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Abstract

Land-atmosphere interaction analysis still lacks adequate methods for explicitly an-

swering one of the center hydrological question of “what is the fate of evapotranspired

water”, and likewise, “where, when, and to what extent evapotranspiring water of one

region returns as precipitation in the same or another region”, and “what are water

residence times across the atmosphere”.

In this thesis, a regional climate model (RCM) based evapotranspiration tagging

(ET-Tagging) algorithm has been applied for the first time to the subtropical monsoon

and mountainous region of Southeast China. 15 month simulations (October 2004 to

December 2005) were performed to investigate where and to which extent the tagged

evapotranspired water from a predefined source region around the Poyang Lake (the

largest freshwater lake in China) returning to the land surface as precipitation. To

assess the relative importance of the individual evapotranspiration components for the

ET-driven precipitation, the model has been extended to partition the total evapotran-

spiration into direct evaporation (consisting of evaporation from inland water bodies,

evaporation from the top soil layer, and evaporation of precipitation intercepted by

the canopy) and transpiration and to track the two partitions separately. Using this

extended ET-Tagging partitioning algorithm, the contributions of direct evaporation

and transpiration to precipitation were estimated separately.

Since, the atmospheric water residence time is a fundamental descriptor that pro-

vides information on the timescales of evapotranspiration (direct evaporation and tran-

spiration) and precipitation, the algorithm has been further extended with an age tracer

approach. This newly developed age-weighted ET-Tagging partitioning algorithm al-

lows to calculate the atmospheric residence times of evapotranspired water (of direct

evaporated water and of transpired water, separately), and to assess the celerity of the

atmospheric branch of the hydrological cycle.

The most important results are: In 2005 the contribution of moisture originating

from the Poyang Lake region to the annual precipitation in Southeast China reaches a

value of up to 1.2%, with a maximum of 6% near the Poyang Lake region in August. A

budget analysis indicates that in 2005 the tagged precipitation falling in the source area,

XIII



XIV

in the Poyang Lake basin, and in Southeast China equate to 0.8%, 2.7%, and 10.7% of

the evapotranspired water in the Poyang Lake region, respectively. Regarding the ET-

Tagging partitioning, in 2005 direct evaporated water accounts for 64% and transpired

water for 36% of the total tagged moisture with a mean age of around 36 hours for

both. The condensed tagged moisture consists of a large proportion (69.2%) of the

young (7 hours) direct evaporated water and of a small amount of the older (11 hours)

transpired water. Similarly, 69% of total tagged precipitation originates from direct

evaporation of water with a mean atmospheric residence time of 6.6 hours, whereas

31% comes from vegetation transpiration with a longer residence time of 10.7 hours.

To explore the source-target relations under consideration of the respective precipi-

tation regime (wet or dry weather conditions), source-specific precipitation efficiencies

are introduced. For the period under investigation, the source-specific precipitation

efficiency for direct evaporation generally dominates. Only during the comparatively

dry August (with short residence times) and in the winter months (with small abso-

lute transpiration values), the source-specific precipitation efficiency for transpiration

is larger.

This thesis shows large spatial and temporal variations of the magnitude of tagged

precipitation. There is a pronounced difference where and how long direct evapora-

tion and transpiration are able to contribute to precipitation. Impacted by the East

Asian monsoon, the patterns of the atmospheric water residence times change over the

months. The results depict the the seasonal variations of the prevailing meteorological

conditions and the varying interactions between land surface and atmosphere. The

interactions control the annual cycle of the individual contributions to precipitation

and the corresponding atmospheric water residence times, emphasizing the important

impacts of vegetation cover and land use on the regional hydrological cycle.

In conclusion, with the age-weighted ET-Tagging partitioning algorithm developed

in this work, the different fate of transpired and direct evaporated water in the atmo-

spheric branch of the hydrological cycle is depicted. This algorithm has the potential to

be used for addressing how the hydrological cycle changes and potentially accelerates

with climate change.



Zusammenfassung

Für die Analyse von Land-Atmosphäre-Wechselwirkungen werden immer noch

adäquate Methoden zur Beantwortung von zentralen hydrologischen Fragen gesucht,

wie z. B. zu dem Fragen
”
Was wird aus dem in einer Region evapotranspiriertem

Wasser?“ oder
”
Wo, wann und in welchem Umfang kehrt in einer bestimmten Region

evapotranspiriertes Wasser wieder als Niederschlag in derselben oder in einer anderen

Region zurück?“ und
”
Wie groß sind die Aufenthaltszeiten in der Atmosphäre?“

In dieser Arbeit wird zum ersten Mal ein auf einem regionalen Klimamodell (RCM)

basierender Tagging-Mechanismus zur Evapotranspiration (ET-Tagging) auf eine mon-

sunal beeinflusste subtropische Gebirgsregion in Südostchina angewendet. Simulatio-

nen über 15 Monate (Oktober 2004 bis Dezember 2005) wurden durchgeführt, um

zu untersuchen, wo und in welchem Umfang das
”
getaggte“ aus einer zuvor definierten

Quellregion um den Poyang Lake (größter Frischwassersee in China) evapotranspirierte

Wasser wieder als Niederschlag zur Landoberfläche zurückkehrt. Um die Bedeutung der

individuellen Beiträge der Evapotranspiration zum Niederschlag einschätzen zu kön-

nen, wurde das verwendete Model erweitert. Die totale Evapotranspiration wurde in

direkte Evaporation (bestehend aus der Evaporation von inländischen Wasserkörpern,

Evaporation von der obersten Bodenschicht und Evaporation von durch die Vegetation

aufgefangenen Niederschlag) und in Transpiration aufgeteilt. Beide Anteile wurden

getrennt behandelt und ihre Beiträge zum Niederschlag abgeschätzt (ET-Tagging Par-

titioning Algorithmus).

Da die Verweilzeit von Wasser in der Atmosphäre ein fundamentaler Parameter

ist und Informationen zu den Zeitskalen von Evapotranspiration (direkte Evaporation

und Transpiration) und Niederschlag liefert, wurde das Modell um einen sogennanten

”
Age Tracer“-Ansatz erweitert. Dieser neu entwickelte, mit dem

”
Tracer-Alter“

gewichteter ET-Tagging Partitioning Algorithmus erlaubt es, die atmosphärischen

Aufenthaltszeiten von evapotranspiriertem Wasser zu berechnen (separat für direkt

evaporiertes Wasser und transpiriertes Wasser) und die Geschwindigkeit der Prozesse

im atmosphärischen Zweig des Hydrologischen Kreislaufs einzuschätzen.

Die wichtigsten Ergebnisse sind: Die aus der Poyang See Region stammende Feuchte
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trägt in 2005 mit bis zu 1.2% zu dem jährlichen Niederschlag in Südostchina bei, mit

einem Maximum von 6% in der Nähe der Poyang See Region im Monat August. Eine

Budget-Analyse zeigt weiter, dass in 2005 der getaggte Niederschlag in der Quellregion

0.8%, im Poyang Lake Basin 2.7% und in Südostchina 10.7% des in der Quellregion

evapotranspirierten Wassers ausmacht. Hinsichtlich der ET-Tagging-Aufteilung ergibt

sich, dass direkte Evaporation 64% und Transpiration 36% der gesamten
”
getaggten“

Feuchte in 2005 liefert, wobei die mittlere Verweilzeit für beide Anteile rund 36 Stunden

beträgt. Die
”
getaggte“ kondensierte Feuchte besteht zu einem großen Teil (69.2%)

aus jüngerem direkt evaporiertem Wasser (mit 7 Stunden Verweilzeit) und zu einem

kleineren Teil aus älterem transpiriertem Wasser (mit 11 Stunden Verweilzeit). Ähn-

liches gilt für den Niederschlag: 69% des gesamten
”
getaggten“ Niederschlags stammt

aus direkter Evaporation mit einer mittleren atmosphärischen Aufenthaltsdauer von

6.6 Stunden, 31% aus Transpiration von der Vegetation mit einer längere Aufenthalts-

dauer von 10.7 Stunden.

Für die Untersuchung von Quelle-Ziel-Beziehungen bei verschiedenen Nieder-

schlagsregimen (feuchte oder trockene Wetterbedingungen) wurde eine quellen-

spezifische Niederschlagseffizienz eingeführt. In der Untersuchungsperiode überwiegt

generell die Niederschlagseffizienz für direkte Evaporation, nur im vergleichbar

trockenen August (mit kurzen Verweilzeiten) und in den Wintermonaten (mit kleinen

absoluten Transpirationsraten) ist die quellen-spezifische Niederschlagseffizienz für

Transpiration größer.

In dieser Arbeit ergeben sich große räumliche und zeitliche Variationen für die

”
getaggte“ Niederschlagsmenge. Es bestehen deutliche Unterschiede darin, wo und wie

lange direkte Evaporation und Transpiration zum Niederschlag beitragen. Durch den

Einflusses des ostasiatischen Monsoons ändern sich die Muster der atmosphärischen

Verweilzeiten des Wassers während des Jahres. Die Ergebnisse zeigen die saisonalen

Änderungen in den meteorologischen Bedingungen und die variierenden Interaktio-

nen zwischen Landoberfläche und Atmosphäre. Diese Interaktionen kontrollieren den

Jahresgang der einzelnen Beiträge zum Niederschlag und die zugehörigen Feuchteaufen-

thaltszeiten in der Atmosphäre, was den großen Einfluß von Vegetation und Land-

nutzung auf den regionalen hydrologischen Zyklus unterstreicht.

Mit dem in dieser Arbeit entwickelten Aufenthaltszeit-gewichteten ET-Tagging Par-

titioning Algorithmus wurde der unterschiedliche Verbleib von transpiriertem und di-

rekt evaporierten Wasser innerhalb des atmosphärischen Zweigs des hydrologischen

Zyklus aufgezeigt. Dieser Algorithmus hat das Potential, auch für Fragestellungen

herangezogen zu werden, die sich mit Änderungen (z. B. Beschleunigungen) des hy-

drologischen Zyklus aufgrund der Klimaänderung befassen.



Chapter 1

Introduction

Water is the medium through which

the atmosphere has most influence on human wellbeing

and terrestrial surfaces have significant influence on the atmosphere.

– – W. James Shuttleworth (2012)

“Terrestrial Hydrometeorology”

Figure 1.1: Illustration of the atmospheric hydrological cycle (http://www.srh.
noaa.gov/jetstream/atmos/hydro.htm).
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2 1.1. WATER CYCLE AND MOISTURE TRACKING

The hydrological cycle is one main driver for spatially and temporally distribut-

ing the water resources on the earth (Oki and Kanae, 2006; Trenberth et al., 2007).

Evapotranspiration (ET) and precipitation (P) are the two essential components of the

hydrological cycle, which link the terrestrial and atmospheric hydrological processes

(see Figure 1.1). Their relationship is crucial for land-atmosphere interaction studies.

Moreover, understanding the processes in the hydrological cycle is the foundation to

assess these interactions. By now, it is well known that changes to the land surface can

significantly alter the atmospheric branch of the hydrological cycle (Huntington, 2006)

and can further amplify the climate and climate variability (Karl and Trenberth, 2003;

Seneviratne et al., 2006). The relationship between ET and P is highly uncertain and

shows a high spatial and temporal variation depending on the regional climate regime

(Seneviratne et al., 2010).

1.1 Water Cycle and Moisture Tracking

Studying the fate of the evapotranspired water provides more insights into the inter-

actions between land and atmosphere. The well-established concept of moisture recy-

cling (Budyko, 1974; Savenije, 1995; Eltahir and Bras, 1996) describes the role of local

evapotranspiration in the regional atmospheric hydrological cycle, and can be used to

distinguish the fate of the evapotranspired water, after staying for a certain time in the

local atmosphere, as (i) precipitating water arriving at the local land surface, or (ii)

moisture transported to remote regions (Brubaker et al., 1993).

The recycling ratio, defined as the contribution of locally evapotranspired water to

total precipitating water, is widely used as an indicator in studies of moisture recycling

(Brubaker et al., 1993; Eltahir and Bras, 1994; Trenberth, 1999b; van der Ent et al.,

2010; Dominguez et al., 2006; Knoche and Kunstmann, 2013; Alexandre and Gonzalo,

2013). A larger value of the recycling ratio suggests that the regional water balance and

subsequently the climate are more sensitive to local land surface processes. Eltahir and

Bras (1996), Burde and Zangvil (2001), and Gimeno et al. (2012) give comprehensive

reviews that summarize the concepts, describe the governing equations, and reveal the

source-sink relationships, respectively.

There are three principal approaches to estimate moisture recycling: (i) physi-

cal models (stable water isotopes), (ii) analytical models, and (iii) numerical models

(passive water tracers) (Gimeno et al., 2012). These methods may also be combined

together to gain improved information on land-atmosphere interaction.

In physical models, environmental tracers (stable water isotopes measured in pre-

cipitation such as δ 2H and δ 18O) have been employed as a proxy for identifying the
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sources of precipitation by examining isotopic fractionation (Kurita et al., 2003; Gi-

meno et al., 2012). However, intensive collection of isotope data is hard to accomplish,

and additional methods such as an analytical model (Kurita et al., 2003) or a numerical

model (Joussaume et al., 1984) are often used to gain more detailed information.

Most of the analytical models (also called bulk models) are originated from

Budyko’s Model that was developed by Budyko (1974). This comparatively simple

(one-dimensional) model, based on several restrictive assumptions, estimates moisture

recycling considering an uniform atmospheric flow structure over the region (Burde

et al., 1996). Further developments based on this concept have been made such as

the application in a stochastic framework (Entekhabi et al., 1992), extensions from

one dimension to two dimensions (Brubaker et al., 1993; Trenberth, 1998, 1999b), and

relaxation of certain assumptions (Burde et al., 1996; Schär et al., 1999; Burde and

Zangvil, 2001; Mohamed et al., 2005; Dominguez et al., 2006). A detailed description

of the most common analytical models used currently are given in the studies of

Brubaker et al. (1993), Eltahir and Bras (1994), and Dominguez et al. (2006).

However, the shortcomings as a consequence of simplifying assumptions have sig-

nificant effects on the estimation of the moisture recycling. For example, Trenberth

(1999b) and Bosilovich and Schubert (2001) indicate that simple averaging of estimates

for different length scales and timescales may overlook the heterogeneity of the land

surface and the temporal variability. Stidd (1967) and Brubaker et al. (1993) also dis-

cuss that the assumption “evapotranspired moisture and precipitating moisture is fully

mixed in the entire atmospheric column” is not valid in the case of convective events.

Consequently, underestimation of moisture recycling has been revealed and discussed

in many studies (Eltahir and Bras, 1996; Trenberth, 1999b; Burde and Zangvil, 2001;

Bosilovich and Schubert, 2001; Gimeno et al., 2012).

In numerical models, atmospheric moisture tracking with stable water isotopes

(Jouzel et al., 1987, 1997; Pfahl et al., 2012) or with water tracers (Sodemann et al.,

2009; Knoche and Kunstmann, 2013; Winschall et al., 2014) is an option to couple the

evapotranspiration and precipitation processes, in order to characterize the regional

precipitation response to local evapotranspiration. The main idea is the consideration

of a secondary atmospheric hydrological cycle of those tracers (Sodemann et al., 2009).

Numerical atmospheric moisture tracking models are based on explicitly resolved phys-

ical processes and on empirically derived parameterizations, and are flexibly operated

with different degree of accuracy and detail. The fate of evapotranspired water or the

origin of precipitating water can be spatially and temporally determined in an explicit

way.

Tracking moisture can be performed either in offline or online mode. For conduct-

ing off-line tracking, the basic meteorological parameters (e.g., wind fields, specific
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humidity, surface pressure, precipitation, and evapotranspiration) are required and are

normally taken from atmospheric analyses or from external meteorological or climato-

logical model outputs. For example, the quasi-isentropic backward trajectories model

(QIBT ) (Dirmeyer and Brubaker, 1999, 2007) tracks water parcels starting from pre-

cipitation events, examines the transport in the three dimensional atmosphere, and

diagnose surface sources. (Wei et al., 2012a). Based on the same framework of QIBT,

the application of forward tracking beginning with evapotranspiration has been shown

by Tuinenburg et al. (2012). The diagnosis of moisture recycling using one of both

models is still subject to the assumption of releasing evapotranspired water into (or

drawing precipitating water from) the whole atmospheric column in a distribution ac-

cording the specific humidity (Wei et al., 2012a). This assumption cannot be validated.

Additional shortcomings, for instance, the neglecting of convergence and divergence

flow processes for water parcels (Stohl and James, 2004), are also worth to be noted.

Another type of two dimensional off-line models, such as the colored moisture analysis

algorithm (Yoshimura et al., 2004b) or the water accounting model (WAM ) (van der

Ent et al., 2010), are based on the assumption of the atmospheric water balance and

has been used for flexibly estimating the moisture recycling on various scales with a

highly computational efficiency. However, due to the limitation of the two dimensional

nature, both Goessling and Reick (2013) and van der Ent et al. (2013) show that the

presence of directional shear and the frequency of strong moist convection have signif-

icant impacts on the estimation. Two off-line Lagrangian particle dispersion models

HYSPLIT (Draxler, 2003) and FLEXPART (Stohl et al., 2005), widely employed in the

research field of air quality, have been applied for the studies of moisture recycling as

well (Gustafsson et al., 2010; Stohl and James, 2004, 2005). But these two models,

diagnosing the net rate of change E - P instand of E or P individually, cannot clearly

account for a separation between evapotranspiration and precipitation.

For direct moisture tracking under consideration of dynamical and hydrological pro-

cesses, atmospheric Eulerian models with a build-in tagging algorithm have been used

(Knoche and Kunstmann, 2013; Goessling and Reick, 2013). These extended models

allow to tag the moisture evapotranspired from a defined region into the atmosphere

and to track it until it returns to the land surface as precipitation. Joussaume et al.

(1986) and Koster et al. (1986) introduced the concept of tagging and implemented

the tagging algorithm in a global circulation model (NASA/GISS ) for investigating

global sources of local precipitation. This model was applied by Druyan and Koster

(1989) in order to identify sources of the Sahel precipitation during dry and wet sea-

sons. Later, Numaguti (1999) used the CCSR/NIES AGCM in conjunction with water

vapor tracers to examine the origin of precipitation water over the Eurasian continent

and to investigate timescale and frequency of recycling processes. Following the same

idea, Bosilovich and Schubert (2002) summarized this concept and extended GEOS-3

GCM. The extended FVGCM (Bosilovich et al., 2003) was used for studies on regional
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(Bosilovich and Chern, 2006) and global scales (Bosilovich et al., 2005).

Recently, high resolution regional models receive increasing attention due to the

fast development in high performance computation. This allows researchers to focus

on the identification of precipitation sources on different temporal scales. Event-based

rainfall was investigated by using mesoscale models, for example, the High-Resolution

Model CHRM (Sodemann et al., 2009) and the COSMO model (Winschall et al.,

2014). In addition, Knoche and Kunstmann (2013) conducted simulations using the

Fifth-Generation Mesoscale ModelMM5 with a tagging extension to show the evolution

of the tagged moisture field and to reveal details of the transport on a monthly scale.

1.2 Motivation of the Thesis

In this thesis, the evapotranspiration study focus on the Poyang Lake area (N29 °,
E116 °) in Southeast China (see Figure 1.2). This lake is the largest freshwater lake

in China covering on average a surface area of about 3,500 km2 and containing a wa-

ter volume of about 25.2 km3. It is mainly fed by the inflow from five tributaries in

the Poyang Lake basin. The lake and its surrounding wetlands (referred to as the

Poyang Lake region) perform crucial hydrologic and ecologic functions for flood control

(Shankman et al., 2012) and for maintenance of biodiversity (Jiao, 2009).

Recently, changes in the Poyang Lake level and the associated impacts on water

supplies and ecosystems have been investigated extensively on the aspects of both

regional climate change and human activities (Zhang et al., 2014a). Liu et al. (2013)

detected a decreasing trend of the lake size, based on the analysis of satellite images and

hydrological data. In 2006, an abrupt change of the Poyang Lake was identified and

directly related to the start of regular operation of the Three Gorge Dams in the same

year (Zhang et al., 2012; Liu et al., 2013; Gao et al., 2013). The dam operation induces a

decreasing discharge in the downstream Yangtze River at the Poyang Lake outlet, which

enhances the outflow of the Poyang Lake to the Yangtze River, particularly during the

dry season. Solving the problem of “water loss” or at least minimizing these impacts on

the Poyang Lake and its surrounding wetlands is of great concern for local governments

(Jiao, 2009; Zhang et al., 2012). Many studies have addressed this issue by investigating

the land hydrological and hydraulic processes of the Poyang Lake area (Zhang et al.,

2012; Ye et al., 2013; Lai et al., 2014; Zhang et al., 2014a). However, only very few

studies attempt to shed light on the “water loss” issue in terms of the atmospheric

branch of the hydrological cycle, especially, the fate of water evapotranspired from the

Poyang Lake and its surrounding wetlands in the atmosphere.
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Figure 1.2: Location of the Poyang Lake. Rivers, lakes and the ocean are shown in
blue.

Precipitation in China generally shows a large variability in its spatial and temporal

distribution, and changes in the frequency and intensity of extremes due to climate

change (Liu et al., 2005). In the Poyang Lake basin, the frequency of extreme events

such as heavy precipitation, floods and droughts is shown to be increased due to changes

in the large-scale circulation (Zhang et al., 2008, 2011a; Shankman et al., 2006) and

due to intensive human activities (Ye et al., 2013), resulting in serious hydrological,

ecological and economic consequences (Zhang et al., 2014a,b; Xie et al., 2013; Deng

et al., 2011). In the study area, the climate is mainly controlled by the subtropical

monsoon system (Ding and Chan, 2005). A more detailed description of the climate

and the observed climate change in Southeast China is given in Chapter 2.

Land-atmosphere interactions in the Poyang Lake region and their possible influence

over Southeast China can be inferred from past research using analytical methods on

global scales (Trenberth and Guillemot, 1995; Trenberth, 1998, 1999b) and for the

whole of China (Simmonds et al., 1999; Zhou and Yu, 2005).

However, under the conditions of the complex mountainous terrain and the monsoon

system in Southeast China, both land surface characteristics and atmospheric features
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must be taken into account in the studies of moisture tracking. It has been shown that

evapotranspiration (transpiration and evaporation) is considerably affected by land sur-

face characteristics like water bodies, soil, and vegetation (Lawrence et al., 2007; Wang

and Dickinson, 2012; Wang-Erlandsson et al., 2014). Two key atmospheric features,

which are the presence of the directional wind shear and the fact that situations with

strong moisture convection are prevailing (Goessling and Reick, 2013; van der Ent et al.,

2013), should be considered in the studies of moisture tracking as well. Consequently,

a detailed three dimensional large convection resolving atmospheric model including

a sophisticated land surface model for moisture tracking should be employed to gain

more insight into the dynamical and hydrological processes. Moreover, atmospheric

moisture tracking with moisture tracers in a numerical model is also a straightforward

way to characterize the regional response to local evapotranspiration.

Following this idea, a regional climate model (RCM) with an implemented evap-

otranspiration tagging (ET-Tagging) algorithm is applied in this study. This model

allows to tag the moisture evapotranspired from a certain region into the atmosphere

and to track it until returning to the land surface as precipitation or leaves the model

domain. The ET-Tagging algorithm has been originally implemented by Knoche and

Kunstmann (2013) into the Fifth-Generation Mesoscale Model (MM5), and is extended

further in this thesis.

1.3 Research Questions

Generally stated, this thesis tries to answer a central hydrological research question:

What is the fate of evapotranspired water from the Poyang Lake region?

With regard to this main research question, three specific sub-questions in this

dissertation are addressed:� Where does the evapotranspired water from the Poyang Lake region go?� How important are the individual contributions of the two components of evap-

otranspiration fluxes, i.e., the transpiration flux and the direct evaporation flux,

for the subsequently ET-driven precipitation?� How long is the lifetime (i.e., atmospheric residence times) between the original

evapotranspiration (transpiration and direct evaporation) and the returning of

water masses to the land surface as precipitation?



8 1.4. INNOVATION

1.4 Innovation

Innovative work in this dissertation consists of:� Parallelization of the evapotranspiration tagging code that allows to conduct

long-term simulations to investigate the intra-annual/seasonal variability� Development of an evapotranspiration tagging partitioning algorithm that allows

to separately track the moisture components of transpiration and direct evapo-

ration� Development of an age-weighted evapotranspiration tagging partitioning algo-

rithm that allows to calculate the atmospheric water residence times of transpired

water, of direct evaporated water, and of total evapotranspired water� Application of the methods to the mountainous Poyang Lake region in subtropical

Southeast China� Analysis of the source-target relations by introducing a source-specific precipita-

tion efficiency.



Chapter 2

Study Area

2.1 Climatology of Southeast China

Figure 2.1: Schematic overview of the main atmospheric moisture trans-
porting streams in winter (gray arrows) and summer (black arrows) (http://
climatic-changes.blogspot.de/2012_02_01_archive.html).

Large Scale Dynamics The East Asian monsoon system determines the re-

gional climate of China (Trenberth et al., 2000; Zhu and Chen, 2002). In winter, the

monsoon system is closely connected to the Siberian high in the North and cool, dry

moisture is transported by the prevailing northeasterly winds (Wu et al., 2006) (Figure

2.1). In summer, the main low-level streams transport moisture towards China (Chow
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10 2.1. CLIMATOLOGY OF SOUTHEAST CHINA

et al., 2008), the origin is temporally varying between the Indian Ocean and the Bay

of Bengal, the South China Sea, and the western North Pacific Ocean (Figure 2.1).

The consequences of the monsoons’ effects on the climatic characteristics of Southeast

China and the Poyang Lake region are described in the following paragraphs.

Temperature The mean annual temperature over Southeast China ranges from

15� in the North to higher than 20� in the Southeast close to the South Asian Sea

(You et al., 2011). Figure 2.2 shows the spatial distribution and the annual cycle of

temperature. The mean annual temperature generally decreases from the southeastern

coast line to the northwestern mountainous region due to the topography and the

latitude (Figure 2.2a). Averaged over Southeast China, the lowest monthly mean

temperature is found in January (∼ 6�), while the highest temperature occurs in July

(∼ 28�) (Figure 2.2b).

With respect to global warming, the mean surface air temperature in China in-

creased from 1955 to 2000 with an accelerating trend after 1990 (Liu et al., 2004b).

The warming rate of the annual mean temperature is 0.27�/decade during 1961-2003

(You et al., 2011). In general, the change of the temperature extremes often follows the

trend of the mean surface air temperature. However, in Southeast China, the signifi-

cant increase in daily minimum temperature and the slight decrease in daily maximum

result in the narrowing diurnal temperature range (DTR), especially in the boreal win-

ter season (Dai et al., 1997; Easterling et al., 1997; Shen and Varis, 2001; Liu et al.,

2004b).
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Figure 2.2: (a) Distribution of the mean annual temperature [�] over Southeast China
and (b) annual cycle of the mean monthly temperature [�] averaged over Southeast
China, for 1980-2007 (Data source: CRU at 0.5 ° × 0.5 ° resolution). The Poyang Lake
basin is also indicated by the black frame in (a).
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Precipitation Figure 2.3a illustrates the spatial distribution of the long-term

mean annual precipitation in Southeast China. The southeast-northwest precipitation

gradient is pronounced. The total amount of mean annual precipitation are ranging

from less than 600mm in the northwest of Southeast China to more than 2000mm

in the area close to the Poyang Lake basin. The annual cycle of precipitation (see

Figure 2.3b) is dominated by the strength of the East Asian summer monsoon (Ding

and Chan, 2005). The rainy period (here, from April to June) mainly comes into being

during prevalence of the summer monsoon.

In the last 40 years, the observed trend of precipitation amount in China varies

largely by season and region, and an increase of frequency and intensity of extreme

precipitation events are detected as well (Liu et al., 2005). Gemmer et al. (2004) found

that, in the last decades, precipitation in China increases in winter and summer and

decreases in spring and autumn. Especially, significant increasing of summer precip-

itation is found in Southeast China (Ye, 2013). The possible reason for increasing

precipitation variability at monthly scales is the weakening trend of East Asian sum-

mer monsoon (Xu et al., 2006b), which results from the increasing geopotential height

over Mongolia, North China, and west Pacific regions (Wang and Zhou, 2005; Zhang

et al., 2009; You et al., 2011).
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Figure 2.3: (a) Distribution of the mean annual precipitation [mm] over Southeast
China and (b) annual cycle of the mean monthly precipitation [mm] averaged over
Southeast China, for 1980-2007 (Data source: APHRODITE at 0.25 ° × 0.25 ° resolu-
tion). The Poyang Lake basin is also indicated by the black frame in (a).

Evapotranspiration The mean annual evapotranspiration rate varies between

around 600mm in the North, and more than 900mm in the South and along the coast

line (Figure 2.4a). The evapotranspiration rate is closely connected to the seasonal
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variation of the overall meteorological conditions. In general, higher temperature, more

available soil moisture, and higher wind speeds during the summer monsoon season (i.e.,

from May to August) enhance the local evapotranspiration (Figure 2.4b).

Since there is a complementary relationship between terrestrial evapotranspiration

(directly related to the latent heat flux) and pan evaporation (mainly related to sen-

sible heat flux) (Brutsaert and Parlange, 1998; Ohmura and Wild, 2002), normally

the trends of terrestrial evapotranspiration and pan evaporation should also oppositely

change. In Southeast China, the trend of pan evaporation from measurements statis-

tically decreases from 1960 to 2000 (Liu et al., 2004a; Xu et al., 2006a). However, the

same decreasing trend of terrestrial evapotranspiration, estimated by the Penmann-

Monteith method, is shown in Gao et al. (2007). This phenomena, so called “pan

evaporation paradox” (Peterson et al., 1995; Roderick and Farquhar, 2002), is exten-

sively investigated over many study areas in China (Liu et al., 2004a; Xu et al., 2006a;

Gao et al., 2007). It is mainly caused by a significant decrease in the net radiation due

to air polluting (Menon et al., 2002; Tie and Cao, 2009) and, to a lesser extent, due to

a significant decrease in the wind speed in summer and winter (Xu et al., 2006b).
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Figure 2.4: (a) Distribution of the mean annual evapotranspiration [mm] over South-
east China and (b) annual cycle of the mean monthly evapotranspiration [mm] averaged
over Southeast China, for 1982-2007 (Data source: FLUXNET-MTE at 0.5 ° × 0.5 °
resolution). The Poyang Lake basin is also indicated by the black frame in (a).

2.2 Hydrology of the Poyang Lake Basin

River Basin The Poyang Lake basin is located in the center of Southeast China

and covers in total an area of 1.6 × 105 km2 (Sun et al., 2012). The topography varies
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from higher than 2000m a.s.l. in the South to lower than 50m a.s.l. around the lake.

The Poyang Lake basin encompasses five sub-basins of the Xiushui River, Ganjiang

River, Fuhe River, Xinjiang River, and Raohe River (Figure 2.5).

The Poyang Lake (29 °N, 116 °E) is the largest freshwater lake in China covering

on average an area of 3500 km2 in a hydrological normal year, but varies dramatically

from 907.7 to 3,752.7 km2 in history (Liu et al., 2013). The fluctuation of the lake

area are controlled by the discharges from the five tributaries in this catchment and

the outflow into the Yangtze River (Ye et al., 2011). From a hydrological perspective,

this lake is an important flood storage and detention area along the Yangtze River

(Shankman et al., 2012). To protect its abundant biodiversity, Poyang Lake National

Nature Reserve adjacent to the Yangtze River provides habitats for migratory birds

and endangered white cranes (Jiao, 2009).
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Figure 2.5: Topography (m a.s.l.) of the Poyang Lake basin and locations of the five
sub-basins. The Poyang Lake and rivers are shown in blue.

Due to changes in the large-scale circulation observed during the period from 1960

to 2005 (Shankman et al., 2006; Zhang et al., 2008, 2011a) and due to intensive human

activities (Ye, 2013), the frequency of extreme events such as heavy precipitation,

floods and droughts increases in the Poyang Lake basin, and further result in serious

hydrological, ecological and economic consequences (Zhang et al., 2014a,b; Xie et al.,

2013; Deng et al., 2011).
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Discharge The high inter-annual variability of discharge in the Poyang Lake

basin strongly depends on changes in precipitation (Zhang et al., 2011a). As a response

to the positive trend of precipitation in summer and winter, the corresponding discharge

increases as well during the investigation period from 1995 to 2005 (Zhang et al., 2011a),

and possibly becomes more extreme in the future (Ye et al., 2011).

Floods and Droughts On a global scale, continuously increasing risk of extreme

floods due to climate change has been observed in the past and is expected to continue

in the future (Milly et al., 2002; Hirabayashi et al., 2013). As reported in China’s

National Assessment Report on Climate Change (Lin et al., 2007), flooding becomes

also more severe in Southeast China. In the Poyang Lake basin, the frequency of severe

floods has significantly increased (Shankman et al., 2006).

Regarding droughts, there is no obvious trend in the size of drought areas over

Southeast China (Zou et al., 2005). However, the frequency and the severity of droughts

in this region show a positive trend in the past and is predicted to last in the near future

(Sheffield et al., 2012; Zou et al., 2005; Zhai et al., 2010). For example, severe droughts

in 2006, 2011, and 2012 in the Poyang Lake basin have drawn extensive attentions

nationally and worldwide (Feng et al., 2012).
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Figure 2.6: Spatial distribution of the land-use types for the Poyang Lake basin with
a horizontal resolution of 4.5 km based on the global 25-category data from the U.S.
Geological Survey (USGS). The Poyang Lake and rivers are shown in blue.
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Land Use Land use in the Poyang Lake basin consists of forest (46%), shrub land

(25%), crop land (25%) and small areas of pasture, urban centers and open water (4%)

(Ye et al., 2011; Zhang et al., 2014a) (Figure 2.6). For forest, the originally (i.e., before

1980) observed negative trend changes to a currently (i.e., 1980-2005) positive trend

influenced by the Chinese forest policy (Liu and Tian, 2010). Meanwhile, the trend

change of cropland follows the opposite direction (i.e., from expanding to shrinking).

Since irrigated crop (i.e., paddy rice) around the lake is the prime vegetation type,

the increasing quantity of agricultural water with considerably less water use efficiency

changes the available water resources (Wu et al., 2010; Zhu et al., 2013). Based on the

analysis of satellite images and hydrological data, recently, Liu et al. (2013) revealed a

decreasing trend of the lake size.





Chapter 3

RCM-Based ET-Tagging Algorithm

In this chapter, a MM5-based Eulerian model with a build-in evapotranspiration tag-

ging algorithm is described. The tagging algorithm allows to tag the moisture evap-

otranspired from a given region and to follow the pathways across the atmosphere

until the tagged moisture returns to the land surface as precipitation or leaves the

model domain. The algorithm accounts for all water transport processes and phase

transitions. It can be used to explicitly quantify the contribution of regional evapo-

transpiration to precipitation with properly handling the problems of the presence of

vertical wind and vertical wind shear. Additionally, further extensions of the model

concerning the partitioning of evapotranspiration into transpiration and direct evapora-

tion and the age-weighting of the tagged atmospheric moisture are described. It enables

the assessment of the contribution of the individual evapotranspiration components on

precipitation and the atmospheric moisture residence times. With these extensions,

the RCM allows to characterize and quantify the regional atmospheric cycle in terms

of magnitude, location, and timescale.

Firstly, a brief overview of the basic 3-D regional climate model (MM5) and some

discussions of the basic features are given. Then the implementation of the ET-Tagging

algorithm in MM5 is described. The additional extensions (ET-Tagging partitioning

and age-weighting) are subsequently presented.

3.1 The Basic RCM MM5

In this thesis, the Fifth-Generation Mesoscale Model MM5 (Dudhia, 1993; Grell et al.,

1994) version 3.5 is used as the basic model for the implementation of an ET-Tagging

algorithm. The MM5 modeling system, developed at the Pennsylvania State Uni-

17
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versity and National Center for Atmospheric Research, addresses the simulation of

dynamics of land surface (e.g., soil, snow cover, and vegetation) and atmosphere. This

process-based, non-hydrostatic limited-area model has been applied extensively for

short-period weather prediction and long-term climatological assessment at synoptic

and sub-synoptic scales. Applied as a dynamical downscaling tool (Wilby and Wigley,

1997), the model can bridge the gap between large-scale information (i.e., the input

data of MM5) and local information (i.e., the output data of MM5).

MM5 uses a horizontal grid with an Arakawa-Lamb B-grid staggering, based on a

Lambert Conformal, Polar Stereographic, or Mercator map projection. In the vertical

direction, a terrain-following coordinate σ is used, defined as

σ = (p0− pt)/(ps0− pt) (3.1)

where p0 is a hydrostatic reference-state pressure, pt is a specified constant model top

pressure, and ps0 is the reference-state surface pressure.

Beside the simulation program MM5, the whole modeling system contains three

further important programs: as the beginning program, TERRAIN horizontally inter-

polates the regular latitude-longitude terrain height and land surface information (e.g.,

land use, land-water mask, soil types, vegetation fraction, and time-constant deep-

soil reference temperature) onto the chosen model grid. REGRID collects archived

gridded meteorological data needed for initial conditions and lateral atmospheric and

sea surface boundary conditions (i.e., SST). The deep-soil reference temperature field

generated by TERRAIN is used as lower soil boundary condition for MM5.

The meteorological data are provided by either external simulations (e.g., simula-

tions of general circulation model) or reanalysis (e.g., ERA-Interim). They are hori-

zontally interpolated from the original grid to the model grid by REGRID, too. Then,

INTERPF deals with the vertical interpolation from pressure levels to model σ levels.

Model Physics MM5 accounts for, among other physical processes, atmospheric

diffusive and turbulent processes, short- and long-wave radiation, phase transitions of

water substance, and the formation of precipitation. For each physical mechanism a

variety of different parametrizations and options are available. In the following, a short

introduction to the physical treatments is given and the configurations employed for

this study are described.

Planetary Boundary Layer (PBL) physics handle subgrid-scale vertical transports

by various-sized eddies and turbulence (Dudhia, 2014), and are critical to prediction of

meteorological variables (Han et al., 2008). For PBL modeling and turbulence param-

eterization, the revised Medium-Range Forecast model (MRF-PBL) (Hong and Pan,
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1996) is chosen for this study. A computationally efficient nonlocal vertical diffusion

scheme, implemented into MRF, allows to simulate the processes of vertical diffusion

of temperature, moisture and momentum and to calculate the height of the PBL. It

works in coordination with a land-surface model (LSM) by exchanging heat and mois-

ture fluxes at the interface between atmosphere and soil.

Incoming solar radiation is the main driver of the climate system (Trenberth and

Stepaniak, 2004). Radiation processes interact with the atmosphere, with cloud and

precipitation fields, and with the land surface (Dudhia, 1989). For the calculations of

the atmospheric short- and long-wave radiation the cloud-radiation short-wave scheme

(Dudhia, 1989) and the Rapid Radiative Transfer Model (RRTM) long-wave scheme

(Mlawer et al., 1997) are selected. The Dudhia scheme explicitly calculates the clear-air

and clouds downward shortwave fluxes, considering the effects of solar zenith angle, and

is sophisticated enough so that little memory is required. RRTM utilizes the correlated-

k method to efficiently obtain the accurate representations of long-wave processes,

which is suitable for climate studies.

The explicit microphysical parametrization is used for calculation of grid-scale cloud

and precipitation processes including conversion between gaseous, liquid, and solid

phases of water and associated energy changes. In MM5 the Reisner-1 Mixed-Phase

scheme (Reisner et al., 1998), that treats the model atmosphere as composed of five

hydrometer species: water vapor, cloud water, cloud ice, rain water, and snow, is

selected. For their evolution, time- and spatial-dependent three-dimensional mixing

ratios (kg kg−1) are used as prognostic variables shown in Table 3.1.

Table 3.1: Atmospheric moisture components (kg kg−1) used in the chosen Reisner-1
Mixed-Phase scheme.

Notation Description
qv mixing ratio of water vapor (gas phase)
qc mixing ratio of non-precipitating liquid water substance (cloud droplets)
qi mixing ratio of non-precipitating solid water substance (could ice particles)
qr mixing ratio of precipitating liquid water substance (rain droplets)
qs mixing ratio of precipitating solid water substance (snow flakes and

other solid form)

The land-surface model is capable of simulating surface/subsurface energy and wa-

ter fluxes and the corresponding budget changes in response to near-surface atmo-

spheric forcing (Ek et al., 2003). It describes processes of soil thermodynamics, soil

hydrology, and snow-ice hydrology, that relate to vegetation and snow cover (Chen

and Dudhia, 2001; Dudhia, 2014). For this study, the Oregon State University Land

Surface Model (OSU-LSM) (Chen et al., 1996; Chen and Dudhia, 2001) is used. The
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advanced model, originally developed by Pan and Mahrt (1987), was extended further

by Chen et al. (1996), and recently becomes a community land surface model Noah-

MP with multiparameterization options (Niu et al., 2011; Yang et al., 2011). This fully

developed one-dimensional soil-vegetation-atmosphere transfer model accounts for en-

ergy and water transferred among four soil layers (with a thickness of 10, 30, 60, and

100 cm), simultaneously, interacting with processes in lower atmosphere. For vegetated

surface, evapotranspiration and interception and reevaporation is taken into account.

Basic Governing Equations for Humidity The non-hydrostatic MM5 model

is based on a set of three-dimensional equations, including the prognostic equations

for momentum, temperature, and various water components. The prognostic model

equation governing the evolution of the water components is

∂
∂ t

(p∗qk) = −

{

m2
[

∂ (p∗qkm−1u)
∂x

+
∂ (p∗qkm−1v)

∂y

]

+
∂ (p∗qkσ̇)

∂σ

}

︸ ︷︷ ︸

Grid-scale transport (Pseudo flux)

+ qk ·

{

m2
[

∂ (p∗m−1u)
∂x

+
∂ (p∗m−1v)

∂y

]

+
∂ (p∗σ̇)

∂σ

}

︸ ︷︷ ︸

Grid-scale transport (Divergence)

+ SUB(qk)
︸ ︷︷ ︸

Subgrid-scale transport

+ p∗Ck
︸︷︷︸

Phase transitions

+ PRC(qk)
︸ ︷︷ ︸

Precipitation effect

(3.2)

where qk denotes the various mixing ratios (summarized in Table 3.1) coupled with

p∗ = ps0− pt . P∗ (Pa) is the time invariant difference between the reference pressure

ps0 at the surface and the pressure pt at the model top. x (m) and y (m) are the

two horizontal coordinates and the dimensionless variable σ is a generalized vertical

coordinate with σ̇ (s−1) as its time derivative. u (m s−1) and v (m s−1) are the two

horizontal wind velocities. m is the map projection factor.

SUB (Pa kg kg−1 s−1), p∗Ck (Pa kg kg−1 s−1), and PRC (Pa kg kg−1 s−1) repre-

sent the subgrid-scale transport, the phase transitions, and the downward transport of

precipitating water substances, respectively. The advection in equation (3.2) is formu-

lated in a pseudo flux form (first term on the right side) together with an associated

compensating divergence term (second term). The phase transition rates Ck of the

five water components represent 16 different processes used in the explicit moisture

scheme (Table 3.2). A concentration-weighted falling speed of precipitating process is

calculated iteratively in each model time step.
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The numerical solution of equation (3.2) is computed on a rectangular-structured

staggered grid by finite difference schemes. The spatial differencing employs a second-

order centered scheme, and the temporal differencing consists of leapfrog steps with an

Asselin filter scheme used to avoid a splitting of the solution (Dudhia, 1993).

3.2 ET-Tagging Algorithm

The concept of the ET-Tagging algorithm is to add a second numerical formulation of

the atmospheric hydrological cycle to a RCM (Sodemann et al., 2009; Winschall et al.,

2012; Sodemann and Stohl, 2013; Winschall et al., 2014), i.e., a cycle for the tagged

moisture. Evapotranspiring water from a selected region is “tagged”when entering the

atmosphere. Then, the tagged moisture undergoes the same atmospheric processes as

the total moisture.

For the description of the MM5-based ET-Tagging algorithm I closely follow the

study of Knoche and Kunstmann (2013). For brevity it is briefly summarized.

In this MM5 ET-Tagging environment, as realized in Knoche and Kunstmann

(2013), a mask is defined over the whole model domain for separating a selected source

area from its surroundings:

MASKtag =

{
1 for tagging source area

0 otherwise
(3.3)

Upward ET fluxes (ET > 0) entering the lowest atmospheric model layer from the

source area contribute to the tagged water vapor. Downward fluxes of tagged water

vapor, i.e., tagged dew formation, are also considered. The tagged downward fluxes

ETtag (i.e., tagged dew formation) are proportional to the total downward fluxes ET

(ET < 0) and the fraction of tagged water vapor qlowest
v,tag to total water vapor qlowest

v in

the lowest model layer:

ETtag =

{
ET ·MASKtag if ET ≥ 0
ET ·qlowest

v,tag /qlowest
v if ET < 0

(3.4)

For tracking the tagged water pathways through the atmosphere, new model vari-

ables representing the tagged water substances are defined. Corresponding to the five

mixing ratios qv, qc, qi, qr, and qs of the original moisture components (see Table 3.1),

new mixing ratios qv,tag, qc,tag, qi,tag, qr,tag, and qs,tag of the tagged moisture compo-

nents are added. The original moisture variables keep unchanged and represent the

total moisture including tagged and untagged moisture quantities.
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Accordingly, the original MM5 moisture equations describing grid-scale transport,

subgrid-scale transport due to turbulence and diffusion, phase transitions, and the

downward transport of precipitating water components are duplicated in the code.

The original equation set (equation 3.2) accounts for the total moisture components,

while the new second equation set (equation 3.5) is for the tagged moisture components.

∂
∂ t

(p∗qk,tag) =−

{

m2
[

∂ (p∗qk,tagm−1u)

∂x
+

∂ (p∗qk,tagm−1v)

∂y

]

+
∂ (p∗qk,tagσ̇)

∂σ

}

+qk,tag

{

m2
[

∂ (p∗m−1u)
∂x

+
∂ (p∗m−1v)

∂y

]

+
∂ (p∗σ̇)

∂σ

}

+SUB(qk,tag)+ p∗Ck,tag +PRC(qk,tag) (3.5)

In both equation sets, identical advection velocities and turbulence intensities are ap-

plied for the transport schemes. Analogously to the phase transition rates Ck between

the total moisture components, the phase transition rates Ck,tag between the tagged

moisture components are combinations of single rates Cα→β ,tag for the various transi-

tion processes:

Ck,tag = ∑
α

β=k

Cα→β ,tag

︸ ︷︷ ︸

gain

− ∑
β

α=k

Cα→β ,tag

︸ ︷︷ ︸

loss

(3.6)

Each single rate Cα→β ,tag is proportional to the original transition rate Cα→β and the

fraction qα,tag/qα of the tagged part qα,tag and the corresponding total part qα :

Cα→β ,tag =Cα→β ·qα,tag/qα (3.7)

Table 3.2 summarizes the 16 different processes considered by the explicit moisture

scheme Reisner 1. The corresponding ratios are calculated in the way shown in the

third column. Also, the concentration-weighted fall velocity is the same for tagged and

total precipitating particles, only determined by the total content of rain and snow

substances, respectively.

The tagged ET fluxes ETtag at the land surface appear implicitly as boundary

values for the atmospheric subgrid-scale fluxes SUB(qk,tag). A tagged water substance

can partly fall out as precipitation PRC(qk,tag), or can leave the atmosphere through

outflow at the lateral model domain boundaries. Returning originally tagged water

from outside of the model domain is not taken into account in this algorithm. Also,

processes of subsurface tagged moisture are ignored.

The same numerical scheme for the advection of the tagged moisture as for the

advection of the total moisture field is used to achieve numerical consistency. Since
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numerical problems on tagged moisture components (e.g., negative values for the con-

densed tagged moisture variables) can raise due to the non-mass conservation advection

scheme, positive definiteness and additional criteria for the ratios of tagged to total

moisture quantities are carefully handled.

Table 3.2: Phase transition processes in the explicit moisture scheme Reisner 1 (Reis-
ner et al., 1998; Knoche and Kunstmann, 2013).

Phase transition processes Description
Water vapor qv → Cloud water qc Cloud condensation

→ Cloud ice qi Initiation to cloud ice
→ Cloud ice qi Deposition to cloud ice qv,tag/qv

→ Rain water qr Condensation to rain
→ Snow qs Deposition to snow

Cloud water qc → Water vapor qv Evaporation of cloud water
→ Rain water qc Autoconversion to rain qc,tag/qc

→ Rain water qc Collection of cloud water by rain
→ Snow qs Collection of cloud water by snow

Cloud ice qi → Water vapor qv Sublimation of cloud ice
→ Rain water qc Autoconversion to snow qi,tag/qi

→ Rain water qc Accretion of snow by cloud ice

Rain water qr → Water vapor qv Evaporation of rain qr,tag/qr

Snow qs → Water vapor qv Sublimation of snow
→ Rain water qc Evaporation of melting snow qs,tag/qs

→ Rain water qc Melting of snow

Additionally, the source codes of the ET-Tagging extensions is parallelized, on the

basis of OpenMP, in order to achieve the high performance for the following simulations

(see the detailed description in Appendix A). More details about the implementation

of the ET-Tagging algorithm into the MM5 model are given in Knoche and Kunstmann

(2013).

It should be noted that there is an alternative way of parameterizing tracer evap-

otranspiration using the moisture gradient of the individual tracers (e.g., Sodemann

et al. (2009)). Detailed comparisons and discussions of the two methods are given in

Winschall et al. (2014) and Goessling and Reick (2013).
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3.3 ET-Tagging Partitioning Algorithm

Figure 3.1: A schematic representation of the OSU-LSM in MM5 (http://www.ral.
ucar.edu/research/land/technology/lsm.php).

For the assessment of the contribution of the individual ET components on precipi-

tation, additional model extensions concerning the partitioning of ET are introduced.

Principally, the ET in the model domain consists of evaporation from inland water bod-

ies Ewater, evaporation from the top shallow soil layer including one layer of snow Esoil ,

evaporation of precipitation intercepted by the canopy Einterception, and transpiration

by vegetation Et :

ET = Ewater +Esoil +Einterception +Et (3.8)

Figure 3.1 illustrates all the processes of the soil thermodynamics and soil hydrology

in the OSU-LSM (Chen et al., 1996; Chen and Dudhia, 2001), coupled with the MM5

model. Ewater is governed by a Penman-based energy balance approach for potential

evaporation. Esoil depends on soil moisture content and potential evaporation, and

Eintercption is determined by the intercepted canopy water content and potential evap-

oration. Et is calculated mainly by considering green vegetation fraction, potential

evaporation, and soil moisture in the root zone. A detailed description of the land-

surface model is given in Chen and Dudhia (2001).

In this study, the model is extended to partition the evapotranspiration flux ET

http://www.ral.ucar.edu/research/land/technology/lsm.php
http://www.ral.ucar.edu/research/land/technology/lsm.php
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into a direct evaporation flux Ed

Ed = Ewater+Esoil+Einterception (3.9)

and the transpiration flux Et

ET = Ed +Et . (3.10)

These two fluxes are tracked separately in the framework of the ET-Tagging algorithm

in order to explicitly quantify the contribution of direct evaporation and transpiration

to precipitation.

Since only values of the total ET fluxes are contained in the output of MM5, new

variables with respect to the two partitions Ed and Et were defined for the ET parti-

tioning option. More details about the implementation of the ET-Tagging partitioning

within the framework of the ET-Tagging algorithm are given in Appendix B. It sheds

light on (i) the organization and the order in which exact routines are called, and (ii)

the routines where changes of source code are needed.

3.4 Age-Weighted ET-Tagging Algorithm

For the calculation of atmospheric water residence times (age of the moisture in the at-

mosphere), additional model extensions concerning the “age weighting” are introduced.

Analogously to the implementation of the ET-Tagging algorithm into a RCM by adding

a second atmospheric hydrological cycle for the tagged moisture, additional time infor-

mation can be gained by adding a third atmospheric “hydrological”cycle information in

the RCM code accounting for the age-weighted tagged moisture. New model variables

representing the age-weighted tagged water components are defined and an additional

equation set controlling the evolution of the age-weighted tagged water components is

formulated.

The original MM5 moisture equations describing grid-scale transport, subgrid-scale

transport due to turbulence and diffusion, phase transitions, and the downward move-

ment of precipitating water components are duplicated again in the code. Besides the

original equation set (see equation 3.2) for the total moisture components qk and the

second equation set (see equation 3.5) for the tagged moisture components qk,tag in the

extended MM5 model, the new third equation set accounts for the age-weighted tagged
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moisture components qk,age (kg kg−1 s) and is as follows:

∂
∂ t

(p∗qk,age) =−

{

m2
[

∂ (p∗qk,agem−1u)

∂x
+

∂ (p∗qk,agem−1v)

∂y

]

+
∂ (p∗qk,ageσ̇)

∂σ

}

+qk,age

{

m2
[

∂ (p∗m−1u)
∂x

+
∂ (p∗m−1v)

∂y

]

+
∂ (p∗σ̇)

∂σ

}

+SUB(qk,age)+ p∗Ck,age +PRC(qk,age)+Sk,age (3.11)

Sk,age (s) denotes the source term due to advancing time for the age-weighted tagged

moisture components. The transition ratesCk,age (kg kg
−1 s−1 s) are proportional to the

original transition rates Ck and the ratio of age-weighted tagged moisture components

qk,age to original total moisture components qk

Ck,age =Ck ·qk,age/qk. (3.12)

For the solution of the differential equation (3.11) a time splitting scheme is applied

to increase efficiency of computation. Firstly, the equation without the term Sk,age

is integrated to obtain a preliminary age-weighted tagged moisture components qn∗
k,age

from previous time step n due to atmospheric transport and phase change processes.

The spatial and temporal finite differencing schemes for equation (3.11) are the same as

for equations (3.2) and (3.5). Then, regarding time-advancing for qk,age, the remaining

term Sk,age of equation (3.11) is integrated. Since the age of the tagged moisture

increases linearly with time, the numerical solution is given as

qn+1
k,age = qn∗

k,age +qn+1
k,tag ·∆T (3.13)

where the time constant term p∗ appearing in equation (3.11) is omitted in equation

(3.13). ∆T (s) denotes the model time step length. The age-weighted tagged moisture

components are initially set to zero.

The formation of tagged moisture begins with the evapotranspiration process at the

land surface. Simultaneously, the formation of the atmospheric age-weighted tagged

moisture is triggered and then tracked through all atmospheric processes until precipi-

tating. The extended model then allows to calculate the atmospheric residence times τk

of moisture by qk,age/qk,tag and the atmospheric residence times TP of precipitated water

by Page/Ptag. Additionally, the atmospheric residence times τk and TP can also be calcu-

lated separately for transpired and direct evaporated tagged moisture and precipitated

water.



Chapter 4

Experimental Design and

Preparatory Simulations

In order to identify a suitable model setup for the following ET-Tagging study on the

Poyang Lake region in Southeast China, preparatory simulations were performed. In

this chapter, the design of the appropriate test simulations and the analysis strategy are

presented. The validation allows to evaluate the performance of the basic MM5 model

in simulating the general climatological variations. Firstly, spatial patterns of annual

statistics and area-aggregated time series from the simulations are compared with those

from gridded observations for the year of 2005. As a result, an suitable model setup

for applying the extended model is chosen in order to study evapotranspiration- and

precipitation-related processes like precipitation contribution ratios. Secondly, vertical

profiles from the simulation with the chosen model setup are compared with those

from station observations on a monthly scale for the same period under investigation.

It allows to evaluate the chosen model setup in order to study celerity-related processes

like atmospheric water residence times for this study region.

4.1 Basic Model Configurations

Firstly, the MM5 model (version 3.5) is applied with different domain sizes (i.e., large

or small domain) and different grid spacings (i.e., 18 km, 09 km, 4.5 km) shown in

Figures 4.1 and 4.2. Four model runs (see Table 4.1) are performed. For the vertical

discretization, 33 model layers up to 50 hPa with refined layers in the lower part of the

atmosphere are used.

27
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Figure 4.1: Location of the chosen model domains in this study (see also Table 4.1).

Table 4.1: Setup of the MM5 model for the preparatory simulations.

Different setup
Large domain Small domain

L18 L09 S09 S4.5
Simulation domain Northeast: 136.2°E 42.0°N Northeast: 121.8°E 33.7°N

Southwest: 102.5°E 14.1°N Southwest: 110.9°E 24.2°N
Domain size (grid points) 180 × 180 360 × 360 120 × 120 240 × 240
Horizontal resolution (km) 18 09 09 4.5

Common setup

Vertical discretization 33 levels
σ levels 1.000, 0.996, 0.990, 0.983, 0.974, 0.963, 0.950, 0.934, 0.916,

0.896, 0.873, 0.848, 0.820, 0.789, 0.755, 0.718, 0.680, 0.640,
0.600, 0.560, 0.520, 0.480, 0.440, 0.400, 0.360, 0.320, 0.280,
0.240, 0.200, 0.160, 0.120, 0.080, 0.040, 0.000

Boundary update 6 hours
Output frequency hourly
Time period 3 months spin-up time (October-December 2004)

12 months evaluation time (January-December 2005)
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Figure 4.2: Terrain height (m a.s.l.) of the chosen model domains (see also Table
4.1). Rivers, lakes and the ocean are shown in blue. Additionally shown in (d) are
three analysis areas where the simulated meteorological conditions are evaluated: The
Poyang Lake region (area S, red shaded), the Poyang Lake basin (area P, black frame),
and the model domain except a small boundary zone, nearly representing Southeast
China (area C, large white rectangle).

Table 4.2: Physical schemes of the MM5 model as used in this study.

Compartment Selected scheme Reference
Shortwave radiation Dudhia Dudhia (1989)
Longwave radiation RRTM Mlawer et al. (1997)
Land surface OSU-LSM Chen and Dudhia (2001)
Planetary boundary layer MRF-PBL Hong and Pan (1996)
Microphysics Mixed-Phase (Reisner 1) Reisner et al. (1998)

The physical schemes selected for this study are summarized in Table 4.2. As

mentioned by Knoche and Kunstmann (2013), it is difficult to achieve a process-based

treatment for moisture tracking when cumulus parametrization schemes are employed.
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Therefore, a comparatively high model resolution are chosen and it is assumed that

the resolution is fine enough to resolve most of the relevant convective systems and

do not apply an additional cumulus parametrization scheme. This choice is also taken

in many other studies (Molinari and Dudek, 1992; Weisman et al., 1997; Done et al.,

2004; Arakawa, 2004; Hong et al., 2008; Prein et al., 2013; Lee and Hong, 2015). The

main reason is that at high resolution, the parametrizations are assumed to be obsolete

because (deep) moist convection is (mostly) resolved at the grid scale.

The global reanalysis data ERA-Interim (with T255 spectral resolution ≈ 80 km,

(Dee et al., 2011)) from the European Centre for Medium-Range Weather Forecasts

(ECMWF) provides the initial and lateral boundary conditions (atmospheric meteoro-

logical fields and SSTs). Geographical data describing terrain height, vegetation/land-

use (24 category U.S. Geological Survey (USGS) data), and soil characteristics (17

category FAO data) are taken from NCAR data sets. The hindcast simulation pe-

riod covers 15 months from October 2004 to December 2005. The first three months

are considered as model spin-up time, allowing the soil moisture and the atmospheric

moisture components to sufficiently develop.

4.2 Evaluation Data and Strategy

Reference Data As reference data sets for precipitation, evapotranspiration,

temperature, and wind fields, APHRODITE V1003R1 (Asian Precipitation Highly Re-

solved Observational Data Integration Towards Evaluation of Water Resources, (Yata-

gai et al., 2009, 2012)), FLUXNET MTE (Model Tree Ensembles, (Jung et al., 2009,

2010, 2011)), CRUTEMP 3.0 (Climatic Research Unit, (Brohan et al., 2006)), and

IGRA (the Integrated Global Radiosonde Archive, (Durre et al., 2006, 2008)) are used.

The APHRODITE product provides long-term daily gridded precipitation data

over Asia at 0.25 ° × 0.25 ° resolution. It merges 2.3 to 4.5 times more rain-gauge data

compared to the data available through the Global Telecommunication System network

(Yatagai et al., 2009) and is assumed to better represent precipitation in complex terrain

(Yatagai et al., 2012).

The FLUXNET MTE product provides monthly gridded global evapotranspiration

data at 0.5 ° × 0.5 ° spatial resolution. It is derived by empirical upscaling of eddy

covariance measurements from a global network of flux towers (FLUXNET) with a

model tree ensemble (MTE) approach (Jung et al., 2009).

The CRUTEMP 3.0 product covers the whole globe, too, and has the same temporal

(monthly) and spatial (at 0.5 ° × 0.5 °) resolution as FLUXNET MTE. It is widely used



CHAPTER 4. EXPERIMENTAL DESIGN AND PREPARATORY SIMULATIONS 31

for validation of simulated near surface temperature (Fersch and Kunstmann, 2013) and

for studying climate changes (Qian et al., 2011).

The IGRA database provides long-term daily radiosonde observations (e.g., wind

speed and wind direction data) from more than 1500 stations globally (Durre et al.,

2006). It is the largest and most comprehensive collection of quality-assured soundings

and readily available (Durre et al., 2008).

112˚ 114˚ 116˚ 118˚ 120˚

26˚

28˚

30˚

32˚

Locations of the IGRA stations

112˚ 114˚ 116˚ 118˚ 120˚

26˚

28˚

30˚

32˚

area C

area S

Figure 4.3: Locations of the IGRA stations in this study. Rivers, lakes, and the ocean
are shown in blue. The continent is shown in gray. The tagging source area (area
S) lies within the red rectangle. The large gray rectangle (area C) nearly represent
Southeast China. The individual circles represent IGRA radiosonde stations used for
wind validation of the simulation.

Model Evaluation For comparisons with gridded observations, the simulated

precipitation, evapotranspiration, temperature were remapped to the respective refer-

ence data grids using a bilinear interpolation. For comparisons with station observa-

tions, the simulated wind components (zonal u and meridional v velocity) are averaged

over nine grid points surrounding each IGRA station (shown in Figure 4.3) for each

model layer. The investigations are concentrated on three analysis areas (see Figure

4.2d): the model domain except a small boundary zone (area C, covering nearly all of

Southeast China), the Poyang Lake basin (area P), and the Poyang Lake region (area

S).
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4.3 Validation of Meteorological Modeling

To evaluate the performance of the basic MM5 model, spatial patterns of annual statis-

tics and analysis-area aggregated time series from the four simulations, i.e., L18, L09,

S09, and S4.5, (see Table 4.1) is compared with gridded observations for the year of

2005. As a consequence, a suitable model setup needed to be identified for the applica-

tion of the extended model for studying precipitation contribution ratios. Furthermore,

vertical profiles of wind components simulated by the MM5 with the chosen setup are

compared with station observations, averaged for 14 radiosonde stations (see Figure

4.3) for each month in 2005. This comparison allows to evaluate the chosen model

setup for studying atmospheric water residence times.

4.3.1 Model versus Gridded Observations

Precipitation Figures 4.4 and 4.5 depict the total annual precipitation for 2005

from APHRODITE and the MM5 model simulations (a, c, e, g), respectively. The

relative differences between simulations and observation are shown in Figures 4.5 (b,

d, f, h).
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Figure 4.4: Annual total precipitation (mm) for Southeast China for 2005 from
APHRODITE reference data.
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Figure 4.5: Annual total precipitation (mm) for Southeast China for 2005 from the
four simulations (the left column). The relative differences (%) between simulation and
reference data (see Figure 4.4) are shown in the right column.
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Various smaller scale structures are found in the simulation data, presumably due to

the finer horizontal resolution of the original model output data. Generally, the MM5

model can reasonably reproduce the overall pattern of the reference data: the amount

of the annual precipitation decreases from the South to the North. However, the models

with the setup of a large domain (i.e., L18 and L09) significantly overestimate the total

precipitation amount (Table 4.3), especially for the southern part of the analysis area

C. A pronounced wet bias (≥ 50%) is found for the regions outside the Poyang Lake

region (Figures 4.5b and 4.5d). This overestimation becomes larger with the change

of the horizontal model resolution from 18 km to 9 km (Table 4.3 and Figure 4.5d). In

contrast, the patterns of simulated precipitation by S09 and S4.5 are much closer to

APHRODITE (Figures 4.5e and 4.5g). The simulations tend to underestimate the total

amount of precipitation (Table 4.3), especially along the southeastern coast line and

near the western boundary. It is partly ascribed to the excepted effect of degrading the

resolution of lateral boundary conditions over the small domain (Denis et al., 2003).

There is no enough time to allow the development and formation of the precipitation

over such small domain. In comparison to the deviation map of S09 (Figure 4.5f), S4.5

appears less dryer near the boundary and slightly wetter in the center (shown in Figure

4.5h).

Figure 4.6 shows the annual cycle of precipitation aggregated over the three analysis

areas (see Figure 4.2d) for the year 2005. The model results show comparatively good

agreement with the reference data. The differences between simulated and observed

precipitation during the rainy season (i.e., from April to June) show large variations.

For the large domain setups, overestimation mainly occurs during the months before

July in 2005, especially in May, while underestimation exists during the remaining

months. The model with the small domain setups produces slightly too little rainfall,

with the exception of May, where the simulated precipitation considerably exceeds the

observations in areas P and S.

Evapotranspiration Figures 4.7 and 4.8 show the total annual evapotranspi-

ration for the period under investigation from FLUXNET MTE and the simulations

(a, c, e, g). The relative differences between simulations and observation are given in

Figures 4.8 (b, d, f, h).

Generally, the relative differences of simulated evapotranspiration are smaller than

that of simulated precipitation. In L18 and L09 (Figures 4.8b and 4.8d), small positive

deviations are found for the northern part and northwest quadrant of area C, while

small negative deviations are located in the South. In S09 and S4.5 (Figures 4.8f

and 4.8h), the annual deviation patterns are different with larger deviations near the

domain boundary than in the center. It is worth to note that the relative differences are

small except in the regions in the northeast quadrant, where the land-use type is inland
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Figure 4.6: Comparison of simulation results of L18, L09, S09, and S4.5 (gray, blue,
and red lines) and APHRODITE reference data REF (black line): Shown are area-
averaged, monthly time series of precipitation (mm month−1) for the three analysis
areas C, P, and S (see Figure 4.2d).
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Figure 4.7: Annual total evapotranspiration (mm) for Southeast China for 2005 from
FLUXNET MTE reference data.
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Figure 4.8: Annual total evapotranspiration (mm) for Southeast China for 2005 from
the four simulations L18, L09, S09, and S4.5 (the left column). The relative differences
(%) between simulation and reference data (see Figure 4.7) are shown in the right
column.
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water bodies. These deviations are partly attributed to the reference data: due to the

weakness of the eddy covariance method used for FLUXNET MTE and the limited

spatial representation (see Figure 2 in Jung et al. (2009)), the evapotranspiration near

distinct landscape transitions such as lakes is not well captured (Baldocchi et al., 2001).

However, FLUXNET MTE is still the only territorial-based evapotranspiration data

set on a long-term and continuous base. On the other hand, the MM5 model used in

this study does not account for the impact of human activities, like for the irrigation

of paddy rice. But Wei et al. (2012b) found that irrigation-induced evapotranspiration

caused only a small increase in precipitation, even in heavily irrigated central and

northern China.
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Figure 4.9: Comparison of simulation results of L18, L09, S09, and S4.5 (gray, blue,
and red lines) and FLUXNET MTE reference data REF (black line): Shown are area-
averaged, monthly time series of evapotranspiration (mm month−1) for the three anal-
ysis areas C, P, and S (see Figure 4.2d).

The annual cycle of the simulated evapotranspiration aggregated over the three

analysis areas is also in good agreement with the reference data (Figure 4.9). For

area C, the values of the simulated evapotranspiration are smaller than the reference

data during the whole year except March and April (Figure 4.9a). For the Poyang

Lake basin (area P) (Figure 4.9b), the deviations of the large domain simulations are

larger than that of the small domain simulations in the warm season (i.e., from April
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to September). Over the source area S, significantly too small values are found only

in summer, especially in August (Figure 4.9c). The reasons may be the slight under-

estimation of precipitation in this month and the neglection of irrigation schemes in

this model. Pronounced large overestimation of evapotranspiration by L09 in July (see

Figure 4.9c) are probably due to the interplay between overestimation of precipitation

and higher air temperature in the previous month (June).

Temperature Figures 4.10 and 4.11 show the spatial distribution of simulated

temperature (a, c, e, g) and the deviation pattern (b, d, f, h) with respect to the CRUT

data.
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Figure 4.10: Annual mean temperature (�) for Southeast China for 2005 from CRUT
reference data.

The bias of the temperature in Figure 4.11 is closely connected to the bias of the

precipitation in Figure 4.5. A significant cold bias occurs for the two large domain

model runs (Figures 4.11b and4.11d), mainly in the North. On the contrary, a warm

bias over the southern part of the area C is seen in Figures 4.11f and 4.11h for the two

simulations with the small domain setups.

On a monthly scale, the deviations between simulations and observation are smaller

(≤ 1�) during the transient seasons and larger (≥ 2�) in the hot July and the cold

December (Figure 4.12). For L18 and L09, a significantly cold bias mainly occurs in

July and in November and December, likely due to underestimated shortwave radia-

tion (Zhang et al., 2011b). Whereas for S09 and S4.5, the simulated 2-meter tempera-

tures agree well with reference data in October and November, but are approximately

2� lower in December when MM5 might overestimate cloud coverage. From May to
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Figure 4.11: Annual mean temperature (�) for Southeast China for 2005 from the
four simulations L18, L09, S09, and S4.5 (the left column). The absolute differences
(%) between simulation and reference data are shown in the right column.
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September a pronouncedly warm bias persists.
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Figure 4.12: Comparison of simulation results of L18, L09, S09, and S4.5 (gray, blue,
and red lines) and CRUT reference data REF (black line): Shown are area-averaged,
monthly time series of temperature (�) for the three analysis areas C, P, and S (see
Figure 4.2d).

Identification of Suitable Model Setup As a summary, Table 4.3 shows the

corresponding bias and RMSE values of the simulated variables with respect to the

reference data. The mean bias of the precipitation for the simulation S4.5 holds the

smallest value for the three analysis areas. Larger values of RMSE for S4.5 are found

with the analysis area being smaller. For simulating evapotranspiration, S4.5 is also

capable to conduct the simulation with little bias and RMSE. Only the RMSE value for

area S is slightly larger probably due to the above-discussed restriction of the reference

data. Regarding temperature, there is no significant improvement of simulation by

changing the model domain size and the model horizontal grid spacing.

From the results (Table 4.3), it turns out that a model domain covering Southeast
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China (see Figure 4.2d) with a horizontal resolution of 4.5 km and 240 × 240 grid

cells (i.e., S4.5) is the best one. Many studies (Jones et al., 1995; Seth and Giorgi,

1998; Leduc and Laprise, 2009) suggest that the domain size should be large enough

to allow the full development of small-scale features. However, Seth and Rojas (2003)

and Gonzalo et al. (2004) noted that large deviations between simulations and obser-

vations are obtained when large scale nudging is not applied. Similarly, the simulation

results on the large domain (L18 and L09) without applying large scale nudging show

significantly deviations from the reference data as well. In contrast, in the simulations

on the smaller domain (S09 and S4.5) the small-scale patterns are well represented.

Therefore, the small domain size is appropriate for this study.

Regarding the horizontal resolution, Weisman et al. (1997) states that approxi-

mately 4 km is usually sufficient to reproduce mesoscale systems, which is also sup-

ported by the arguments given in Chapter 4.1. For this subtropical, mountainous

study region (Southeast China), a model resolution of 4.5 km is chosen. This reso-

lution is assumed to be fine enough to capture the convective systems sufficiently by

grid-scale resolved dynamic model processes. Overall, the simulated evapotranspira-

tion, precipitation, and temperature are reasonably reproduced in the simulation S4.5,

and it is concluded that the model setup S4.5 allows to study evapotranspiration- and

precipitation- related processes like precipitation contribution ratios. Here the results

for the (total) moisture quantities were examined, but this indicates that this model

setup also allows reasonable estimates of the tagged moisture quantities.

Table 4.3: Mean bias and RMSE for P (mm month−1), ET (mm month−1), and T2
(�) of the four model runs (see Table 4.1) for three analysis areas (see Figure 4.2d)
for the year of 2005.

P ET T2

area C P S C P S C P S

Bias
L18 24.8 16.0 -2.7 -5.4 -10.4 0.2 -0.9 -0.9 -0.9
L09 31.3 43.0 23.2 -3.0 -7.9 3.7 -0.5 -0.4 -0.5
S09 -24.0 -18.4 -21.1 -8.9 -6.1 1.9 0.5 0.6 0.5

S4.5 -15.1 -3.5 -1.0 -6.7 -3.8 0.7 0.7 0.7 0.6

RMSE
L18 58.0 84.9 70.6 8.4 12.7 6.7 1.5 1.6 1.6
L09 65.4 129.6 144.6 6.7 10.9 10.3 1.1 1.3 1.2
S09 30.4 40.5 76.9 11.4 11.0 9.7 1.0 1.0 1.1

S4.5 27.5 52.7 99.6 9.3 9.7 12.1 1.0 1.0 1.0
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4.3.2 Model versus Station Observations for the Final Model

Setup

Wind For applying the age-weighted ET-Tagging approach to calculate the at-

mospheric water residence times, further performance evaluation of the MM5 model in

simulating wind fields is presented. Following the result shown above, the focus here

is on the simulation S4.5. Figure 4.13 shows the vertical profiles of wind components

from MM5 and IGRA (see Section 4.2), averaged for 14 radiosonde stations (see Figure

4.3) by month for the year 2005. The variations of simulated wind speed and direction

with height and season show comparatively good agreement with the data derived from

the station observation. For the zonal wind component, a difference between simulated

and observed winds is small from January to May, tends to larger (underestimation) in

the following four warm months, and becomes small again for the remaining time (Fig-

ure 4.13a). Due to the onset and retreat of the East Asian summer monsoon, changes

in the direction of the meridional wind component are observed in the lower part of

the atmosphere (below 800 hPa) from IGRA (Figure 4.13b). These changes are also

well captured by the model, with an overestimation of around 0.5 m s−1 in summer.

Overall, the simulated winds are reasonably reproduced here and, it is concluded that

the model setup S4.5 allows to study celerity-related processes like atmospheric water

residence times for this study region.
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Figure 4.13: Comparison of simulation (blue line) and reference (black line) data for
vertical profile of wind components: (a) zonal velocity u (m s−1) and (b) meridional
velocity v (m s−1). The observational wind components from IGRA reference data are
averaged for 14 radiosonde stations (shown in Figure 4.3b) for each month in 2005. Our
simulated wind components are accordingly averaged over nine grid points surrounding
each station for each model layer and for the same period under investigation.





Chapter 5

Fate of Evapotranspired Water

It is a challenge to quantitatively answer “where does the evapotranspired water from

the Poyang Lake region go?”. In the past, land-atmosphere interactions in the Poyang

Lake region and their possible influence over Southeast China were inferred from previ-

ous research using analytical methods on global scales (Trenberth and Guillemot, 1995;

Trenberth, 1998, 1999b) or for the whole of China (Simmonds et al., 1999; Zhou and

Yu, 2005).

Previous studies have stated that more than 40% of precipitation in China is of

continental origin (Bosilovich and Schubert, 2002; Yoshimura et al., 2004b; van der

Ent et al., 2010; Goessling and Reick, 2011, 2013; van der Ent et al., 2014). Using

the Water Accounting Model, van der Ent et al. (2010) found that 80% of China’s wa-

ter resources depends on terrestrial evaporation from the Eurasian continent. Oceanic

evaporationsheds (sources) for precipitation in China covers the Atlantic Ocean west-

ward of Europe, the Bay of Bengal, and the South China sea (van der Ent and Savenije,

2013). Additionally, Wei et al. (2012a) investigated the water vapor sources for the

Yangtze River Valley rainfall with QIBT, using MERRA reanalysis data (Rienecker

et al., 2011). It is shown that the major moisture source for the Yangtze River Valley

is temporally varying between the Bay of Bengal, the South China Sea, and the western

Pacific. In this region, however, consideration of dynamical and hydrological processes

are still required for investigating the fate of evapotranspired water.

In this chapter, the ET-Tagging algorithm (Knoche and Kunstmann, 2013) is ap-

plied for the first time to the mountainous, subtropical monsoon region of Southeast

China. The evapotranspiration study focuses on the Poyang Lake (29 °N, 116 °E) area,
which is located in the center of Southeast China (see Figure 4.2d). 15-month simula-

tions (RunTagET ) from October 2004 to December 2005 are performed to investigate

where and to what extent the tagged evapotranspired water returns to the land surface

45
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as precipitation. Under the conditions of the complex mountainous terrain and the

monsoon system in Southeast China, the detailed atmospheric online model for mois-

ture tracking allows to spatially and temporally quantify the contribution of the water

evapotranspired from the Poyang Lake region to local precipitation or to precipitation

in the Poyang Lake basin or in Southeast China.

After a short description of the ET-Tagging application, a demonstration of this

explicit moisture tagging approach is presented. Then, the distribution of tagged mois-

ture and tagged precipitation is shown and an analysis of the atmospheric tagged water

budget is presented.

5.1 Application of the ET-Tagging Algorithm

Specification of Source Area As the geographic source of tagged water in

this study an area of about 25,000 km2 covering the Poyang Lake and its surrounding

wetlands was defined. This source area (referred to as area S) is identical with the

red shaded smallest analysis area in Figure 4.2d. Figure 5.1 depicts the vegetation

cover and land-use types for area S, based on the global 25-category data from the U.S.

Geological Survey (USGS). The area of the Poyang Lake (land-use type 16) accounts

for 13.5% of the total source area (Figure 5.1b). Irrigated crop (i.e., paddy rice) around

the lake is the prime vegetation type with a fraction of 47.6% (land-use type 3). In

comparison with the source areas defined in other tagging studies (Sodemann et al.,

2009; Wei et al., 2012a; Winschall et al., 2014), the source area in this study, i.e. the

Poyang Lake region, is relatively small.

Setup of the Extended Model Preparatory model runs with altered domain

size and grid spacing were performed for the identification of a suitable model setup.

The results of the comprehensive evaluation (shown in Chapter 4) are an indication

that the extended model can also allow reasonable results for the tagged quantities.

Consequently, the model configuration S4.5 (see Table 4.1) was chosen. The physical

schemes applied for ET-Tagging simulations are the same as in Table 4.2. As al-

ready mentioned in Chapter 4.1, with cumulus parametrization schemes, it is difficult

to achieve a process-based treatment for moisture modeling. Therefore, no cumulus

parametrization is employed. Weisman et al. (1997) states that approximately 4 km

is usually sufficient to reproduce mesoscale systems. The model resolution of 4.5 km

chosen here is assumed to be fine enough to sufficiently capture the convective systems

by grid-scale resolved dynamic model processes.
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Figure 5.1: (a) Spatial distribution and (b) bar chart of the land-use types for area
S (horizontal resolution 4.5 km). The results are based on the global 25-category data
from the U.S. Geological Survey (USGS).

The driving data (ERA-Interim) and geographical data (USGS and FAO) are iden-

tical with those of the preparatory simulations (see Chapter 4.1). More details of the

model configuration are given in Table 4.1. As the particular interest is in elaborat-

ing the impact of the advance and retreat of the East Asian monsoon on the land-

atmosphere interaction for the Poyang Lake region, the analysis is performed for the

period of one entire year (15-month simulations from October 2004 to December 2005,

including 3-month spin-up period). The first three months (October-December 2004)

are considered as model spin-up time in order to allow the tagged atmospheric moisture

components to sufficiently develop. Regarding the spin-up time in this study, there are
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two considerations: for atmospheric fields, the spin-up time is rather short (i.e., 1-2

days) (de Ela et al., 2002). Hence, 2 weeks of simulation are generally enough to de-

velop the tagged atmospheric moisture components (Bosilovich and Schubert, 2002).

In contrast, for some land-surface processes (e.g., deep soil hydrology), the spin-up time

is considerably longer (Laprise, 2008): The long-term land-surface interaction studies

require several months of simulation to develop a consistent state of the soil moisture,

for example, (up to 1 year in Goessling and Reick (2013)). In a previous work (Knoche

and Kunstmann, 2013), 1 month is taken as a spin-up period for a rainy month of

investigation. Thus, this choice of a three-month spin-up time is a good compromise

and assumed to be sufficient for this investigation.

Initially, there is no tagged water substance existing in the atmosphere. After the

start of ET-Tagging simulation, a tagged water substance can leave the atmosphere

through outflow at the lateral boundaries of the model domain. Returning tagged

water from outside of the model domain is not taken into account.

Parallelism of the Extended Model Additionally, four further experimental

ET-Tagging runs was conducted to evaluate the benefit from parallelism. The same

model domain size and the same model physical scheme were taken as these of S4.5,

but with a horizontal resolution of 9 km instand of 4.5 km in order to save CPU-hours.

Significant performance gain is achieved by using the parallelized ET-Tagging model.

More results of the parallelized ET-Tagging simulations are given in Appendix A. All

the following simulations are conducted in the parallel computing mode.

5.2 Analysis Methods

To quantify the contribution of evapotranspiration to precipitation, a local precipitation

contribution ratio ρ is defined as:

ρ = Ptag/Ptotal (5.1)

Ptag denotes the tagged precipitation contribution of ET from a predefined source area,

while Ptotal denotes the total precipitation originating from local ET or remote moisture

sources.

To explore the relation between evapotranspiration from the source area and tagged

precipitation in different geographic surrounding areas, an atmospheric tagged water

budget analysis on monthly scales is performed. For this, the budget equation for the



CHAPTER 5. FATE OF EVAPOTRANSPIRED WATER 49

tagged moisture can be formulated as

ETtag,S = Ptag,S +Ptag,PoS +Ptag,CoPS +∆Qtag,C +Ftag,C (5.2)

where ETtag,S denotes the tagged evapotranspiration in the source area S. Ptag,S, Ptag,PoS,

and Ptag,CoPS denote the tagged precipitation in area S, in area P but outside of S,

and in area C but outside of P and S, respectively. ∆Qtag,C is the storage change of

the tagged moisture over area C and Ftag,C is the net lateral outflow flux of tagged

moisture. ETtag,S and the tagged precipitation terms can be obtained directly from

the ET-Tagging simulation. ∆Qtag,C is calculated using the difference of the column-

integrated total tagged moisture between the beginning and the end of the considered

period, and Ftag,C is determined as the residual in equation (5.2).

5.3 Results and Discussion

5.3.1 Illustration of Dynamical Evolution

To illustrate the dynamical evolution of the moisture evapotranspired from the tagging

area S (here, the Poyang Lake region), transport and spreading of tagged moisture

in the atmosphere is displayed during the first simulated 40 hours of RunTagET in

October 2004. The day-night variations due to differences of evapotranspiration and

the variations of the atmospheric conditions are depicted in Figures 5.2 and 5.3.

The 6-hourly time sequence in Figure 5.2 shows the horizontal distributions of the

column-integrated total tagged moisture (consisting of water vapor, cloud water, cloud

ice, rain water, and snow) over the area C. At the start of the simulation (08:00 China

Stand Time CST 1 October 2004), tagged moisture is set to zero (Figure 5.2a). Af-

ter that, evapotranspirating water from the source area S is tagged when entering the

atmosphere. Then, the tagged moisture undergoes the same atmospheric processes

(i.e., transport and phase transitions) as the (original) total moisture. The wind fields

primarily dominate the dynamical evolution of the tagged moisture. The comparison

between Figure 5.2b and Figure 5.2c demonstrates the transport and spreading of the

total tagged moisture controlled by the wind fields after 6 hours. Finally, the tagged

moisture can leave the model domain (see Figures 5.2c and 5.2d) or return to the land

surface as precipitation (shown in section 5.3.3). The day-night differences of evapo-

transpiration, which is closely connected to the changes in temperature, also impact

the variations of the tagged moisture pattern. Figure 5.2e shows that little tagged

moisture is found in the atmosphere over the source area S due to the limited water

evapotranspired in the cold early-morning. With the incoming radiation and tempera-
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Figure 5.2: Horizontal distribution of column-integrated total tagged moisture (g
m−2) at different times during the first 40 hours (08:00 CST 01 October to 00:00 CST
03 October 2004). The arrows indicate the hourly mean of horizontal wind (m s−1) at
10meters.
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ture increasing in the second day (i.e., 02 October), the tagged moisture increases and

undergoes the transport and spreading processes again (Figures 5.2f-h).
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Figure 5.3: Time series of hourly area mean of column-integrated total tagged mois-
ture (g m−2) for area C during the first 40 hours (08:00 CST 01 October to 00:00 CST
03 October 2004). Dots indicate the corresponding time sequence chosen in Figure 5.2.

Figure 5.3 shows a time series of the column-integrated total tagged moisture av-

eraged over area C during the first two days in October. The tagged moisture content

increases almost monotonically in the model atmosphere before 20:00 CST 01 and de-

creases during the following night. The two-day fluctuations reflect the comprehensive

interactions among the daily cycles of evapotranspiration, the formation of precipita-

tion, and the loss due to outflow at lateral model boundaries. More details about these

comprehensive interactions on monthly scales are described in the following sections.

5.3.2 Distribution of Tagged Moisture in the Atmosphere

The tagged moisture evapotranspired from the source area S is transported and spread

in the atmosphere vertically and horizontally. Figure 5.4 shows the vertical distribution

of (a) the total tagged moisture (consisting of water vapor, cloud water, cloud ice, rain

water, and snow), and (b) the condensed tagged moisture (i.e., the sum of tagged

liquid and solid cloud and precipitation water) over the source area S on monthly

scales. Most of the tagged moisture remains in the boundary layer, with the maximum

mixing ratio near the surface. The atmospheric storage of the tagged moisture increases

from January to June and decreases from September to December and is associated

with changes in the height of the boundary layer. In summer, high temperatures lead

to enhanced evapotranspiration at the land surface, to an expansion of the boundary

layer and to an increased water-storage capacity of the atmosphere.
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The vertical distribution of the condensed tagged moisture is more diverse from

month to month and is directly related to the formation of clouds and precipitation

systems (see Figure 5.4b). As a result of more frequent convection and large-scale

lifting, the condensed tagged moisture is found in higher atmospheric layers in the

rainy season and in the summer season. For example, in May the main rain belt covers

over Southeast China and the formation of convective clouds results in the tagged water

vapor lifted up and condensed in the upper atmosphere above the planetary boundary

layer. In contrast, in winter the condensed tagged moisture is predominantly formed

in the lower atmospheric layers. However, compared to the total tagged moisture, the

condensed tagged moisture only accounts for a very small fraction.
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Figure 5.4: Monthly time series of vertical distribution of (a) total tagged moisture
mixing ratio (g kg−1) and (b) condensed tagged moisture mixing ratio (g kg−1), aver-
aged over area S for each model layer and for each month in 2005. The σ -values of the
model levels are given in Table 4.1.

To study the transport and distribution processes of tagged moisture from the

source area, monthly vertical profiles of the three wind components averaged over the

source area S are shown in Figure 5.5. It illustrates the variability of wind speed and

wind direction with height and season. The direction of the meridional wind compo-

nent changes in April and September due to the onset and retreat of the East Asian

summer monsoon, respectively. The vertical wind component near the land surface

switches from slightly downward to upward, during the summer monsoon season, with

the strongest updraft in May, especially in the higher levels.
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Figure 5.5: Monthly time series of vertical profile of wind components: (a) zonal
velocity u (m s−1), (b) meridional velocity v (m s−1), and (c) vertical velocity w (m
s−1). The wind components are averaged over area S for each model layer and for each
month in 2005.
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Figure 5.6: Horizontal distribution of (a) column-integrated total tagged moisture
(g m−2) and (b) column-integrated condensed tagged moisture (g m−2), averaged for
2005. The color scale of (a) and (b) ends at 850 g m−2 and 1.7 g m−2, respectively.
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Figure 5.6a shows the horizontal distribution of the column-integrated total tagged

moisture, average for 2005. Generally, the horizontal distribution of the total tagged

moisture is governed by the wind direction changes due to the development and retreat

of the East Asian monsoon (see Figure 5.5), and influenced by the topography of the

Poyang Lake basin (see Figure 4.2d). Most of the total tagged moisture is found

above the Poyang Lake area (around 850 g m−2) and directly west of it, due to the

easterly wind prevailing most of the year in the boundary layer (see Figure 5.5a). With

increasing distance from the source area, the total tagged moisture content distinctly

declines.

Figure 5.6b depicts the horizontal distribution of the column-integrated condensed

tagged moisture. Most of the condensed tagged moisture is contained in the atmosphere

above the Poyang Lake region and in the adjacent part to the East, and is, as suggested

by Figure 5.4b, mainly formed during the rainy season. It indicates that the tagged

moisture is involved in cloud formation and precipitating systems and is concentrated

in the middle and high layers, where westerly winds dominate (see Figure 5.5b). The

condensed tagged moisture found in the northern part of the domain results from the

transportation processes by the prevailing southerly winds in summer. In contrast, the

northerly winds in winter are responsible for the condensed tagged moisture appearing

in the South.

5.3.3 Distribution of Tagged Precipitation over Land

Figure 5.7 shows the spatial distribution of the simulated total precipitation (left col-

umn) and tagged precipitation (middle column) for 2005. The patterns of the local

precipitation contribution ratio ρ (equation 5.1) are also shown (right column). In

addition to the annual sum, three months (February, May, and August) are selected

for illustrating the monthly variations of the tagged precipitation and its contribution

patterns due to the advance and retreat of the East Asian monsoon.

Overall, the tagged precipitation patterns in Figure 5.7b are similar to the condensed

tagged moisture patterns (see Figure 5.6b). Most of the tagged precipitation in 2005

occurs around the source area S and in the adjacent part to the East with a maximum

value of about 20mm. In comparison to the total precipitation shown in Figure 5.7a,

the tagged amount is nearly two orders of magnitude lower. Regions with a contribution

ratio ρ > 1.2% are found in the source area and in the North along the Yangtze River

Valley, about 200 km away from the Poyang Lake (Figure 5.7c). In contrast, the water

evapotranspired from the Poyang Lake region does not significantly contribute to the

precipitation in the southeast quadrant.
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Figure 5.7: Annual sum and monthly sums of simulated total precipitation Ptotal in
mm (left column) and of tagged precipitation Ptag in mm (middle column) for the whole
year 2005 and three months (February, May, August) (from top to bottom). The right
column shows annual/monthly local precipitation contribution ρ in % for the same
periods.
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In February, the maximum values of tagged precipitation (only 1.2mm) are found

south of the source area (Figure 5.7e), where the dominant northerly winds are close

to the land surface (see Figure 5.5). A smaller amount of tagged precipitation is also

formed in the North because of the repeated changes in wind direction. The pattern

of the contribution ratio of the monthly mean precipitation ρ in Figure 5.7f exhibits a

band-like structure, shifted towards the South in the downwind regions. In the North,

despite very low tagged precipitation sums, the contribution ratio reaches around 0.6%

due to low values of total precipitation, too. After the onset of the East Asian summer

monsoon in April, the prevailing low-level and upper-level winds rapidly reverse their

directions. As discussed before, in May a large amount of condensed tagged moisture

is locally involved in convective and large-scale precipitation processes. Therefore, the

tagged precipitation amount reaches its maximum (15mm) in the source area S and

its surrounding regions (Figure 5.7h). The southerly winds also transport a small

fraction of the tagged moisture towards the North, with some tagged precipitation

occurring. Due to the low values of total precipitation (see Figure 5.7g), comparatively

high contribution ratios are found in the North (Figure 5.7i). In August, due to the

different wind directions near the land surface and in the upper-level atmosphere, the

tagged precipitation falls not only in the North, but to a lesser extent also in the

South (Figure 5.7k). Small fractions of condensed tagged moisture in higher model

layers (see Figure 5.4b) lead to few local, convective rainfall events in and around the

source area S, and to a contribution ratio of up to 6% near the eastern boundary of

the source area S (Figure 5.7l), which is also the maximum on monthly scales for the

year 2005. The analysis of the selected three months reveals that the prevailing winds

and the changing precipitation regime over Southeast China dominate the pattern of

precipitation contribution. This finding is in general agreement with van der Ent et al.

(2014).

5.3.4 Budget Analysis of Atmospheric Tagged Water

Table 5.1 summarizes the values of the tagged water budget terms on monthly scales

for 2005. Overall, almost 90% of the evapotranspired tagged water leaves the area

C in 2005. Only 0.8% of the tagged moisture precipitates locally in the source area

S with monthly values between 0.1% in October and 3.5% in May. In contrast, the

comparison of Ptag,C and Ptag,S shows that due to the annual movement of the East

Asian monsoon, the tagged precipitation is more often formed outside of the source

area S. Averaged over 12 months, the tagged precipitation falling in the Poyang Lake

basin (area P) equates to 2.7% of the tagged moisture with a maximum of 9.2% in

May. Considering area C (representing nearly the whole of Southeast China), 10.7%

of the tagged moisture returns as the tagged precipitation, with a maximum of 24.7%

in May. The tagged precipitation contribution ratios in areas S, P, and C reveal the
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relevance of the evapotranspired water in the Poyang Lake region for tagged precipi-

tation in Southeast China on different scales. Maximum values of tagged precipitation

contribution ratios (i.e., significant recycling effects) are found in May when peak total

(tagged and untagged) precipitation occurs.

In specific months like May and June but also in the months October to January,

the wind regimes and the humidity of air masses over Southeast China change signifi-

cantly. As a consequence, there are considerable differences in the atmospheric (tagged)

moisture contents between the beginning and the end of the respective month. This

explains the comparatively high values between -17% and +16% of the storage change

term ∆Qtag,C.
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Table 5.1: Atmospheric tagged water budget (equation 5.2) of the ET-Tagging simulation on monthly scales for 2005. Monthly
sums and changes during a month (∆Qtag,C) are shown as relative values compared to ETtag,S in % and as precipitable water in
mm. Source and target areas (see Figure 4.2d) are indicated as subscript for each term (S: the Poyang Lake region; P: the Poyang
Lake basin; C: Southeast China; PoS: the area outside of S but inside of P; CoPS: the area outside of P and S but inside of C).

ETtag,S Ptag,S Ptag,PoS Ptag,CoPS ∆Qtag,C Ftag,C Ptag,P Ptag,C

[Month] [%] [mm] [%] [mm] [%] [mm] [%] [mm] [%] [mm] [%] [mm] [%] [mm] [%] [mm]
1 100.0 28.6 0.6 0.2 2.7 0.2 5.0 0.1 12.5 0.1 79.2 - 3.3 0.2 8.3 0.1
2 100.0 34.9 0.6 0.2 3.0 0.2 7.4 0.1 -0.2 0.0 89.2 - 3.5 0.2 11.0 0.1
3 100.0 66.0 0.2 0.1 1.4 0.2 5.3 0.1 3.4 0.1 89.7 - 1.6 0.2 6.9 0.1
4 100.0 94.4 0.6 0.6 1.4 0.3 7.2 0.2 -9.5 -0.2 100.3 - 2.0 0.3 9.2 0.2
5 100.0 106.0 3.5 3.8 5.9 1.3 15.3 0.5 12.5 0.4 62.8 - 9.2 1.7 24.7 0.7
6 100.0 125.0 0.6 0.7 1.2 0.3 8.6 0.3 -11.8 -0.4 101.4 - 1.7 0.4 10.4 0.3
7 100.0 123.0 0.3 0.4 0.6 0.1 7.6 0.3 5.3 0.2 86.2 - 0.8 0.2 8.5 0.3
8 100.0 87.8 0.4 0.3 2.2 0.4 11.5 0.3 2.5 0.1 83.4 - 2.6 0.4 14.2 0.3
9 100.0 86.9 0.2 0.2 1.4 0.3 6.0 0.2 4.1 0.1 88.3 - 1.6 0.2 7.6 0.2
10 100.0 60.5 0.1 0.1 0.8 0.1 2.2 0.0 -16.1 -0.3 113.0 - 0.9 0.1 3.1 0.1
11 100.0 41.7 1.2 0.5 2.3 0.2 5.8 0.1 15.8 0.2 74.9 - 3.5 0.3 9.3 0.1
12 100.0 31.0 0.2 0.1 1.4 0.1 2.9 0.0 -16.9 -0.1 112.4 - 1.6 0.1 4.5 0.0

Total 100.0 888.8 0.8 7.2 2.0 3.7 7.9 2.2 -0.1 0.0 89.4 - 2.7 4.3 10.7 2.5



Chapter 6

Contribution of Transpiration and

Evaporation to Precipitation

Changes of land-surface characteristics (e.g., soil, water bodies, and vegetation) can

significantly alter the atmospheric branch of the hydrological cycle (Huntington, 2006)

and can further modify climate variability (Karl and Trenberth, 2003; Seneviratne et al.,

2006). With respect to the contribution of evapotranspiration to precipitation, how-

ever, what is the relative importance of transpiration and direct evaporation processes

in the regional hydrological cycle? Partitioning evapotranspiration into biological tran-

spiration and physical evaporation is extensively investigated (Lawrence et al., 2007;

Hu et al., 2014; Coenders-Gerrits et al., 2014) and reviews on the approaches for par-

titioning are given, e.g., by Wang and Dickinson (2012) and Kool et al. (2014).

Globally, the land masses provides more transpiration (61% ± 15% s.d. of evap-

otranspiration) than direct evaporation. This means that transpiration dominates the

terrestrial water cycle (Jasechko et al., 2013; Schlesinger and Jasechko, 2014). The local

recycling over the Yangtze River Valley is controlled by rainfall and circulation changes

(Wei et al., 2012a). Recently, Wang-Erlandsson et al. (2014) and van der Ent et al.

(2014) depicted the contrasting roles of interception and transpiration in the hydro-

logical cycle in the context of moisture recycling, and stressed the potential influence

of the land surface on the hydrological cycle. By analyzing the “precipitationsheds”,

Keys et al. (2012) and Keys et al. (2014) found that North China and East China are

highly vulnerable to land-use change. Bagley et al. (2012) indicated a negative affect

of land-use change on potential crop yields due to a shortage of moisture sources for

the breadbasket regions, e.g., North China. An enhancement of moisture recycling has

also been attributed to irrigation (Tuinenburg et al., 2012; Wei et al., 2012b; Lo and

Famiglietti, 2013).
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In this chapter, in order to investigate the relative importance of evaporation and

transpiration processes in the regional hydrological cycle and the corresponding impact

on land-atmosphere interaction, the total evapotranspiration is split into direct evap-

oration (consisting of evaporation from inland water bodies, evaporation from the top

soil layer, and evaporation of precipitation intercepted by the canopy, (see equation

3.9)) and transpiration (see equation 3.10). Individual evaporation and transpiration

fluxes are calculated within a sophisticated land surface scheme (Oregon State Uni-

versity Land Surface Model OSU-LSM) in the regional climate model (MM5). They

represent different dynamical effects of land-surface characteristics and of hydrological

processes (Jacobs and De Bruin, 1992; Sewall et al., 2000; Wang and Dickinson, 2012;

Wang-Erlandsson et al., 2014; van der Ent et al., 2014). A detailed description of the

technical implementation was given in Chapter 3.3.

For the ET-Tagging partitioning study on the Poyang Lake region over Southeast

China, this extended model is employed to conduct two model runs (RunTagEd and

RunTagEt) to track direct evaporation and transpiration fluxes separately through the

atmosphere. Including the results of the partitioning of tagged precipitation corre-

sponding to partitioning of evapotranspiration, the relative contributions of the indi-

vidual evapotranspiration components are presented. The source-target relations under

consideration of the respective precipitation regime are explored.

6.1 Analysis Methods

In the context of ET-Tagging partitioning (see Chapter 3.3), the tagged evapotranspiration

is split into tagged direct evaporation Ed,tag and tagged transpiration Et,tag

ETtag = Ed,tag +Et,tag (6.1)

The tagged precipitation can be split accordingly as:

Ptag = Ptag,Ed +Ptag,Et (6.2)

To explore further the source-target relations under consideration of the respective

precipitation regime (wet or dry weather conditions), the source-specific precipitation

efficiency is introduced

η = Ptag/ETtag, (6.3)

describing the relation of water that enters the domain from a specific source area

by evapotranspiration and that subsequently falls as precipitation. In contrast to the

precipitation efficiency defined in other studies (Schär et al., 1999; Kunstmann and
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Jung, 2007), the focus here is on the evapotranspired water from a specific source area

rather than from the whole domain or from the outside. Similarly, in the context of ET-

Tagging partitioning, the source-specific precipitation efficiency for direct evaporation

is defined as

ηd = Ptag,Ed/Ed,tag (6.4)

and the source-specific precipitation efficiency for transpiration as

ηt = Ptag,Et/Et,tag. (6.5)

6.2 Results and Discussion

6.2.1 Distribution of Annual Partitioned Tagged Precipitation

According to equation (6.2), the tagged precipitation can be partitioned and sepa-

rately analyzed. Figures 6.1a and 6.1b show the annual sum of Ptag,Ed and Ptag,Et for

2005. Aggregated over area C, 69% of the tagged precipitation is contributed by di-

rect evaporation, and 31% by transpiration. While higher values of Ptag,Ed are found

in most parts of area C with a pronounced maximum over the source area S, higher

values of Ptag,Et are limited to the region around the source area S and to (remote)

northern areas. In these remote areas, large amounts of tagged transpired moisture in

summer are transported by dominating southerly winds and subsequently contribute

to precipitation. As a result, the distribution of the fraction Ptag,Et/Ptag in Figure 6.1c

shows that the transpired water accounts for about half of the precipitation in the

North. However, transpiration is far less important around the source area S and in

the South (Ptag,Et/Ptag ≤ 15%) due to the small contribution of tagged transpiration to

total tagged evapotranspiration in winter.

Recently, van der Ent et al. (2014) found that in Southeast China the continental

precipitation recycling ratio for transpiration is larger than that for evaporation. This

stands in contrast to the findings here and is mainly ascribed to the different repre-

sentations of land-surface characteristics of the source areas in the two studies. The

continent as a source area provides much more transpiration than direct evaporation.

This means that transpiration dominates the terrestrial water cycle (Jasechko et al.,

2013; Schlesinger and Jasechko, 2014; Wang-Erlandsson et al., 2014). By contrast, the

source area in this study has a large fraction of moist land-use types (water bodies and

wetlands) with direct evaporation. This process is more effective for water at or near

the surface than transpiration for water from the root zone (Jasechko et al., 2013).

Overall, the different finding reveals that the vegetation cover and land-use type have

important impacts on the regional atmospheric hydrological cycle.
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Figure 6.1: Annual sum of the simulated (a) tagged precipitation Ptag,Ed (mm) for
direct evaporation, (b) tagged precipitation Ptag,Et (mm) for transpiration, and (c)
annual mean of tagged precipitation fraction Ptag,Et/Ptag (%) for transpiration for the
year 2005. S denotes the source area, i.e., the Poyang Lake region. P denotes the
Poyang Lake basin, and C denotes Southeast China.

6.2.2 Variation of Monthly Partitioned Tagged Precipitation

Next, the distribution of evapotranspiration and tagged precipitation is investigated

on a monthly basis. Figure 6.2a shows time series of monthly area mean of ETtag

and the corresponding partitioning over area S for 2005. Except for July, August and

September, the direct evaporation fluxes Ed,tag show significantly higher values than

the transpiration fluxes. They reach their maximum during the rainy season, since

a large amount of water is available at the land surface and on the canopy of the

fully developed vegetation. The monthly variation of the transpiration fraction Et,tag

coincides with the seasonal changes in temperature. Since the land surface model in
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this study uses a prescribed seasonal varying climatological green leaf area index and

green vegetation fraction, increasing temperatures reflect promoting transpiration and

allow for more water uptake from the root zone. Thus, the highest values of Et,tag are

found from June to September.
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Figure 6.2: Time series of monthly area mean of (a) evapotranspiration ETtag (black)
and its contributions direct evaporation Ed,tag (blue) and transpiration Et,tag (red) (mm
month−1) for area S, (b) tagged precipitation Ptag (black) and the contributions for
direct evaporation Ptag,Ed (blue) and for transpiration Ptag,Et (red) (mm month−1) for
area S, (c) as in (b), except for area C, and (d) precipitation fraction Ptag,Et/Ptag for
transpiration for area S (red) and for area C (black) (%).
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Correspondingly, time series of monthly area mean of the tagged precipitation Ptag

and its fractions Ptag,Ed and Ptag,Et over the source area S and over the target area C

are shown in Figures 6.2b and 6.2c. In general, since little tagged precipitation for

transpiration is found in winter and in the transit seasons, almost all of the tagged

precipitation during these periods originates from direct evaporation. In the summer

season, the transpiration becomes more important for the formation of tagged precip-

itation. For the small source area S, both Ptag,Ed and Ptag,Et show the largest values in

May (Figure 6.2b), in accordance with peak total (tagged and untagged) precipitation.

For the large target area C, the time series of the tagged precipitation (Figure 6.2c)

follows the trend of the source area S (see Figure 6.2b), but with less variation and

markedly lower values in May, since Ptag,Et is concentrated around the source area S

due to frequent, local rainfall events. Relatively high values for Ptag,Et persist from May

to August.

Additionally, time series of the ratio Ptag,Et/Ptag for transpiration are given in Figure

6.2d. Larger fractions of Ptag,Et/Ptag for the source area S are found in June and August

with maximum ratios of around 50% and 66%. For area S, in May, due to the large

amount of Ptag,Ed formed, Ptag,Et only accounts for 25% of Ptag, while in the dry and

warm season (from June to August), Ptag,Et accounts for around 50% of Ptag.

The comparison of the monthly precipitation ratios over the source area S and

over area C (see Figure 6.2d) reveals that in specific months, large fractions of direct

evaporated moisture and of transpired moisture are affected by different precipitation

regimes. For example, in July, transpired water is transported over long distances and

involved in remote rainfall events. In contrast, for example, local (area S) precipitation

contribution by transpiration is more significant in August.

6.2.3 Analysis of Source-Target Relations

Figures 6.3a and 6.3b show the monthly values of the source-specific precipitation

efficiencies ηd and ηt for the source area S and area C. The monthly variation of these

parameters, which reflects different precipitation regimes, is closely connected to the

monthly variation of the tagged precipitation and its fractions (see Figures 6.2b and

6.2c). Generally, higher source-specific precipitation efficiencies imply a larger amount

of precipitation being formed. As a result, the highest values of tagged precipitation

are found in the rainy season in May, when the source-specific precipitation efficiencies

also reach the highest values both for area S and for area C. For the small source area

S, the source-specific precipitation efficiencies show a wider range of seasonal variation

(Figure 6.3a). With the target area being larger (area C), the averaged source-specific

precipitation efficiencies are lower and more uniform (Figure 6.3b).
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Figure 6.3: (a) Time series of monthly source-specific precipitation efficiencies for
direct evaporation ηd (%) in blue and for transpiration ηt (%) in red for area S, (b) as
in (a), except for area C.





Chapter 7

Atmospheric Residence Times from

Transpiration and Evaporation to

Precipitation

It is understood that human-induced global warming leads to an enhancement of the

evapotranspiration process and thereby to an acceleration of the atmospheric branch

of the hydrological cycle. This is supported by empirical evidence (Huntington, 2006),

modeling studies (Allen and Ingram, 2002), and theoretical expectation (the Clausius-

Clapyeron relation) (Held and Soden, 2006). Although the acceleration of the hy-

drological cycle is generally acknowledged, it is still challenging question of how the

hydrological cycle changes as the climate changes (Trenberth, 1999a).

The response of the hydrological cycle to the climate regime can be studied by

investigating, for example, the relationship between evapotranspiration and precipita-

tion, particularly the celerity of the processes transferring from evapotranspired water

to precipitating water. To quantify this celerity, the concept of atmospheric residence

time, here defined as lifetime between the original evapotranspiration and the returning

of its respective water masses to the land surface as precipitation, is used in various

studies (Trenberth, 1998; Numaguti, 1999; James et al., 2003; Tuinenburg et al., 2012;

Wang-Erlandsson et al., 2014; van der Ent, 2014). It is a fundamental descriptor that

provides additional information on the timescales of evapotranspiration and precipi-

tation and reflects the complexity of the atmospheric water pathways and the phase

changes including the formation of precipitation. In addition, a probability density

function (PDF) of residence times, hereafter referred to as residence times distribution

(RTD), allows to characterize the natural atmospheric hydrological cycle for different

regimes and seasons. Apart from atmospheric science, this concept has been also exten-

sively applied in numerous fields of geophysics (McGuire and McDonnell, 2006; Harman
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and Kim, 2014), e.g., in the hydrologic studies on rainfall-runoff response (Hrachowitz

et al., 2013) and on groundwater age distributions (Gomez and Wilson, 2013). A de-

tailed overview and interpretation of this concept are given by Bolin and Rodhe (1973),

Zuber (1986), and McGuire and McDonnell (2006).

There are only a few studies calculating atmospheric water residence times. By

using an atmospheric general circulation model in conjunction with moisture tracers,

Numaguti (1999) investigated the mean age of the precipitating water from the oceanic

and from the continental origins in Eurasia. A Lagrangian particle dispersion model

in which particles act as tracers has been employed for assessing the exchange rate

of air parcels between stratosphere and troposphere on a global scale (James et al.,

2003). Trenberth (1998) used a function for depletion of precipitable water by pre-

cipitation and calculated the global mean residence time of atmospheric moisture as

8.1 days. Additionally, environmental tracers and passive modeled tracers are utilized

often as a combined observational and modeling approach to calculate residence times

and corresponding distributions (Gomez and Wilson, 2013).

The RTD for water evaporated from the Ganges basin has been estimated by Tu-

inenburg et al. (2012) using a quasi-isentropic moisture tracking scheme. The global

atmospheric lifetime of recycled moisture was studied by van der Ent (2014). These

and similar other modeling studies either have been conducted on large scales with a

coarse resolution or have used relatively simple schemes for atmospheric dynamical and

physical processes. This may limit the accuracy of estimates of atmospheric residence

times, e.g., due to an inadequate representation of the complex atmospheric features,

especially, when directional wind shear is present or strong moist convection happens

(Goessling and Reick, 2013; van der Ent et al., 2013).

To overcome these difficulties, the RCM-based ET-Tagging partitioning algorithm is

extended again by including a mechanism to calculate the atmospheric water residence

times for moisture originated from a specific region (more details shown in Chapter

3.4). The newly extended model is applied in the research scope of land-atmosphere

interactions to a case study over the same study area, i.e., the Poyang Lake region.

In this chapter, the age-weighted extended model is employed to address the re-

search question of how long the lifetime is between the original evapotranspiration

(transpiration and evaporation) in the Poyang Lake region and the subsequent precipi-

tation. To our knowledge, an RCM-based algorithm for calculating atmospheric water

residence times has not yet been used for the subtropical and mountainous Southeast

China. Thus, the objectives of this chapter are (1) to introduce and demonstrate a

process-based, three dimensional regional climate model-based algorithm for the calcu-

lation of atmospheric water residence times, (2) to apply this extended model for the

first time in Southeast China, and (3) to investigate the spatial and temporal variations
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of atmospheric residence times of the direct evaporated and transpired water from the

Poyang Lake region.

For the application of the age-weighted ET-Tagging partitioning algorithm, the ex-

perimental design here closely follows that described in Chapter 5.1. To assess the

atmospheric residence times of the evapotranspired (RunAgeET ), direct evaporated

(RunAgeEd), and transpired (RunAgeEt) water, three long-term model runs are per-

formed for the period from October 2004 to December 2005. The analysis is limited

to the entire year 2005 after 3 months spin-up time on a monthly scale. To demon-

strate the age-weighted regiomal ET-tagging approach, the focus is on the formation

of tagged and age-weighted tagged moisture in the first 48 hours during the spin-up

period of the simulation for the evapotranspired water.

7.1 Analysis Methods

The atmospheric residence times of moisture is calculated by

τk = qk,age/qk,tag (7.1)

and the atmospheric residence times of precipitated water by

TP = Page/Ptag. (7.2)

In the context of ET-Tagging partitioning, the atmospheric residence times τk,Ed of

tagged moisture components qk,tagEd formed by direct evaporation Ed and the atmo-

spheric residence times τk,Et of tagged moisture components qk,tagEt formed by transpi-

ration Et are defined as

τk,Ed = qk,ageEd/qk,tagEd (7.3)

τk,Et = qk,ageEt/qk,tagEt . (7.4)

Similarly, the atmospheric residence times TP,Ed of tagged precipitation Ptag,Ed con-

tributed by direct evaporation and the atmospheric residence times TP,Et of tagged

precipitation Ptag,Et contributed by transpiration are defined as

TP,Ed = Page,Ed/Ptag,Ed (7.5)

TP,Et = Page,Et/Ptag,Et . (7.6)
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7.2 Results and Discussion

7.2.1 Illustration of Dynamical Evolution

To demonstrate the age-weighted ET-Tagging algorithm, the first 48 hours of the model

run RunAgeET is considered as simulating the formation of tagged and age-weighted

tagged moisture originating from the evapotranspired water. The results are shown

in Figures 7.1 and 7.2. The evolutions of the tagged moisture, of the age-weighted

tagged moisture, and of the corresponding atmospheric residence times are displayed

for five selected times between 00:00 UTC 1 and 24:00 UTC 2 in October 2004. The

figures reveal the variations due to differences of the evapotranspiration and of the

atmospheric transport conditions.

Figure 7.1 shows the spatial distribution of the column-integrated total tagged mois-

ture Qttag (consisting of water vapor, cloud water, cloud ice, rain water, and snow) (left

column), the age-weighted total tagged moisture Qtage (middle column), and the age

τQt of the total tagged moisture (right column) over Southeast China at the selected five

times. In addition, the hourly mean of the simulated horizontal wind field at 10-meter

is shown as well. At the start of the simulation at 08:00 in the Chinese Standard Time

(CST) zone (00:00 UTC) on 1 October in 2004, tagged moisture and age-weighted

tagged moisture are set to zero. After that, evapotranspired water from the source

area S is tagged when entering the atmosphere, and the age-weighting processes of

tagged moisture components are triggered. Then, both the tagged moisture Qttag and

the age-weighted tagged moisture Qtage undergo the same atmospheric processes (i.e.,

transport by the wind fields and phase transitions) as the (original) total moisture.

Figures 7.1a and 7.1b demonstrate the transport and spreading controlled by the wind

fields after one hour of simulation. Finally, the tagged moisture and the age-weighted

tagged moisture can leave the model domain (see Figures 7.1d, 7.1g, and Figures 7.1e,

7.1h) or can return to the land surface as tagged precipitation and age-weighted tagged

precipitation. Moreover, during these 48 hours, the role of the precipitation is not yet

significant. The day-night change in temperature leads to the fluctuation of the amount

of evapotranspired water and thereby impacts the variations of the Qttag and the Qtage

patterns. Figures 7.1g and 7.1h show that little tagged moisture and little age-weighted

tagged moisture are found over the source area S due to the limited water evapotran-

spired in the cold hours after midnight (i.e., 02:00 CST 2 October). With incoming

radiation and rising temperature in the second day (i.e., 2 October), Qttag and Qtage

increase and undergo the transport and spreading processes again (see Figures 7.1j,

7.1m and Figures 7.1k, 7.1n).

The mean age τQt patterns of the total tagged moisture in Figure 7.1 (right column)

are generally controlled by two factors: the magnitudes of the newly tagged evapotran-
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spired water compared to the magnitudes of the already existing tagged moisture and

the atmospheric transport conditions. Within the first hour of the simulation, the τQt

pattern spreads towards the South due to the northerly winds (see area S in Figure

7.1c). In addition, the north-south lifetime gradient is pronounced. Comparatively

fresh total tagged moisture with a low age (< 0.3 hours) is found over the northern

part of the source area S since the atmosphere here contains a large proportion of the

newly tagged evapotranspired water. Over the southern part of the source area S,

τQt is around 0.5 hours (approximately the averaged age of the tagged moisture in the

domain), attributed to the mixing between the newly and the already existing evapo-

transpired water. In contrast, the total tagged moisture out of the source area S has a

mean age up to 0.96 hour since there is no direct supply of fresh moisture.

Figure 7.1f depicts the τQt pattern at the model time 11 hours just before a large

amount of the older total tagged moisture starts to leave the area C (see Figure 7.1d).

An age with values larger than 8 hours is also found over the adjacent part in the East

and Southeast of the source area S despite the small absolute values of the total tagged

moisture, which may be mainly caused by repeatedly wind direction changes. Figures

7.1i, 7.1l, and 7.1o show the age patterns on the second day at the selected three local

times, consisting of early morning (Figure 7.1i), afternoon (Figure 7.1l), and night

(Figure 7.1o). Due to gradually decreasing wind speed, the contoured age pattern with

a large gradient tends now to be centered on the source area S.

Figure 7.2 shows time series of hourly means of (a) total tagged moisture, (c) age-

weighted total tagged moisture, and (e) age of total tagged moisture, averaged over

the analysis area C, and (b), (d), (f) the corresponding hourly net changes, during

the first 48 hours in October 2004. The tagged moisture content increases almost

monotonically in the model atmosphere till 20:00 CST 1 October, decreases during

the following evening and night, and increases again after sunrise on the next day

(Figure 7.2a). The fluctuations reflect the comprehensive interactions among the daily

cycles of evapotranspiration, the formation of precipitation (to a lesser degree), the

spatial redistribution due to various transport processes, and the loss due to outflow at

lateral model boundaries. The trend of reduction of the total tagged moisture content

(negative net change) during the nighttime follows the trend of enrichment (positive

net change) during the daytime (Figure 7.2b). Within the first 12 hours, the total

tagged moisture nearly linearly increases, whereas the age-weighted tagged moisture

shows a non-linear increasing trend due to the age-weighting process, with a nearly

linear increment of the hourly net changes as time elapses (Figure 7.2d). Later in the

evening, the age-weighted total tagged moisture switches from gain (positive change) to

loss (negative change) (at 22:00 CST 1 in Figure 7.2d) with an one hour lag compared

to the total tagged moisture (at 21:00 CST 1 in Figure 7.2d). The mean age (Figure

7.2e) of the total tagged moisture averaged over the analysis area C increases from 08:00

CST 1 until 19:00 CST 1 before large amounts of the total tagged moisture leaves the
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Figure 7.1: Horizontal distribution of column-integrated total tagged moisture Qttag

in g m−2 (left column), column-integrated age-weighted total tagged moisture Qtage in
g m−2 h (middle column), and age τQt of column-integrated total tagged moisture in h
(right column) at different times during the first simulated 48 hours (00:00 UTC 1 to
24:00 UTC 2) in October 2004. The source area S lies within the black rectangle.
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Figure 7.2: Time series from 08:00 CST 1 to 08:00 CST 3 in October 2004 of (a)
column-integrated total tagged moisture Qttag in g m−2, (c) column-integrated age-
weighted total tagged moisture Qtage in g m−2 h, (e) age τQt of column-integrated total
tagged moisture in h, and (b, d, f) correspondingly hourly net changes, averaged over
the analysis area C.
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analysis area (see Figure 7.1d). In the first hour, the increase is nearly linear, after

that it tends to be even stronger, since the weakening evapotranspiration process (see

Figure 7.2b) can only slightly refresh the large amount of the already existing (old)

total tagged moisture within area C (see Figures 7.1e and 7.2d). In the following, the

total tagged moisture becomes younger when the loss-induced decrease of the old total

tagged moisture predominates, e.g., during the two periods (00:00-02:00, 08:00-13:00,

CST 2).

7.2.2 Residence Times of Tagged Moisture in the Atmosphere

The atmospheric water residence times are now derived from the long-term run, i.e.,

the full year 2005. Figure 7.3 (upper panel) shows the vertical distribution of (a) the

total tagged moisture qttag, (b) the age-weighted total tagged moisture qtage, and (c)

the mean age of the total tagged moisture τqt averaged over the analysis area C on

monthly scales. Generally, the vertical profile of qtage shows the same patterns as that

of qttag: the values are dominated by the water vapor portion and are therefore high

in the lower part of the atmosphere, especially during the rainy, warm season (April-

June) (Figures 7.3a and 7.3b). The mean age of the total tagged moisture shown in

Figure 7.3c varies from only 13 hours near the surface, to around 60 hours close to the

planetary boundary layer top, to larger than 110 hours in the upper atmosphere. In

the boundary layer, the total tagged moisture in summer is younger (lower values of

the mean age) than in winter, which reveals that generally the atmospheric branch of

the hydrological cycle in summer proceeds faster than in winter.

To examine the intensity of the cloud and precipitation formation, monthly vertical

profiles (d) of the condensed tagged moisture qdtag (i.e., the sum of tagged liquid and

solid cloud and precipitation water), (e) of the age-weighted condensed tagged moisture

qdage, and (f) of the corresponding mean age τqd are shown in Figure 7.3 (lower panel).

The vertical distribution of patterns of qdtag and qdage exhibits significant differences

from month to month. In winter, most of the condensed tagged water is formed in

lower layers with a mean age of around 4 hours, only a very small amount is found far

above the boundary layer with a higher mean age, e.g., around 10 hours in February

and March. In contrast, in the rainy season and in the summer months, large-scale

lifting and frequent convection result in a low age (around 3 hours) above the planetary

boundary layer and in a higher age (around 6 hours) within the boundary layer. The

different age profile in winter and summer indicates the diverse precipitation regimes.

Moreover, the lower absolute values of the mean age of the condensed tagged moisture

in summer than in winter suggest that the response of cloud and precipitating formation

in summer is faster than in winter.
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Figure 7.3: Time series of vertical distribution of (a) total tagged moisture mixing
ratio qttag in g kg−1, (b) age-weighted total tagged moisture qtage in g kg−1 h, and (c)
mean age τqt of total tagged moisture in h, averaged over area C for each model layer
and for each month in 2005. Lower panel shows same as upper panel but for condensed
tagged moisture.
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Figure 7.4: Annual mean of simulated column-integrated (a) total tagged moisture
Qttag in g m−2, (b) age-weighted total tagged moisture Qtage in g m−2 h, (c) age τQt

of total tagged moisture in h, for the year 2005. Lower row (d-f) shows the same as
the upper row but for annual mean of simulated column-integrated condensed tagged
moisture.

Figure 7.4 (upper row) shows the horizontal distribution of (a) the column-

integrated total tagged moisture Qttag, (b) the column-integrated age-weighted total

tagged moisture Qtage, and (c) the corresponding mean age τqt averaged for 2005.

Generally, the values of Qttag and Qtage decrease with distance from the source area

with similar patterns. On the other hand, the age of the tagged moisture principally

increases with increasing distance from the source area (Figure 7.4c). The values range

from around 11 hours over the source area S up to 90 hours over the southeastern and

northwestern corners of area C. Averaged over area C, the mean age of the total tagged

moisture is around 36 hours. Spatially, the northeast-southwest expanding pattern

reflects the differently prevailing wind directions in the winter monsoon and summer

monsoon controlled seasons. Additionally, the gradient of the mean age towards the

Northeast is lower than that towards the Southwest. It indicates that large amounts

of fresh total tagged moisture are transported with strong southeasterly winds in

summer, while small amounts of the old total tagged moisture are transported with

weak northwesterly winds in winter.

Figure 7.4 (lower row) shows the horizontal distributions for the condensed parts.

The horizontal distribution of the column-integrated age-weighted condensed tagged

moisture Qdage (Figure 7.4e) generally follows the distribution of Qdtag (Figure 7.4d).

In comparison to the patterns for the total tagged moisture (see Figure 7.4c), the
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mean age patterns of the condensed part (Figure 7.4f) are distinctly different and the

values are much lower (around 8 hours). Moreover, the comparison between Figure 7.4d

and Figure 7.4f shows that, generally, larger values of the condensed tagged moisture

correspond with lower age in the atmosphere.

7.2.3 Residence Times of Tagged Precipitation over Land

Figure 7.5 shows the spatial distribution of the simulated tagged precipitation Ptag (left

column), and the age-weighted tagged precipitation Page (middle column) for the total

year 2005 and three selected months (February, May, and August). The patterns of

the age TP are depicted as well (right column). Accumulated over the year 2005, the

horizontal distribution of the tagged precipitation patterns Ptag (Figure 7.5a) are closely

related to the condensed tagged moisture patterns Qdtag (Figure 7.4d). Similarly, the

age-weighted tagged precipitation distribution Page in Figure 7.5b appears like the dis-

tribution of Qdage (see Figure 7.4e). Figure 7.5c shows the age patterns synthesizing

the variations of evapotranspiration, atmospheric transport conditions, and precipitat-

ing events for the whole year 2005. Overall, the age has a negative correlation with

the tagged precipitation: Most of the low age (≤ 3 hours) are found in regions where

relatively large amounts of the tagged precipitation (≥ 8mm) occur, for example, in

the source area S and in the North along the Yangtze River Valley. The reason is, that

a large proportion of the annual tagged precipitation in these regions is accounted for

by the precipitation occuring in the rainy season and in the summer months (e.g., May

in Figure 7.5g and August in Figure 7.5j), with a comparatively faster response of the

atmospheric branch of the hydrological cycle. In contrast, significantly decreasing wind

speed and rapidly changing wind direction lead to longer atmospheric water pathways

of the tagged moisture before precipitating, for example in the southeast quadrant. It

is worth to note that the age patterns of the tagged precipitation over the land sur-

face (Figure 7.5c) is very similar to the age patterns of the condensed tagged moisture

in the atmosphere, but being around one hour shorter (Figure 7.4f). This time lag

is probably ascribed to a longer life of the non-precipitating and later re-evaporating

condensed tagged moisture.

Furthermore, the three selected months clearly reveal the impact of the different

monsoon-controlled precipitation regimes on the monthly variations of the age-weighted

tagged precipitation patterns and of the corresponding age patterns. In February,

the prevailing northwesterly winds generate a band-like structure of the age-weighted

tagged precipitation Page (Figure 7.5e). The maximum values of Page are located in

the adjacent parts to the East and to the Southeast of the source area. The tagged

precipitation Ptag with large values generally has a lower age TP, while comparatively

high (around 8 hours) age is found for relatively low values of Ptag (around 0.4mm)
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Figure 7.5: Sum of simulated tagged precipitation Ptag in mm (left column), age-
weighted tagged precipitation Page in mm h (middle column), and age TP in h (right
column) for the total year 2005 and for three selected months (February, May, August).
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(see Figures 7.5d and 7.5f). Regions with both significantly high age (> 12 hours) and

very small amount of the tagged precipitation (< 0.2mm) are found in the East of the

source area S, probably due to the repeated changes in wind direction. In the rainy

season, like in May, the age-weighted tagged precipitation (Figure 7.5h) has higher

values than in February (see Figure 7.5e) and the patterns are generally similar to

the patterns of the tagged precipitation (Figure 7.5g), with maximum values in the

source area S and its surrounding regions. Correspondingly, the age in these regions

shown in Figure 7.5i is low (< 5 hours), since large amounts of the tagged moisture

is involved in fast, large-scale precipitation processes (see Figure 7.3). A low age of

the tagged precipitation are also found in the Northeast and in the South, where the

tagged moisture originating from the source area S is transported by strong winds, and

then precipitates in accordance with locally convective events. In August, some large

values of the tagged precipitation Ptag (Figure 7.5g) and of the age-weighted tagged

precipitation Page (Figure 7.5h) are found in various regions in and around the source

area S. However, regions with maximum age-weighted tagged precipitation (> 10mm

h) are in the remote North (Figure 7.5h) with a long time residing in the atmosphere

(Figure 7.5l) due to the decreasing strength of the summer monsoon and the changing

wind directions associated with the retreat of the monsoon. Overall, Figure 7.5 depicts

the different patterns of the tagged precipitation and the accompanying age, which

reveals the varying conditions and dynamical complexity of the atmospheric branch of

the hydrological cycle.

7.2.4 Residence Times Corresponding to Partitioned Transpi-

ration and Evaporation

In the context of ET-Tagging partitioning (see Chapter 3.3), the atmospheric residence

times of the transpired water and the direct evaporated water can be separately calcu-

lated in two long-term simulations (RunAgeEt and RunAgeEd) and are presented here.

Figures 7.6a and 7.6b shows the vertical profiles of the annual mean of the total tagged

moisture mixing ratio and its mean age for evapotranspiration ET and for its parti-

tions Ed and Et for 2005. Overall, the values of the total tagged moisture decreases

with increasing height and reaching values near zero above the planetary boundary

layer (Figure 7.6a). In all layers, the contribution by direct evaporation dominates.

Regarding the mean age (Figure 7.6b), both, the total tagged moisture for transpira-

tion and direct evaporation resides short in the lower part and longer in the upper part

of the atmosphere. Below around 950 hPa (7th sigma level), the age for direct evapora-

tion is lower than that for transpiration. The reason is probably that a large amount

of direct evaporated moisture originates during the daytime frequently coinciding with

convection. Instead, the transpired moisture originates more continuously and shows

higher mean age, especially contributed by the long residence times of water transpired
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during the nighttime. In contrast, an inversed difference in the profiles of the mean

age for transpiration (younger) and direct evaporation (older) is found in the upper

part of the atmosphere (above the 7th sigma level). This inversion is presumably as-

cribed to the transpired water uptake from the wet root zone contrasting to less direct

evaporated water from the dry top soil, especially during the dry season. This expla-

nation is generally supported by van der Ent (2014). Overall, these differences reflect

the different features of the respective processes: intermittent direct evaporation, more

continuous transpiration, and rising and mixing of the two partitions.

Figures 7.6c and 7.6d show the same as Figures 7.6a and 7.6b but for the condensed

tagged moisture. Two peaks of the condensed tagged moisture mixing ratio for the

two ET partitions are found (Figure 7.6c), which indicates the overall meteorological

conditions relating to the atmospheric circulations over Southeast China. One peak is

found around 913 hPa (10th sigma level), presumably due to the mean stratification,

mainly in winter. Another peak around 590 hPa (20th sigma level) may be caused by the

lifting convection dominating in summer. In all layers, the condensed tagged moisture

qdtag is mainly contributed by the younger direct evaporation. The mean age of qdtag

for direct evaporation in the lower part of the atmosphere is lower than in the upper

part, which is inversed for transpiration (Figure 7.6d). This reveals that the direct

evaporated water favors the formation of clouds and precipitation more in the lower

part of the atmosphere, while the transpired moisture condenses relatively more and

later in the upper part. By comparison the mean age of qdtag for the two ET partitions,

the atmosphere has a quick response to the direct evaporation process and a slower

response to the transpiration process.

Horizontally, the pattern of the tagged moisture originating from direct evaporation

Qttag,Ed (Figure 7.7a) follows the pattern of the total tagged moisture from evapotran-

spiration Qttag (see Figure 7.4a). Averaged over area C, Qttag,Ed accounts for 64 % of

Qttag. The age pattern of Qttag,Ed (Figure 7.7b) is similar to the age pattern of Qttag

(Figure 7.4c). Compared with the Qttag,Ed pattern, the pattern for the transpiration

contribution is shifted slightly bit towards the North (Figure 7.7c). Especially, over

the southwestern part of area C the atmosphere contains younger (around 40 hours)

tagged moisture contributed by direct evaporation and slightly older (around 50 hours)

moisture by transpiration. Such a difference is also found in the southeast quadrant,

while over the northern and western parts, the mean age for direct evaporation and for

transpiration shows similar values. Averaged over area C, the mean age of Qttag,Ed and

Qttag,Et are nearly equal to the value for evapotranspiration τQt , i.e., around 36 hours.

Regarding the condensed tagged moisture Qdtag, 69.2% is contributed by direct

evaporation and the rest by transpiration. The area-averaged age of Qttag,Ed (around

7 hours) is lower than that of Qttag,Et (around 11 hours). A large amount of the con-

densed tagged moisture Qdtag,Ed originating from direct evaporated water is found in
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Figure 7.6: Vertical distribution of annual mean of (a) total tagged moisture mixing
ratio qttag in g kg−1, (b) mean age of total tagged moisture mixing ratio τqt in h,
originating from evapotranspired water (in black), from direct evaporated water (in
blue), and from transpired water (in red), averaged over area C for the year 2005.
Right column shows the same as the left column but for condensed tagged moisture.
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the atmosphere over the source area S and in the adjacent part to the East and in

the South (Figure 7.7e), with an age of more than 6 hours (Figure 7.7f). In contrast,

transpired water is more important over the region close to the source area S and in the

North (Figure 7.7g), with an age of less than 6 hours (Figure 7.7h). In comparison, in

the South, the direct evaporated water contributes nearly to all the condensed tagged

moisture with low age (< 8 hours), whereas the transpired water contributes little with

higher age (> 12 hours). In the North, the two ET partitions contribute nearly equally

with similar age (only ≤ 2 hours lag between the direct evaporated precipitation and

the transpired precipitation).

In order to investigate the monthly variation of the atmospheric water residence

times over area C, time series of monthly mean of moisture content (upper row) and

of age (lower row) for the year 2005 are displayed in Figure 7.8. The tagged moisture

Qttag,Ed due to direct evaporation (Figure 7.8a) significantly increases from January to

March, reaches its maximum during the months from April to June, and becomes rela-

tively low (around 60 g m−2) in the following months. In contrast, the tagged moisture

Qttag,Et due to transpiration has low values in winter and reaches its maximum values

in June and September. This reveals that, in the summer season, the transpiration

turns more important for the formation of tagged moisture and also for the formation

of tagged precipitation. Considering the mean age (Figure 7.8b), generally, there is a

systematic difference between in the ages of Qttag,Ed and of Qttag,Et . In particular, the

age of Qttag,Et reaches nearly the same value as that of Qttag,Ed during the period from

July to September, which is likely due to the stronger effect of the transpired water

uptake by vegetation.

In comparison with the absolute of the total tagged moisture, the condensed amount

for the two partitions (Qdtag,Ed and Qdtag,Et ) is nearly two orders of magnitude lower

(Figure 7.8c). Generally, the monthly variation of Qdtag,Ed is similar to the variation

of Qdtag,Et . But, the respective maximum values are found in different months: in

May for Qdtag,Ed , and in June and August for Qdtag,Et . Correspondingly, the monthly

variation of the age of Qdtag,Ed is larger (from 7hours in July to 25 hours in November)

compared with that of Qdtag,Ed (from 5 to 10 hours) (Figure 7.8d). The mean age of

Qdtag,Ed is lower than that of Qttag,Et , especially in the cold season, with the difference of

around 15 hours, since the direct evaporation dominates the formation of the condensed

moisture during this period. This difference becomes small in the transient season and

even nearly no difference during the warm months from June to August. It indicates

that the transpired and direct evaporated water nearly have the same probability to

be involved in forming clouds and tagged precipitation.

Figure 7.9 (left column) shows the horizontal distribution of the tagged precipitation

contributed by the two ET partitions, accumulated for the year 2005. The annual

mean of the corresponding age is shown in Figure 7.9 (right column). Generally, the
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Figure 7.7: Annual mean of simulated column-integrated (a) total tagged moisture
originating from direct evaporated water Qttag,Ed in g m−2 and (b) age τQt ,Ed of total
tagged moisture for direct evaporation in h, averaged for the year 2005. The second
row (c,d) shows the same as the first row but for tagged moisture from transpiration.
(e) Annual mean of condensed tagged moisture from direct evaporation Qdtag,Ed in g
m−2 and (f) corresponding age τQd ,Ed in h. The fourth row (g, h) shows the same as
the third row but for transpiration.



84 7.2. RESULTS AND DISCUSSION

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0
1

0
0

2
0

0
3

0
0

Qttag for ET and for ET partitions [g m
−2
],   area C

(a) Qttag
Qttag,Ed

Qttag,Et

2
0

3
0

4
0

5
0

6
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

τQt for ET and for ET partitions [h],   area C

(b) τQt

τQt,Ed

τQt,Et

Time [month]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0
0
.2

0
.6

1

Qd tag for ET and for ET partitions [g m
−2
],   area C

(c) Qd tag

Qd tag,Ed

Qd tag,Et

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0
1
0

2
0

3
0

τQd for ET and for ET partitions [h],   area C

(d) τQd

τQd,Ed

τQd,Et

Time [month]

Figure 7.8: Time series of monthly mean of column integrated (a) total tagged mois-
ture Qttag in g m−2 and (b) age τQt of total tagged moisture in h, originating from
evapotranspired water (in black), from direct evaporated water (in blue), and from
transpired water (in red), each averaged over area C. Right panel shows the same as
the left panel but for condensed tagged moisture.

patterns of the partitioned tagged precipitation (their age) are similar to the patterns

of the partitioned condensed tagged moisture (their age) (see Figure 7.7e-h). The

direct evaporation contributes more to the total tagged precipitation with a lower

age (area mean: 6.6 hours) than the transpiration (area mean: 10.7 hours). Over the

regions around the source area and in the North, the ages of the two partitioned tagged

precipitation are similarly short (< 6 hours). However, in the West and in the South,

the tagged precipitation by transpiration has much higher age than that by direct

evaporation.
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Figure 7.9: (a) Annual sum of simulated tagged precipitation originating from direct
evaporation Ptag,Ed in mm and (b) corresponding mean age TP,Ed in h, for the year 2005.
Lower panel (c,d) shows the same as the upper panel but for transpiration.





Chapter 8

Summary, Conclusions, and

Perspectives

A regional climate model with an ET-Tagging algorithm was applied to the Poyang

Lake region (Southeast China) for 2005. This method, accounting for all water trans-

port and phase transitions, allows to tag the evapotranspired water from a given source

area and to follow the pathways across the atmosphere until the tagged moisture re-

turns to the land surface as precipitation or leaves the model domain. This model has

been extended to track transpiration and direct evaporation separately and has been

extended again by including an age-weighting mechanism to calculate the atmospheric

water residence time, correspondingly. It was used to explicitly quantify the contribu-

tion of regional evapotranspiration to precipitation, and to further evaluate the effect of

land-surface characteristics on hydrological processes by partitioning total evapotran-

spiration into direct evaporation and transpiration. Additionally, the age-weighting

mechanism, calculating the atmospheric residence times of the direct evaporated and

transpired water, allows to assess the response, here the celerity, of the atmospheric

branch of the hydrological cycle.

The study reveals that the location and magnitude of the tagged precipitation show

large spatial and temporal variability controlled by synoptic weather conditions, espe-

cially by the wind shear due to the advance and retreat of the East Asian monsoon.

Most tagged precipitation falls around the Poyang Lake region. In 2005, the tagged

precipitation contribution accounts for up to 1.2% of the total rainfall. On a monthly

scale, the maximum value of the contribution ratio is found in August (≤ 6%). This

relative low contribution of evapotranspiration from the Poyang Lake region to the

precipitation in Southeast China means that the precipitation mainly originates from

non-local moisture. This result is generally in line with previous studies by Numaguti

(1999); Yoshimura et al. (2004a); van der Ent and Savenije (2011). In summer, non-
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local moisture contributions are mainly from the ocean, transported by the East Asian

monsoon (Wu et al., 2006), whereas in winter, it mainly comes from the North (Chow

et al., 2008). Maximum values of tagged precipitation contribution ratios are consis-

tently found in May, which reveals that the contribution of the Poyang Lake region

becomes significant in accordance with peak total precipitation occuring.

Regarding the impact of vegetation cover and land-use, in 2005 69% of the tagged

precipitation in Southeast China is contributed by direct evaporation from the Poyang

Lake region, and 31% by vegetation transpiration. The annual cycle of these fractions

reflects the changes of meteorological conditions and vegetation growth. In winter, the

fraction of precipitation from transpiration accounts for only around 10% of the total

tagged precipitation, while it reaches values of up to 50% for the remainder of the year.

Seasonal varying values of the source-specific precipitation efficiencies reveal a differ-

ent response of the atmospheric hydrological cycle: warmer air temperature, increased

convection, and large-scale lifting enhance the response of the atmospheric hydrological

cycle to the direct evaporation from the Poyang Lake region, resulting in maximum

values of the source-specific precipitation efficiencies in the rainy season. In May, the

precipitation formation is more efficient for moisture originating from direct evapora-

tion. While in the comparatively dry month August, the efficiency for transpiration

dominates in the source area since a large amount of water from the lower moist soil

is transferred by vegetation, with little evaporative flux from the upper dry soil.

With regard to the atmospheric water residence times, the study shows the forma-

tion and evolution of the tagged and age-weighted tagged moisture fields and depicts

the evolution of the corresponding lifetimes. The spatial and temporal variations of the

mean age of the tagged moisture are controlled by the magnitudes of the newly tagged

evapotranspired water compared to the magnitudes of the already existing age-weighted

tagged moisture and by changes in the atmospheric transport conditions.

Our results reveal that the celerity of the atmospheric branch of the hydrological

cycle changes over the months. The atmospheric total tagged moisture originating

from the Poyang Lake region has a comparatively long residence time in winter and a

shorter time in summer. Spatially, the age of the total tagged moisture increases with

the length of the moisture pathways, resulting in most cases in an increasing distance

to the Poyang Lake region, too. The horizontal and vertical patterns reflect differently

prevailing wind directions and speeds in the winter and summer monsoon controlled

seasons.

Regarding the cloud and precipitation formation, the age of the condensed tagged

moisture, i.e., around 8 hours averaged over area C (nearly Southeast China), is much

shorter in comparison with that of the total tagged moisture (around 36 hours). Most
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of the condensed tagged moisture with short residence times is found in winter in the

lower part of the atmosphere and in summer in the higher layers of the atmosphere,

which reflects the different precipitation regimes in Southeast China. In comparison,

the mean age patterns of the tagged precipitation over the land surface is very similar

to the mean age patterns of the condensed tagged moisture in the atmosphere, but

being around one hour shorter. A longer life of the non-precipitating and later re-

evaporating condensed moisture presumably accounts for this time lag. As well, the

tagged precipitation has different age patterns from month to month, which reveals the

varying conditions impacted by the East Asian monsoon and the dynamical complexity

of the atmospheric branch of the hydrological cycle.

In the context of the ET-Tagging partitioning, in 2005 the age of the tagged mois-

ture for direct evaporation is lower than that for transpiration in the lower part of

the atmosphere and the inversed case is found in higher layers. This phenomenon

reflects different features of respective process over the land surface: intermittent di-

rect evaporation, more continuous transpiration, and mixing of the two ET partitions.

Horizontally, over the southwestern part of area C and in the southeast quadrant, the

atmosphere contains the “fresh” (around 40 hours) tagged moisture contributed by di-

rect evaporation and “older” (around 50 hours) by transpiration. Over the northern

and western parts, the age for the two ET partitions reaches the similar values. On the

monthly scale, there is no significant difference between the age of the tagged moisture

for the two ET partitions. However, the condensed tagged moisture for transpiration

has always higher age than that for direct evaporation in all vertical layers of the atmo-

sphere. A large amount of the condensed tagged moisture by direct evaporation with

lower age is found in the South, while two ET partitions play nearly the same role in

forming the cloud and precipitation in the North. Monthly, the age of the condensed

tagged moisture due to direct evaporation is lower than the age due to transpiration,

especially in the cold season. This age difference becomes smaller in the transient

season and even no difference during the warm months from June to August.

Overall, in 2005 the direct evaporated water accounts for 64% of the total tagged

moisture and the transpired water for 36% with a mean age of 36 hours for both.

Regarding the condensed tagged moisture, 69.2% originates from the direct evaporated

water and 30.8% from the transpired water, with a mean age of 7 hours and 11 hours,

respectively. Similarly, the tagged precipitation consists of a large proportion (69%)

of direct evaporated water with comparatively short atmospheric residence times (area

mean: 6.6 hours) and of a small amount of transpired water with longer atmospheric

residence times (area mean: 10.7 hours).

However, it is important to note that there are several limitations to the method

used here: The results depend on how well physical processes like evapotranspiration,

evapotranspiration partitioning, and precipitation are represented in the respective
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model system (here: MM5). Moreover, this study did not account for the impact of

human activities, like irrigation of paddy rice in the Poyang Lake region.

This study is based on a one year simulation, because the focus is on the introduction

and evaluation of methods to distinguish between direct evaporation and transpiration

and to calculate the corresponding atmospheric water residence times within the evap-

otranspiration tagging approach. It has been shown that the partitioning has a clear

intra-annual/seasonal variability in accordance with the general monsoon dynamics of

the region and the vegetation response. Magnitudes of recycling, partitioning, and

residence times may defer from year to year with respect to different atmospheric cir-

culation types (Philipp et al., 2014), but are expected to follow the monsoon controlled

partitioning behavior. It is noted that for small tagging areas and accordingly small

precipitation recycling ratios (like 1% mean in this study), uncertainties due to nu-

merical approximations might have more influence on derived values than in cases of

larger domains and larger precipitation recycling ratios.

In the future, this proposed high-resolution RCM-based age-weighted evapotranspi-

ration tagging partitioning algorithm should be applied in sensitivity simulations and

in further case studies to narrow down uncertainties. Although this study addresses

only selected aspects of the complex relationships between land and atmosphere, it

emphasizes the important impacts of vegetation cover and land-use on the regional

atmospheric hydrological cycle. The results depict the comprehensive interactions be-

tween land-surface characteristics as simulated by a mesoscale model (e.g., water bod-

ies, soil, and vegetation) and atmospheric variability such as the seasonal variation of

the prevailing meteorological conditions. It is shown that there is a pronounced dif-

ference in the spatial and temporal ranges to which and how long transpiration and

evaporation are able to contribute to precipitation. Moreover, the information on the

timescales for the atmospheric branch of the hydrological cycle, particularly for tran-

spired and evaporated water, has been explicitly quantified by using the age-weighted

regional ET-Tagging approach. Following this approach, future research will address

how atmospheric water residence times may change as climate changes.
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Appendix A

Parallelization of ET-Tagging Code

In this appendix the numerical parallelization strategy to speed up the MM5-based

ET-Tagging simulations is introduced. With the availability of large-memory multi-

processor machines, it is becoming more efficient to execute computational tasks in

parallel instead of in series. In the mode of serial computing (Figure A.1a), all programs

including the parallelizable parts are processed in a queue. As a consequence much time

is consumed. High-efficiency computing can be achieved by distributing parallelizable

parts to different processors, which utilizes the available computational resources more

efficiently (Figure A.1b).

According to parallel computer memory architectures, there are roughly three par-

allel programming models utilized in numerical models (see Figure A.2). Each of them

has distinct characteristics. The shared-memory model (Figure A.2a) with OpenMP

in principle allows all CPUs to access the same memory and there is no need for the

communication between different memories through network, compared to the message

passing interface (MPI) based distributed-memory model (Figure A.2b) or the hybrid

MPI/OpenMP-based model (Figure A.2c). Therefore, implementing, debugging, and

performance tuning a parallel application on the basis of OpenMP compared to those

on the basis of MIP/OpenMP are much easier and quicker to realize if variables are

independent and no race condition can occur. Moreover, this parallel programming

model also involves a compromise of effort put into parallelization, memory require-

ment, and availability of CPUs. Consequently, in order to achieve high performance

on the CPU clusters here OpenMP is chosen for parallelization of the ET-Tagging

extensions.

Since the existing source codes of the original MM5 model are parallelized by de-

fault, only the source codes of the ET-Tagging extensions need an analogous implemen-

tation. Technically, vectorization and parallelization of the original and the extended
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(a)

(b)

    I II III

I II III

Figure A.1: Illustration of executing tasks in the mode of (a) serial computing and
(b) parallel computing (http://en.wikipedia.org/wiki/Openmp).

(a)

(b)

(c)

Figure A.2: Three parallel programming models utilized in numerical climate and
weather prediction models. (a) Shared memory system with OpenMP, (b) Dis-
tributed memory system with MPI, and (c) Hybrid OpenMP/MPI system (https://
computing.llnl.gov/tutorials/parallel_comp/).

http://en.wikipedia.org/wiki/Openmp
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
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Table A.1: Example of parallelizing a do-loop with OpenMP for a FORTRAN com-
piler. Blue codes are the parallel-programming directives of OpenMP.

Source code Description
c$omp parallel do default(shared) 1. declare by default the variables in this do-loop

as sharing common memory and being over-
writable

c$omp private(i,j) 2. declare variables that keep their values in their
own (private) memory during parallel execution

DO J=1,JL 3. main do-loop
DO I=1,IL

QDOT(I,J,KLP1)=0.
WTENS(I,J,KLP1)=0.

ENDDO
ENDDO

parts should be done in the same manner to achieve compatibility.

Table A.1 illustrates an example of parallelizing a do-loop in a shared-memory mode

using OpenMP. This do-loop is in charge of initializing one meteorological field for a

following iteration. Parallelization is implemented by placing special directives ahead of

the parallel loop (blue codes in Table A.1) for a FORTRAN compiler. Shared memory

is seen by all processors in contrast to private memory.

In this thesis, parallelizing the ET-Tagging extensions consists of the following steps:

1. check the feasibility of the parallelization for all the do-loops of the extended

ET-Tagging codes

2. identify the added variables that should be declared in private memory

3. place the parallel-programming directives of OpenMP ahead of each do-loop.

To examine the benefits from parallelism, the original and the extended MM5 mod-

els were applied to Southeast China with a horizontal resolution of 9 km (see Figure

A.3). We conducted four experimental simulations using these two models in series

and in parallel modes of computing. All the simulations were performed on the basis

of the same physical schemes and the same configuration (same as the model setup of

S09 in Table 4.1) for the one month period of October in 2004. Generally, the nearly

same results (not shown here) were obtained from the four experimental model runs.

For a diagnostic variable, only a slightly non-systematic, numerical difference is found

between serial and parallel modes of computing. It is caused by the different schemes

of compilation used, and can be neglected for the following study.
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Figure A.3: Model domain with terrain height (m a.s.l) at 9 km × 9 km horizontal
resolution as used for evaluation of the benefits from parallelism. Rivers, lakes, and
the ocean are shown in blue. The red shaded area marks the source region where
evapotranspirated water is tagged.

To measure the performance gain achieved by parallelizing a given application,

speedup S is used as a performance metric. It is defined as ratio of time Ts taken to

solve a problem on a single processing element to time Tp required to solve the same

problem on a parallel computer with p processing elements:

S = Ts/Tp (A.1)

Table A.2: Comparison of execution time and speedup in serial and parallel mode of
computing, using the original and the extended MM5 models for the simulation of one
month (October in 2004).

Model Computing mode CPU-numbers CPU-hours Speedup S
MM5.original serial 1 57

14.3
parallel 24 4

MM5.tagging serial 1 82.5
13.6

parallel 24 6

Table A.2 summarizes the values of the execution time on the 1-CPU computer and

on the 24-CPUs computer and the values of speedup for one month simulation using

the original and the extended MM5 models. Overall, significant performance gain is

achieved in the parallel model of computing. The speedup ratio due to parallelization

is 14.3 for the original MM5 model, and 13.6 for the extended MM5 model. The

comparison of the CPU-hours consumed by the original and the extended MM5 model
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shows that the computation of the ET-Tagging extensions takes additionally around

50% CPU-hours. It is worthy to note that the value of a speedup ratio is also impacted

by the speed of network for I/O between processors and a hard-disk storage.





Appendix B

Implementation of ET Partitioning

within the Tagging Extension

The aim of this appendix is to introduce the implementation of the evapotranspiration

partitioning within the framework of the ET-Tagging algorithm. The schematic for

retrieving each individual ET component of the OSU-LSM model code is depicted in

Figure B.1. The names of routines relating to the extensions and the corresponding

descriptions are summarized in Table B.1.

land surface model

check land-use types

inland water bodies soil and vegetation

E water = m

with snow cover no snow cover

E soil = m
E soil = m

E interception = m
E transpiration = ⇑

Figure B.1: Schematic of the ET partitioning in the OSU-LSM. The symbols in
the gray box indicate the direction of the flux for each ET component. Upward and
downward fluxes are denoted by ⇑ and ⇓, respectively. The two-direction flux (up- and
downward) is symbolized by m.
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Table B.1: Organization of the extended MM5 code for the partitioning of the ET-
flux.

routine location description
tagging.incl include/ define and add new variables

diag2d.incl include/ define the dimensions of

the non-scalar new variables

init.F domain/inital/ initialize new variables

nopac.F physics/pbl sfc/osusfc/ calculate the soil moisture and heat flux

values and update soil moisture content and

soil heat content for the case

when no snow pack is present

snopac.F physics/pbl sfc/osusfc/ same as nopac.F,

but for the case when a snow pack is present

sflx.F physics/pbl sfc/osusfc/ calculate and accumulate ET values

surface.F physics/pbl sfc/osusfc/ calculate surface conditions

mrfpbl tag.F physics/pbl sfc/mrfpbl/ handle subgrid-scale vertical transports

for tagged and total variables

solve.F dynamics/nonhydro/ compute the tendencies of

the prognostic variables

climoutstuff.F domain/io calculate new variables statistics

outtap.F domain/io write output data to a standard output file

New variables are defined and declared in the source code by including two files,

tagging.incl and diag2d.incl. Initialization is done in the routine init.F. The

fluxes of the four ET components (see equation 3.8) are calculated in the subroutines

nopac.F and snopac.F for the cases when no snow pack or when snow pack is present

(see Figure B.1). The rates of these four fluxes are transferred and accumulated in the

routines sflx.F and surface.F for the calculation of processes in the planetary bound-

ary layer (routine mrfpbl_tag.F). After computing the tendencies of the prognostic

variables in the routine solve.F, statistics of the new variables are calculated in the

routine climoutstuff.F and are written to a standard output file by using outtap.F.

Over inland water bodies only Ewater can proceed. Transpiration by vegetation

can only transfer water upward from the top three soil layers via roots and canopy.

Snow can be stored only on the ground. The one-layer snow model accounts for snow

evaporation/sublimation and melting process, mainly by considering snow heat flux,

potential evaporation, and skin temperature. Here, Ewater, Esoil (in case of with or
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without snow cover), and Einterception are combined as Ed (see equation 3.9) since they

represent the same fast changing evaporation process at the surface. In contrast, the

transpiration Et is the slow process by which moisture is carried not only from the

surface soil layer but also from the deep soil layers.




