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Abstract

Dynamically downscaled precipitation fields from regional climate models (RCMs) of-

ten cannot be used directly for regional/local climate studies. Due to their inherent

biases, i.e., systematic over- or underestimations compared to observations, correction

approaches are usually required. Most of the bias correction procedures, such as the

quantile mapping approach, employ a transfer function that is based on the statistical

differences between RCM output and observations. Apart from such transfer function-

based statistical correction algorithms, a stochastic bias correction technique, based on

the concept of Copula theory, is developed in this thesis and applied to correct precip-

itation fields from the Weather Research and Forecasting (WRF) model. For dynami-

cally downscaled precipitation fields, high-resolution (7 km, daily) WRF simulations for

Germany driven by ERA40 reanalysis data for 1971–2000 were used. The REGNIE

(REGionalisierung der NIEderschlagshöhen) data set from the German Weather Ser-

vice (DWD) is used as gridded observation data (1 km, daily) and aggregated to 7 km

for this application. The 30-year time series are split into a calibration (1971–1985)

and validation (1986–2000) period of equal length. Based on the estimated dependence

structure (described by a Copula function) between WRF and REGNIE data and the

identified respective marginal distributions in the calibration period, conditional distri-

bution functions are derived for each time step in the validation period. To generate bias

corrected WRF precipitation, a random sample of possible outcomes is drawn from this

conditional distribution. Thereby, this method does not only provide a single correction

value for each time step, but rather estimates the range of possible values and the full

probability density function (PDF).

The Copula-based correction is applied in two modes: The overall mode and seasonal

mode. In the overall mode, for each grid cell all of the data from the calibration period

are used to construct an overall Copula model. In the seasonal mode approach, the

Copula models are estimated for each season separately. The results show that the

Copula-based approach with both the overall and seasonal modes are able to correct

most of the errors in WRF derived precipitation. The seasonal mode based correction

is found to be more efficient. However, it is also found that the Copula-based correction

in seasonal mode performs better for the wet bias correction than for the dry bias

correction. The average relative bias of daily mean precipitation from WRF for the

validation period is reduced from 10 % (wet bias) to −1 % (slight dry bias) after the

application of the Copula-based correction seasonal mode. The bias in different seasons is
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corrected from 32 % during March–April–May (MAM), −15 % during June–July–August

(JJA), 4 % during September–October–November (SON) and 28 % during December–

January–February (DJF) to 16 % (MAM), −11 % (JJA), −1 % (SON) and −3 % (DJF),

respectively.

The Copula-based approach in seasonal mode is compared to the quantile mapping

correction method. The root mean square error (RMSE) and the percentage of the

corrected time steps that are closer to the observations are analyzed. The Copula-

based correction derived from the mean of the sampled distribution reduces the RMSE

significantly, while, e.g., the quantile mapping method results in an increased RMSE for

some regions.

Finally, as outlook, the Copula-based stochastic bias correction is further extended to

allow its use for climate projections, i.e. episodes in the future where no observation is

available yet. This is achieved by a first-order hidden Markov model and the Viterbi

algorithm. The extended framework is briefly described, applied for four selected pixels

to validate its performance, and its potential is shown.
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Zusammenfassung

Aus Regionalen Klimamodellen (RCMs) generierte Niederschlagsfelder können oftmals

nicht direkt für lokale Klimaimpaktstudien verwendet werden. Wegen der inhärenten

Fehler, d.h. systematische Über- oder Unterschätzungen im Vergleich zu den Beobach-

tungen, sind Fehlerkorrekturverfahren notwendig. Die meisten Fehlerkorrekturverfahren,

wie beispielsweise das Quantile Mapping, leiten zur Korrektur eine Transferfunktion

basierend auf statistischen Beziehungen zwischen RCM Feldern und Beobachtungen ab.

Anders als solche auf Transferfunktionen beruhenden Korrekturverfahren wurde in dieser

Doktorarbeit ein stochastisches Korrekturverfahren entwickelt und angewandt, das auf

dem Konzept der Copula-Theorie basiert. Es wurde angewandt um Niederschlagsfelder

des Weather Research and Forecasting (WRF) Modells zu korrigieren. In dieser Ar-

beit wurden dazu hochaufgelöste WRF Niederschlagsfelder (7 km horizontale Auflösung

auf Tagesbasis) für Deutschland und die Periode 1971-2000 verwendet, angetrieben von

ERA40 Reanalysen. In dieser Studie wurden REGNIE (REGionalisierung der NIEder-

schlagshöhen) Daten vom Deutschen Wetterdienst (DWD) als gerasterte Beobachtungs-

daten (1 km horizontale Auflösung auf Tagesbasis) benutzt, die zu einer Auflösung von

7 km aggregiert wurden. Die Daten der Periode 1971–2000 wurden zu gleichen Teilen

zur Kalibrierung (1971–1985) und zur Validierung (1986–2000) aufgeteilt. Auf der

Grundlage der Abhängigkeitsstruktur zwischen WRF und REGNIE, die durch Copulas

beschrieben werden kann, sowie den entsprechenden Marginalverteilungen, wurden kon-

ditionierte Verteilungs funktionen für jeden einzelnen Zeitschritt im Validierungszeitraum

abgeleitet. Dieses Verfahren liefert daher nicht nur einen einzigen Korrekturwert für je-

den Zeitschritt, sondern schätzt vielmehr einen Bereich an möglichen Werten und sogar

die gesamte Wahrscheinlichkeitsdichtefunktion (PDF).

Die Korrektur wurde in zwei verschiedenen Modi durchgeführt, einerseits über den

gesamten Untersuchungszeitraum (Gesamt-Modus) und andererseits separat für die ein-

zelnen Jahreszeiten (Jahreszeiten-Modi). Beim Gesamt-Modus wird für jede Gitterzelle

eine Copula Funktion aus allen Daten des Kalibrierungszeitraums abgeleitet, während

bei den Jahreszeiten-Modi nur die Niederschlagsdaten der jeweiligen Jahreszeiten ver-

wendet werden. Die Ergebnisse zeigen, dass sowohl das Modell im Gesamt-Modus als

auch die Modelle mit den Jahreszeiten-Modi die meisten Fehler in den WRF Nieder-

schlagszeitreihen effizient korrigieren. Die Modelle in den Jahreszeiten-Modi sind dabei

aber noch effizienter. Außerdem zeigen sich die Modelle in den Jahreszeiten-Modi
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performanter bei der Korrektur von Überschätzungen im RCM im Vergleich zu Un-

terschätzungen. Im Herbst und Winter führt die Fehlerkorrektur zu leichten Unter-

schätzungen im Nordwesten Deutschlands. Der mittlere relative Fehler kann durch die

Fehlerkorrektur von 10 % (Überschätzung des RCMs) auf −1 % (leichte Unterschätzung

des RCMs) reduziert werden. Der Fehler in den verschiedenen Jahreszeiten konnte von

32 % für März, April, Mai (MAM), −15 % für Juni, Juli, August (JJA), 4 % für Septem-

ber, Oktober, November (SON), und 28 % für Dezember, Januar, Februar (DJF) auf

16 % (MAM), −11 % (JJA), −1 % (SON) und −3 % (DJF) korrigiert werden.

Die Copula Korrekturmethode (Jahreszeiten-Modi) wurde mit der quantile mapping

Methode verglichen. Der root mean square error (RMSE) und der Anteil korrigierter

Zeitschritte, die besser mit den Beobachtungen übereinstimmen, wurden analysiert. Die

Copula Korrektur konnte unter Verwendung des Erwartungswertes (Mittelwertes) den

RMSE des gesamten Gebiets erheblich reduzieren, während das Quantile Mapping den

RMSE für einige Regionen erhöht.

Im Ausblick wird schließlich die Weiterentwicklung der Copula Korrekturmethode zur

Anwendung für Klimaprojektionen beschrieben. Dies wird mit einem Markov Modell

erster Ordnung und dem Viterbi Algorithmus erreicht. Die Erweiterung wird eingeführt,

und das Potential dieser Erweiterung wird anhand von 4 ausgewählte Gitterpunkten

demonstriert.
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Chapter 1

Introduction

1.1 Motivation

Assessing the impact of climate change on, e.g., the hydrological cycle or crop produc-

tion, requires the knowledge of projections of climatological variables (e.g., temperature,

precipitation) at regional or local scales. Global circulation models (GCMs), however,

provide climatological information only on coarse scales, thus cannot be used directly

for the assessment of regional consequences of climate change. In order to obtain fine-

resolution information from GCM outputs, downscaling methods are usually employed.

As dynamical downscaling, regional climate models (RCMs) are capable to bridge the

gap between large-scale GCM data and local-scale information. RCMs use the output of

the GCMs and provide climate variables at a finer spatial resolution. Nevertheless, the

RCM simulations often show significant biases and do not agree well with the observa-

tions (Smiatek et al., 2009; Teutschbein and Seibert, 2010). These biases usually consist

of two parts: (1) RCMs inherit some of the biases of the GCMs, (2) RCMs potentially

introduce new biases due to the imperfect conceptualization, discretization and spatial

averaging within grid cells. This makes the use of RCM simulations as direct input data

for e.g. hydrological impact studies more complicated. Therefore, further bias correc-

tion is often required. The impacts of biases on hydrological and agriculture modeling

has been studied extensively (Kunstmann et al., 2004; Baigorria et al., 2007; Ghosh and

Mujumdar, 2009; Ott et al., 2013; Hertig and Jacobeit, 2013).

Precipitation is an important parameter in climate change impact studies. The simula-

tion of precipitation is highly sensitive to the grid resolution, the numerical scheme and

1
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physical parameterisations (Bachner et al., 2008; Fowler and Ekstr, 2009; Maraun et al.,

2010). In climate models, the representation of precipitation is depending on a multi-

tude of different processes such as cloud microphysics, radiative transfer, atmospheric

dynamics and boundary layer interactions acting over a variety of space and time scales

(Hagemann et al., 2011). The biases might be large for precipitation due to its highly

nonlinear nature and large spatial variability (Fowler et al., 2007). Convection schemes

are also considered as error sources, since they were primarily developed for the tropics

with coarse resolutions (Hohenegger et al., 2008).

Typical biases of RCM derived precipitation are: RCMs usually tend to generate too

many wet days with low-intensity rain (Ines and Hansen, 2006); RCMs often contain

under- and overestimations of rainfall as well as incorrect representations of the sea-

sonality (Schmidli et al., 2006; Terink et al., 2010); Even long-term means are also not

reproduced well (Bárdossy and Pegram, 2012). The implementation of bias correction

for precipitation (a discrete variable) is more complex than a bias correction of contin-

uous variables, e.g.like temperature. The bias correction of precipitation is particularly

challenging as it has to cope with the problem that the precipitation data is zero inflated.

1.2 State of the art

Bias correction procedures of precipitation usually employ a transformation algorithm

to adjust RCM output. The underlying strategy is the identification of possible biases

between observed and simulated climate variables and then used to correct the RCM

runs. The assumption of these methods is that the applied correction procedure and

parameters are assumed to remain constant over time, i.e. the bias behavior of the

model does not change with time. Therefore the temporal errors of RCM runs cannot

be corrected which is the major limitation of such bias correction methods. Recently,

several bias correction methods for precipitation have been developed. These methods

range from simple scaling approaches such as the linear scaling approach and local in-

tensity scaling to methods like power transformation and quantile mapping (e.g., Ines

and Hansen, 2006). A recent overview of bias correction methods for hydrological appli-

cation is provided, e.g., by Themeßl et al. (2010); Teutschbein and Seibert (2012); Lafon

et al. (2013). In the following, a brief description of those methods are listed.

One of the classical methods, often used in hydrology, is the delta change method (Hay

et al., 2000). This approach simply adds the climate change signal of the climate model
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to observations, before they are used to force hydrological models. With this method, it

is assumed that the model error is the same for the control and future run. Thus, after

subtraction, the pure climate signal remains. This method only accounts for changes in

the mean but not for changes in variability.

The linear scaling approach operates with a linear transformation equation which con-

siders also only changes in the mean of observed and simulated values (Shabalova et al.,

2003; Horton et al., 2006; Lenderink et al., 2007). Precipitation is corrected with a factor

based on the ratio of long-term mean or monthly mean of observed and simulated time

series. By definition, corrected RCM simulations will perfectly agree in their mean or

monthly mean values with the observations. The linear correction method belongs to the

same family as the “factor of change” or “delta change” method (Hay et al., 2000). This

method has the advantage of simplicity and modest data requirements: only monthly

climatological information is required to calculate monthly correction factors. However,

this method only considers the the first statistical moments (mean), and does not ac-

count for other statistical moments of the probability distribution of daily precipitations

(Arnell, 2003; Diaz-Nieto and Wilby, 2005).

The local intensity scaling presented by Schmidli et al. (2006) then takes the linear

scaling one step further and adjusts the mean as well as both wet-day frequencies and

wet-day intensities of precipitation time series separately. First, an RCM specific precip-

itation threshold is calibrated such that the number of RCM simulated days exceeding

this threshold matches the number of wet days of the observation. Then, the number

of precipitation events for both control and scenario run are corrected by applying the

calibrated RCM precipitation threshold so that all days with precipitation less than the

RCM specific precipitation threshold are redefined to dry days with 0 mm precipitation.

Finally, the same procedure as the linear scaling is applied to correct the precipitation

intensities. This method corrects the precipitation mean as well as the dry probability

of the precipitation time series.

Due to the fact that both the linear scaling and local intensity scaling are linear cor-

rections. They are not able to correct the variance. Therefore, a non-linear correction

in an exponential form of P ∗ = aP b, is introduced and can be applied to specifically

adjust the variance of a precipitation time series (Leander and Buishand, 2007; Leander

et al., 2008). The scaling exponent, b, is calculated iteratively so that the coefficient of

variation (CV) of the RCM precipitation time series matches that of the observed precip-

itation time series. Here, this is achieved using Brent’s method (Press et al., 1993). The

pre-factor, a, is then calculated so that the mean of the transformed precipitation values
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is equal to the observed mean. This power transformation adjusts both the mean and

the variance of the RCM simulations at the same time. However, biases in higher order

moments are not removed by the nonlinear method. This method of bias correction also

does not correct for the fraction of wet and dry days.

So far, all these methods correct the RCM simulations with a simple equation. They are

easy to apply and are less computational demanding, but aim only at a few statistical

characteristics. Extending the correction from mean and variance to the entire distribu-

tion, quantile mapping corrects for errors in the shape of the distribution and is therefore

capable to correct all the statistical moments. This quantile-based approach originates

from the empirical transformation of Panofsky and Brier (1968) and was successfully

implemented in hydrological applications (Dettinger et al., 2004; Wood et al., 2004; Boé

et al., 2007; Paxian et al., 2014) but recently also for error correction of RCMs (Dobler

and Ahrens, 2008; Piani et al., 2010a). The idea of quantile mapping is to correct the

distribution function of RCM-simulated climate values to agree with the observed dis-

tribution function. This is done by creating a transfer function to shift the occurrence

distributions of precipitation (Sennikovs and Bethers, 2009):

P ∗ = F−1
obs(FRCM (P )) (1.1)

where P ∗ is the corrected precipitation value, P is the original modelled precipitation

value and Fobs is the CDF of the observations and accordingly FRCM is the CDF of

the RCM precipitation. F−1
obs is the inverse function, which is named quantile function.

Several other names can be found in the literature, such as ’probability mapping’ (Block

et al., 2009; Ines and Hansen, 2006), ’distribution mapping’ (Teutschbein and Seib-

ert, 2012), ’statistical downscaling’ (Piani et al., 2010a) and ’histogram equalization’

(Sennikovs and Bethers, 2009; Rojas et al., 2011).

The quantile mapping (QM) transformation can be grouped into three categories: 1) Em-

pirical non-parametric transformation (Gutjahr and Heinemann, 2013); 2) Distribution

derived parametric transformation (Ines and Hansen, 2006); 3) Parametric transforma-

tion with combination of two or more distributions (Gudmundsson et al., 2012).

The empirical non-parametric transformation uses empirical distribution functions (both

for observed and modelled precipitation) to construct the transfer function and is hence

referred to as empirical quantile mapping (eQM). To implement the empirical distribu-

tion correction method, the ranked observed precipitation distribution is divided into a
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number of discrete quantiles. Following the procedure of Lafon et al. (2013), the empiri-

cal CDFs are approximated using tables of empirical percentiles. Values in between the

percentiles are approximated using linear interpolation. For each quantile division, a

linear correction factor was calculated by dividing the mean observation in that quantile

by the RCM simulated mean precipitation in the same quantile, this being the transfer

function. The number of quantile divisions controls the accuracy of the method: using

fewer quantiles might smooth out the information contained within the observed record,

while using too many quantiles might result in overfitting of the model to the data. This

method is expected to produce the best correction due to the empirical fitting but also

with a shortcoming of its inability of generating “new extremes”. Alternatively, if new

model values (e.g. from climate projections) are larger than the training values used to

estimate the empirical CDF, the correction found for the highest quantile of the train-

ing period is used (Boé et al., 2007; Themeßl et al., 2011). Furthermore, this method

depends on many degrees of freedom (two times the sample size) and hence may not be

stationary for future time periods (Piani et al., 2010b).

Statistical transformations can be achieved by using theoretical distributions to solve Eq.

1.1, which is called the distribution derived parametric transformation. This approach

has seen wide application for adjusting modelled precipitation (e.g. Ines and Hansen,

2006; Li et al., 2010; Piani et al., 2010a; Teutschbein and Seibert, 2012). Most of these

studies assume that a two-parameter Gamma distribution is suitable to model precip-

itation intensities. In some literature, it is also called Gamma distribution correction

method (Lafon et al., 2013). The Gamma distribution is defined as

f(x) =
1

baΓ(a)
xa−1e

−x
b x, a, b ≥ 0 (1.2)

with b as the scale parameter, a as the shape parameter and Γ as the Gamma function.

The Gamma distribution is not defined for x = 0mm/day. Therefore, the correction

process will be a dual step (Piani et al., 2010b). First, the number of dry days is corrected

by optimizing a threshold value, i.e. all values smaller than this threshold are set to

zero, such that the number of dry days equals the observations. Afterwards, these fitted

Probability Density Functions (PDFs) are integrated, and the resulting CDFs are used to

replace the empirical CDFs in Eq. 1.1. The Gamma distribution correction depends only

on two parameters and requires less computation, since it has a closed formula and no

numerical calculation is needed. However, daily precipitation distributions are typically

heavily skewed towards low-intensity values. When fitting a single Gamma distribution,

the distribution parameters will be dictated by the most frequently occurring values, but
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may then not accurately represent the extremes (Yang et al., 2010; Teng et al., 2015).

Vlček and Huth (2009) also found that the Gamma distribution does not represent daily

precipitation for every region in Europe adequately and should be tested a priori.

In practice, a two-parameter fit to the daily precipitation transform function was used as

a good approximation for most of the cases (Hagemann et al., 2011). For some specific

cases, three- or four-parameter transfer functions produced better results (Hagemann

et al., 2011; Piani et al., 2010b). Therefore the parametric transformation with com-

bined distributions is introduced and applied in many studies. Gutjahr and Heinemann

(2013) used the distribution correction with a combination of a Gamma and a Gener-

alized Pareto distribution to correct the the modelled precipitation field from COSMO-

CLM (Consortium for Small-scale Modeling (COSMO)-Climate Limited-Area modeling

(CLM)). The values smaller than the 95th percentile are assumed to follow a Gamma

distribution, whereas values larger than this threshold are assumed to follow a General

Pareto distribution:

P ∗ =

F
−1
obs,Gamma(FRCM,Gamma(P )) if x < 95th percentile,

F−1
obs,GPD(FRCM,GPD(P )) if x ≥ 95th percentile.

(1.3)

The General Pareto distribution has three parameters: a shape parameter, a scale pa-

rameter and a threshold parameter. Together with the two parameters from the Gamma

distribution, there are five parameters to be estimated. Similar to Gutjahr and Heine-

mann (2013), Yang et al. (2010) applied the distribution correction with a combination of

two Gamma distributions to correct two RCM projections, R3E5A1B1 and R3E5A1B3

based on the ECHAM5 GCM (Roeckner et al., 2006). To capture the main properties

of normal precipitation as well as extremes, the precipitation distribution was divided

into two partitions separated by the 95th percentile and two Gamma distributions are

fitted for each partitions separately. Different to the previous two methods, which di-

vide the precipitation distribution into segments and fit separate distributions to each

segment, Teng et al. (2015) introduced a mixed distribution mapping method. Instead

of introducing arbitrary cut-offs, this method mixed two Gamma distributions and is

interpreted as a two-state distribution and the PDF is expressed as follows:

f(x) = λ
xa1−1e−x/b1

ba11 Γ(a1)
+ (1− λ)

xa2−1e−x/b2

ba22 Γ(a2)
(1.4)

with 0 < λ < 1. The parameter λ is the relative occurrence of the states, and, fitted cor-

rectly, the two gamma distributions represent rainfall occurring in high and low rainfall
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states. The advantage of this approach compared to segmenting the distribution is that

all parameters can be estimated simultaneously using maximum-likelihood estimation.

The aforementioned different types of quantile mapping methods are widely applied in

bias correction of RCM derived precipitation (Dosio and Paruolo, 2011; Gudmunds-

son et al., 2012). Piani et al. (2010a) applied the Gamma distribution based quantile

mapping to simulated daily precipitation fields over Europe from the Danish Meteoro-

logical Institute RCM. Bias corrections were calculated for the whole decade from 1961

to 1970, and applied to the decade from 1991 to 2000, in order to maximize the lag

between construction estimation period and the application evaluation period. Results

showed that the methodology performed satisfactorily not only for mean quantities but

even for time dependent statistical properties, such as the number of consecutive dry

days and the cumulative amount of rainfall for consecutive heavy precipitation days.

Bárdossy and Pegram (2012) found that performing quantile-quantile (Q-Q) transforms

to adjust RCM data to the characteristics of contemporaneous observed rainfall was

more successful when conditioning the transforms on circulation patterns (CPs) than

not. Themeßl et al. (2010) applied the quantile mapping that is based on point-wise and

daily constructed empirical cumulative distribution functions of modelled and observed

datasets in the calibration period. This is in contrast to other bias correction studies

where theoretical CDFs are estimated only from wet days. Themeßl et al. (2011) in-

troduced a new extrapolation of the error correction function enables quantile mapping

to reproduce new extremes without deterioration and mostly with improvement of the

original RCM quality. This study also introduced a frequency adaptation (FA) method

in order to account for a methodological problem, which occurs if the dry-day frequency

in the model result is greater than in the observations.

In this study, a Copula-based stochastic bias correction method is applied to correct each

individual time step of a RCM simulation. This is different to the traditional transfer

function-based statistical correction approaches. The strategy of this method is the

identification and description of the underlying dependence structures between observed

and modeled climate variables (precipitation) and its application for bias correction.

It is known that the traditional measures of dependence (e.g. Pearson’s correlation

coefficient) can only capture the strength of the linear dependence as a single global

parameter. Alternatively, Copulas are able to describe the complex nonlinear depen-

dence structure between variables (Bárdossy and Pegram, 2009). Based on the identified

dependence structure between observed and modeled precipitation and the identified re-

spective marginal distributions, a set of realizations is finally obtained through Monte
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Carlo simulations.

Copulas are used for various applications in hydrometeorology (e.g., Dupuis, 2007;

Grégoire et al., 2008; Serinaldi, 2008; Bárdossy and Pegram, 2009, 2012). Gao et al.

(2007) performed Copula-derived observation operators for assimilating soil moisture

from satellite remote sensing into land surface models. Salvadori and Michele (2007)

used the Copulas for several hydrological application: a general theoretical framework

for studying the return period of hydrological events; a trivariate model for the temporal

structure of the sequence of storms; an explicit derivation of the storm volume statis-

tics. Bárdossy (2006) demonstrated the application of Copulas for the investigation of

groundwater quality parameters: chloride, sulfate, pH, and nitrate.van den Berg et al.

(2011) has applied a Copula-based method for downscaling spatial rainfall from coarse

resolution. Copula-based bias correction techniques have been originally introduced by

Laux et al. (2011) and Vogl et al. (2012), and are extended in this study by investigating

gridded precipitation fields instead of individual and unevenly distributed stations. The

work is published in Mao et al. (2015).

1.3 Objectives

This study aims to develop a stochastic bias correction method for RCM derived pre-

cipitation (WRF) through Copula-based assimilation of REGNIE observation data over

Germany. The Copula models are estimated for each grid cell and then are applied for

bias correction. The overall objectives of this study are:

• Fitting distributions to both REGNIE and WRF precipitation and revealing the

spatial differences between them

• Describing the dependence structures between REGNIE and WRF data by using

Copulas

• Applying the Copula-based correction in the overall model and the seasonal mode

separately to investigate seasonal variability

• Comparing the Copula-based correction to the quantile mapping method

• Developing a methodological framework to apply the Copula-based approach to

climate projections, i.e. periods, for which no observations are available.
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1.4 Innovation

This study is an extension of the studies of Laux et al. (2011) and Vogl et al. (2012)

by applying the Copula-based bias correction technique to high resolution RCM precip-

itation output and a gridded observation product. Compared to those two studies, this

study is based on a framework as follows:

• Working on a grid cell base and to estimate the Copula model (marginal distri-

butions and Copula function) for each grid cell separately rather than selecting

e.g. the most dominant model. Therefore, the statistical characteristics of ob-

served (REGNIE) and modelled data (WRF) and their dependence structure is

visualized spatially and analyzed for the first time.

• Implementing the Bayesian Information Criterion in addition to the Kolmogorov–

Smirnov test for the marginal Goodness-of-fit test. From previous studies we found

that very large sample sizes may bias the result of the K–S test, leading to the

rejection of the null hypothesis (the sample comes from the selected distribution)

most of the time.

• In addition to overall application, the Copula models are also estimated and ap-

plied for every season separately. Thus, different types of precipitation geneses are

not masked by the same models. This, in general, leads to stronger dependencies

and robuster models. The results are also improved.

• A Markov-based precipitation cases identification model is introduced. The method

is able to identify the precipitation cases in the future, where only climate projec-

tions are available.

1.5 Structure of the dissertation

The dissertation is divided into 9 chapters with respect to the scope of this study. After

the introduction and innovation, the study area and data resources are described in

chapter 2. In chapter 3, an overview on Copulas theory is presented. The framework of

the Copula-based stochastic bias correction is introduced in chapter 4. Afterwards, the

Copula-based correction is applied in the overall mode in chapter 5 and in the seasonal

mode in chapter 6. The Copula-based approach is compared to the quantile mapping
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method in chapter 7. In chapter 8, the Markov-based precipitation cases identification

model is introduced. The final chapter is devoted to summary and conclusions and

recommendations for further research.



Chapter 2

Study area and data resources

In this chapter the data sources which are used for the application of the Copula-based

stochastic bias correction method for gridded data sets is described. The developed

stochastic approach is applied for Germany (see Fig. 2.1) for a 30-year time period

from 1971 to 2000. The 30-year time series is split into a calibration (1971–1985) and

a validation (1986–2000) period of equal length. For the application of bias correction,

two types of data sources are used: the gridded observed precipitation fields and the

dynamical downscaled precipitation fields.

As observations, we use the 1 km gridded, daily data set REGNIE (REGionalisierung der

NIEderschlagshöhen) from the German Weather Service (DWD, 2011). The dynamical

downscaled precipitation fields are the result of a high resolution (7km) WRF-ARW

simulation over Central Europe driven by ERA40 reanalysis data (Berg et al., 2013). For

the grid cell based bias correction the 1 km REGNIE data set is up-scaled and remapped

to the 7 km WRF grid such that precipitation amounts are conserved. Hence, the data

set consists of daily, gridded precipitation fields with 11710 grid cells for REGNIE and

WRF-ERA40 for the time period 1971 to 2000.

2.1 RCM data

Dynamically downscaled precipitation fields over Germany from a regional climate model

simulation (RCM) are used (Berg et al., 2013). The RCM used in this study is the

Weather Research and Forecasting (WRF) model with the Advanced Research WRF

(ARW) dynamics solver version 3.1.1 (Skamarock et al., 2008). WRF is a non-hydrostatic

11
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Figure 2.1: Terrain elevation of Germany (DEM). The numbers represent the position
of the four specific grid cells for which the performance of the Copula-based algorithm

is analyzed in Chapter 5.

model. For this data set, the WRF-ARW simulations are forced by ERA40 reanalysis

data from 1971 to 2000 at the boundaries which implies large-scale circulation close

to observations. ERA40 is an ECMWF (European Centre for Medium-Range Weather

Forecasts) reanalysis of the global atmosphere and surface conditions for 45-years, over

the period from September 1957 through August 2002 (Uppala et al., 2005).

The RCM is driven with atmospheric fields of temperature, wind and humidity, as well

as sea surface temperature from the GCM. Due to the coarse resolution of the GCM,

a double-nesting approach is applied in Lambert conformal map projection. The coarse

nest extends over all of Europe (42 km) and the fine nest covers Germany and the near

surroundings (7 km). The model uses 40 vertical levels for both nests. The applied setup

uses the following main physical options:

• the WRF Single-Moment 5-class scheme (WSM5) microphysical parameterisation

(Hong et al., 2004; Hong and Lim, 2006),
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• the modified version of the Kain-Fritsch scheme for cumulus parameterisation

(Kain, 2004),

• the Noah land surface model (Chen and Dudhia, 2001),

• the Yonsei University (YSU) parameterisation for the planetary boundary layer

(Hong et al., 2006),

• the MM5-Dudhia SW scheme (Dudhia, 1989),

• the Rapid Radiative Transfer Model (RRTM) long-wave radiation scheme (Mlawer

et al., 1997).

For further details on the applied WRF-ARW setup we refer to Berg et al. (2013) and

the references listed therein.

2.2 Observational data

As observations, we used the 1 km gridded daily data set REGNIE from the German

Weather Service (DWD) (DWD, 2011). The REGNIE product is available for complete

Germany from 1951 to the present and the number of underlying stations is approxi-

mately 2000 stations. The statistical gridding approach of station data is based on the

spatial interpolation of anomalies compared to long-term mean values. The statistical

gridding approach for REGNIE can be described as follows:

• calculates a background climatological field with a multi-linear regression approach

where the geographical position, elevation and wind exposure of the stations are

taken into account,

• for the calculation of the daily precipitation fields, station values are first assigned

to a grid point and divided by the background data to calculate anomalies,

• spatially interpolates the anomalies using inverse distance weighted interpolations,

• multiplying the results by the background field.

For the grid cell based bias correction the 1 km REGNIE data set is up-scaled and

remapped to the 7 km WRF grid such that precipitation amounts are conserved.





Chapter 3

Copula theory

The word Copula is a Latin noun that means to join, connect or link. It is first employed

in a mathematical or statistical sense by Sklar (1959) in Sklar’s Theorem to describe

the function that join together one-dimensional distribution functions to form a mul-

tivariate distribution function. Traditionally, the joint distribution between variables

are modelled by classical multivariate distributions e.g. the normal and the log-normal

distribution. The main limitation of such approaches is that the individual behavior

of each variable as well as the joint dependence between them are characterized by the

same parameter (Genest and Favre, 2007; Salvadori and Michele, 2007). The advent of

Copula, however, allows us to avoid this restriction and also not limited by the Gaussian

assumption.

3.1 Sklar’s theorem

The Sklar’s theorem (Sklar, 1959) is central of the theory of Copulas and is the foun-

dation of many applications. It explicates the role that Copulas play in the relationship

between multivariate distribution functions and their univariate marginal distributions

(Nelsen, 1999). The Sklar’s Theorem is as follows:

Let H be a joint distribution function with margins F and G. Then there exists a Copula

C such that for all x, y in R,

H(x, y) = C(F (x), G(y)) (3.1)

15



Chapter 3. Copula Theory 16

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

RanF × RanG, where Ran denotes range. Conversely, if C is a Copula and F and G

are distribution functions, then the function H defined by Eq. 3.1 is a joint distribution

function with margins F and G.

It is important to remark that the Sklar’s theorem is demonstrated by Sklar (1959) in a

bivariate case, which is definitely possible to extent to multivariate cases. Therefore, a

n-dimensional joint distribution function H(x1, · · · , xn) can be re-written as a Copula

and its margins F1, · · · , Fn.

H(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) (3.2)

Conversely, a Copula can also be presented by its joint distribution H and the corre-

sponding inverse of the marginal distributions F−1
1 , · · · , F−1

n .

C(u1, · · · , un) = H(F−1
1 (u1), · · · , F−1

n (un)) (3.3)

As for general distribution functions, the probability density function (PDF) of a Copula

is obtained by differentiating with respect to all variables (Melchiori, 2003):

c(u1, · · · , un) =
∂nC(u1, · · · , un)

∂u1 · ∂u2 · · · ∂un
(3.4)

The density function of the joint distribution H is then can be expressed in terms of a

Copula PDF c and their marginal PDFs.

h(x1, · · · , xn) = c(F1(x1), · · · , Fn(xn))
n∏
i=1

fn(xn) (3.5)

where f1, · · · , fn are the PDFs of the corresponding marginals F1, · · · , Fn.

As a consequence of Sklar’s theorem, each multivariate joint distribution can be ex-

pressed in term of a Copula function and its margins. The Copula can be regarded as

a functional link between the multivariate joint distribution and its univariate marginal

distributions. As the marginal distributions give an exhaustive description of random

variables taken separately, the joint dependence between these variables is fully and

uniquely characterized by the Copula C. In other words, Copula describes the pure de-

pendence structure between variables independent of its margins (Joe, 1997). Therefore
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the fitting of the traditional joint distribution can now be separated into two indepen-

dent steps: the fitting of the marginal distributions and the estimation of the Copula

function. This provides higher flexibility to describe joint behavior between variables

compared to traditional methods, e.g. multivariate Gaussian distribution.

3.2 Properties of Copulas

A n-dimensional Copula is defined as a multivariate probability distribution on the n-

dimensional unit cube In with margins that are uniform on I:

C : [0, 1]n → [0, 1] (3.6)

C(u1, · · · , un) = Pr(U1 ≤ u1, · · · , Un ≤ un) (3.7)

where C is an n-dimensional Copula with multivariate random vector U(U1, · · · , Un)

whose margins are u(u1, · · · , un). The general properties of Copulas can be summarized

as follows (Nelsen, 1999):

• C(u1, · · · , un) = ui whenever ∀j 6= i, uj = 1;

• C(u1, · · · , un) = 0 whenever 0 ∈ u1, · · · , un;

• C is n–increasing, i.e., ∀x,y ∈ [0, 1]n, xi ≤ yi, i = 1, · · · , n, it holds

∑
J⊂{1,··· ,n}

(−1)|J |C(uJ1 , · · · , uJn) ≥ 0, where uJi =

 xi if i ∈ J,

yi if i /∈ J.
(3.8)

Furthermore, another important property is that Copulas are invariant under any strictly

monotonic increasing transformation of the variables. This means that the variables

transformed by any monotonic increasing functions will not effect its Copula. That

is, if X1, · · · , Xn are continuous random variables with copula C and Ψ1, · · · ,Ψn are

monotonic increasing functions on RanX1, · · · , RanXn, then Ψ1(x1), · · · ,Ψn(xn) have

the same copula C. This invariant property of Copulas is explored in more detail in the

following as it is fundamental to the discussion in the following chapters.

Assume F1, · · · , Fn to be the distribution functions of random variables X1, ..., Xn, re-

spectively. Consider monotonic transformations of the random variables Ψ(X1), · · · ,Ψ(Xn)
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with their corresponding marginals G1, · · · , Gn. Let C and CΨ be the copulas of

X1, · · · , Xn and Ψ(X1), · · · ,Ψ(Xn), respectively. The strictly increasing property of

Ψ indicates that for any x ∈ R (Embrechts et al., 2003).

G(x) = Pr(Ψ(X) ≤ x) = Pr(X ≤ Ψ−1(x)) = F (Ψ−1(x)) (3.9)

and thus:

CΨ(G1(x1), · · · , Gn(xn)) = Pr(Ψ1(X1) ≤ x1, · · · ,Ψn(Xn) ≤ xn)

= Pr(X1 ≤ Ψ−1
1 (x1), · · · , Xn ≤ Ψ−1

n (xn))

= C(F1(Ψ−1
1 (x1)), · · · , Fn(Ψ−1

n (xn)))

= C(G1(x1), · · · , Gn(xn)) (3.10)

Equation (3.10) confirms that C = CΨ ∈ In. This is a great advantage in simulations

as the variables may belong to different probability distributions and applying transfor-

mation functions may be required to obtain the right marginals.

3.3 The Fréchet-Hoeffding bounds for Copulas

As mentioned above, Copulas are multivariate probability distributions within the unit

cube In. The Fréchet-Hoeffding Theorem (Fréchet, 1951; Fisher and Sen, 1994) states

that for any Copula C : [0, 1]n → [0, 1] and any (u1, · · · , un) ∈ [0, 1]n the following

bounds hold:

W (u1, · · · , un) ≤ C(u1, · · · , un) ≤M(u1, · · · , un). (3.11)

The function W is called the lower Fréchet-Hoeffdin lower bound that is given by

W (u1, · · · , un) = max{0,
n∑
i=1

ui − (n− 1)}, (3.12)

The function M is called the upper Fréchet-Hoeffdin bound and is defined as

M(u1, · · · , un) = min{u1, · · · , un}. (3.13)

The upper Fréchet-Hoeffdin bound M is also a Copula itself and describes the comono-

tone dependence of random variables U1, · · · , Un. For the lower Fréchet-Hoeffdin bound
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Figure 3.1: 3 − D shaded surface graphs of the bivariate Fréchet-Hoeffding bounds
and of the independence Copula (in the middle).

W , it is a Copula only if n = 2, and in that case describes the countermonotone depen-

dence of random variables U1 and U2 (Nelsen, 1999). Therefore, in two dimensions the

Fréchet-Hoeffdin bounds M and W are also known as the comonotonicity Copula and

the countermonotonicity Copula, respectively.

For the bivariate case, the FréchetHoeffding Theorem states

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v} (3.14)

A third important Copula is the product Copula Π(x1, · · · , xn) =
n∏
i=1

xi that describes

their independence and it is also known as the independence Copula.

In order to illustrate these three fundamental Copulas in more detail, the 3−D shaded

surface plots of them are shown in Fig. 3.1. The Fréchet-Hoeffdin bounds imply that

all bivariate copulas lie between the surface represented by the minimum Copula (W )

and the surface represented by the maximum Copula (M).

3.4 Empirical Copulas

Copulas are used to describe the dependence structure between variables. There are

many parametric copula families available, which usually have parameters that control

the strength of dependence. Due to the reason that the underlying theoretical Copula

(i.e. dependence structure) between variables is general not known in advance, is neces-

sary to study the empirical Copulas (Deheuvels, 1979). Since the bias correction frame

used in this study is based on bivariate Copulas, therefore in the following the Copulas

refer to bivariate Copulas only.
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The empirical Copula Cn(u, v), which is defined on the rank space, is an estimator for

the unknown theoretical Copula. Let {r1, · · · rn} and {s1, · · · , sn} denote the rank values

of the variables {x1, · · · , xn} and {y1, · · · , yn}. Then the empirical Copula is defined as:

Cn(u, v) = 1/n
n∑
t=1

1(
ri

n+ 1
≤ u, si

n+ 1
≤ v) (3.15)

with 1(A) denoting the indicator function of set A. In some literature the empirical

Copula is also described as the best sample-based representation of the theoretical Cop-

ula C, which is itself a characterization of the dependence in a pair (X,Y ) (Genest and

Favre, 2007).

3.5 Copula families

Copulas from different families describe different types of dependence structures. The

two most commonly used Copula families are the Elliptical and the Archimedean Copula

families. The Elliptical Copulas, e.g. the Gaussian Copula and the Student Copula, are

constructed from elliptical distributions and show symmetrical upper/lower tail depen-

dence structures.

In contrast, the Archimedean Copulas are able to describe asymmetrical tail dependence

structures and are defined as following. Let ϕ be a continuous, strictly decreasing

function from I to [0,+∞] such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse of ϕ

defined as:

ϕ[−1](t) =

ϕ−1(t) if 0 ≤ t ≤ ϕ(0),

0 if ϕ(0) ≤ t ≤ +∞,
(3.16)

then the function

C(u, v) = ϕ[−1](ϕ(u),+ϕ(v)) (3.17)

defines a Copula only if ϕ is convex and ϕ is called the generator of the Archimedean

Copula C. In the following, only the Copula families that are employed in this work are

discussed. For additional information regarding different Copula families, the reader is

referred to Nelsen (1999) and Joe (1997).
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3.5.1 Gaussian Copula

The Gaussian copula (also known as normal Copula), derived from the multivariate

normal distribution, is the most commonly used Copula family due to its simplicity.

The two-dimensional multivariate Gaussian Copula is defined as:

C = ΦR(Φ−1(u),Φ−1(v)) (3.18)

where R indicates the correlation matrix

1 θ

θ 1

 with the linear correlation coefficient

θ ∈ [−1, 1] and Φ−1 is the inverse of the univariate standard normal distribution function.

• If θ = 1, then C equals the two-dimensional comonotonicity Copula M .

• If θ = −1, then C equals the countermonotonicity Copula W .

• If θ = 0, then C equals the independence Copula Π.

The Gaussian Copula can be thought of as a dependence structure that interpolates be-

tween perfect positive and perfect negative dependence, where |θ| represents the strength

of the dependence. It is a symmetric Copula and is showing no tail dependence. If the

marginal distributions u = F (x), v = G(y) are normal, then the random vector (x, y)

has a bivariate normal distribution.

3.5.2 Clayton Copula

The Clayton Copula is an asymmetric Archimedean Copula, exhibiting lower tail de-

pendence. This Copula is given by:

C(u, v) = max[(u−θ + v−θ − 1), 0]−
1
θ (3.19)

where θ ∈ [−1,+∞)\{0}. The generator of the Clayton Copula is:

ϕ(t) =
1

θ
(t(−θ) − 1) (3.20)

For our application 0 < θ < +∞, i.e. only positive dependence could be found, The

Clayton Copula can then be simplified to

C(u, v) = (u−θ + v−θ − 1)−
1
θ θ ∈ (0,+∞) (3.21)
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In the limit as θ → 0, it approach the independence Copula Π, and as θ → +∞ it

approach the two-dimensional comonotonicity copula M . The Clayton Copula has a

remarkable invariance under truncation, i.e. the truncated Copula on the sub-region is

the same as the Copula for the entire area (Oakes, 2005).

3.5.3 Gumbel Copula

The Gumbel Copula (also known as Gumbel-Hougard Copula) is an asymmetric Archimedean

Copula, exhibiting upper tail dependence. The Gumbel Copula is given by:

C(u, v) = e−((− ln(u)θ)+(− ln(v)θ))
1
θ (3.22)

where θ ∈ [1,+∞). The generator of the Gumbel Copula is:

ϕ(t) = (− ln(t))θ (3.23)

If θ = 1, we obtain the independence Copula Π as a special case, and the limit of C as

θ → +∞ is the two-dimensional comonotonicity Copula M . Thus, the Gumbel Copula

interpolates between independence and perfect positive dependence and the parameter

θ represents the strength of the dependence.

3.5.4 Frank Copula

The Frank Copula is also an Archimedean Copula and is known to be symmetrical, i.e.

it shows no tail dependence. The Frank Copula is given by:

C(u, v) = −1

θ
ln(1 +

(e−θu − 1)(e−θv − 1)

eθ − 1
) (3.24)

where θ ∈ (−∞,+∞)\{0}. The generator of the Frank Copula is:

ϕ(t) = − ln(
e−θt − 1

eθ − 1
) (3.25)

As θ approaches 0 the Frank Copula approaches the independence Copula Π, and as θ

approaches +∞ (−∞), it approaches the comonotonicity Copula M (the countermono-

tonicity Copula W ).
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3.6 Scatter plots of random sampling from Copulas

As mentioned above that the Copulas from different families are able to describe different

dependence structures and the parameter controls the strength of the dependence. In

order to illustrate it more intuitively, a few scatter plots of random sampling from

different Copulas are shown in Fig. 3.2. Four different Copulas (Gaussian, Clayton,

Frank and Gumbel) that are employed by this study are used for a random sampling

of size = 1000. From the scatter plots (Fig. 3.2) it can be seen that the dependence

structures represented by these Copulas are different. The Gumbel Copula is able to

describe an upper tail dependence structure, while the Clayton Copula allows to express

higher probability in the lower tail. The Frank Copula exhibits no tail dependence,

and the Gaussian Copula describes a similar dependence as the Frank Copula, but with

slightly higher densities in the lower and upper tails (Venter, 2002; Schmidt, 2007).

While the parameter increases, the strength of the dependence also increases.

3.7 Dependence measures

In this section, three kinds of dependence measures for bivariate random vectors will

be discussed: the Pearson’s correlation coefficient, rank correlation coefficient and the

coefficient of tail dependence. All of these dependence measures are sample-based non-

parametric measure and yield a scalar measurement for a pair of random variables

(X,Y ), although the nature and properties of the measures are different in each case.

The Pearson’s correlation coefficients measures the dependence between two random

variables in the data space, while the other kinds of dependence measures, i.e. rank

correlations and tail dependence, are rank-based dependence measures and depend only

on the underlying Copula of random variables. In contrast to ordinary correlation, these

rank-based dependence measures are functions of the Copula only and can thus be used

in the parametrization of Copulas.

3.7.1 Pearson’s correlation coefficient

Pearson’s correlation coefficient γ is well known and plays a central role in statistical

theory. It measures the linear dependence between random variables (X,Y ) and is
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Figure 3.2: The scatter plots of random sampling from different Copulas with different
parameters. The sample size is 1000 and the Copula functions are shown in Sect. 3.5
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defined as:

ρ =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2
n∑
i=1

(yi − y)2

(3.26)

where x and y are the sample means of X and Y ,

x =
1

n

n∑
i=1

xi y =
1

n

n∑
i=1

yi (3.27)

It takes its values in [1, 1] and, if X and Y are independent, then γ(X,Y ) = 0, but

the converse is not true because the correlation coefficient detects only linear depen-

dence between two variables. The linear correlation is invariant under strictly increas-

ing linear transformations. However, it is not invariant under nonlinear strictly in-

creasing transformations. That is, if T1 and T2 are the strictly increasing functions,

γ(T1(X), T2(Y )) 6= γ(X,Y ).

3.7.2 Spearman’s Rho

Spearman’s rho is one of the two well-known measures of rank correlation. Given a

random sample {(x1, y1), · · · , (xn, yn)} from (X,Y ), {(r1, s1), · · · , (rn, sn)} are the cor-

responding rank values. Spearman’s rho is given by

ρ =

n∑
i=1

(ri − r)(si − s)√
n∑
i=1

(ri − r)2
n∑
i=1

(si − s)2

(3.28)

where

r =
1

n

n∑
i=1

ri =
n+ 1

2
=

1

n

n∑
i=1

si = s (3.29)

Mimicking the familiar approach of Pearson to the measurement of dependence, Spear-

man’s rho also computes the correlation between the samples but with their rank values.

In other words, Spearman’s rho is simply the linear correlation of ranks of random vari-

ables (or the probability transformed random variables). However, Spearman’s rho (ρ)

is theoretically far superior to Pearson’s classical correlation coefficient (γ). Spearman’s
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rho is a rank correlation that depend only on the underlying Copula of a bivariate dis-

tribution and not on the marginal distributions, unlike linear correlation which depends

on both. It is expressible in terms of underlying Copula C : I2 → I = [0, 1] as follows

(Schweizer and Wolff, 1981):

ρ = 12

∫∫
I2
C(u, v)dudv − 3 = 12

∫∫
I2
uvdC(u, v)− 3 (3.30)

where dC denotes the doubly stochastic measure induced on I2 by C (Fredricks and

Nelsen, 2007). If the Copula family (Cθ) is given, the Copula parameter then can be

directly calculated from the Spearman’s rho (ρ). Furthermore, Spearman’s rho has more

appealing properties than the linear correlation γ (Embrechts et al., 2002; Genest and

Favre, 2007):

1. E(ρ) = ±1 occurs if and only if X and Y are functionally dependent, i.e., whenever

their underlying copula is one of the two FréchetHoeffding bounds, M or W

2. In contrast, E(γ) = ±1 if and only if X and Y are linear functions of one another,

which is much more restrictive

3. ρ estimates a population parameter that is always well defined, whereas there are

heavy-tailed distributions (e.g. Cauchy distribution) for which a theoretical value

of Pearson’s correlation does not exist.

3.7.3 Kendall’s Tau

Another well-known rank correlation measure is the Kendall’s tau. Again let {(x1, y1), · · · , (xn, yn)}
denote a random sample of n observations from a vector (X,Y ) The second well-known

nonparametric measure of dependence is Kendall’s tau (τ). It is given by

τ =
Pn −Qn
Pn +Qn

= (Pn −Qn)/

n
2

 =
4

n(n− 1)
Pn − 1 (3.31)

where Pn denote the number of concordant pairs and Qn the number of discordant pairs.

Here, two pairs (xi, yi), (xj , yj) are said to be concordant when (xixj)(yi − yj) > 0, and

discordant when (xixj)(yi − yj) < 0.
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Similarly, Kendall’s tau can also be expressed in terms of Copula C (Nelsen, 1999):

τ = 4

∫∫
I2
C(u, v)dC(u, v)− 1 = 1− 4

∫∫
I2

∂C

∂u
(u, v)

∂C

∂v
(u, v)dudv (3.32)

Therefore, the Copula parameter can also be directly calculated from Kendall’s tau (τ).

For many joint distributions these two measures (ρ and τ) have different values, as

they measure different aspects of the dependence structure. In terms of dependence

properties, Spearman’s rho is a measure of average quadrant dependence, while Kendall’s

tau is a measure of average likelihood ratio dependence (Nelsen, 1992).

3.7.4 Tail dependence

The two nonparametric measures of dependence (ρ and τ) in ranks introduced above

measure the average of the dependence. Another measure of the dependence is so-called

tail dependence, which measures the dependence between the variables in the upper-right

quadrant and in the lower-left quadrant of I2.

Let X and Y be continuous random variables with distribution functions F and G,

respectively. The upper tail dependence parameter λU is the limit (if it exists) of the

conditional probability that Y is greater than the 100t-th percentile of G given that X

is greater than the 100t-th percentile of F as t approaches 1, i.e.

λU = lim
x→+1−

P [Y > G(−1)(t)|X > F (−1)(t)] (3.33)

Similarly, the lower tail dependence parameter λL is the limit (if it exists) of the condi-

tional probability that Y is less than or equal to the 100t-th percentile of G given that

X is less than or equal to the 100t-th percentile of F as t approaches 0, i.e.

λL = lim
x→+0+

P [Y ≤ G(−1)(t)|X ≤ F (−1)(t)] (3.34)

These parameters (λU and λL) are also nonparametric and depend only on the Copula

of X and Y , since they are rank based measure of the dependence. Therefore, the upper

and lower tail dependence parameters of the random vector (X,Y ) with the Copula C,

can be defined as follows (Joe, 1997):

λU = lim
x→+1−

1− 2u+ C(u, u)

1− u
(3.35)
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and

λL = lim
x→+0+

C(u, u)

u
(3.36)

The upper tail dependence expresses the probability occurrence of positive large values

(outliers) at multiple locations jointly, while the lower tail dependence expresses the the

probability occurrence of positive small values.
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Copula-based stochastic bias

correction framework

The bias correction framework used in this study is based on Copula theory. A bivariate

Copula model forms the basis of this stochastic bias correction algorithm. The Copula

model consists of two respective marginal distributions and a bivariate Copula function

and is then used to generate bias corrected WRF data by conditional stochastic sampling.

As already mentioned above in Sec. 3.1, Sklar’s theorem allows to separate the multi-

variate joint distribution estimation into individual marginal distribution estimation and

the Copula (dependence structure) estimation independently. Which is rather flexible to

describe the joint behavior between variables with full freedom to the choice of the uni-

variate marginal distributions and the Copulas. This is especially advantageous in cases

where the dependence structure between the variates is too complex to be modelled by

e.g. a multivariate Gaussian distribution, as it is often the case for hydrometeorological

variables (Salvadori and Michele, 2007; Dupuis, 2007). In this study, following Sklar’s

theorem, a so called bivariate Copula model is structured to describe the joint behavior

between REGNIE and WRF data. It is then used to generate bias corrected WRF data

by Copula based conditional stochastic sampling.

4.1 A bivariate Copula model

Suppose that the realizations (x1, y1), · · · , (xn, yn) are given from a pair of random

variates (X,Y ), and that it is desired to identify the bivariate distribution FXY (x, y)

29
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Figure 4.1: Visualization of a bivariate Copula model consisting of two marginal
distributions and a theoretical Copula function that describes the pure dependence.

that characterizes their joint behavior. In a view of Sklars theorem, a bivariate Copula

model can be applied. The bivariate Copula model of the variates X and Y consists of

two univariate marginal distributions (FX(x) and FY (y)) and a Copula function C(u, v).

The marginal distributions describe the statistical properties of the variates (X and Y )

and the Copula captures the dependence structure between them. The Copula model

(FX(x), FY (y) and C(u, v)) can be estimated separately based on the realizations x, y.

Figure 4.1 visualizes the process of estimating a Copula model with a bivariate exemplary

data set, i.e. realizations (x, y) of the two random variates X and Y .

A scatter plot of the two realizations (x, y) is shown in Fig. 4.1 (left). To model the joint

behavior by using a Copula model, the first step is to fit a marginal distribution function

for the two variates X and Y , respectively (see Fig. 4.1, middle). The realizations (x, y)

are then transformed from the data space to the rank space (u, v) based on the fitted

marginal distributions. The next step is to estimate the Copula function C from the

ranked values (u, v) (see Fig. 4.1, right). Here a Copula PDF is used instead of Copula

CDF as the PDF is more illustrative. Finally, the unknown joint distribution FXY (x, y)

is fully determined by the marginal distributions and the Copula function, i.e. the

dependence structure itself (Grégoire et al., 2008). Figure 4.1 visualizes the fact that

different marginal distributions and Copula functions can be combined independently

allowing to model highly complex dependence structures between the variables X and Y .

This is especially beneficial if these dependence structures are non-linear, asymmetric

or the data show heavy-tail behavior.
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4.2 Marginal distributions estimation

The Copula based modeling of the joint behavior between the variates X and Y requires

the fitting of suitable marginal distributions for both data sets (REGNIE and WRF)

for each grid cell. Generally, both non-parametric and parametric fitting approaches

for the local precipitation distribution are found in the literature (Dupuis, 2007; Gao

et al., 2007; Bárdossy and Pegram, 2009; van den Berg et al., 2011). The difference

between them is that the non-parametric fitting can be regard as the perfect parametric

fitting, but also with the shortcoming that it is not able to sample the new extremes

outside the range of the calibration period (Themeßl et al., 2011). Another drawback

of the empirical distribution fitting is that it depends on many degrees of freedom and

may not be stationary due to possible overfitting. In this study, a parametric fitting of

the precipitation distribution is applied as it allows also an illustration of the spatially

distributed differences (provided as the fitted marginal distribution family maps) be-

tween WRF and REGNIE. This gives additional valuable information about differences

in their statistical properties.

4.2.1 Theoretical marginal distribution candidates

In this study, five different theoretical distribution functions are selected as the candi-

dates and their probability density functions are listed below.

1. The Weibull distribution with scale parameter a > 0 and shape parameter b > 0.

f(x) =
b

a

(x
a

)b−1
e−(x/a)b −∞ ≤ x+∞ (4.1)

2. The Gamma distribution with shape parameter a > 0 and scale parameter b > 0,

where Γ(·) is the Gamma function.

f(x) =
1

baΓ(a)
xa−1e

−x
b x ≥ 0 (4.2)

3. The Normal distribution with mean µ and standard deviation σ.

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 −∞ ≤ x+∞ (4.3)
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4. The Generalized Pareto distribution with shape parameter k, scale parameter σ

and the threshold parameter θ.

f(x) =


( 1
σ )(1 + k (x−θ)

θ )−( 1
k+1

) if k > 0, x > θ

( 1
σ )(1 + k (x−θ)

θ )−( 1
k+1

) if k < 0, θ < x < −σ
k

( 1
σe
− (x−θ)

σ ) if k = 0, x > θ

(4.4)

5. The Exponential distribution with mean µ > 0.

f(x) =
1

µ
e

−x
µ x > 0 (4.5)

Their cumulative distribution function (CDF) can then be simply derived by taking the

integration of the PDFs over X.

4.2.2 The goodness-of-fit testing of marginal distributions

The Goodness-of-fit (GoF) is evaluated in a two-stage process. Firstly, a Kolmogorov–

Smirnov test (K–S test) is applied (Massey, 1951). As the K–S test is highly sensitive

due to the large sample sizes (Serinaldi, 2008), the null hypothesis (the sample comes

from the selected distribution) is rejected in some cases for all of the candidates. In

other cases there might be more than one possible candidate for the best fit. For that

reason, all candidates which are accepted by the K–S test are further inspected by using

the Bayesian Information Criterion (BIC) (Weakliem, 1999). If all of the candidates

are rejected by the K–S test, only the BIC is relevant for the selection of the best fit.

When fitting the distribution to the data (REGNIE and WRF), a standard maximum

likelihood estimation (MLE) is applied to estimate the parameters of the respective

distribution functions (Myung, 2003).

The Kolmogorov–Smirnov test (Massey, 1951) is a nonparametric test of the null hy-

pothesis that the population CDF of the data is equal to the hypothesized CDF (i.e.

the sample data comes from a population with the hypothesized distribution). The test

statistic quantifies a distance between the empirical distribution function of the sam-

ple and the cumulative distribution function of the reference distribution, which is the

maximum absolute difference between them:

D = max
x

(|Fn(x)− F (x)|) (4.6)
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Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x) (4.7)

where 1(A) denoting the indicator function of set A and Fn(x) is the empirical distribu-

tion function of X. F (x) is the hypothesized theoretical distribution function of variable

X. The K–S test then compares the distance statistic D to the critical values that com-

puted by using an approximate formula or by interpolation in a table at a given level of

significance (Massey, 1951). If the statistic D exceed the critical value, the hypothesis

that the sample data comes from this theoretical distribution is rejected. In contrast

the rejection failed.

The Bayesian Information Criterion is a measure of the relative quality of a statistical

model for a given set of data. It is based on the likelihood function and closely related to

the Akaike information criterion (AIC), but with a increased penalty term that avoids

the overfitting. BIC provides a means for model selection within a finite set of models

and the formula is as follows:

BIC = k ln(n)− 2 ln(L), (4.8)

where k denotes the number of the free parameters of the model, n is the sample size

and L is the maximized value of the likelihood function of the estimated model. The

smallest value of the BIC suggests the best fitting of the distribution.

4.2.3 Evaluation of the quality of the Goodness-of-fit tests

In this study it was found that the K–S test rejects the null hypothesis for some of the

gird cells in the domain and only the BIC is actually contributed to the results of the

Goodness-of-fit test. Therefore, a further step is made to evaluate the quality of this

Goodness-of-fit test. First, the residual sum of squares (RSS) is calculated for each grid

cell. Then, the grid cells that with relatively high RSS are inspected visually by picturing

and comparing their empirical CDFs and fitted theoretical CDFs. Furthermore, the

quantile-quantile plot is also inspected.

The RSS is also known as the sum of squared residuals (SSR) or the sum of squared

errors of prediction (SSE) in some statistical literature. It is a measure of the discrepancy

between the data and an estimation model. A small RSS indicates a tight fit of the model
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to the data. The RSS is given by

RSS =
n∑
i=1

(Fn(xi)− F (xi))
2 (4.9)

where Fn(x) is the empirical CDF of X (see Equation 4.7) and F (x) is the fitted theo-

retical marginal distribution.

The quantile-quantile or Q-Q plot is an exploratory graphical device used to check the

validity of a distributional assumption for a data set. In general, the basic idea is to

compute the theoretically expected value for each data point based on the distribution

in question. If the data indeed follow the assumed distribution, then the points on the

q-q plot will fall approximately on a straight line. If the points in a q-q plot depart from

a straight line, then the assumed distribution is called into question.

4.3 Copula function estimation

As mentioned in Sect. 3.5, the Copulas from different families represent different de-

pendence structures. To increase the accuracy of the description of the dependence

structures, different types of Copulas are considered, since one common Copula might

be incapable to capture the dependence structure for all grid cells over the entire study

area and for all seasons. In this study, four different one-parametric Copulas are se-

lected as the candidates (see Sect. 3.5). They are the Gumbel, Frank, Clayton Copulas

which are from the Archimedean Copula family and the Gaussian Copula that is from

Elliptical Copula families.

The goodness-of-fit (GoF) test for Copulas are applied by comparing theoretical Copulas

to the empirical Copulas such that the type of Copula whose dependency structure best

characterizes the training data will be selected. There are different Goodness-of-fit tests

available. A review and comparison of goodness-of-fit procedures is given by Genest et al.

(2009). The Goodness-of-fit test used in this study is one of the so-called “blanket” tests,

that is, rank-based procedures requiring no parameter tuning or other strategic choices

such as kernel, bandwidth, etc. The test is based on the Cramér-von Mises statistic

which is a good combination of power and conceptual simplicity (Genest and Favre,

2007).

Sn =

∫
[0,1]2

Cn(u, v)2dCn(u, v) (4.10)
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where Cn =
√
n(Cn−Cθ). This statistic measures how close the fitted copula Cθ is from

the empirical copula Cn. The distribution of this statistic depends on the unknown

value of θ under the null hypothesis that C is from the class Cθ. The specific parametric

bootstrap procedure to obtain the approximate P -value is described as follows (Genest

et al., 2009).

1. Computer Cn and estimate the parameter θ for Cθ.

2. If there is an analytical expression for Cθ (e.g. Clayton, Gumbel and Frank),

compute the value of Sn as defined in Equation 4.10. Otherwise, proceed by

Monte Carlo approximation. Specifically, choose m > n (n indicates the size of

the data samples) and carry out the following extra steps:

(a) Generate a random sample (U∗1 , V
∗

1 ), · · · , (U∗m, V ∗m) from distribution Cθ.

(b) Approximate Cθ by

B∗m =
1

m

m∑
i=1

1(U∗i ≤ u, V ∗i ≤ v), (u, v) ∈ [0, 1]2. (4.11)

(c) Approximate Sn by

Sn =
n∑
i=1

{Cn(Ui, Vi)−B∗m(Ui.Vi)}2. (4.12)

3. For some large integer N , repeat the following steps for every K ∈ {1, · · · , N}:

(a) Generate a random sample (X∗1,k, Y
∗

1,k), · · · , (X∗n,k, Y ∗n,k) from Copula distribu-

tion Cθ, and compute their associated rank vectors (R∗1,k, T
∗
1,k, ), · · · , (R∗n,k, T ∗n,k, ).

(b) Compute U∗i,k = R∗i,k/(n+ 1), V ∗i,k = T ∗i,k/(n+ 1) for i ∈ {1, · · · , n} and let

C∗n,k(u, v) =
1

n

n∑
i=1

1(U∗i,k ≤ u, V ∗i,k ≤ v) (u, v) ∈ [0, 1]2 (4.13)

and estimate parameter θ for Copula distribution Cθ∗n,k .

(c) If there is an analytical expression for Cθ, let

S∗n,k =
n∑
i=1

{C∗n,k(U∗i,k, V ∗i,k)− Cθ∗n,k(U∗i,k, V
∗
i,k)}. (4.14)

Otherwise, proceed as follows:
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(i) Generate a random sample (X∗∗1,k, Y
∗∗

1,k), · · · , (X∗∗m,k, Y ∗∗m,k) from Copula

distribution Cθ∗n,k .

(ii) Approximate Cθ∗n,k by

B∗∗m,k(u, v) =
1

m

m∑
i=1

1(X∗∗i,k ≤ u, Y ∗∗i,k ≤ v), (u, v) ∈ [0, 1]2 (4.15)

and let

S∗n,k =

n∑
i=1

{C∗n,k(U∗i,k, V ∗i,k)−B∗∗m,k(U∗i,k, V ∗i,k)}2. (4.16)

An approximate P -value for the test is then given by
N∑
k=1

1(S∗n,k > Sn)/N . When Fitting

the parametric Copulas to the data, the standard maximum likelihood estimation (MLE)

is used to estimate the unknown parameter θ of each Copula candidate.

4.4 Copula-based conditional simulation

The Copula-based bias correction applied for this study is based on the estimation of

a Copula model for each pair of observed (X) and modelled (Y ) rainfall for each grid

cell. As soon as this Copula model (i.e. FX(x), FY (y) and C(u, v)) is estimated, both

unconditional and conditional random samples can be generated through Monte Carlo

simulations (Gao et al., 2007; Salvadori et al., 2007). Both simulations (or predictions)

are based on the conditional distributions of the Copula, given by

CV |U=v(v) = P [V ≤ v|U = u] =
∂C(u, v)

∂u
(4.17)

CU |V=v(u) = P [U ≤ u|V = v] =
∂C(u, v)

∂v
(4.18)

The unconditional simulation of (x, y) is divided into three steps:

(1) Generate random samples of u uniformly from [0, 1], remembering that u = FX(x);

(2) Given a sample value of u, generate a random sample of v|u using the inverse

conditional Copula CDF C−1
V |U (v);

(3) Generate the corresponding x and y variates by inverting their marginal CDFs

from u and v: x = F−1
X (u) and y = F−1

Y (v).
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The conditional simulation of y|x is given as follows:

(1) Compute u = FX(x)

(2) Draw random samples of v|u from the inverse conditional Copula CDF C−1
V |U (v)

(3) Invert from v to obtain y: y = F−1
Y (v).

The conditional simulation of x|y can simply derived by applying the procedure described

above and switching the variables x and y.

In this study, the conditional simulation is applied and it is the critical step of this bias

correction approach, as it forces a certain variable (e.g. the observation) to take a value

when another variable (e.g. the RCM value) is given. The predictions of the observation

that are conditioned on the RCM precipitation are then taken as the bias corrected

precipitation.

The complete Copula-based bias correction algorithm consists of the following steps:

1. Estimate the theoretical marginal distributions FX(x) and FY (y) for observation

and RCM data respectively

2. Transform the time series x1, · · · , xn and y1, · · · , yn to the rank space by taking

u = FX(x) and v = FY (y)

3. Calculate the empirical Copula Cn(u, v) as a rank based estimator for the theo-

retical Copula function Cθ(u, v)

4. Estimate the Copula parameter θ and perform Goodness-of-fit tests to identify the

best theoretical Copula function Cθ(u, v)

5. Calculate the Copula distribution conditioned on the variate v representing the

RCM time series in the rank space

6. Generate the pseudo-observations in the rank space for each time step by using

the conditional Copula distribution

7. Transform back the random samples to the data space by using the integral trans-

formation.
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To assess the uncertainty associated with this prediction, the conditional prediction

process (step 6 and 7) must be repeated for a large number of times, which can be

considered as the the Monte Carlo simulation. This provides the possibility to obtain a

large set of random realizations and additionally gives the information of a probability

density function (PDF) for each corrected time step. From the PDF the spread of the

distribution in form of the interquantile range can e.g. be provided as an additional

uncertainty criterion for the bias correction.

4.5 Copula-based regression

The Copula-based stochastic bias correction method gives a full ensemble and the em-

pirical predictive distribution of corrected WRF precipitation. For practical reasons and

the typical needs of subsequent modelers, e.g. in hydrology, a single corrected value is

usually required instead of a complete distribution. One can choose, e.g. the expec-

tation, median or mode of the derived predictive distribution to get a single corrected

value. This can be regarded as a Copula-based regression by taking such a “typical”

value as the estimator of the derived empirical predictive distribution of corrected WRF

precipitation.

4.6 Correction strategy for continuous time series

The implementation of a bias correction for precipitation (a discrete variable) is more

complex than a bias correction of a continuous variable, e.g. temperature. In general

four cases have to be distinguished, namely (0,0), (0,1), (1,0), and (1,1), where 0 denotes

a dry day and 1 indicates a wet day (see Fig. 4.2). A threshold of rainfall amount of

0.1 mm per day was used to identify a wet day with respect to the usual precision of rain

gauges (Dieterichs, 1956; Moon et al., 1994). This can also remove the drizzle behavior

of the RCM precipitation. Therefore, the four cases are defined as follows:

1. (1,1): REGNIE and WRF precipitation ≥ 0.1 mm

2. (0,1): REGNIE < 0.1 mm, while WRF ≥ 0.1 mm

3. (1,0): REGNIE ≥ 0.1 mm and WRF < 0.1 mm

4. (0,0): Both REGNIE and WRF < 0.1 mm
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Figure 4.2: Illustration of the four cases: (0,0) indicates that both REGNIE and
WRF show no rain, (0,1) stands for an observation with no precipitation but the RCM
model shows a rain event, while (1,0) indicates the opposite of (0,1), (1,1) implies that

both are wet.

To cope with this zero inflated data, various methods are established. The simplest

method is the local intensity scaling method (LOCI) (see Sect. 1.2). This method

also introduces a precipitation threshold (LOCI threshold), which is not the same as

the aforementioned precipitation threshold for the wet-day identification. The LOCI

threshold is calibrated such that the number of RCM simulated days exceeding this

threshold matches the number of wet days of the observation. Therefore, the number

of precipitation events for both control and scenario runs are corrected by applying the

calibrated LOCI threshold. The days with precipitation less than the LOCI threshold

are redefined to dry days with 0 mm precipitation. This method allows for the correction

of the fraction of dry days in time series. However, it does not guaranty the correction

for each single time step. In order to illustrate this issue, a small example using one

randomly selected grid cell from our domain is shown in the following.

Firstly, the proportion of the four cases for the selected pixel between REGNIE and

WRF precipitation is calculated. Then, the LOCI correction is applied for WRF precip-

itation. Finally, the proportion of the four cases between REGNIE and corrected WRF

precipitation is computed and compared with the proportion of the four cases before

correction. The results are shown in Table 4.1.

In Table 4.1, the tabular in the top is the the proportion of the four cases before the

LOCI correction, while the tabular in the bottom is that after the LOCI adjustment.

REGNIE 0 indicates the dry-day in REGNIE, while REGNIE 1 indicates the wet-day in

REGNIE. Accordingly, WRF 0 represents the dry-day in WRF and WRF 1 implies the

wet-day in WRF. Before the correction, the dry probabilities of REGNIE and WRF in
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Table 4.1: The proportion of the four cases before (top) and after (bottom) adjustment
of dry probabilities following the local scaling approach.

WRF 0 WRF 1

REGNIE 0 0.07 0.21

REGNIE 1 0.06 0.66

WRF 0 WRF 1

REGNIE 0 0.14 0.14

REGNIE 1 0.14 0.58

(0,0) case (0,1) case

(1,0) case (1,1) case

Figure 4.3: The proportion of the four cases over the study area for the validation
time period (from 1986 to 2000).
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the selected example grid cell are 0.07+0.21 = 0.28, and 0.07+0.06 = 0.13, respectively.

After the local scaling adjustment, the dry probabilities are 0.14 + 0.14 = 0.28, and

0.14+0.14 = 0.28, respectively. However, from the table we can still see nearly the same

proportion of (0,1) and (1,0) errors (0.14 + 0.14 = 0.28) after adjustment of the dry

probability if compare to that (0.21 + 0.06 = 0.27) before the adjustment. This means

that the dry probabilities are adjusted, but the error fractions still remain.

There are also other different approaches exist in the literature to account for the inter-

mittent nature of rainfall. For example the truncated Copula suggested in Bárdossy and

Pegram (2009) and the Copula-based mixed model described in Serinaldi (2008). Both

methods are able to produce time series that statistically hold the same proportion of

the four different cases (0,0), (0,1), (1,0), and (1,1). Similar to the LOCI correction,

these methods allow for the correction of the total number of dry days, but do not allow

to correct individual events in the (0,1) and (1,0) cases.

In this study, we aim to an event-based correction as described in the following: the

Copula-based concept focuses on the correction of the (1,1) cases, i.e. the positive pairs,

since the Copula works on the (1,1) cases only. In order to generate a complete bias

corrected time series of WRF output, the events that are not covered by the (1,1) case

are left unchanged. For the (0,0) cases, there is no error. The errors that come from

the (0,1) and (1,0) cases are not corrected by this correction and must be corrected

separately. To justify this strategy, we investigated the proportion of the four cases in

the study area (see Fig. 4.3): the (1,1) cases take the highest proportion, followed by the

(0,0) cases. The proportion of both the (0,1) and (1,0) cases are comparatively low. The

average proportion of these cases are 40% for the (1,1) cases, 29% for the (0,0) cases,

19% for the (0,1) cases and 12% for the (1,0) cases, respectively.





Chapter 5

The application of the

Copula-based bias correction

5.1 Introduction

In this chapter, the Copula-based bias correction is applied for a WRF simulated pre-

cipitation field in Germany. As mentioned in Chapter 4, a bivariate Copula model forms

the basis of the bias correction technique. Details about the estimated Copula models in

the calibration period (1971–1985) are presented, which include information about the

fitting of the marginal distributions and the identification of the theoretical bivariate

Copula functions. Since the marginal distributions reflect the statistical characteristics

of precipitation, the differences between estimated marginal distribution of WRF and

REGNIE precipitation are analyzed spatially. The identified Copula functions are also

analyzed over space as they imply the dependence structure between WRF and REG-

NIE precipitation. The fitted Copula models are then applied for the validation period

(1986–2000) to bias correct the WRF precipitation. Finally the performance of the

Copula-based correction is validated by investigating the relative biases of daily mean

precipitation after the bias correction. Furthermore, to investigate typical situations in

detail, the monthly mean precipitation for four specific pixels are analyzed.

43
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5.2 Estimated marginal distributions

The marginal distributions estimation is the first step of the Copula model building. For

both REGNIE and WRF data five different distribution functions (see Sect. 4.2.1) are

employed for each grid cell separately: Generalized Pareto distribution (gp); Gamma dis-

tribution (gam); Exponential distribution (exp); Weibull distribution (wbl) and Normal

distribution (norm). This guarantees the great flexibility in selecting the most appro-

priate distribution for each grid cell. Since the proposed bias correction framework is

focused on the (1,1) cases only (see Sect. 4.6). Therefore, only pair-wise recorded mod-

elled and observed data (i.e. positive pairs) are used for the marginal distribution esti-

mation. The Goodness-of-fit test follows a two-stage process (K–S test and the Bayesian

information criterion) which is described in Sect. 4.2.2. The fitted marginal distribu-

tions for both datasets in the study area are shown in Fig. 5.1. It can be seen that the

Goodness-of-fit tests reject the Normal distribution in all cases, while the Generalized

Pareto distribution is accepted most frequently for both REGNIE and WRF. The result

shows a reasonable agreement of selected marginal distribution between REGNIE and

WRF mainly in the east and south parts of Germany. It is also found that the patterns

of the selected types follow the topography of Germany (see Fig. 2.1). In the northwest

of Germany, the Weibull distribution function prevails as well as in the low mountain

ranges. In general, this effect is stronger for WRF while the patterns are more patchy for

REGNIE. In the northeast a few discrete grid cells with fitted Gamma distribution are

found in REGNIE, while this patchy pattern is not shown in WRF. A possible reason

could be that the REGNIE data is interpolated from the point based station rainfall

and the interpolated precipitation field might be effected by the intensity of the stations

as there are not so many stations available in the northeast of Germany.

In order to investigate this coincidence between REGNIE and WRF marginal distri-

butions in more detail, the confusion matrix (Stehman, 1997) of them is calculated.

Each row of the matrix represents the distribution types of REGNIE, while each column

represents that of WRF (in %). The major diagonal shows the fraction of concurring

marginal distribution types. The confusion matrix of REGNIE and WRF for the calibra-

tion period is shown in Table 5.1. It is found that for 42 % of grid cells, the Generalized

Pareto distribution is selected for both data sources concordantly. For the Weibull dis-

tribution this holds true for 16 % of the grid cells. Since the total number of grid cells

where Gamma and Exponential distribution are fitted is very low, the percentage of

hits in the diagonal of the confusion matrix is small. Summing up the major diagonal
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Figure 5.1: Estimated marginal distributions of precipitation for Germany for both
REGNIE (left) and WRF (right). The results are shown for the calibration period

(1971–1985) and positive pairs only.

Table 5.1: Confusion matrix between REGNIE and WRF for the different distribution
types.

WRF

gp gam exp wbl

R
E

G
N

IE

gp 42.04% 1.27% 1.55% 20.79%

gam 4.92% 0.5% 0.18% 2.44%

exp 0.27% 0% 0% 0.23%

wbl 7.14% 1.94% 0.79% 15.93%

gives a measure for the overall agreement. For the complete calibration series about

59 % correspond. The failures of 21 % of grid cells, where REGNIE follows the General-

ized Pareto distribution and WRF follows the Weibull distribution, are predominately

located in the Northwest of Germany (Fig. 5.1).

As mentioned above in Sect. 4.2.2 the Goodness-of-fit tests follow a two-step process

due to the fact that the K–S test is highly sensitive to large sample sizes. For the

marginal distribution identification in this study, for 99 % of the grid cells the K–S test

fails and only the BIC is used for REGNIE, while the number for WRF is 68 %. To

justify this Goodness-of-fit test, a visual inspection is further applied (see Sect. 4.2.3).

First, the RSS between the empirical distribution and the fitted theoretical marginal

distribution is computed for both REGNIE and WRF for each grid in the study area.

Then, three grid cells of the highest RSS are selected for both REGNIE and WRF data

and their empirical CDF, theoretical CDF and the corresponding quantile-quantile plots

are shown for a visual inspection. The calculated RSS map are shown in Fig. 5.2. It
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Figure 5.2: The residual sum of squares (RSS) between the empirical distributions
and the fitted theoretical marginal distributions. The RSS for REGNIE is shown in left
side and for WRF it is shown in right side. The results are shown for the calibration

period (1971–1985).

can be seen that the RSS for both REGNIE and WRF precipitation are low in most of

the study area. For the REGNIE data, the RSS varies between 0 and 3.7 and the high

values are mainly located in the middle of the domain. For the WRF precipitation field,

the RSS varies between 0 and 3.3 and the high values are dominated in the southwest

of the study area. Furthermore, the RSS pattern of REGNIE are much more patchy

than that of the WRF data, especially in the northeast of the domain. This might be

caused by the patchy distributed marginal distribution (see Fig. 5.1). Low density of

the rain gauges in the northeast of Germany effects the interpolated precipitation field

(REGNIE) and therefore causing this patchy pattern.

The empirical distributions, fitted theoretical distributions and the corresponding Q-Q

plots for three selected grid cells with highest RSS value are shown in Fig. 5.3 and Fig.

5.4 for REGNIE and WRF, respectively. It can be seen that the theoretical distributions

are quite close to the empirical distributions which indicates a good agreement between

them even the RSS are high compared the other gird cells (see Fig. 5.3 and Fig. 5.4,

left panel). To further investigate on it, the Q-Q plots are then analyzed. For REGNIE

all of the three selected grid cells seem to follow the assumed distributions reasonably

well. Most of the points in the Q-Q plots fall on a straight line (y = x) except the

extreme parts. In the tail part, the Q-Q plot of sample data versus distribution are

showing either left-skewed or right-skewed patterns (see Fig. 5.3, right panel). The

Q-Q plot skewed left from the straight line (y = x) indicates that the fitted theoretical

distribution has a fatter PDF than the empirical distribution, while the right-skewed

pattern implies the opposite. The grid cell with the highest RSS (RSS = 3.7) is fitted by

a gamma distribution (see Sect. 4.2.2) with the parameters a = 0.95, b = 3.89 and the
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Figure 5.3: The empirical and fitted theoretical distributions of REGNIE precipi-
tation (left panel) and the corresponding quantile-quantile plots (right panel) for the
selected grid cells. These three grid cells are selected from Fig. 5.2 (left) with highest

RSS value. From top to bottom, they are listed in descending order by RSS value.

corresponding Q-Q plot has a left skew. The grid cells with the second (RSS = 3.6) and

third highest (RSS = 3.5) RSS are both fitted by generalized pareto distributions and

are showing both right skews. For WRF precipitation, the Q-Q plots indicate a great

agreement between the fitted distribution and the sample data. Only a few outliers are

shown in the data. This visual inspection of the distribution fitting implies that the

precipitation are reasonably well fitted for both REGNIE and WRF even the RSS are

relatively high in the entire domain. Therefore the two-stage Goodness-of-fit testing is

justified.
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Figure 5.4: The empirical and fitted theoretical distributions of WRF precipitation
(left panel) and the corresponding quantile-quantile plots (right panel) for the selected
grid cells. These three grid cells are selected from Fig. 5.2 (right) with highest RSS

value. From top to bottom, they are listed in descending order by RSS.

5.3 Identified Copula functions

For each grid cell the theoretical Copula function that characterizes the dependence

structure between REGNIE and WRF data is identified separately. The identification

of the Copula functions is based on the ranked values that are already transformed by

the fitted marginal distributions of REGNIE and WRF. Four different types of Copulas

(Clayton, Frank, Gumbel and Gaussian) are investigated by applying the Goodness-of-fit

tests described in Sect. 4.3. Three of them (Clayton, Frank and Gumbel Copula) are from

the Archimedean Copula families and the Gaussian Copula is from the Elliptical Copula

families (see Sect. 3.5). These four Copulas are able to capture different dependence
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Figure 5.5: Identified Copula functions between REGNIE and WRF precipitation in
the calibration period (1971 to 1985) with positive pairs.

structures. The Gumbel Copula is able to describe an upper tail dependence structure,

while the Clayton Copula allows to express higher probability in the lower tail. The

Frank Copula exhibits no tail dependence, and the Gaussian Copula describes a similar

dependence as the Frank Copula, but with slightly higher densities in the lower and

upper tails (Venter, 2002; Schmidt, 2007).

The appropriate Copula function is selected for each grid cell by applying the Goodness-

of-fit testing that is described in Sect. 4.3. Figure 5.5 shows the results of the Goodness-

of-fit tests for the calibration period for the complete study area. It is found that for

most of the grid cells in the study area, the Frank Copula can capture the dependence

structure best, while for the Northeast of Germany the Clayton Copula provides the best

fit. In total the dependence structure of 72 % of the grid cells is modelled by the Frank,

20 % by the Clayton, 7 % by the Gaussian and only 0.09 % by the Gumbel Copula. As

mentioned above, these four Copulas describe different dependence structures. Therefore

from the fitted Copula family map we can see that for most of the study area they show

no tail dependence and the grid cells in the northeast show a lower tail dependence. The

grid cells that showing a upper tail dependence are rarely found in the domain.

5.4 Validation of the Copula-based bias correction

Based on the estimated Copula model (the marginal distributions and the Copula func-

tion) the conditional distribution of REGNIE conditioned on WRF is derived for each
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grid cell separately (see Sect. 4.4). To generate bias-corrected WRF precipitation, ran-

dom samples of possible outcomes are drawn from this conditional distribution through

the Monte Carlo simulations. We use a sample size of 100. The result can be interpreted

as an empirical predictive distribution for corrected WRF (pseudo-observations) that is

determined for all conditioning WRF precipitation values for each time step. While

this stochastic bias correction method gives a full ensemble and the empirical predictive

distribution of corrected WRF precipitation, for practical reasons a “typical” value can

be taken as the estimator of the predictive distribution to get single corrected values

(see Sect. 4.5).

Figure 5.6 exemplarily shows WRF (red), REGNIE (green) and the bias corrected WRF

(the box-plot, while blue indicates the median of the realizations) data for pixel 1 in

Fig. 2.1 during wintertime 1986–1987 (positive pairs only). For each corrected time

step, 100 possible outcomes of bias corrected precipitation are generated. The box plot

visualizes the spread of the generated random sample (100 members) indicating the

uncertainty of the predicted bias-corrected precipitation, while the blue line shows the

median of the respective empirical predictive distribution. It can be seen from Fig. 5.6

that for most of the time steps the proposed Copula-based approach can successfully

correct for biases in the modelled precipitation compared to observed values by e.g.,

taking the median of the sampled bias corrected values.

To investigate the spatial performance of the correction algorithm, the relative bias

of RCM modelled mean daily precipitation (WRF) compared to gridded observations

(REGNIE) is compared to that of the bias corrected model data (B.C. WRF) for Ger-

many.

A comparison of corrected WRF data derived by the expectation, median and mode of

the predictive distribution with observations are shown in Fig. 5.7. Figure 5.7 (top-left)

shows the relative bias between REGNIE and WRF, indicating wet biases in most of

the study area. These wet biases are most prominent in high elevation areas following

the topography of Germany. Wet biases are also detected in the Northeast of Germany,

where the elevation is low. Dry biases are found in the alpine and pre-alpine areas in

the Southeast of Germany as well as in the West of Germany. Figure 5.7 (top-right) is

the relative bias map between REGNIE and bias corrected WRF by taking the mean of

the stochastic sampling. It can be seen that the wet biases are corrected for most of the

domain, except for a very small region in the Northeast. It is also found that the dry

bias can also be significantly reduced, but small dry biases are introduced in some areas

in the West of the domain. The average of the bias for the whole study area is reduced
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Figure 5.6: Comparison of bias-corrected WRF data by taking the median regression
(blue) with the original WRF data (red) and REGNIE (green) in winter 1986–1987
(positive pairs only) for pixel 1 in Fig. 2.1. For each time step 100 realizations are drawn
from the conditional distribution visualized by the box-whiskers (boxes are defined by
the lower Q1 and the upper quartile Q3). The length of the whiskers is determined by
1.5 · (Q3−Q1) and outliers, i.e. data values beyond the whiskers are marked by crosses.

from 10 to −1 %. The bottom-left relative bias map is calculated between REGNIE

and bias corrected WRF taking the median of the realizations, while the bottom-right

is the one computed between REGNIE and mode based bias corrected WRF. Both

simulations tend to underestimate the precipitation values, thus causing a dry bias over

the domain. Therefore the expectation of the sampled pseudo-observations is then taken

as the estimator of the bias corrected precipitation. For the following illustration, the

results are shown and analyzed for the expectation only.

In order to evaluate the performance of the bias correction in different seasons, the

relative bias maps of mean daily precipitation are also calculated seasonally and are

shown in Fig. 5.8. The seasonal index in this study are defined by grouping the calendar

months in the following way:

• Spring - the three transition months March, April and May.

• Summer - the three hot months June, July and August.

• Autumn - the transition months September, October and November.

• Winter - the three cold months December, January and February.
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Figure 5.7: Relative bias map of mean daily precipitation for uncorrected precip-
itation field (top-left), corrected WRF precipitation field by taking the expectation
(top-right), median (bottom-left) and the mode (bottom-right) as the estimator of the

sampled distribution. The results are based on the validation period 1986-2000.

Figure 6.7 (left) shows the relative bias between uncorrected WRF mean daily precip-

itation and the REGNIE data set for the different seasons (spring – MAM, summer –

JJA, autumn – SON, winter – DJF, from top to bottom). It can be seen that the rela-

tive biases between REGNIE and uncorrected WRF are even larger for different seasons

compared to the biases for the complete fifteen years in calibration period from 1986 to

2000 (see Fig. 5.7). The WRF model tends to generate too much precipitation in spring

and winter for the majority of grid cells in the study area. For summer and autumn,

there are also regions found, where the model is too dry. These regions are mostly lo-

cated in the North and in the South of Germany. This effect is found to be strongest

in summer while in autumn areas with an overestimation of precipitation are still found

in the Northeast and Southwest of Germany. In all cases, the bias is influenced by the

underlying terrain showing an overestimation especially in regions with higher altitude.

The average of the biases from spring to winter are 32, −15, 4 and 28 %, respectively.
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Figure 5.8: Relative bias between uncorrected (left) and corrected (right) WRF mean
daily precipitation and the REGNIE data set in Germany for the different seasons
(spring–MAM, summer–JJA, autumn–SON, winter–DJF, from top to bottom). The

results are derived for the validation time period (1986-2000).
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Pixel 1: Wet bias all the year Pixel 2: Large dry bias in summer and fall

Pixel 3: Large wet bias except summer Pixel 4: Small bias all the year

Figure 5.9: Comparison of bias corrected WRF mean monthly precipitation (blue)
with REGNIE (green) and original WRF data (red) for the selected four pixel 1–4 in
the validation period from 1986 to 2000. The number of the respective grid cell is noted

in the upper left corner of each plot.

Figure 6.7 (right) shows the relative bias between corrected WRF mean daily precipita-

tion and the REGNIE. It shows that in spring the wet biases are reduced for the entire

study area even though still some biases are remain. In summer the Copula-based bias

correction reduced too much precipitation thus increased the dry biases for the domain.

In autumn and winter, the wet biases are significantly reduced. However, in both sea-

sons the correction introduced some dry biases for the west of Germany, especially in

the autumn. The average biases after the bias correction are 21, −23, −4 and −13 %

respectively for different seasons from spring to winter.

In the following, it is further analyzed how well the model can reproduce the intra-annual

variability of observed precipitation and how the performance for the different seasons

is influenced by the Copula-based correction algorithm.

To investigate typical situations in detail, the results are shown for four specific pixels

(grid cells) in the study area (see Fig. 2.1): pixel 1 and pixel 3 are selected as they show

the highest wet bias between WRF and the REGNIE. Pixel 2 is located in the region

where a dry bias was generated by the WRF in summer and autumn and a wet bias was

generated in winter. Pixel 4 represents a case where the agreement between uncorrected

model data and REGNIE observations is already good.
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Figure 5.9 shows mean monthly precipitation derived for the validation period (1986–

2000) for the selected grid cells 1–4 (see Fig. 2.1 for their exact locations). The number

of the respective pixel is noted in the upper left corner.

The results for grid cell 1 in Fig. 5.9 confirm the fact that the RCM model results

strongly overestimate the precipitation amount in that case. The annual variability

of the observations is in general reproduced, except for a strong increase of the mean

precipitation in August that is not found in the observations. This behavior is found

also for grid cell 3 indicating a relatively too dry summer season. For grid cells 1 and

3, the Copula-based correction is found to be able to correct for the overestimation of

precipitation amounts as well as for the effect of a too strong decrease of precipitation in

August. However, the correction is introducing a slight underestimation mainly during

summer and autumn instead. For grid cell 2, the correction shows only a slight improve-

ment while in summer still large dry biases remains. The same performance are also

found for grid cell 4 in which the performance of WRF was already satisfactory. The

correction slightly changes the monthly mean precipitation but decrease too much in

June, thus introduces dry biases.

5.5 Summary and discussion

The proposed stochastic bias correction technique is based on a bivariate Copula model

which consists of two marginal distributions (marginal distribution of REGNIE precipi-

tation and marginal distribution of WRF derived precipitation) and a Copula function.

The marginal distributions reflect the statistical characteristics of precipitation and the

Copula function captures the dependence structure between WRF and REGNIE precip-

itation. The bivariate Copula models are estimated for each grid cells within the study

area in the calibration period (1971–1985). For construction of Copula models only the

positive pairs of REGNIE and WRF precipitation (i.e. (1,1) cases) are used, since the

Copula only works on the (1,1) cases.

In the calibration time period from 1971 to 1985, the REGNIE and WRF precipitation

for each pixel are fitted to a theoretical marginal distribution separately through a two-

stage Goodness-of-fit test (K–S test and the Bayesian information criterion). Five dif-

ferent theoretical distribution functions are selected as the candidates of Goodness-of-fit

tests: Generalized Pareto distribution; Gamma distribution; Exponential distribution;

Weibull distribution and Normal distribution. This guarantees the great flexibility in
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selecting the most appropriate distribution for each grid cell. The fitted marginal family

maps of REGNIE and WRF show different patterns that indicates the deficiencies of

representing the precipitation distribution by WRF. It is found that the patterns of fitted

marginal families follow the topography of Germany, which means that the precipitation

distribution changes over elevation. The fitted marginal distribution map for REGNIE

are also found to be more patchy than that for WRF precipitation field, especially in

the northwest of Germany.

Due to the fact that the K–S test is highly sensitive to large sample sizes, for plenty

of the grid cells (99 % for REGNIE and 68 % for WRF) the KS test fails and only the

BIC is used for the selection of the marginal distribution. To justify this Goodness-

of-fit test, a visual inspection is further applied, which is based on the empirical CDF,

theoretical CDF and the corresponding quantile-quantile plots. The pixels that have

relative high RSS are further inspected and the results show good agreements between

fitted theoretical marginal distributions and the empirical distributions. This means

that the two-stage Goodness-of-fit testing is justified.

After the marginal functions for REGNIE and WRF are fitted, the precipitation val-

ues are then transformed to rank space where a Copula function can fit. The Copula

functions are also fitted for each pixel separately and four different types of Copulas are

investigated: Clayton, Frank, Gumbel and Gaussian. The Goodness-of-fit testing for

the Copulas are based on the Cramér-von Mises statistic. The fitted Copula family map

shows that the Copulas are different in different areas. Since different Copulas which are

applied in this study represent different kinds of dependence structure, the dependence

structures between REGNIE and WRF are found to vary over space. It is also found

that for most of the study area the dependence structures between REGNIE and WRF

show no tail dependence, where the Frank and Gaussian Copula are fitted.

Based on the estimated Copula model (the marginal distributions and the Copula func-

tion) the conditional distribution of REGNIE conditioned on WRF is derived for each

grid cell separately. To generate bias-corrected WRF precipitation, random samples

of possible outcomes are drawn from this conditional distribution through the Monte

Carlo simulations. The random sample size is taken as 100 in this study. Which means

for each corrected time step 100 realizations (pseudo-observations) are generated as the

corrected WRF precipitation. Therefore, actually an empirical predictive distribution

for corrected WRF for each time step is derived. For practical reasons, e.g. spatial

illustration, the expectation of these 100 realizations is taken as the estimator of the

corrected WRF precipitation. Since the Copula model is established only based on the
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positive pairs (i.e. (1,1) cases), the correction is also applied only on the (1,1) cases in

the validation period (1986–2000). In order to generate a complete time series, the time

steps that are not belong to the (1,1) cases are then kept the same as the raw WRF

data.

By investigating on the relative bias of mean daily precipitation, the Copula-based bias

correction is found to be able to reduce the biases from WRF derived precipitation

significantly. However, when looking at the seasonal relative bias of mean daily precip-

itation, the performance of the correction drops. The biases are only slightly reduced

and in summer the dry biases are even increased. In order to evaluate the performance

of the proposed method regarding to the intra-annual variability, four specific pixels in

the study area are again selected and further analyzed by looking at their monthly mean

precipitation. Results show that corrected monthly mean WRF precipitation are much

closer to the observations (REGNIE) compared to the uncorrected WRF precipitation.

Since the method is found to be inefficient for seasonal bias correction, the Copula-based

correction is then applied in a seasonal mode and the results are analyzed in the following

chapter.





Chapter 6

The application of Copula-based

bias correction with a seasonal

mode approach

6.1 Introduction

In Chapter 5, the Copula-based bias correction was applied for a WRF simulated precip-

itation field in Germany. The bivariate Copula models (two marginal distributions and

one Copula function) for each gird cells are established from a 15–year calibration period

from 1971 to 1985 and are then applied for another 15–year validation period (1986–

2000) to bias corrected the WRF simulated precipitation fields. The results showed

that the Copula-based bias correction (the mean of the Monte Carlo simulated realiza-

tions is taken as the estimator) is able to significantly reduce the biases of daily mean

precipitation for the entire study area. However, when analyzed for different seasons,

the biases can only be slightly reduced. In summer, the biases are even increased after

the correction. It is also found that not only the dependence structures, but also the

marginal distributions for both the REGNIE and WRF vary intra-annually. Therefore,

in this chapter the Copula-based bias correction is applied seasonally. The Copula mod-

els are estimated for different seasons (spring – MAM, summer – JJA, autumn – SON,

winter – DJF) in the calibration period separately and are then applied also separately

for different seasons in validation period to correct the WRF precipitation fields. The

59
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fitted marginal distribution of WRF and REGNIE precipitation as well as the identi-

fied Copula functions are analyzed spatially and seasonally. The performance of the

Copula-based bias correction is validated by investigating the relative biases of daily

mean precipitation, monthly mean precipitation.

6.2 Estimated marginal distributions

As the first step of the Copula model building, the marginal distributions are estimated

for different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF).

Following the same process in Chapter 5, for both REGNIE and WRF data five different

distribution functions (see Sect. 4.2.1) are employed for each grid cell to guarantee the

great flexibility in selecting the most appropriate distribution. For each season, the pair-

wise recorded modelled and observed data are thrown into a two-stage goodness-of-fit

testing process to fit the appropriate theoretical distributions (see Sect. 4.2.2).

For both REGNIE and WRF data, the seasonal representation of the different distribu-

tion types is shown in Fig. 6.1. For all the seasons, the Normal distribution is rejected by

the goodness-of-fit process for each grid cells. The fitted seasonal marginal distribution

maps indicate that the choice of the optimal marginal distribution clearly depends on

the season. For WRF, the winter (summer) season is dominated by Exponential (Gen-

eralized Pareto). The differences for REGNIE are not that obvious since the dominant

distribution type is the Generalized Pareto distribution for all seasons. For WRF data

the effect of the underlying elevation on the identified distribution type is most prominent

during winter and fall. In the low mountain regions the favorite marginal distribution

change from fall (Weibull, Generalized Pareto) to winter (Exponential, Weibull).

The seasonal confusion matrices for different seasons are shown in Table 6.1. The major

diagonal shows the fraction of concurring marginal distribution types and the sum of

the major diagonal indicates the overall agreement. In spring, for 40 % the pixels the

Generalized Pareto distribution is selected for both data sources concordantly, while for

other three distributions the numbers are less than 4 %. In summer, the concurrence

are mainly from the Generalized Pareto distribution and the Weibull distribution with

the fraction of 42 % and 14 %, respectively. The same trend is found in autumn, where

the agreements between WRF and REGNIE are contributed by the Generalized Pareto

distribution with a number of 15 % and by the Weibull distribution with a number of

18 %. For the Gamma distribution and the Exponential distribution, the number of
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Figure 6.1: Estimated marginal distribution of precipitation for the different seasons
for REGNIE (left panel) and WRF (right panel) in Germany. The results are shown
for the calibration period (1971–1985) for positive pairs only. Spring (MAM), summer

(JJA), autumn (SON) and winter (DJF) are illustrated from top to bottom.
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coincidence are less than 1 %. In winter, the percentage of hits in the diagonal of the

confusion matrix are nearly uniform except for the Gamma distribution, which has the

concurrence number around 0. By summing up the numbers in the major diagonal,

the results show the best agreement between WRF and REGNIE (approximately 56 %

of the grid cells) in summer, while in wintertime only approximately 30 % of the types

agree.

Due to the fact that the K–S test is highly sensitive to large sample sizes, our Goodness-

of-fit tests follow a two-step process which is described in Sect. 4.2.2. For the annual

marginal distribution identification, for 99 % of the grid cells the K–S test fails and only

the BIC is used for REGNIE, while the number for WRF is 68 % (see Sect. 5.2). Since

the sample size is reduced in seasonal analysis, the failures of K–S test are decreased

dramatically. The results are shown in Table 6.2. It can be seen that for REGNIE

precipitation distribution fitting, the K–S test failure appears highly in winter with a

number of 56 %. In other seasons, the number of the K–S test failure are relatively low.

Especially in summer, only 11 % of the grid cells are rejected by the K–S test and only

the BIC is used for the Goodness-of-fit test. For WRF precipitation, the K–S test failure

number are below 15 % for all the seasons. The largest number is 12 % in autumn and

the smallest number is nearly zero in spring. Nevertheless, to justify this Goodness-of-fit

test, a visual inspection is necessary (see Sect. 4.2.3).

The RSS between the empirical distribution and the fitted theoretical marginal distri-

bution is computed for both REGNIE and WRF for each grid in the study area. The

computed RSS are shown for different seasons in Fig. 6.2. It can be seen from the

RSS maps that for WRF precipitation field the RSS between the empirical distribution

and the fitted theoretical marginal distribution are nearly zero for all the seasons in the

entire study area. For REGNIE data the high RSS value appears in winter, while it still

less than 3. The same as the annual case in Sect. 5.2, the RSS pattern of REGNIE are

much more patchy than that of the WRF data and this may due to the fact that the

interpolation of REGNIE data effects the precipitation distribution.

For a further inspection of the performance of the Goodness-fit-tests, the empirical dis-

tributions, fitted theoretical distributions and the corresponding Q-Q plots for grid cells

with highest RSS value in different seasons are shown in Fig. 6.3 and Fig. 6.4 for REG-

NIE and WRF precipitation, respectively. For both REGNIE and WRF precipitation,

the fitted theoretical distributions show great agreements with their corresponding em-

pirical distributions for selected pixels in each seasons (see Fig. 6.3 and Fig. 6.4, left

panel). From the Q-Q plots of those pixels more details can be seen. The right panel
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Table 6.1: Seasonal confusion matrix of fitted REGNIE and WRF precipitation dis-
tribution.

MAM WRF

gp gam exp wbl
R

E
G

N
IE

gp 39.57% 0.29% 25.68% 3.89%

gam 2.32% 0.12% 1.32% 0.18%

exp 2.68% 0.02% 3.03% 0.14%

wbl 8.88% 0.56% 7.81% 3.51%

JJA WRF

gp gam exp wbl

R
E

G
N

IE

gp 42.3% 0.09% 0.39% 11.58%

gam 0.72% 0.14% 0.04% 0.83%

exp 1.74% 0% 0% 0.81%

wbl 26.4% 0.62% 0.61% 13.73%

SON WRF

gp gam exp wbl

R
E

G
N

IE

gp 35.43% 0.08% 6.36% 18.83%

gam 1.55% 0.29% 0.95% 1.14%

exp 0.51% 0% 0.15% 0.41%

wbl 11.23% 0.29% 4.88% 17.9%

DJF WRF

gp gam exp wbl

R
E

G
N

IE

gp 8.92% 1.25% 24.66% 7.12%

gam 2.18% 0.27% 7.65% 1.21%

exp 1.44% 0.48% 8.08% 1.12%

wbl 6% 0.89% 16.42% 12.31%



Chapter 6. The application of Copula-based bias correction with a seasonal mode ... 64

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.2: The residual sum of squares (RSS) between the empirical distributions
and the fitted theoretical marginal distributions in each grid for both REGNIE and
WRF data. The maps in left panel are the RSS for REGNIE data and the right panel
indicate the RSS for WRF data. From top to bottom, the maps indicate RSS for spring
(MAM), summer (JJA), autumn (SON) and winter (DJF), respectively. The results

are shown for the calibration period (1971–1985).
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Table 6.2: The proportion of grid cells for both REGNIE and WRF that K–S test
failed and only BIC is used in Goodness-of-fit procedure.

Spring Summer Autumn Winter

REGNIE 25.83 % 10.86 % 38.38 % 56.13 %

WRF 0.31 % 10.61 % 12.26 % 3.88 %

of Figure 6.3 show the Q-Q plots between fitted theoretical and empirical distributions

of REGNIE precipitation for selected pixel in each seasons. In spring, summer and

autumn the pixels with the highest RSS are all fitted by the generalized Pareto distri-

bution, while in winter it is fitted by the Weibull distribution. The sample quantiles

match the theoretical quantiles quite well as most of the points (around 95 % of the

points) on the Q-Q plot fall on a straight line (the major diagonal) except a few points

which are slightly right-skewed in the extreme parts. This means in each selected pixels

for 95 % of the quantiles the theoretical distribution matches the empirical distribution

and for the rest 5 % of the quantiles the theoretical distribution has a thinner PDF than

the empirical distribution. The Q-Q plot for WRF precipitation fields in selected pixels

show similar patterns as that for REGNIE precipitation but with higher proportion of

the matched quantiles. For all of the selected pixels, more than 98 % of the points in

Q-Q plots fall on the straight line. In spring, the Q-Q plot shows an outlier in the left

side while for other seasons the Q-Q Plots show also slight right-skewed patterns which

indicates a slightly thinner PDF from the fitted theoretical distribution.

6.3 Identified Copula functions

While the marginal distributions are fitted, the precipitation are then transformed to

rank space where the Copula function can be fitted to describe the dependence struc-

ture between REGNIE and WRF. In order to assess for the annual variability of the

dependence structures between REGNIE and WRF precipitation time series, the Cop-

ula functions are also identified for the different seasons separately. In each season for

each pixel, the REGNIE and WRF pair-wised precipitation are firstly transformed to

the rank value based on the seasonal fitted marginal distribution. The pair-wised rank

value are then fitted to a theoretical Copula function through the Goodness-of-fit testing

which is described in Sect. 4.3. Four Copulas (Gaussian, Frank, Gumbel and Clayton)

are selected as the candidates for Goodness-of-fit testing. The fitted Copula family maps

for each season are shown in Fig. 6.5. It is easy to see that the patterns of the Copula
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Figure 6.3: The empirical and fitted theoretical distributions of REGNIE precipi-
tation (left panel) and the corresponding quantile-quantile plots (right panel) for the
selected grid cells. From top to bottom, they represent the highest RSS value pixel in

spring, summer, autumn and winter respectively.
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Figure 6.4: The empirical and fitted theoretical distributions of WRF precipitation
(left panel) and the corresponding quantile-quantile plots (right panel) for the selected
grid cells. The seasonal visual inspection of marginal distribution for WRF precip-
itation. From top to bottom, they represent the highest RSS value pixel in spring,

summer, autumn and winter respectively.



Chapter 6. The application of Copula-based bias correction with a seasonal mode ... 68

MAM JJA

SON DJF

Figure 6.5: Fitted Copula functions between REGNIE and WRF precipitation (cal-
ibration period (1971–1985), positive pairs only). The Copulas are identified for the

different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF).

families are different in the different seasons. For spring, autumn and winter the Copulas

that have no pronounced tail dependence (the Frank and Gaussian Copula) dominate

(spring 49 % (Frank) + 22 % (Gaussian) = 71 %, autumn 53 % + 24 % = 77 % and winter

63 % + 28 % = 91 %), in summer the Clayton Copula provides the best fit for most of

the grid cells (62 %) that indicates a lower tail dependence between REGNIE and WRF

precipitation. For all seasons the Gumbel Copula is only selected for few grid cells with

a maximum number of hits in spring (5 % of the grid cells). In general the differences

are most prominent for winter and summer (see Fig. 6.5).
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6.4 Validation of the Copula-based bias correction

The seasonal Copula model are establish while the marginal distributions and the Copula

functions are estimated seasonally. Therefore the conditional distribution of REGNIE

conditioned on WRF can be derived for each grid cell to generate bias-corrected WRF

precipitation. As already mentioned in Sect. 4.4, the Copula-based stochastic bias cor-

rection generates the corrected precipitation through the Monte Carlo simulation with a

sample size of 100. For each corrected step, a empirical predictive distribution is derived.

Due to the practical reasons (e.g. spatial illustration or spatial evaluation), a “typical”

value is taken as the estimator of this predictive distribution to get single corrected val-

ues. The expectation, median and mode value of the empirical predictive distribution

are investigated and similar results as Fig. 5.7 are found. For the Copula-based bias

correction with the seasonal Copula model approach, the expectation value of the Monte

Carlo simulations has the best performance compared to other two “typical” values (i.e.

the median and mode). Therefore, in the following the bias corrected value refers to the

expectation value of the Monte Carlo simulations (100 realizations for each time step)

only. To validate the Copula-based bias correction with the seasonal Copula model

approach, the corrected WRF data are then compared to the uncorrected raw WRF

data and it is shown in Fig. 6.6. Figure 6.6 (left panel) shows the original relative bias

of mean daily precipitation between REGNIE and uncorrected WRF, while Figure 6.6

(right panel) shows the relative bias between REGNIE and corrected WRF by applying

Copula-based method in the seasonal mode. Similar performance is found compared

to the Copula-based correction in the overall mode (see Fig. 5.7). The wet biases are

corrected for most of the domain and for some region small dry biases are introduced.

The average of the bias for the whole study area is reduced from 10 to −1 %.

With respect to seasonal variations the correction performance is also evaluated in dif-

ferent seasons. The relative bias maps before and after bias correction in each season

are shown in Fig. 6.7 left panel and right panel, respectively. It can be seen that the

Copula-based correction in the seasonal mode efficiently removes most of the biases in-

dicating a comparable performance for all seasons. Figure 6.7 especially for spring and

winter indicates that the correction is tending to be more suitable to correct for overes-

timation of the rainfall. The underestimation of precipitation, that is most prominent in

summer, however, is still significantly reduced. In autumn and winter the Copula-based

correction in the seasonal mode reduces the rainfall amounts too much for the west of

Germany, introducing a small dry bias in that region. The average bias are reduced
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Figure 6.6: Relative bias map of mean daily precipitation for uncorrected precip-
itation field (left) and corrected WRF precipitation field by applying Copula-based
method in seasonal mode. The results are based on the validation period 1986-2000.

to 16, −11, −1 and −3 % respectively for different seasons from spring to winter. By

comparing to the correction in the overall mode (see Fig. 5.8), seasonal mode based

correction shows a great improvement especially in summer and winter. In summer, the

seasonal mode based correction is significantly improved in the entire study area. In

the overall mode, the Copula-based correction shows even an increasing of dry biases

compared to the original bias map. By applying the correction in the seasonal mode, the

correction decreases the dry biases from −15 to −11 %. In winter, the seasonal mode is

found to be able to remove the wet bias in the south and west of Germany which can

not be removed by correction in the overall mode. In spring and autumn, the seasonal

mode approach is also found to be improved slightly.

In order to investigate the seasonal performance in more detail, we also look at the

intra-annual variability of observed and corrected model precipitation. As mentioned

in chapter 5, the four specific pixels are again selected to evaluate their monthly mean

precipitation. These four pixels represents four different typical situations (see Sect.

5.4). For the selected four pixels their monthly mean precipitation of REGNIE, WRF,

corrected WRF in the overall mode and the corrected WRF in the seasonal mode are

shown in one plot in Fig. 6.8 indicated by different colors. In each season, the Copula-

based bias corrected monthly mean precipitation in the seasonal mode (the black line in

Fig. 6.8) are further improved compared to the corrected monthly mean precipitation

in the overall mode (blue line in Fig. 6.8). For pixel 1, the correction in the seasonal

mode has improved all the year except only in December, where the monthly mean

precipitation is over estimated a bit. The same performance is found for pixel 3, while the

corrected monthly mean precipitation in the seasonal mode are closer to the observation
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Figure 6.7: Relative bias between uncorrected (left) and corrected (right) WRF mean
daily precipitation and the REGNIE data set in Germany for the different seasons
(spring–MAM, summer–JJA, autumn–SON, winter–DJF, from top to bottom). The

results are derived for the validation time period (1986-2000).
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Pixel 1: Wet bias all the year Pixel 2: Large dry bias in summer and fall

Pixel 3: Large wet bias except summer Pixel 4: Small bias all the year

Figure 6.8: Comparison of bias corrected WRF mean monthly precipitation (blue: in
overall mode, black: in seasonal mode) with REGNIE (green) and original WRF data
(red) for the selected four pixel 1–4 in the validation period from 1986 to 2000. The

number of the respective grid cell is noted in the upper left corner of each plot.

expect in March (precipitation is reduced too much). For pixel 2, the dry biases in

summer is significantly reduced by the seasonal mode correction. For pixel 4 even the

WRF model simulated precipitation is good enough, the correction can still improve the

results by applying in the seasonal mode approach.

As described in chapter 4, the Copula-based correction is applied for each grid cell

separately. Therefore, it is necessary to investigate the spatial coherence of the bias

corrected precipitation fields. The sequence of three selected days (from January 9th to

11th, 1986) are exemplarily shown in Figure 6.9. The left panel from top to bottom are

the observed precipitation fields for these three days. In the middle are the uncorrected

(original) WRF simulated precipitation fields and the right panel indicates the bias

corrected WRF precipitation fields in the seasonal mode. The results show that the

WRF simulated precipitation show an overestimation in these days, and the Copula-

based correction is able to reduce the precipitation amount therefore correct the wet

biases. It can also be seen that the corrected fields follows the pattern of raw WRF

data. Which means that while correcting the absolute precipitation values, the spatial

coherence of the precipitation patterns are retained after the application of the bias

correction.
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REGNIE WRF B.C. WRF

Figure 6.9: Daily precipitation fields over Germany for the three consecutive days
from January 9 to January 11, 1986.
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6.5 Summary and discussion

As already discussed in previous Chapter, the Copula-based bias correction by taking

the expectation value of the Monte Carlo simulations is able to significantly reduce

the relative bias of the mean daily precipitation for the fifteen years validation time.

However, it has limitations to reduce the seasonal bias of the mean daily precipitation.

Therefore, in this Chapter the stochastic bias correction is applied in a seasonal mode.

The marginal distributions as well as the Copula functions are estimated for each pixel

in each season (spring – MAM, summer – JJA, autumn – SON, winter – DJF). The

marginal distribution and Copula fitting follows the same strategy as in chapter 5.

Again, only the positive pairs of REGNIE and WRF precipitation are used to construct

the seasonal Copula models, therefore the models are also only applied for the (1,1)

cases. The time steps that are not belong to the (1,1) cases are then kept same as the

raw WRF data.

The fitted seasonal marginal family maps show that the precipitation distributions

change over time and space for both REGNIE and WRF. Differences are found be-

tween fitted marginal distribution of REGNIE and WRF, which means that the WRF

model has the shortcomings for simulating the precipitation distribution in seasons. The

same as the annual fitted marginal distribution, in seasonal fitting the patchy patterns

are also found for REGNIE precipitation. For seasonal fitted marginal distributions, the

number of K–S fails are significantly reduced for both REGNIE and WRF. To evaluate

the Goodness-of-fit tests, visual inspections are also applied, which give great agreement

between fitted theoretical distributions and empirical distributions.

The estimated Copula functions are different in different seasons and in different area,

which indicates that the dependence structures between REGNIE and WRF precipi-

tation vary over time and space. Based on the seasonal fitted marginal distributions

and Copula functions, the seasonal Copula models are established. The conditional

distribution are then derived seasonally. By comparing the relative bias of mean daily

precipitation, the Copula-based correction in the seasonal mode is found to be able to sig-

nificantly reduce the biases in each seasons. This is due to the reason that precipitation

distributions and the dependence structure between REGNIE and WRF precipitation

change over seasons, with the seasonal fitted models these information can be better

captured and therefore derive better corrections. The bias of monthly mean precipita-

tion are also analyzed for four selected pixels with respect to intra-annual variability.
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Results show that with seasonal fitted Copula models, the correction can be further

improved.

Finally, the spatial coherence of the Copula-based correction are also investigated due

to the reason that the copula models are estimated for each pixel separately. By looking

at the sequence of three selected days (from January 9th to 11th, 1986), the seasonal

mode corrections are found to be able to reduce the biases and also preserve the spatial

structure of the WRF output. This is due to the fact that the Copula-based approach

is conditioned on the WRF simulation. The method adjusts the value of the WRF

precipitation according to the fitted Copula model. Even though the Copula models

are estimated for each grid cell, the spatial coherence is captured by the Copula model

as both the Copula families as well as the marginal distributions are also spatially

clustered.





Chapter 7

Comparison of the Copula-based

bias correction to the quantile

mapping

7.1 Introduction

In chapters 5 and 6, the Copula-based stochastic bias correction is applied to the WRF

simulated precipitation field by using both the overall Copula model approach and the

seasonal Copula model approach. The results show that both Copula models are able

to reduce the biases in the WRF derived precipitation field, while the seasonal Copula

model approach has a better performance. In this chapter, in order to further evaluate

the Copula-based bias correction, it is compared to the traditional quantile mapping

correction. Like the Copula-based correction, the quantile mapping correction is also

applied for all pixels in the entire study area. The corrected precipitations are then com-

pared to the Copula-based corrections by looking at the root mean square error (RMSE),

the quantile RMSE and the percentage of the corrected time steps that are closer to the

observations. Due to the fact that the seasonal Copula model based correction are bet-

ter than the overall Copula model, the comparison the Copula-based correction refers

to the seasonal Copula model approach only.

77
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7.2 Empirical distribution derived quantile mapping cor-

rection

The quantile mapping method is often used in bias correction of RCM derived precipi-

tation (Dosio and Paruolo, 2011; Gudmundsson et al., 2012). This method corrects the

bias by rescaling the values of the RCM so that the distribution of the RCM matches

that of the observations. The quantile mapping method has already depicted in Sect.

1.2, for the sake of completeness it is briefly described here. The correction formula is

followed as:

P ∗ = F−1
obs(FRCM (P )) (7.1)

where P ∗ is the corrected model precipitation value, P is the original modelled precip-

itation value. FRCM is the CDF of the RCM precipitation and accordingly Fobs is the

CDF of the observations. F−1
obs is the inverse function of Fobs, which is named quantile

function.

In this study, the empirical distribution is used to model the CDF of both the REG-

NIE and WRF precipitation. Therefore the empirical distribution constructed transfer

function(Eq. 7.1) is hence referred to as empirical quantile mapping (eQM).

To implement the empirical distribution correction method, the ranked modelled pre-

cipitation distribution is divided into a number of discrete quantiles. Following the

procedure of Lafon et al. (2013), the empirical CDF is approximated using tables of

empirical percentiles. Values in between the percentiles are approximated using linear

interpolation. The same procedure is done for generating the empirical CDF of the

observation. The inverse computation is simply using the quantile function. For each

grid cell in the domain, the empirical quantile mapping correction has performed.

7.3 Comparison of the Copula-based bias correction to the

quantile mapping correction

The quantile mapping corrected WRF precipitations has compared to the Copula-based

correction by investigating the RMSE, quantile RMSE and the percentage of the cor-

rected time steps that are closer to the observations.

Firstly, The RMSE between the observed (REGNIE) and bias corrected modelled data is

calculated for both the Copula-based correction and the quantile mapping method. The
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Copula (mean regression) Copula (median regression)

Copula (mode regression) Quantile Mapping

Figure 7.1: The changes of the RMSE in the validation period (1986-2000) by different
bias correction methods. The green color indicates a decrease of the RMSE, while the

ocher color implies an increase of the RMSE.

original RMSE (between REGNIE and WRF) is also computed as a reference. For the

Copula-based approach, the RMSE is calculated for all the simulations with respect to

the mean-, median- and mode value. The changes of the RMSE by different corrections

over the study area are shown in Fig. 7.1. The Copula-based correction derived from

the mean regression reduces the RMSE significantly with an average of −12% over the

domain. The Copula-based correction derived from the median also reduces the RMSE,

but to a less degree. The correction derived from Copula-based mode regression reduces

the RMSE, but results in an increase of the RMSE in some regions. The same holds

true for the quantile mapping approach.

To further assess the performance of the Copula-based method, additional performance

measures are analyzed. The RMSE for different magnitudes of observed precipitation
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Figure 7.2: The root mean square errors (RMSE) and the root mean square errors for
specific probability intervals (RMSE0.1, RMSE0.2, . . . , RMSE1.0) for different methods.
The selected four pixels are the same as in Fig. 6.8. The black solid line indicates the
errors without correction. The results are derived from the validation period from 1986

to 2000.

(i.e. a quantile RMSE analysis) is done for the selected four grid cells (see Fig. 2.1).

The results from the validation period are shown in Fig. 7.2. The RMSE in different

quantiles are represented by RMSE0.1, RMSE0.2, . . . , RMSE1.0, while the subscript

indicates the magnitude level. RMSE0.1 evaluates the errors in the dry part of the

observation distribution, implying the (0,1) errors. From RMSE0.2 to RMSE1.0 the

RMSE are calculated for equally spaced probability intervals of the observed empirical

CDF of wet days. For example, RMSE1.0 indicates the errors in the magnitude of

the 10% highest events. As it can be seen from Fig. 7.2, the Copula-based correction

performs equally or even better in terms of the RMSE in most of the quantiles. In

pixel 1 and 3, both correction are able to reduce the quantile RMSE, while the Copula-

based correction is more efficient. For pixel 2, the quantile mapping failed to decrease

the quantile RMSE for nearly all the quantiles, while the Copula-based method reduce

the errors significantly. In pixel 4, the original RMSE for each quantiles are low. By

applying the quantile mapping correction the RMSE are only slightly reduced but the

Copula-based method corrects the errors significantly. It is also found that the Copula-

based correction is not able to reduce the RMSE in the first quantile (RMSE0.1) and

sometimes also failed in correcting RMSE in the extreme quantile (RMSE1.0).
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Figure 7.3: The percentage of the corrections that are closer to the observations.
Left: Copula-based correction (mean regression); Right: quantile mapping correction.

The results are derived from the validation period from 1986 to 2000.

Furthermore, the percentage of the corrected time steps that are closer to the observa-

tions compared to the quantile mapping method is investigated. The results are shown

in Fig. 7.3. The values indicate the percentage of the successful corrections (i.e. closer

to the observations) by the two bias correction methods. It can be seen that the re-

sults of the quantile mapping correction strongly depends on the rank correlation (see

Fig. 7.4), while the Copula-based correction provides a stable correction efficiency over

the entire domain. The average percentages of the successful correction are 55% for the

Copula-based correction and 46% for the quantile mapping correction, respectively.

7.4 Summary and discussion

The Copula-based correction is found to be able to efficiently reduce the biases in the

WRF derived precipitation. In order to further evaluate the proposed Copula-based bias

correction it is compared to the most often used quantile mapping method. The empirical

quantile mapping correction is applied for each pixel in the study area. As analyzed and

discussed in the previous chapters (chapter 5 and 6), the seasonal Copula model based

correction has a better performance. The results show that the Copula-based method

has an improved performance in reducing the overall RMSE of WRF precipitation. The

quantile mapping correction even increases the RMSE in some regions. The analysis of

quantile RMSE for selected four pixels shows that the Copula-based correction performs

equally or even better in terms of the RMSE in most of the quantiles. Finally the

correction efficiency is compared between the Copula-based method and the quantile

mapping correction regarding the percentage of the corrected time steps that are closer
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Figure 7.4: The rank correlations between RCM and REGNIE precipitation over the
domain in the validation period from 1986 to 2000.

to the observations. Results show that the correction efficiency of the quantile mapping

correction strongly depends on the rank correlation, while the Copula-based correction

provides a stable correction efficiency over the entire domain and has a higher score.

It is well known that the quantile mapping method corrects all moments of the RCM

precipitation distribution. However this correction is usually applied under the assump-

tion of a perfect dependence among the ranks and this full dependence assumption is

limited. In our study area, the rank correlation between the datasets varies between

0.3 and 0.6 (see Fig. 7.4). Therefore the Copula-based method are more efficient than

the traditional quantile mapping correction, as it has no limitation of full dependence

assumption and the Gaussian assumption.



Chapter 8

Outlook: Framework for the

application of the Copula-based

correction in climate projections

8.1 Introduction

In the previous chapters, a Copula-based stochastic bias correction method was intro-

duced and applied for the correction of WRF derived precipitation. The focus was to

demonstrate the feasibility of this method to correct precipitation time series for the

past. If applied to future climate projections, this method has to be extended further.

The proposed Copula-based method is applied for positive pairs of REGNIE and WRF

data, i.e. the (1,1) cases. When dealing with future climate information, e.g. from cli-

mate projections (where no observations are available), one cannot identify if a time step

belongs to (1,1) cases or not. In this case, the methodological framework as ooutlined

in the previous sections has to be extended.

In this chapter, the Copula-based bias correction framework is further elaborated to

allow its use for climate projections by applying a Markov-based precipitation cases

identification model. This model allows the identification of (0,0), (0,1), (1,0) and (1,1)

cases for every time step in the future period. The methodology is briefly described

and applied for selected four pixels in a validation mode, i.e. it is assumed that no

observations are available for the period under consideration.

83
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8.2 Precipitation cases identification model

The proposed precipitation cases identification method consists of a hidden Markov

model and a Viterbi process. A first-order hidden Markov model (HMM) is used to

model the precipitation cases, i.e., (0,0), (0,1), (1,0) and (1,1) cases, in precipitation

pairs between REGNIE and WRF. Four Markov states are set up to describe these four

precipitation cases: S1 indicates the (0,0) case, S2 implies the (0,1) case, S3 represents

the (1,0) case and S4 stands for the (1,1) case. The state diagram is shown in Fig. 8.1.

Each state has a probability to move to other states or stay in the same state. In this

model, the emissions refer to the WRF derived precipitation and are only configured

with two levels, i.e. E = {d,w}, where d indicates a dry day and w stands for a wet

day. Therefore, the emission probability is known as follows: S1 has 100 % chance to

generate a dry day; S2 has 100 % chance to generate a wet day; S3 has 100 % chance

to generate a dry day; S4 has 100 % chance to generate a wet day. Note again that the

emissions refer to the WRF derived precipitations, since the purpose of this method is

to predict the four precipitation cases in the future where only WRF precipitations are

available.

The first-order HMM is firstly estimated based on the training datasets (i.e. the past

observations and WRF simulations). The future precipitation cases can then be pre-

dicted through the Viterbi algorithm by using the estimated HMM and the precipitation

projections. The details of the hidden Markov model and the Viterbi algorithm are

described in Appendix A and Appendix B. To illustrate the precipitation cases identifi-

cation method, a small example is also shown in Appendix C by taking the data from

the pixel 1 in Fig. 2.1.

8.3 Application of the Copula-based bias correction com-

bined with the precipitation cases identification

To evaluate the precipitation cases identification method, four pixels are selected to

apply with it and the results are analyzed. The selected four pixels are marked in Fig.

2.1. The 30-year time series is split into a calibration (1971–1985) and a validation

(1986–2000) period of equal length. For each pixel, the hidden Markov model is firstly

estimated in calibration period. The precipitation cases are then predicted in validation

period by using the Viterbi algorithm.
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Figure 8.1: State diagram for the hidden Markov model with four states from S1 to
S4. These four states indicates four different cases in precipitation pairs: S1 indicates
the (0,0) case, S2 implies the (0,1) case, S3 represents (1,0) the case and S4 stands for

the (1,1) case.

The predicted precipitation cases are compared to the actual precipitation cases in the

validation period via confusion matrix and is shown in Table 8.1. Each row of the matrix

represents the numbers of actual precipitation cases, while each column represents that

of the predicted precipitation cases (in %). The major diagonal shows the fraction

of concurring precipitation cases. By summing up the major diagonal, it can be seen

that the accuracy of the precipitation cases identification for these four pixels are 72 %,

71.5 %, 69 %, 69 %, respectively.

In the prediction model, it is also found that (1,0) cases are quite often predicted as

(0,0) and the (0,1) cases are easy to be predicted as (1,1) cases. E. g. for pixel 1, there

are 9.2 % (8.6 % + 0.8 %) of days belong to the (1,0) cases in actual situation, however

93 % (8.6 % ÷ 9.2 %) of them are predicted as (0,0) and only 7 % (0.8 % ÷ 9.2 %) are

predicted correctly. There are also 62 % (10.92 % ÷ (6.54 % + 10.92 %)) of the (0,1) cases

are predicted as (1,1) cases and only 38 % (6.54 % ÷ (6.54 % + 10.92 %)) of them are

predicted as such. The prediction accuracy for (0,0) and (1,1) cases are high, especially

for the (0,0) case, which is 96 % (29.68 % ÷ (29.68 % + 1.24 %)). For the (1,1) cases, the
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Table 8.1: Confusion matrix between the actual precipitation cases and the predicted
precipitation cases for selected four pixels.

Pixel 1 Predicted cases

(0,0) (0,1) (1,0) (1,1)
A

ct
u

al
ca

se
s (0,0) 29.68% 0% 1.24% 0%

(0,1) 0% 6.54% 0% 10.92%

(1,0) 8.4% 0% 0.8% 0%

(1,1) 0% 7.41% 0% 35.01%

Pixel 2 Predicted cases

(0,0) (0,1) (1,0) (1,1)

A
ct

u
al

ca
se

s (0,0) 20.6% 0% 4.9% 0%

(0,1) 0% 1.63% 0% 13.8%

(1,0) 7.8% 0% 4.9% 0%

(1,1) 0% 2% 0% 44.3%

Pixel 3 Predicted cases

(0,0) (0,1) (1,0) (1,1)

A
ct

u
al

ca
se

s (0,0) 26.6% 0% 3.31% 0%

(0,1) 0% 2.37% 0% 14.13%

(1,0) 9.55% 0% 3.81% 0%

(1,1) 0% 4.03% 0% 36.21%

Pixel 4 Predicted cases

(0,0) (0,1) (1,0) (1,1)

A
ct

u
al

ca
se

s (0,0) 26.01% 0% 3.6% 0%

(0,1) 0% 6.35% 0% 14.44%

(1,0) 9.8% 0% 3.19% 0%

(1,1) 0% 3% 0% 33.6%

prediction accuracy is 83 % (35.01 % ÷ (7.41 % + 35.01 %)). Similar results are found

for other three pixles.

The precipitation cases identification model allows the prediction of the precipitation

cases in the future, where only RCM projections are available. Therefore it can be
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Figure 8.2: Comparison of bias corrected WRF mean monthly precipitation (black:
applied for actual (1,1) cases, purple: applied for predicted (1,1) cases) with REGNIE
(green) and original WRF data (red) for the selected four pixels (marked in Fig. 2.1)

in the validation period from 1986 to 2000.

applied together with Copula-based bias correction to reduce the errors in RCM projec-

tions. We assume the validation time to be the future. By applying the Copula-based

correction for these predicted (1,1) cases. The bias corrected mean monthly precipita-

tion are shown in Fig. 8.2. It can be seen that with the predicted (1,1) cases, the errors

are also significantly reduced. It has nearly the same performance as the application of

the bias correction for the actual (1,1) cases. For some pixels, the performance of the

application for predicted (1,1) cases are even better than that for the actual cases in

some months. Furthermore, the RMSE and the quantile RMSE are analysed and the

results are shown in Fig. 8.3. For all the selected pixels, the bias correction applied for

predicted (1,1) cases also has close performane compared to that for the actual (1,1)

cases. The quantile RMSE are only slightly higher due to the predict accuracy. It is also

necessary to note that the first quantile RMSE (RMSE0.1) is reduced with the predicted

(1,1) cases. This is due to the reason that some of the (0,1) cases are predicted as (1,1)

cases (see Table 8.1), therefore these time steps are then corrected by the Copula-based

approach.
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Figure 8.3: The root mean square errors (RMSE) and the root mean square errors for
specific probability intervals (RMSE0.1, RMSE0.2, . . . , RMSE1.0) for different methods.
The selected four pixels the same as in Fig. 8.2. The black solid line indicates the errors
without correction. The results are derived from the validation period from 1986 to

2000.

8.4 Summary

In this chapter the Copula-based correction is further extended to be capable of applyig

in the climate projections. The approach is not elaborated in full detail in the Ph.D.

dissertation thesis. It is rather focused on the validation instead of the application for

the entire domain. Results show that the method is able to predict the precipitation

cases with a high overall accuracy (around 70 %). For the (1,1) cases, the prediction

accuracy is even higher. By applying the Copula-based stochastic bias correction for the

predicted (1,1) cases, it is found that the monthly mean errors, RMSE and the quantile

RMSE in the WRF precipitation time series can be successfully reduced. It is also found

that the correction for the predictied (1,1) cases has close performance compared to the

correction for the actual (1,1) cases and only the quantile RMSEs are slightly higher.

The precipitation cases identification model is configured with a first-order HMM, the

emissions are only set to two levels, i.e. dry day and wet day. It can be further extended

by increasing the emission levels, e.g. to four levels: dry (< 0.1mm), lower inten-

sity (0.1mm − 5mm), moderate intensity (5mm − 50mm) and extremes (> 50mm).



Chapter 8. Outlook: framework for the application of the Copula-based correction ... 89

AIasseur et al. (2004) used 42 emission levels in his study to simulate the rain events

time series with a Markov model. The method can also be extened by increasing the

order of the hidden Markov model. Which may result a higher prediction accuracy for

the precipitation cases.

The precipitation cases identification method introduced here is an extension of the

Copula-based stochastic bias correction. It allows the bias correction also for the cli-

mate projections. Furthermore, the method predicts not only the (1,1) cases for the

precipitation prejections but also the other three cases, i.e. (0,0) cases, (0,1) cases and

(1,0) cases. Therefore, it potentially provides the possibility to correct also the (0,1)

and (1,0) errors separately, which may lead to a better correction of the biases.





Chapter 9

Conclusions

In this study, a Copula-based stochastic bias correction technique for RCM-output is

introduced. Different to triditional transfer function-based statistical corrections, The

strategy of this method is the identification and description of underlying dependence

structures between RCM and observed precipitation and its application for bias cor-

rection. A bivariate Copula model which consists of two marginal distributions and a

Copula function, forms the basis of this approach. The marginal distributions describe

the statistical properties of the variates (here: RCM and observed precipitation) and

the Copula function captures the dependence structure between them. The WRF pre-

cipitation is then corrected based on the conditional distribution which is derived from

the estimated Copula model. It is important to note that the proposed method is only

applied for the positive pairs of RCM and observed precipitations, i.e. the (1,1) cases.

In order to generate a complete bias corrected time series of WRF output, the events

that are not covered by the (1,1) case are left unchanged (see Sect. 4.6).

The advantages of this approach are: 1) It is able to capture the non-linear depen-

dencies between variables including a reliable description of the dependence structure

in the tails of the joint distribution. This is not possible e.g. by using a Gaussian

approach or methods based on the Pearson’s correlation coefficient; 2) The univariate

marginal distributions can be modeled independently from the dependence function, i.e.

the Copula function. This provides more flexibility to construct a correction model by

combining different marginal distributions and Copula functions, as many parametric

univariate distribution and theoretical Copulas are available; 3) It provides the possibil-

ity to access all the possible outcomes of the corrected value and additionally gives the

91
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information of a PDF for each corrected time step. 4) It has no limitations like Gaus-

sian assumption or full dependence assumption which is hold by the quantile mapping

correction.

The Copula-based correction is applied to correct a 30-year dynamical downscaled preip-

itation field (WRF-ERA40). As observation, the REGNIE data from the German

Weather Service is used. The 30-year time series is split into a calibration (19711985)

and a validation (19862000) period of equal length. For the application of bias cor-

rection, both the overall mode approach and the seasonal mode approach are used to

investigate the intra-annual variability. In the overall mode approach, for each grid cell

an overall Copula is estimated. While in the seasonal mode approach, the Copula mod-

els are fitted for every seasons (MAM, JJA, SON, DJF) separately in each grid cell.

When estimating the Copula models, five theoretical distributions (Generalized Pareto

distribution; Gamma distribution; Exponential distribution; Weibull distribution and

Normal distribution) and four different types of Copulas (Clayton, Frank, Gumbel and

Gaussian) are investigated.

The results of marginal fitting indicate discrepancies between the fitted marginal dis-

tributions of REGNIE and WRF-EAR40 data. The estimated marginal distributions

for WRF show distinct spatial (strongly related to the orography of the domain) and

seasonal patterns (clear differences between summer and winter, similar patterns for

spring and fall season). The distributions are more scattered for the REGNIE data.

The fitted Copula families imply that the dependence structure between REGNIE and

WRF precipitation vary both in space and time (seasonally). The fact that different

dependence structures exist for the different seasons indicates that the method corrects

for different dominating precipitation types, i.e. convective and stratiform precipitation.

The assumption of this approach is that the dependence structure between observed and

modelled precipitation is stationary over the period of interest. The corrected WRF

precipitations are analyzed for both the overall mode approach and the seasonal mode

approach. The Copula-based stochastic correction provides a full ensemble of corrected

WRF precipitation for each time step through the Monte Carlo simulations. For the

investigation of the spatial performance, the mean value of the Monte Carlo simulated

realizations is applied after the comparison with other two statistical values, i.e. the

median and mode value. Results show that the proposed approach in the both overall

mode approach and the seasonal mode approach successfully corrected the errors in

RCM derived precipitation. The seasonal mode based correction are found to be more

efficient than the overall mode correction. It is also found that the correction method
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in seasonal mode performs better for overestimations rather than for underestimations.

By investigating the spatial coherence, the proposed method is found to be able to

preserve the spatial structure of the WRF model output. This is due to the reason

that the Copula-based approach is conditioned on the WRF simulation. The method

is adjusting the value of the WRF precipitation according to the fitted Copula model.

Even though the Copula models are estimated for each grid cell, the spatial coherence

is captured by the Copula model as both the Copula families as well as the marginal

distributions are also spatially clustered.

Finally the Copula-based statistical bias correction is compared to the quantile mapping

method. It is found that the Copula-based method in seasonal mode has an improved

performance in reducing the RMSE and quantile RMSE. It is also found that the Copula-

based method allows for a better correction with respect to the percentage of the time

steps that are closer to the observations after the correction. The Copula-based method

is able to provide a stable correction efficiency over the entire domain, even if the rank

correlations between the RCM- and observed precipitation are low.

Finally, the Copula-based stochastic bias correction is extended to be applicable for

climate projections by combining with a precipitation cases identification model. This

model is based on a first-order HMM with two emission levels and four Markov states

which captures the four precipitation cases, i.e. (0,0) cases, (0,1) cases, (1,0) cases and

(1,1) cases. It predicts the precipitation cases for the precipitation projections, where no

observations are available, via the Viterbi algorithm. So far, this study focused on the

introduction of the method, not a final application for the entire domain. To demonstrate

this approach, it is applied for selected four pixels and the results are analyzed. Firstly,

the predicted precipitation cases are compared to the actual precipitation cases. It is

found that the method is able to predict the precipitation cases with a high overall

accuracy (around 70 %). The Copula-based correction is then applied for the predicted

(1,1) cases. Results show that the monthly mean errors, RMSE and the quantile RMSE

in the WRF precipitation time series for the selected pixel can be successfully reduced.

It is also found that the correction for the predictied (1,1) cases has close performance

compared to the correction for the actual (1,1) cases and only the quantile RMSEs are

slightly higher. Currently, this precipitation model is configured with a first-order HMM

and only emission levels of two. It can be further extended by increasing the emission

levels and the order of the HMM. This may result a higher prediction accuracy for the

precipitation cases. Furthermore, this method potentially provides the possibility to

correct also the (0,1) and (1,0) errors separately, since it predicts not only the (1,1)
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cases for the precipitation prejections but also the other three cases, i.e. (0,0) cases,

(0,1) cases and (1,0) cases.

Based on the analysis carried out in this study, the results discussed in the previous chap-

ters, and the scope of this research, the following recommendations for future research

are suggested:

It is well known that the daily precipitation distributions are typically heavily skewed

towards low-intensity values. When fitting a set of theoretical distributions, the distri-

bution parameters will be dictated by the most frequently occurring values, but may

then not accurately represent the extremes. Using the combination of two or more dis-

tributions to can better characterize the precipitation property and therefore improve

the correction.

The Copula-based method provides the information of the full PDF for each individual

time step. For practical reasons, only single corrected values are required for each time

step. In this study, only the mean, median and the mode value of the Monte Carlo

simulation are investigated. It is worthful to investigate also other statistical values or

make use of the complete conditional Copula CDF.



Appendix A

The hidden Markov model

A Markov chain (Rabiner, 1989) can be described as follows: Assume one has a set

of states, S = {s1, s2, · · · , sn}. The process starts in one of these states and moves

successively from one state to another. Each move is called a step. If the chain is

currently in state si, then it moves to state sj at the next step with a probability

denoted by pij . In a first-order Markov process, the probability to have a particular

state sj at time t depends solely on the condition of the previous state si at time (t−1),

i.e.:

pij = Pr(qt = sj |qt−1 = si) (A.1)

The probabilities pij are called transition probabilities. The process can remain in the

state it is in, and this occurs with probability pii. The matrix which contains all of the

transition probabilities is called the transition matrix.

T =



p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn


(A.2)

The sum of each column or row in the transition matrix T is equal to 1. The state

diagram for a Markov model with two states is shown in Fig. A.1. The transition
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p1 

1-p1 

p2 

1-p2 

Figure A.1: State diagram for the Markov model with two states S1 and S2.

matrix for this model is the expressed as

 p1 1− p1

1− p2 p2

. In this model, the Markov

process has a probability of p1 to stay in state S1 and has a probability of 1 − p1 to

move from S1 to S2. The probability of stay in S2 is p2 and the probability is 1 − p2

if it moves from S2 to S1. In a Markov process, the initial state probabilities can be

expressed as λi = Pr(q1 = si).

A hidden Markov model is a model in which the state sequence (which is a Markov chain)

is not directly observable. It generates an emission from each states. The emission is

a probabilistic function of an underlying Markov state sequence. At each time step, an

emission is drawn from the (discrete or continuous) probability distribution associated

with the current state. The emission probability for the observable a from state si is

bi(a) = Pr(Et = a|qt = si) (where Et is the emission at time t). The hidden Markov

model is a doubly embedded stochastic process with an underlying stochastic process

that is not observable (it is hidden), but can only be observed through another set

of stochastic processes that produce the sequence of emissions. The set of parameters

H = {pij , bi(a), λi} gives a full probabilistic description of the aforementioned HMM

model.



Appendix B

The Viterbi algorithm

Given a sequence of emissions E = {e1, e2, · · · , eT }, and an HMM H = {pij , bi(a), λi}.
There are several paths through the hidden states that lead to the given sequence, but

they do not have the same probability. The maximum probability state path Q =

{q1, q2, · · · , qT } can then be estimated recursively using the Viterbi algorithm, which is

a dynamical programming algorithm. The estimated maximum probability state path

is also called Viterbi path.

Let vi(t) be the probability of the most likely path ending in state si at time t, i.e.,

vi(t) = max
q1,q2,...,qt−1

Pr(q1q2 · · · qt−1, qt = si, e1e2 · · · et|H),

and let λi be the initial probabilities of the states si at time t = 1. Then vj(t) can be

calculated recursively using

vj(t) = max
1≤i≤N

[vi(t− 1)pij ]bj(et)

together with initialization

vi(1) = λibi(e1) 1 ≤ i ≤ N

and termination

P ∗ = max
1≤i≤N

[vi(T )].
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Figure B.1: Illustration of a simple hidden Markov model with two states and four
emission levels for each state.

The method chooses the highest probability endpoint, and then backtrack from there to

find the highest probability path.

To illustrate this algorithm, a small example is shown in the following (Borodovsky and

Ekisheva, 2006): Let’s consider a simple HMM which is described in Fig. B.1. This

model is composed of 2 states, H (high GC content) and L (low GC content). We

can for example consider that state H characterizes coding DNA while L characterizes

non-coding DNA. For each state there are four different emission levels, i.e. A, C, G

and T , with different emission probabilities.

Assume a sequance as S = GGCA, there are several paths through the hidden states

(H and L) that lead to this sequence, e.g. P = LLHH. The probability of the HMM

to produce sequence S through the path P = LLHH can be calculated as:

v = λL ∗ bL(G) ∗ pLL ∗ bL(G) ∗ pLH ∗ bH(C) ∗ pHH ∗ bH(A)

= 0.5 ∗ 0.2 ∗ 0.6 ∗ 0.2 ∗ 0.4 ∗ 0.3 ∗ 0.5 ∗ 0.2

= 0.000144

However, this path may not be the most probable path. To search for the most probable

path for this sequence S = GGCA, the viterbi algorithm is depicted step by step in

following, i.e. backtracking from the endpoint to the start point.

P ∗ = max(vH(4), vL(4))

vH(4) = bH(A) max(vH(3) ∗ pHH , vL(3) ∗ pLH) = 0.2 ∗ max(vH(3) ∗ 0.5, vL(3) ∗ 0.4)

vL(4) = bL(A) max(vH(3) ∗ pHL, vL(3) ∗ pLL) = 0.3 ∗max(vH(3) ∗ 0.5, vL(3) ∗ 0.6)
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Figure B.2: Illustration of a simple hidden Markov model with two states and four
emission levels for each state. The probabilities are transformed by a log operation

(log2)

vH(3) = bH(C) max(vH(2) ∗ pHH , vL(2) ∗ pLH) = 0.3 ∗ max(vH(2) ∗ 0.5, vL(2) ∗ 0.4)

vL(3) = bL(C) max(vH(2) ∗ pHL, vL(2) ∗ pLL) = 0.2 ∗max(vH(2) ∗ 0.5, vL(2) ∗ 0.6)

vH(2) = bH(G) max(vH(1) ∗ pHH , vL(1) ∗ pLH) = 0.3 ∗ max(vH(1) ∗ 0.5, vL(1) ∗ 0.4)

vL(2) = bL(G) max(vH(1) ∗ pHL, vL(1) ∗ pLL) = 0.2 ∗max(vH(1) ∗ 0.5, vL(1) ∗ 0.6)

vH(1) = bH(G) ∗ λH = 0.3 ∗ 0.5

vL(1) = bL(G) ∗ λL = 0.2 ∗ 0.5

where v is the probability of the most likely path ending in a certain state at a certain

step, e.g. vH(4) is the probability of the most likely path ending in state H at the

4th step. p is the transition probability that the Markov chain moves from one state

to another state, e.g. pLH is the transition probability that the Markov chain moves

from state L to state H. For the calculations, it is convenient to use the log of the

probabilities (rather than the probabilities themselves). This allows to compute sums

instead of products, which is more efficient and accurate. In this example, log2 is used

and the probalibites in Fig. B.1 are then transformed to that in Fig. B.2. Therefore

the probabilities of the path that end in a certain state at each time step are computed

as follows. It is noted that the probabilites are obtained after a log transformation

(log2(v)).

log2(vH(1)) = −1− 1.737 = −2.737

log2(vL(1)) = −1− 2.322 = −3.322

log2(vH(2)) = −1.737 + max(−2.737− 1,−3.322− 1.322) = −5.474

log2(vL(2)) = −2.322 + max(−2.737− 1,−3.322− 0.737) = −6.059
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log2(vH(3)) = −1.737 + max(−5.474− 1,−6.059− 1.322) = −8.211

log2(vL(3)) = −2.322 + max(−5.474− 1,−6.059− 0.737) = −8.796

log2(vH(4)) = −2.322 + max(−8.211− 1,−8.796− 1.322) = −11.533

log2(vL(4)) = −1.737 + max(−8.211− 1,−8.796− 0.737) = −10.948

log2(P ∗) = max(−11.533,−10.948) = −10.948

P ∗ = 2−10.948 = 5.06E − 4

Finally, the probability of the Viterbi path is calculated, i.e. P ∗ = 5.06E − 4, which is

given by the path ending in state L at the 4th step. By backtracking from the endpoint

to the start point (highlighted as red during the calculation), the path which corresponds

to the highest probability is found, i.e. HHHL.



Appendix C

Illustration of the precipitation

cases identification

For illustration of the precipitation cases identification approach, a step-by-step example

is shown here by taking the data from the pixel 1 in Fig. 2.1. Using the same strategy

as before, the 30-year time series is split into two 15-year periods. The first 15-year

(1971–1985) is set for the calibration period and the last 15-year (1986–2000) is set for

the validation period. We assume the validation time to be the future. A threshold of

rainfall amount of 0.1 mm per day was used to identify a wet day with respect to the

usual precision of rain gauges (Dieterichs, 1956; Moon et al., 1994). The data are shown

in Table C.1, where X indicates the REGNIE data and Y represents the WRF data.

The complete time series in calibration period includes 5479 days and only the first 15

days are shown in the Table for the sake of intuition.

As described in Sect. 8.2, the hidden Markov model is configured with two emission

levels (i.e. d/w) and four Markov states (i.e. S1 indicates the (0,0) case, S2 implies the

(0,1) case, S3 represents the (1,0) case and S4 stands for the (1,1) case). For the selected

dataset the emissions and the states can be simply derived in Table C.2.

Table C.1: Training data set for the precipitation cases identification model (mm/day)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

Xi 0 0 0 0 0 0 0 0 0 0 0 0 1.5 4.6 0.6 ...

Yi 0.83 1.38 12.26 0.97 0 0 0 0 0 0 0 0 0 22.38 10.83 ...
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Table C.2: The emissions and the states that derived from the training data set

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

E(t) w w w w d d d d d d d d d w w ...

S(t) S2 S2 S2 S2 S1 S1 S1 S1 S1 S1 S1 S1 S3 S4 S4 ...

Table C.3: The emissions in the validation period

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

E(t) w w w w w w w w w w w w d d w ...

With the emissions and the states in the calibration period, the first-order HMM is

then estimated which consists of the initial state probabilities λi = {S1 : 0.2774, S2 :

0.2361, S3 : 0.0807, S4 : 0.4058}, the transition matrix

T =



0.60 0.15 0.11 0.14

0.27 0.40 0.04 0.29

0.23 0.11 0.24 0.42

0.07 0.22 0.06 0.65


,

and the emission matrix

EM =



1 0

0 1

1 0

0 1


.

The transition matrix contains the probabilities that a state jump to another state or

stay in the same state. E. g. in this model, it has a probability of 0.6 that the state

S1 stays as the same and has a probability of 0.15 that the state S1 jump to S2.

The probability that the state S2 move to S1 is 0.27. The emission matrix contains

the probabilites that a state generates a certain emission. The column indicates the

emission levels, i.e. d/w, and the row implies the states. E. g in this model, state S1

has 100 % chance to generate a dry day (d) and has no chance to generate a wet day

(w). State S2 has 0 chance to generate a dry day (d) and has 100 % chance to generate

a wet day (w). It is noted that the emissions are only refer to the WRF projections.
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Table C.4: Predicted states in the validation period

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

S(t) S4 S4 S4 S4 S4 S4 S4 S4 S4 S4 S4 S2 S1 S1 S4 ...

With the estimated HMM and the future WRF precipitation (i.e. the WRF time series

in validation period in this application), the precipitation cases can then be predicted.

The emissions in the validation time are shown in Table C.3 and the predicted states

are shown in the Table C.4.
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Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to

produce unbiased climate change scenarios over large areas and small, Water Resources

Research, 48, 1–13, doi:10.1029/2011WR011524, 2012.
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