1, ws).
The following cases may occur:

e up(v) =up(w)+1:

—v<lowAw<low= (wy =v1 +1)A (w2 =vy +1)
— v <lowAup <w= (w; =v1 4+ 2) A (wy =vs)

o up(v) =up(w):

— v <lowAw < low = (v1,v2) = (w1, ws)
= UV ~prw

20

— v <lowAup <w
(v1,02) = (up(v), up(v) +1)
(w1, w2) = (up(v) + 1, up(v))
= v ||p/ w

All other possible cases can be derived from those above. So the integer combi-
nation assigned to domain values fulfills the specification of the preference. [

Lemma 4 (#Nodes). The number of nodes in the BTG P’ defined by a pref-
erence P := BETWEEN, by replacing regular by trivial SV-semantics is given
by:

#nodes(BTGp) = (max(P) + 1)? (4)

Proof. Looking at the computation of integer combinations for values to be
rated, the BTG that is constructed is identical to one for a Pareto preference
containing two WOPs with maximum values of max(P) + 1, cp. Eq. 3. O

Lemma 5 (#Used Nodes). Consider a preference P’ which is defined as a
BETWEEN, preference P with trivial instead of reqular SV-semantics. The
number of used nodes (i.e. the number of nodes that can be matched by values
evaluated by P') in the BTGp: is given by

#used_nodes(BTGp/) =2 -max(P) + 1 (5)

Proof. The node (0,0) is used for perfect matches. Other nodes used have
combinations of (z,z + 1) or (z + 1,z). The minimum value for z is 1, the
maximum is max(P), leading to 2 - max(P) + 1 values in use. O

Note that Lemma 4 and 5 only hold when considering equivalence classes
which contain at most one object.

Example 12. We search for a car which should cost around $50K, i.e., P :=
AROUNDs(price, 50K) in the domain dom(price) = {45K,50K,55K, 70K, 75K}.
Then max(P) = 5.

No two domain values lie in the same equivalence class, we derive P’ with
trivial SV-semantics and create pair mappings: A perfect value of 50K is mapped
0 (0,0), 45K and 55K (with up(45K) = up(55K) = 1) are mapped to incom-
parable value combinations (0,1) and (1,0), respectively. All combinations can
be found in Table 4.

Table 4: Value combinations for P’.

price || 45K | 50K | 55K | 70K | 75K
up 1 0 1 4 5
(l1,02) || (0,1) | (0,0) | (1,0) | (4,3) | (5.4)

21

Figure 12a shows the BTGp: of P’ with trivial SV-semantics. The black
nodes have tuples belonging to them, the gray nodes represent valid integers for
l1 and ly, while the white nodes are unused dummy nodes given by the graph
structure. The number of nodes is (5+ 1)% = 36 from which 2-5+1 = 11 might
be used.

In Figure 12b we present BTGp for P with regular SV-semantics for com-
parison only. Values with the same up value are substitutable and reside in the
same equivalence class. The BTG forms a chain.

(0) @ [{50K}]

(1) @ [{45K,55K}]
@ O
©A@ILE)

“ @ [{70K}]
(5) @ [{75K}]
(b)

Figure 12: BTG for AROUND, with (a) trivial SV-semantics and (b) regular
SV-semantics.

5 Combining WOPs and SPOs

As we have seen, a single integer value is not enough to express the semantics
of strict partial orders in general. We have overcome this limitation by using
two or more integer values. Now we have to integrate these preferences in the
standard Pareto preference introduced in Definition 3.

Theorem 3. Consider a strict partial order S embedded into a BTG Gg, a
Pareto preference P and the corresponding BTG Gp. The order constructed by
the combination of P and S is visualized by the product of Gg and Gp.

Proof. Both Gg and Gp are lattices. Following [10], the product of them yields
a lattice with a combined order of both input lattices. O

The BTG for such a combination surely holds unused nodes (as the BTG for
the strict partial order does already). Nevertheless the embedding can be very
useful as it enables us to evaluate base preferences that are strict partial orders
just like Pareto preferences and Pareto preferences consisting of strict partial

22

orders just as if they only used standard WOPs as input preferences. Example
13 defines a BTG that is the result of the combination of a WOP and a general
strict partial order.

Example 13. Remember the strict partial order on colors of Fxample 6. A
possible lattice this order can be embedded in is shown in Figure 13a, where the
nodes representing nodes of the original order are framed and labeled accordingly.
The construction steps are shown in Figure 13b.

0,0) A
blue redﬁy \l%l\le
black
2,1 v

(a) (b)

Figure 13: Lattice for the color preference.

Now we combine this order with a WOP with a mazimum value max(P) = 3,
e.g., AROUND(price, 50K) as in Example 12, but with d = 10 and regular
SV-semantics. The BTG for AROUND forms a chain with up € {0,1,2,3}.

The lattice for the combined (Pareto) order can be seen in Figure 14. As
the resulting BTG is the product of the BTGSs of the two underlying preferences,
each of the original nodes in Figure 13a is multiplied. For example, the mul-
tiplication of (0,1) by {0,1,2,3} results in (0,0,1), (1,0,1), (2,0,1), (3,0,1).
Nodes representing no reachable integer combination (due to the strict partial
order) are printed in gray.

(0,0,0)

blue
|(0,0,1)i i(O,l,O)i (1,0,0)

0,1,1) (0,2,0) ((1,0,1) ((1,1,0)) (2,0,0)

0,2,1) (1,1,1) ((1,2,0) (2,0,1) ((2,1,0)) (3,0,0)

(2,2,1) 3,11

black

(3,2,1)

Figure 14: BTG for the combination of a WOP and a strict partial order.

23

6 Optimizations

As we have seen our algorithms do not produce minimal lattices. However,
we propose some improvements for the lattice-based algorithms, which can be
applied if the lattice is “nondense”.

6.1 Reduction on Existing Values

In many cases, only a small number of domain values actually appear in a
relation. For weak orders on numerical domains, this can have the effect that
only some of the possible up values are met.

Example 14. Consider P = AROUND; (A4, 4) with trivial SV-semantics and
let dom(A) = {5,10,15,20} be a numerical domain. Using Theorem 2 would
lead to max(P) = 16 levels, i.e., a BTG of size 289, even though there are only
four different values in the domain with up(5) =1, up(10) = 6, up(15) = 11,
and up(20) = 16. A mapping of these values to 0,1,2, and 3 would reduce the
size of the lattice to 16.

One way to gain information of unused domain values could be the use of a
histogram or a simple B-tree index. With this we can find existing up values
for the corresponding WOPs. Then we can efficiently reduce BTG sizes by
“removing” unused nodes, leading to less memory needed and less effort for
preference evaluation using lattice-based algorithms. The mapping of domain
values to the few required up values could be done using minimal perfect hashing
functions, leading to constant access times and minimum memory requirements
[8, 9, 18]. Note, that this method is also valid for BETWEEN, without the
assumption of single occupied equivalence classes, cp. Section 4.2.

6.2 Data Structure

In the implementation of the original lattice Skyline algorithms Hezagon [33]
and LS-B [30], the lattice is represented by an array, where each position stands
for one node in the lattice, c¢p. Section 2.6. Following [33], the array based
implementation needs at least a memory of [[[;", (max(P;) 4+ 1)] bytes, where
the P;’s are the participating preferences.

Since our approach produces “nondense lattices”, i.e., there are many empty
nodes (cp. for example Figure 7 and 12a), using an array as data structure
makes no sense. Therefore we propose the approach of level-based storage. An
array models the levels (computed by up, Eq. 2) of the BTG. Then the nodes
are stored in a HashMap or SkipList [34], cp. Figure 15.

Adding an element to the BTG means computing the level it belongs to
and marking the node at the right position as non-empty or dominated. The
advantage of the level-based storage using SkipLists in contrast to HashMaps
lies in the reduced memory requirements, because we do not have to initialize
the whole data structure in main memory. A node is initialized on-the-fly if it
is marked as non-empty or dominated. Additionally, if each node in a level is

24

[up=0]| o — NIL

wp =11 | o —E1—[E]
wp=2| « —P1-[3]
[up=3] | o

[up=4] | o

[up=5] | o |— NIL

[up=6] | o |— NIL

Figure 15: Level-based storage of the BTG in Figure 7 using SkipLists.

dominated, we can remove all nodes from the corresponding SkipList, mark the
level-entry in the array as dominated and free memory.

Using a level-based representation of the BTG with a HashMap for each
level, we have a constant access for each level and O(1) for the look-up in the
HashMap, since we can use a perfect hash function due the known width of the
BTG in each level, cp. [19]. In summary this leads to a runtime complexity
of O(dV + dn), too. For the SkipList based BTG implementation we have
O(dV + dnlogw), since operations on SkipLists are O(logw) [34], where w is
the number of elements in the SkipList, i.e., the width of the BTG in the worst
case.

7 Related Work

Skyline queries and the more general concept of preferences are well-known in
the database community since more than a decade. There are many algorithms
to compute the Skyline set, cp. [6] for an overview. The most prominent algo-
rithms are based on a block-nested-loop style tuple-to-tuple comparison (e.g.,
BNL [2], or [25, 7, 20]). Based on this several algorithms have been published for
parallel Skyline computation [37, 29, 4] or utilizing an index structure [31, 28].
The BNL algorithm is the only one who can evaluate general strict partial orders
due to its tuple-to-tuple comparison approach [5]. Most of the other algorithms
are restricted to Pareto preferences, because they rely on the up value of an
object.

Other algorithms exploit the lattice structure induced by a Skyline query,
cp. e.g. [33, 30]. Instead of direct comparisons of tuples, a lattice structure
represents the better-than relationships. There is also work on parallel prefer-
ence computation exploiting the lattice [12] and the authors of [14] present how
to handle high-cardinality domains. Also the work of [39, 27, 13] exploit the
lattice to compute top-k (subspace) Skylines.

The most similar work to ours is [1], [3], and [36]. In [1, 17, 32] the authors
create a spanning tree on a direct acyclic graph where each node is associated
with an interval. The authors of [3] map all data points in a new space, where
each partially ordered value is substituted by associated coordinates. Their aim

25

was Skyline processing on partially ordered domains. Also [36] handle partially
ordered domains using topological sorting. In [35] the author presents a method
for the decomposition of strict partial orders into fundamental preference con-
structs. For this the author studies which preference operators and operands
are necessary to express any strict partial order. Non of these papers produce
lattice structures, but ’arbitrary’ graphs.

8 Conclusion and Future Work

In this paper we presented a method to embed all kinds of strict partial orders
into lattices. As a consequence, existing lattice based algorithms can be applied
to general strict partial orders and prior restrictions on weak order preferences
and their combinations in Pareto preferences do not apply anymore.

As we have mentioned, the lattices we construct with our algorithm are
not minimal. Nevertheless a reduction of the lattice size is wise as the size of
a lattice for a Pareto preference grows exponentially with the lattice sizes of
the underlying preferences. Hence our next step will be to address this and
improve our algorithm so that it produces minimal lattices embedding strict
partial orders. However, this could be a challenging task.

References

[1] R. Agrawal, A. Borgida, and H. Jagadish. Efficient Management of Tran-
sitive Relationships in Large Data and Knowledge Bases. In Proceedings of
SIGMOD 89, pages 253-262, New York, NY, USA, 1989. ACM.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
Proceedings of ICDE 01, pages 421-430, Washington, DC, USA, 2001.
IEEE.

[3] C.Y. Chan, P-K. Eng, and K.-L. Tan. Stratified Computation of Skylines
with Partially-ordered Domains. In SIGMOD °05, pages 203-214, New
York, NY, USA, 2005. ACM.

[4] S. Chester, D. Sidlauskas, I. Assent, and K. S. Bggh. Scalable Paralleliza-
tion of Skyline Computation for Multi-Core Processors. In Proceedings of
ICDE ’15, pages 10831094, 2015.

[5] J. Chomicki. Preference Formulas in Relational Queries. In TODS 03:
ACM Transactions on Database Systems, volume 28, pages 427-466, New
York, NY, USA, 2003. ACM Press.

[6] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline Queries, Front and
Back. SIGMOD, 42(3):6-18, 2013.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting.
In Proceedings of ICDE 03, pages 717-816, 2003.

26

8]

[16]

[17]

[18]

[20]

[21]

[22]

R. J. Cichelli. Minimal Perfect Hash Functions Made Simple. Commun.
ACM, 23(1):17-19, 1980.

Z.J. Czech, G. Havas, and B. S. Majewski. An Optimal Algorithm for Gen-
erating Minimal Perfect Hash Functions. Information Processing Letters,
43(5):257-264, 1992.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, Cambridge, UK, 2nd edition, 2002.

M. Endres and W. Kieflling. Semi-Skyline Optimization of Constrained
Skyline Queries . In Proceedings of ADC ’11. ACS, 2011.

M. Endres and W. Kieflling. High Parallel Skyline Computation over Low-
Cardinality Domains. In Proceedings of ADBIS ’14, pages 97-111. Springer,
2014.

M. Endres and T. Preisinger. Behind the Skyline. In Proceedings of DBKDA
’15. TARIA, 2015.

M. Endres, P. Roocks, and W. Kieflling. Scalagon: An Efficient Skyline
Algorithm for all Seasons. In Proceedings of DASFAA ’15, 2015.

P. Fishburn. Preference Structures and their Numerical Representation.
Theor. Comput. Sci., 217(2):359-383, 1999.

P. C. Fishburn. Intransitive Indifference in Preference Theory: A Survey.
Operations Research, 18(2):207-228, 1970.

P. C. Fishburn. Interval graphs and interval orders. Discrete Mathematics,
55(2):135 — 149, 1985.

E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud. Practical Minimal
Perfect Hash Functions for Large Databases. Commun. ACM, 35(1):105—
121, 1992.

R. Glick, D. Koppl, and G. Wirsching. Computational Aspects of Ordered
Integer Partition with Upper Bounds. In SEA ’18: 12th International
Symposium on Experimental Algorithms, pages 79-90, 2013.

P. Godfrey, R. Shipley, and J. Gryz. Algorithms and Analyses for Maximal
Vector Computation. The VLDB Journal, 16(1):5-28, 2007.

H. Han, H. Jung, H. Eom, and H. Y. Yeom. An Efficient Skyline Framework
for Matchmaking Applications. J. Netw. Comput. Appl., 34(1):102-115,
Jan. 2011.

W. KieBlling. Foundations of Preferences in Database Systems. In Proceed-
ings of VLDB 02, pages 311-322, Hong Kong, China, 2002. VLDB.

27

[23]

[24]

[25]

[26]

W. Kieflling. Preference Queries with SV-Semantics. In Proceedings of
COMAD ’05, pages 15-26, Goa, India, 2005. Computer Society of India.

W. Kieflling, M. Endres, and F. Wenzel. The Preference SQL System - An
Overview. Bulletin of the Technical Commitee on Data Engineering, IEEE
Computer Society, 34(2):11-18, 2011.

D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In Proceedings of VLDB 02, pages
275-286.

J. Lee and S. w. Hwang. BSkyTree: Scalable Skyline Computation Using
a Balanced Pivot Selection. In Proceedings of EDBT ’10, pages 195206,
NY, USA, 2010. ACM.

J. Lee, G. w. You, and S. w. Hwang. Personalized Top-k Skyline Queries
in High-Dimensional Space. Information Systems, 34(1):45-61, Mar. 2009.

K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the Skyline in Z
Order. In Proceedings of VLDB ’07, pages 279-290. VLDB Endowment,
2007.

S. Liknes, A. Vlachou, C. Doulkeridis, and K. Ngrvag. APSkyline: Im-
proved Skyline Computation for Multicore Architectures. In Proc. of DAS-
FAA ’14.

M. Morse, J. M. Patel, and H. V. Jagadish. Efficient Skyline Computation
over Low-Cardinality Domains. In Proceedings of VLDB ‘07, pages 267—
278, 2007.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An Optimal and Progressive
Algorithm for Skyline Queries. In Proceedings of SIGMOD 03, pages 467—
478. ACM, 2003.

M. Pirlot and P. Vincke. Semi Orders. Kluwer Academic, Dordrecht, 1997.

T. Preisinger and W. Kieflling. The Hexagon Algorithm for Evaluating
Pareto Preference Queries. In Proceedings of MPref "07, 2007.

W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Com-
mun. ACM, 33(6):668-676, 1990.

P. Roocks. Preference Decomposition and the Expressiveness of Preference
Query Languages. In Proceedings of MPC' ’15, volume 9129 of LNCS, pages
71-92. Springer, 2015.

D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically Sorted
Skylines for Partially Ordered Domains. In Proceedings of ICDE 09, pages
1072-1083, Washington, DC, USA, 2009. IEEE.

28

[37] J. Selke, C. Lofi, and W.-T. Balke. Highly Scalable Multiprocessing Algo-
rithms for Preference-Based Database Retrieval. In Proceedings of DAS-
FAA 10, volume 5982 of LNCS, pages 246-260. Springer, 2010.

[38] K. Stefanidis, G. Koutrika, and E. Pitoura. A Survey on Representation,
Composition and Application of Preferences in Database Systems. ACM
TODS, 36(4), 2011.

[39] Y. Tao, X. Xiao, and J. Pei. Efficient Skyline and Top-k Retrieval in
Subspaces. IEEE TKDE, 19(8):1072-1088, 2007.

29

