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Abstract
In the discussion about the global climate change, one central topic are the projected

changes in the water cycle. It is predicted that there will be an increase of extreme

hydrometeorological events like heavy precipitation or droughts. It is obvious that

this intensification of the hydrological cycle will have a significant impact on the

society. Such predictions require reliable and consistent datasets for the major

hydrological variables precipitation, evapotranspiration, runoff, and water storage

changes. Today, there are various data sources for each of these variables. While

some of these datasets are still based on in situ measurements, there are alternative

data sources available, which are often derived from satellite-based measurements.

The advantages of these observations are obviously the homogeneous spatial and

temporal resolutions on the global scale. Besides such satellite-based products, state-

of-the-art hydrological and hydrometeorological models and reanalyses also provide

consistent long-term estimates for the major hydrological variables.

In order to evaluate the past, present, and future state of the climate system, it is

mandatory that there is both temporal and spatial consistency between these data

sources. Otherwise, the mismatch between the different water cycle variables cause

imbalances in the empirical evaluation of the hydrological cycle, which, in the end,

hinder the analysis of extreme events or variations on climatic time scales. It is thus

of major importance to investigate the strengths and weaknesses of the data sources

for precipitation, evapotranspiration, runoff, and water storage changes, but also the

level of consistency between different water cycle variables.

This doctoral thesis, which comprises of four articles, shall therefore serve as a

comprehensive overview over the current status of our knowledge about and our

data basis for the large-scale water cycle. Therefore, various data sources for the four

major water cycle variables are compared and evaluated on different temporal and

spatial scales. These sources comprise gridded observations (GPCC, GPCP, CRU, DEL,

CPC), atmospheric reanalysis models (ERA-Interim, MERRA, CFSR), partially model-

based datasets (GLEAM, MOD16, FLUXNET MTE), land surface models (GLDAS,
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MERRA Land), satellite-derived water storage changes from GRACE, and in situ

runoff observations from GRDC,

The study reveals serious shortcomings in the empirical evaluation of the large-scale

water cycle. On the global scale, significant differences can be identified when com-

paring the model estimates from the three reanalyses against gridded observations

of precipitation and temperature. However, differences with similar magnitudes can

also be observed between the applied observation-based datasets. A catchment-scale

analysis over 96 catchments of different sizes and climatic conditions worldwide

confirms that these differences occur on both the global- and the catchment-scale.

In the context of the gridded precipitation observations, this can be (at least partly)

explained with a significant decrease of rain gauges worldwide. Looking at the spatial

distribution of the gauges reveals large data gaps e.g. in the Tropics or the African

continent, which leads to a high level of uncertainty in these regions.

The shortcomings in the data sources for each of the four water cycle variables are

confirmed by an analysis of the global- and basin-scale water budgets. Due to their

ability to simulate the whole climate system, the three reanalysis models allow in

principle a consistent evaluation of the global water cycle. However, it is shown

that there are significant imbalances and numerical artifacts in their oceanic and

continental water budgets, which obviously hinder the use of such model estimates

for e.g. extreme value or climate trend studies. On the basin-scale, the evaluation of

the water budgets from different combinations of widely used data sources for pre-

cipitation, evapotranspiration, runoff, and water storage changes reveal imbalances

of more than 25 % of the mean annual runoff over most of the 96 study regions.

Even if some data combinations allow a reasonable closure of the water budgets

over certain catchments, it is not possible to identify a single best dataset which

performs consistently on the global scale. That being said, the significant decrease in

the number of stream gauges worldwide further aggravates a continuous analysis of

the basin-scale water cycle.

The study therefore presents an approach, with which basin-scale time series of

precipitation, evapotranspiration, runoff, and water storage changes can be predicted
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or corrected. The method is based on an Ensemble Kalman Filter framework, where

all required input parameter are derived from an ensemble of hydrological and

hydrometeorological datasets. In order to evaluate the performance of the proposed

framework, the filter is used for predicting runoff over 16 catchments. A comparison

with observed runoff shows correlations larger than 0.5, relative errors lower than

±20 %, and NSE-values larger than 0.5 for most of the study regions.

Overall, the study shows that our current datasets for the major water cycle variables

have to be used with care. The large imbalances and inconsistencies in the water

budgets on both the global- and basin-scale deny the direct use of such estimates

for e.g. climate trend studies or the analysis of extreme events. Thus, in order to

use our current datasets for studying the projected changes in the global water cycle,

a careful analysis and data correction has to be performed. It is further stressed

that, despite the promising performance of certain alternative methods like e.g. the

presented EnKF-approach, there is still an urgent need for in situ observations for

precipitation and runoff. Otherwise, it will become more difficult in the near future

to perform water budget studies or climate analyses, but also to validate hydrological

or hydrometeorological models.
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Zusammenfassung
Die Änderungen des globalen Wasserkreislaufs sind ein zentrales Thema in der De-

batte über den globalen Klimawandel. Es wird angenommen, dass die Häufigkeit

von beispielsweise Starkniederschlägen oder Dürren zunehmen wird. Die Auswir-

kungen einer solchen Intensivierung des Wasserkreislaufs auf die Gesellschaft liegen

auf der Hand. Um jedoch entsprechende Aussagen über solche Änderungen treffen

zu können, werden zuverlässige und konsistente Datenquellen für Niederschlag,

Verdunstung, Abfluss sowie Wasserspeicheränderungen benötigt. Heutzutage werden

für jede einzelne dieser Variablen verschiedenste Datenquellen angeboten. Wärend

einige dieser Produkte auf in situ-Messungen basieren, gibt es alternative Datensätze,

welche oftmals von satellitengestützten Beobachtungen abgeleitet werden. Der Vor-

teil hierbei ist die (auf globaler Skala) homogene rämliche und zeitliche Auflösung.

Neben solchen Satelliten-basierten Produkten liefern moderne hydrologische und

hydrometeorologische Modelle und Reanalysen ebenfalls konsistente Schätzungen

der wichtigsten hydrologischen Variablen.

Um sowohl die Vergangenheit, als auch Gegenwart und Zukunft unseres Klimasys-

tems zu beschreiben, müssen die Datenquellen sowohl zeitlich, als auch räumlich,

konsistent sein. Andernfalls treten bei der empirischen Beschreibung des Wasserkreis-

laufs Ungleichgewichte auf, welche durch die Diskrepanzen der verschieden Variablen

hervorgerufen werden. Diese Ungleichgewichte erschweren die Analyse von extre-

men Ereignissen oder Variationen über klimatische Zeitskalen. Es ist daher äußerst

wichtig, die verschiedenen Stärken und Schwächen der einzelnen Datenquellen für

Niederschlag, Verdunstung, Abfluss und Wasserspeicheränderungen, aber auch die

Gemeinsamkeiten der verschiedenen Wasserkreislaufvariablen zu untersuchen und

zu verstehen.

Diese Arbeit, welche aus vier Artikeln besteht, soll daher einen umfassenden Überblick

über den aktuellen Kenntnisstand und die Datengrundlagen für den großskaligen

Wasserkreislauf bieten. Dafür werden verschiedene Datenquellen für die Wasser-

kreislaufsvariablen auf verschiedenen zeitlichen und räumlichen Skalen miteinander
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verglichen und evaluiert. Die untersuchten Daten basieren auf gerasterten Beobach-

tungen (GPCC, GPCP, CRU, DEL, CPC), atmosphärischen Reanalysemodellen (ERA-

Interim, MERRA, CFSR), teilweise modellbasierten Ansätzen (GLEAM, MOD16, FLUX-

NET MTE), Land-Oberflächenmodellen (GLDAS, MERRA Land), Satelliten-basierten

Wasserspeicheränderungen von GRACE sowie Abflussmessungen des GRDC.

In dieser Arbeit werden erhebliche Mängel in der empirischen Auswertung des

großskaligen Wasserkreislaufs aufgezeigt. Auf globaler Skala lassen sich große Un-

terschiede zwischen den Modellergebnissen der drei Reanalysen und gerasterten

Niederschlags- und Temperaturbeobachtungen feststellen. Die Unterschiede zwischen

den verschiedenen beobachtungsbasierten Datensäte jedoch erreichen eine ähnliche

Größenordnung. Ein Vergleich für insgesamt 96 Einzugsgebiete mit unterschiedli-

cher Größe und klimatischen Bedingungen zeigt deutlich, dass diese Unsicherheiten

sowohl auf globaler, als auch auf Einzugsgebietsskala auftreten. Bei den gerasterten

Niederschlagsbeobachtungen kann dies zumindest teilweise mit einem deutlichen

Rückgang der Messstationen weltweit erklärt werden. Betrachtet man die räumliche

Verteilung der Messstationen, lassen sich große Datenlücken z.B. über den Tropen

oder dem gesamten Afrikanischen Kontinent erkennen. Diese führen natürlich zu

erheblichen Unsicherheitsspannen in den entsprechenden Regionen.

Die Defizite in den Datenquellen für die vier Wasserkreislaufsvariablen werden noch

offensichtlicher, wenn man die Schließung der Wasserbilanz auf globaler Skala sowie

für einzelne Einzugsgebiete untersucht. Eine globale Auswertung des Wasserkreislaufs

wäre prinzipiell mit den drei untersuchten Reanalysemodellen möglich, da sie das

gesamte Klimasystem simulieren. Allerdings zeigen sich deutliche Ungleichgewichte

und numerische Artefakte in den ozeanischen und kontinentalen Wasserbilanzen, was

beispielsweise Extremwertanalysen oder Trendstudien erheblich erschwert. Auf der

Einzugsgebietssakala können die Wasserbilanzen durch verschiedene Kombinationen

der Datenquellen für Niederschlag, Verdunstung, Abfluss und Wasserspeicherän-

derungen untersucht werden. Dabei lassen sich Ungleichgewichte von mehr als

25 % des mittleren Jahresabflusses für die Mehrzahl der 96 untersuchten Einzugs-

gebiete feststellen. Auch wenn einige Kombinationen eine annähernde Schließung

der Wasserbilanz erlauben, kann hierbei kein einzelner Datensatz ermittelt werden,
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welcher in allen Einzugsgebieten konsistente Ergebnisse liefert. Da zusätzlich ein

erheblicher Rückgang in der Anzahl der Flusspegel weltweit zu erkennen ist, wird die

kontinuierliche Untersuchung des Wasserkreislaufs auf Einzugsgebietsebene immer

schwieriger.

In dieser Arbeit wird daher ein Ansatz präsentiert, welcher zur Prädiktion oder

Korrektur von Zeitreihen für Niederschlag, Verdunstung, Abfluss oder Wasserspei-

cheränderungen verwendet werden kann. Die Methode basiert auf einem Ensemble

Kalman Filter, wobei sämtliche benötigten Eingabeparameter aus einem Ensemble

von hydrologischen und hydrometeorologischen Datensätzen bestimmt werden. Um

die Leistungsfähigkeit des Ansatzes zu überprüfen, werden mit Hilfe des Filters

Abflusszeitreihen für 16 Einzugsgebiete prädiziert. Der Vergleich mit Abflussbeob-

achtungen liefert Korrelationen größer 0.5, relative Fehler kleiner als ±20 % sowie

NSE-Werte größer als 0.5 für die meisten untersuchten Gebiete.

Insgesamt zeigt die Studie, dass unsere derzeitigen Datensätze für die vier Wasser-

kreislaufsvariablen nur mit Vorsicht benutzt werden dürfen. Die großen Ungleichge-

wichte und Unstimmigkeiten in den Wasserbilanzen sowohl auf globaler, als auch auf

Einzugsgebietsskala erschweren die Analyse von beispielsweise extremen Ereignissen

oder Klimatrends. Zur Untersuchung der Änderungen im globalen Wasserkreislauf

muss daher zunächst eine sorgfältige Überprüfung und Korrektur der Datengrundlage

erfolgen. Es muss ebenfalls darauf hingewiesen werden, dass trotz der vielverspre-

chenden Ergebnisse des EnKF-Ansatzes nach wie vor ein dringender Bedarf an in

situ-Beobachtungen für Niederschlag und Abfluss herrscht. Andernfalls wird es in

Zukunft erheblich schwieriger, aussagekräftige Wasserhaushaltsstudien oder Klima-

analysen, aber auch Validierungen von hydrologischen und hydrometeorologischen

Modellen durchzuführen.
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Chapter 1

Introduction

1.1 Background

The observed and projected changes in the freshwater availability due to climate

change is often expressed by the common and prominent phrase The rich get richer

and the poor get poorer [e.g., Trenberth, 2011]. Besides the global long-term mean

amounts and trends of the four major water cycle variables precipitation, evapotran-

spiration, runoff, and water storage changes, also changes in both the temporal and

spatial distribution are of major concern. These changes are often summarized as the

intensification of the global water cycle [e.g., Huntington, 2006], which was copiously

discussed in IPCC’s Fourth Assessment [IPCC, 2007] and IPCC’s dedicated report

[Field et al., 2012]. In general, it is assumed that there will be an increase in the

frequency of extreme hydrometeorological events like heavy precipitation or severe

droughts.

The impacts of changes in the water cycle are of high social relevance. In IPCC’s

fifth assessment [IPCC, 2014], it is concluded that the fraction of global population

experiencing water scarcity and the fraction affected by major floods increase with the

level of warming in the 21st century. Furthermore, they state that climate change

over the 21st century is projected to reduce renewable surface water and groundwater

resources significantly in most dry subtropical regions, ..., while water resources are

projected to increase at high latitudes.

Carpenter et al. [2011] estimate that only 0.26 % of liquid freshwater on Earth is in

lakes, reservoirs, and rivers. Thus, the freshwater that is directly accessible to human

1
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use is only a minor portion of the hydrosphere, which also includes the oceans or

the vast ice shields, for example, over Greenland or polar and high-latitude regions.

With that background, it is obvious that even small changes in the hydrological cycle

can have an alarming impact on the availability of freshwater resources.

Postel et al. [1996] summarize all the terrestrial freshwater compartments, that

are accessible to human use, under the term accessible runoff. They give early

estimates that until 2025, accessible runoff can be increased by about 10 %, while the

population is projected to increase by more than 45 %. This clearly indicates that we

will face a declining water availability per capita, primarily due to a growing world

population. The increase of water requirements was also estimated by Falkenmark

and Rockström [2004], who state that each additional person requires 1,300 m3 of

freshwater per capita per year. As a summary, Vörösmarty et al. [2010] estimate that

80 % of the word’s population is exposed to high levels of threat to water security

and that 65 % of the total continental discharge is classified as moderately to highly

threatened.

It is therefore evident that one of the major challenges of the modern hydrological

and hydrometeorological communities is a better understanding, modeling, and

prediction of the hydrological cycle. This is also identified by Rodell et al. [2015],

who state that in order to identify change, one must first establish the present condition.

This led to several comprehensive initiatives whose aim is the detailed analysis of

the major hydrological processes. One of the core projects of the World Climate

Research Programme (WCRP) is the Global Energy and Water Exchanges Project

[GEWEX; Chahine, 1992a,b], which was established in the late 1980s. Within this

project, various comprehensive studies from leading geo-scientific institutes have

been realized (e.g., the Baltic Sea Experiment [BALTEX; Raschke et al., 1998] or

the African Monsoon Multidisciplinary Analysis Project [AMMA; Redelsperger et al.,

2006]) and several widely used datasets have been developed and published (e.g., the

global precipitation datasets from the Global Precipitation Climatology Centre [GPCC;

Schneider et al., 2008] or the Global Precipitation Climatology Project [GPCP; Adler

et al., 2003]). A similar project was founded by the National Aeronautics and Space

Administration NASA. The central challenge of the NASA Energy and Water cycle
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Study (NEWS) is to document and enable improved, observationally-based, predictions

of energy and water cycle consequences of Earth system variability and change [NSIT,

2007].

Even if the quantitative description of the water cycle components goes back till

the ancient times (e.g., streamflow observations at the river Nile), the start of the

satellite era in the 1960s can be considered as a quantum leap in the observation,

understanding, and description of the contributing hydrological variables. The main

reason is that hydrological processes can now be observed globally with homogeneous

spatial and temporal resolutions, independent of, for example, the distribution of in

situ stations. Today, all components of the terrestrial and atmospheric water cycle can

be derived from satellite measurements. Precipitation data can be obtained from the

Tropical Rainfall Measuring Mission [TRMM; Kummerow et al., 2000] or the Global

Precipitation Measurement [GPM; Smith et al., 2007], water storage changes from the

Gravity Recovery and Climate Experiment [GRACE; Schmidt et al., 2008], runoff from

satellite altimetry and synthetic aperture radar [Alsdorf et al., 2007], soil moisture

from the Soil Moisture and Ocean Salinity [SMOS; Kerr et al., 2010] or the Soil

Moisture Active Passive (SMAP) satellites [Entekhabi et al., 2010], evapotranspiration

from the Moderate-resolution Imaging Spectroradiometer [MODIS; Mu et al., 2007,

2011], and a host of variables concerning the hydrological cycle from Aqua [Parkinson,

2003]. This led to several comprehensive studies of the water cycle using satellite

data [e.g., Huntington, 2006, Schlosser and Houser, 2007, Sheffield et al., 2009].

There have also been significant improvements in the performance and reliability

of state-of-the-art hydrological and hydrometeorological models. The much higher

performance of current computers allows to simulate the climate system in unprece-

dented spatial and temporal resolutions. Improvements in the understanding of the

interactions between the different climate variables also allowed for a much more re-

alistic mathematical description of the climate dynamics in the models. Furthermore,

since several decades, the assimilation of observation data into models received

more and more attention. It is assumed that this allows to provide far more realis-

tic estimates compared to free model runs. An increasing number of studies from

various subjects thus made use of the so-called reanalysis models, where millions
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of observations are assimilated into complex hydrological or hydrometeorological

models in order to provide the most realistic and consistent estimates of climatic

variables. In terms of large-scale water balance studies, it has therefore been normal

practice to resort to sophisticated hydrological and atmospheric reanalysis models or

global datasets based on terrestrial observations [e.g., Trenberth et al., 2007].

1.2 Motivation and Problem Description

However, there is one fundamental question when we use all these datasets for

studying the climate system: Are these data sources reliable enough for drawing

meaningful conclusions on the past, present, and future state of the climate system?

A first guess about the reliability can be obtained when looking at the past and

present distribution of rainfall gauges or the distribution of gauged and ungauged

river basins in Figure 1.1. Obviously, there are large areas where not a single gauge is

located and the number of both streamflow and rainfall gauges significantly decreases

during the period 1980 to 2009. If we therefore use current estimates of precipitation

minus evapotranspiration from various observation-based datasets for performing

a simple evaluation of the trend1 in the availability of freshwater resources [e.g.,

Oki and Shinjiro, 2006, Parish et al., 2012], one ends up with highly inconsistent

results (see Figure 1.2, top). Moreover, using models from the Coupled Model

Intercomparison Project Phase 5 [CMIP5; Taylor et al., 2012] for such an evaluation

results in completely different trend estimates compared to the observation-based

datasets (see Figure 1.2, bottom). Over most regions of the Earth, we are therefore not

able to give a clear statement about the future development of the water availability

when using state-of-the-art data sources for the most important water cycle variables.

With respect to the intensification of the water cycle, Huntington [2006] report that

empirical evidence to date does not consistently support an increase in the frequency

or intensity of extreme hydrometeorological events.

1It should be noted that this work does not focus on trend studies. The figure should just illustrate
the discrepancies between our current observation- and model-based data sources for the major
hydrological variables.
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1980

Runoff data

2009

Rain gauges

FIGURE 1.1: From Lorenz et al. [2014]: The maps show the decline in the number of
runoff (left) and rain (right) gauges. The catchments whose runoff measurements
are publicly available (blue), that do not discharge into the oceans or other open
water bodies (white) and those that are not gauged or whose runoff measurements
are not publicly available (gray) are shown on the left column. In the right column

the individual dots represent one or more rain gauges in a 0.5◦ × 0.5◦ gridcell.

There are various reasons for the these discrepancies and each water cycle variable

suffers from different and individual limitations. It is known that, for example, the

quality of observation based global precipitation data depends significantly on the

number and distribution of in situ stations [Rudolf and Schneider, 2005, Schneider

et al., 2008]. Even if there are dense precipitation observation networks in developed

countries, our understanding of the distribution of precipitation in data-sparse regions

relies on sporadic rain gauges and information gathered by spaceborne sensors

[Bytheway and Kummerow, 2013]. However, satellite-based precipitation estimates

suffer from non-negligible biases and random errors associated with inadequate

sampling, algorithm errors, and the indirect nature of the physical relationship

between precipitation and the observations [Xie and Arkin, 1996].

For a long time, evapotranspiration could not directly be observed on large scales—

that is, one had to rely solely on models. Although there are several attempts to

provide global evapotranspiration data [e.g., Jung et al., 2009, Miralles et al., 2011b,

Mu et al., 2007, Salvucci and Gentine, 2013], these products nevertheless involve a

significant portion of modeling. On the other hand, there is still a lack of a global

benchmark for evapotranspiration [Mueller et al., 2013] in order to validate these

datasets on larger spatial scales and dense global coverage of point measurements, for



6 Introduction

Positive Trends

Obs

Negative Trends

CMIP5

5  − 10 10 − 20 20 − 30 30 − 40 40 − 50 5 − 10 10 − 20 20 − 30 30 − 40 40 − 50

FIGURE 1.2: Percent of 20 observation-based datasets (top) and 28 CMIP5 models
(bottom), which show a significant positive (left) and negative (right) trend in
the annual sums of precipitation minus evapotranspiration. On longer time-scales,
P−ET serves as an approximation of the amount of renewable freshwater resources.

The trends have been derived from the period 1980–2005.

example, from the FLUXNET project [Baldocchi et al., 2001], is not feasible [Mueller

et al., 2011].

Until the launch of GRACE, observing large-scale water storage variations was not

possible. But even after more than 12 years of experience with GRACE data, the

spatial resolution is still too low for many basin-scale hydrological applications [e.g.,

Landerer and Swenson, 2012]. It is widely assumed that the horizontal resolution

of GRACE is ≈ 400 km [e.g., Rodell and Famiglietti, 1999, Wahr et al., 1998] which

limits its applications to basins with an area larger than 400,000 km2. Furthermore,

validation of water storage variations from GRACE is rather difficult as it is still the

only sensor of it’s kind and comparing in situ measurements to data from GRACE is,

at least, questionable due to its coarse resolution.

Finally, even if runoff is still the most accurately observed variable of the basin-scale

water cycle [Fekete et al., 2012], many catchments are ungauged [Blöschl et al.,

2013] and the number of gauges is steadily decreasing [Fekete et al., 2012, Milzow

et al., 2011, Shiklomanov et al., 2002, Sivapalan et al., 2003]. Dai and Trenberth

[2002] report that the annual runoff rate over the unmonitored areas is comparable
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to that over the monitored areas. As discharge is one of the most important sources of

freshwater, there is thus an urgent need for alternative methods in order to estimate

runoff over ungauged or sparsely gauged regions. However, even if Alsdorf et al.

[2007] provide a comprehensive overview of methods based on satellite data for

deriving runoff, they also report of large uncertainties in such estimates.

Obviously, there are still significant shortcomings in our current knowledge and the

representativeness of each single variable in the terrestrial water cycle, which, in

the end, complicate reliable water budget analyses. It is therefore mandatory to

compare and analyze our present data sources in order to better understand the

similarities, but, maybe even more important, also the uncertainties with which

we have to cope. Such comparisons have to be conducted on various spatial and

temporal scales for obtaining a reasonable evaluation of our present hydrological

and hydrometeorological data sources.

1.3 Overall Aim and Structure of the Study

This work shall thus serve as a comprehensive state-of-the-art analysis of our current

knowledge of the global hydrological cycle. The main research questions behind this

thesis are

1. How well do we know the basin- to global-scale water cycle?

2. How reliable are our current state-of-the-art hydrological and hydrometeoro-

logical datasets?

3. Are our current hydrological and hydrometeorological data sources able to

close the water budget?

4. Can we use our current database for deriving reliable predictions of the major

hydrological processes?

In order to answer these questions, the thesis comprises four peer-reviewed articles

and is structured as follows:
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Chapter 2: The Hydrological Cycle in Three State-of-the-Art Reanalyses: In-

tercomparison and Performance Analysis In the first article, three widely used

atmospheric reanalysis models, namely ERA-Interim, MERRA, and CFSR, are com-

pared and evaluated with independent observation based datasets for precipitation,

temperature, and atmospheric water vapor content. The analysis is carried out on

global, hemispheric, and continental scales during the period 1989 to 2006. The

article also discusses the spatial and temporal distribution of in situ stations, which

are used for generating the global precipitation datasets. It further comprises a spatial

comparison, where the long-term mean patterns of precipitation and temperature

are compared against precipitation data from GPCC, CRU, and CPC, and tempera-

ture data from CRU. The temporal variations are evaluated by comparing annual

and monthly time series of precipitation globally, over the Northern and Southern

Hemisphere, the tropics, North America, Europe, Asia, South America, Africa, and

Australia. It is further evaluated how well the three reanalysis models close the

large-scale water balance. Therefore, long-term mean area aggregated precipitation,

evapotranspiration, runoff, and moisture flux divergences are used as inputs in dif-

ferent water balance equations and the remaining imbalances are discussed in detail.

Finally, estimates of the total atmospheric water vapor from the three reanalyses are

compared. For an evaluation of the precipitable water over the oceans, the modeled

estimates are compared against the Hamburg Ocean Atmosphere Parameters and

fluxes from Satellite data (HOAPS).

As global atmospheric reanalyses seek to assimilate a huge number of observations

in order to represent the true state of the climate system as good as possible, they are

used in a very wide range of applications. Some of these are, for example, Climate

change [e.g., Frauenfeld, O. W. and Zhang, T. and Serreze, 2005, Santer et al., 2004,

Trenberth, 2007] or Water budget studies [Trenberth and Fasullo, 2013, Trenberth

et al., 2011, 2007]. Besides such investigations, reanalysis data is mandatory as

forcing data for regional downscaling [Fersch et al., 2012, Qian et al., 2006]. The

quality and reliability of such reanalysis models is thus of major importance for large

parts of the geo-scientific community. The article The Hydrological Cycle in Three

State-of-the-Art Reanalyses: Intercomparison and Performance Analysis thus serves as
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a general introduction as it discusses very basic questions about the closure of the

global water cycle of three of the most widely used datasets.

Chapter 3: Large-Scale Runoff from Landmasses: A Global Assessment of the

Closure of the Hydrological and Atmospheric Water Balances In the second

article, a closer look at the catchment-scale water cycle is provided. According to

Fekete et al. [2012], runoff is still the most accurately observed variable in the large-

scale hydrological cycle. Therefore, the article discusses the performance of terrestrial

and atmospheric-terrestrial water-balance-based methods to estimate monthly runoff.

The study employs different data sources for precipitation, evapotranspiration, water

storage changes, and moisture flux divergences from gridded observations (GPCC,

GPCP, CPC, CRU, and DEL), atmospheric reanalysis models (ERA-Interim, CFSR,

MERRA), partially-model-based datasets (GLEAM, MOD16, FLUXNET MTE) and

GRACE. The datasets for the different hydrological variables are then combined

in the terrestrial and atmospheric-terrestrial water balance equation, which finally

allows the estimation of catchment-scale runoff. The ensemble of runoff estimates

comprises, in total, 90 members. This ensemble is evaluated against monthly runoff

observations from the Global Runoff Data Center (GRDC) over 96 catchments of

different size and climatic conditions, worldwide. The analysis further evaluates

the budget-based estimates against runoff estimates from different land surface

models (GLDAS, MERRA Land) and a simple predictor based on the ratio between

precipitation and runoff (P-R ratio). The performance of the estimates is analyzed in

terms of the relative bias, correlation and Nash-Sutcliffe Efficiency with respect to

the monthly runoff observations.

As a matter of fact, the differences between the estimates from the hydrological and

hydrometeorological water-balance-based methods and the runoff observations are a

direct measure of the water budget imbalance. Thus, the article is the logical contin-

uation of the first publication as it discusses the water budget closure on catchment

scales using a wide variety of state-of-the-art hydrological and hydrometeorological

datasets. Furthermore, in the first article, an evaluation of the gridded observation-

based datasets was not possible due to the lack of reliable reference data. Comparing
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a large ensemble of runoff estimates to observed data, as it is presented in the second

publication, now gives the opportunity to analyze how all the combinations using a

single dataset (e.g., precipitation from GPCC) perform. This finally allows to evaluate

the uncertainty of each single water cycle variables over different catchments and

the performance of each single input dataset.

Chapter 4: Estimating Runoff Using Hydro-Geodetic Approaches The third ar-

ticle is a more method-oriented paper, which focuses on five different approaches

for estimating catchment-scale runoff. It serves as a companion article to the sec-

ond paper as it puts the performance of the runoff estimates from the terrestrial-

and atmospheric-terrestrial water budget and the P-R ratio into comparison with

satellite-altimetry derived estimates and estimates from the relationship between

runoff and water storage. The evaluation is carried out over six catchments (Ama-

zon, Mississippi, Ob, Yenisei, Niger, and Danube). The analyzed methods can be

differentiated into global runoff estimation methods, which are (in principle) able to

provide runoff globally, and catchment-specific methods, which require at least an

appropriate period of in situ runoff observations.

The main motivation for the second and third article was the necessity for alternative

runoff estimation methods as the number of (traditionally) gauged catchments is

significantly decreasing. It is thus evaluated if such estimates are able to provide

realistic runoff values as these are mandatory for reasonable water budget studies.

Chapter 5: Basin-scale Runoff Prediction: An Ensemble Kalman Filter Frame-

work based on Global Hydrometeorological Datasets The fourth article aims at

combining all previously studied datasets and derived estimates in a mathematically

consistent way. The proposed algorithm finally allows to provide reliable and, even

more important, consistent estimates of precipitation, evapotranspiration, runoff,

and water storage changes. Furthermore, it is described how water budget closure

between the different data sources can be enforced and how such constraints affect

the final estimates of the water cycle variables. The algorithm is based on an En-

semble Kalman Filter framework, where the different state variables (i.e., the water
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cycle variables) are predicted using a least squares prediction approach. This allows

to exploit the joint temporal and spatial auto- and cross-covariance structures of

precipitation, evapotranspiration, water storage changes, and runoff.

The article thus serves as a round-up of all previous studies as it considers all the

advantages and disadvantages of our present hydrological and hydrometeorological

data sources. Even if the algorithm theoretically allows to predict every single

variable of the terrestrial water cycle, the article focuses on the prediction of runoff

as the estimates can be directly validated against in situ observations from the GRDC.

Therefore, the study focuses on 29 large catchments of different climate regions,

with which runoff is predicted and evaluated for a subset of 16 river basins.





Chapter 2

Article I: The Hydrological Cycle in Three

State-of-the-Art Reanalyses: Intercomparison

and Performance Analysis

Lorenz, C. and H. Kunstmann, 2012: The Hydrological Cycle in Three State-of-The-Art

Reanalyses: Intercomparison and Performance Analysis, Journal of Hydrometeorology,

13, 1397–1420, doi: 10.1175/JHM-D-11-088.11

Abstract

The three state-of-the-art global atmospheric reanalysis models—namely, ECMWF

Interim Re-Analysis (ERA-Interim), Modern-Era Retrospective Analysis for Research

and Applications (MERRA; NASA), and Climate Forecast System Reanalysis (CFSR;

NCEP)—are analyzed and compared with independent observations in the period

between 1989 and 2006. Comparison of precipitation and temperature estimates

from the three models with gridded observations reveals large differences between

the reanalyses and also of the observation datasets. A major source of uncertainty in

the observations is the spatial distribution and change of the number of gauges over

time. In South America, active measuring stations were reduced from 4267 to 390.

1©American Meteorological Society. Used with permission

13

http://dx.doi.org/10.1175/JHM-D-11-088.1


14 The Hydrological Cycle in Three State-of-the-Art Reanalyses

The quality of precipitation estimates from the reanalyses strongly depends on the

geographic location, as there are significant differences especially in tropical regions.

The closure of the water cycle in the three reanalyses is analyzed by estimating

long-term mean values for precipitation, evapotranspiration, surface runoff, and

moisture flux divergence. Major shortcomings in the moisture budgets of the datasets

are mainly due to inconsistencies of the net precipitation minus evaporation and

evapotranspiration, respectively, (P − E) estimates over the oceans and landmasses.

This imbalance largely originates from the assimilation of radiance sounding data

from the NOAA-15 satellite, which results in an unrealistic increase of oceanic P − E

in the MERRA and CFSR budgets. Overall, ERA-Interim shows both a comparatively

reasonable closure of the terrestrial and atmospheric water balance and a reasonable

agreement with the observation datasets. The limited performance of the three

state-of-the-art reanalyses in reproducing the hydrological cycle, however, puts the

use of these models for climate trend analyses and long-term water budget studies

into question.

Introduction

Global and regional atmospheric retrospective analysis models (reanalyses) play a

crucial role in today’s hydrological and hydrometeorological research. These global

atmospheric reanalyses aim at assimilating a large amount of historical observation

data to provide a physically consistent basis for the most important hydrological,

hydrometeorological, and atmospheric quantities. To bring these various observations

into a consistent scheme, computation of the reanalysis models is performed via

state-of-the-art data assimilation methods (3D-Var or 4D-Var) that constrain the

observations with physically reasonable time evolution and budget equations. These

reanalyses can be used to analyze the global climate system, atmosphere, and land

surface processes on large to continental scales and to understand exchange processes

between these different regimes. Global atmospheric reanalyses also are often used

as forcing data for regional hydrological or hydrometeorological simulations, such as

numerical weather predictions and regional climate simulations. Three of the most
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widely used reanalyses are the European Centre for Medium-Range Weather Forecasts

(ECMWF) Interim Re-Analysis (ERA-Interim), the Modern-Era Retrospective Analysis

for Research and Applications (MERRA) from the National Aeronautics and Space

Administration (NASA), and the Climate Forecast System Reanalysis (CFSR) from

the National Centers for Environmental Prediction (NCEP).

Reanalyses represent an approximation of the real world. Because of the changing

amount of assimilated observational data, different data assimilation methods, and

different model equations and assumptions, results of reanalysis models deviate

significantly, even if they should be similar in principle. Therefore, it is necessary to

validate these global atmospheric models with observational datasets.

Such comparisons were made by, for example, Janowiak et al. [1997], Poccard

et al. [2000], or Higgins et al. [2010], with rainfall estimates from the CFSR and

its predecessor, the NCEP/NCAR reanalysis, being validated against precipitation

observations. Bosilovich et al. [2008] compared precipitation from the 40-yr ECMWF

Re-Analysis (ERA-40), the two older NCEP reanalyses (which are often referred

to as NR1 and NR2), and the Japanese 25-yr reanalysis (JRA-25) with data from

the Global Precipitation Climatology Project (GPCP) and the widely used Climate

Prediction Center Merged Analysis of Precipitation (CMAP) on both the continents

and the oceans. In Hagemann et al. [2005], different quantities contributing to the

global hydrological cycle of ERA-Interim’s predecessor ERA-40 were analyzed in

detail, while Chido and Haimberger [2009] or Mueller et al. [2010] investigated the

closure of water and energy budgets in the ERA-Interim reanalysis. A more detailed

comparison is given in, for example, Trenberth et al. [2007], where estimates of the

most important quantities of the global water cycle are presented. On regional scales,

Yeh and Famiglietti [2008] concentrated on the estimation of evapotranspiration.

Considerations relating to the hydrological cycle over the United States were pre-

sented by Roads et al. [1994]. Seneviratne et al. [2004] analyzed the water budget

closure over the Mississippi basin and presented estimates of monthly water storage

variations based on water vapor flux convergence, atmospheric water vapor content,

and river runoff. Similar work was performed by Betts et al. [1999, 2003, 2005,

2009], who analyzed energy and mass budgets of ERA-40 and ERA-Interim over
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Continent Area [106 km2]

North America 19.3
Europe 5.7
Asia 37.4
South America 17.8
Africa 30.0
Australia 7.7

FIGURE 2.1: Land-sea mask used for computing the spatial averages over North
America, South America, Europe, Africa, Asia, and Australia. The table shows the

areas of the regions considered within each continent.

several river basins (especially in North America). An assessment of the applicability

of the ERA-40 model for the detection of climate trends was made by Bengtsson

[2004].

In this study, the three state-of-the-art reanalyses ERA-Interim, MERRA, and CFSR are

compared. The reanalyses are evaluated by comparing quantities—such as precipita-

tion, temperature, and atmospheric water vapor—with observational datasets from

the Global Precipitation Climatology Centre (GPCC), the GPCP, the Climate Prediction

Center (CPC), the Climate Research Unit (CRU), the University of Delaware (DEL),

and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data

(HOAPS). Differences in the total amount, spatial variability, and distribution of

gauges of the gridded rainfall observations are analyzed in order to estimate the

uncertainties incorporated in these datasets. Special emphasis is devoted to the com-

parison of precipitation estimates from the reanalyses because of their importance in

the hydrological cycle.

In addition, the closure of the water budgets in the three reanalyses are analyzed

and it will be estimated how well the transport processes between the oceans and

the continents as well as moisture exchange between the land surface and the

atmosphere are balanced. For this purpose, long-term mean values of precipitation,

evapotranspiration, surface runoff, and atmospheric moisture flux divergences are

computed. As evapotranspiration and surface runoff are the dominating quantities of

moisture transport from the surface back into the atmosphere and oceans, respectively,
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the estimates from the reanalyses are used to investigate how well the water budgets

in the models are closed.

Data and Methods

Reanalysis Data

For comparison, three different global atmospheric retrospective analyses are used—

namely, ERA-Interim from ECMWF [Berrisford et al., 2009, Simmons et al., 2006],

MERRA from the NASA Goddard Space Flight Center [GSFC; Rienecker et al., 2011],

and CFSR from the National Oceanic and Atmospheric Administration (NOAA) Na-

tional Centers for Environmental Prediction [NCEP; Saha et al., 2010]. The two latter

reanalyses cover the satellite period from 1979 to the present, while ERA-Interim

was intended to cover the period from 1989 to the present to provide a bridge be-

tween ECMWF’s previous reanalysis ERA-40 [Uppala et al., 2005] and a forthcoming

next-generation reanalysis. Recently, the ERA-Interim archive was extended to cover

the years between 1979 and 1989 as well. The CFSR dataset succeeds the widely

used NCEP-NCAR reanalysis [Kalnay et al., 1996]. The novelties of this reanalysis are

the coupling to the ocean during the generation of the 6-h guess field, an interactive

sea ice model, and the assimilation of satellite radiances for the entire period [Saha

et al., 2010]. Furthermore, the analysis system used in CFSR for the atmosphere, the

Gridpoint Statistical Interpolation (GSI) scheme, is nearly the same as the one used by

MERRA at NASA GSFC. The MERRA atmosphere-only reanalysis is being conducted

over the same years with nearly the same input data [Saha et al., 2010]. However,

observation processing, model equations, and the main scope of the reanalyses differ

significantly. The resulting differences in modeled variables thus reveal uncertainty

ranges of present-day reanalysis models (see Table 2.1 for further details of these

datasets).
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TABLE 2.1: Summary of the three reanalyses.

ERA-Interim MERRA CFSR

Hor. resolution T255 (∼ 78 km) 1
2
◦ × 2

3
◦

T382 (∼ 38 km)
Vert. levels 60 72 64
Top level 0.1 hPa 0.01 hPa 0.26 hPa
Period 1979–present 1979–present 1979–2009
Output times 6h, daily, monthly 1h, 6h, daily, monthly 1h, 6h, monthly
Assimilation scheme 4D-Var 3D-Var 3D-Var

According to Kalnay et al. [1996] or Kistler et al. [2001], gridded variables from

reanalyses can be separated into three classes, which vary by the influence of assimi-

lated observations on the variable. The type A variables (e.g., upper-air temperatures

or horizontal winds) are strongly influenced by the observations, and are thus as-

sumed to be the most reliable variables. Type B variables (e.g., surface and 2-m

temperatures) are influenced by both the observations and the model while type C

variables (e.g., precipitation or surface runoff) are derived solely from the model.

Gridded Observation Data

In order to validate the three different reanalyses, we compare precipitation and

temperature estimates from the reanalyses with gridded observations from GPCC

[Rudolf and Schneider, 2005], GPCP [Adler et al., 2003], CRU [Mitchell and Jones,

2005], the Unified Gauge-based Analysis of Global Daily Precipitation from the

Climate Prediction Center CPC [Chen et al., 2008], and DEL [Matsuura and Willmot,

2009]. For validation of the atmospheric water vapor over the oceans, data from

the HOAPS product [Andersson et al., 2010] is used, which is based on satellite

observations from the Special Sensor Microwave Imager SSM/I on satellites of the

Defense Meteorological Satellites Program and provides reliable estimates of oceanic

precipitation, evaporation, and other atmospheric variables.

The continental precipitation and temperature datasets contain at least daily (CPC)

or monthly (GPCC, CRU, DEL) means at a spatial resolution of 0.5◦ × 0.5◦ for the

whole world (see Table 2.2 for further details of the gridded observation products).
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In principle, the different datasets should provide similar precipitation and tempera-

ture values. Differences of global fields must be considered as uncertainty ranges,

which can be expected when using such datasets for validation purposes. To generate

gridded observations from in situ measurements, the different data centers apply

similar interpolation algorithms and may therefore exhibit similar biases (particularly

in areas with complex terrain).

Two main error sources lead to uncertainties in precipitation observations. The

sampling error, which is due to the irregular distribution of gauges, has a magnitude

of about ±7 %–40 % of the true area-mean precipitation [Schneider et al., 2008].

Rudolf and Rubel [2005] report that sampling errors between 15 % and 100 % can

be expected for sparsely gauged regions (less than 3 gauges per 2.5◦×2.5◦ grid cell).

The second error is due to the under-catch of precipitation gauges which results

from wind-field deformation above the gauge orifice, losses from wetting on internal

walls of the collector and in the container, and losses due to evaporation from the

container [Rudolf and Rubel, 2005]. The gauge under-catch error might be large

especially during winter in the high-latitude regions or over mountain ranges, as

there will be a high amount of solid precipitation. This leads to an underestimation

of the true precipitation of up to 50 %. Since 2007, GPCC has been providing event-

based correction factors [Fuchs et al., 2001, Schneider et al., 2008] to account for

the systematic gauge under-catch error. Before 2007, the corrections consisted of

monthly climatologies as proposed in Legates and Willmott [1990], which are still

applied to the GPCP precipitation product. The original GPCC full data product used

for this study does not include such corrections (Andreas Becker 2011, personal

communication).

In the course of this study, the GPCC precipitation product was updated from version

4.0 to 5.0. Even though the new dataset is based on a denser station network, the

differences of area-averaged values or long-term mean fields are not significant (not

shown here). Therefore, the GPCC-v4.0 product was used for reference observations

in this study, but the differences in the distribution and total number of gauges

between version 4.0 and 5.0 are discussed briefly (see section 3a).
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TABLE 2.2: Summary of the observation datasets containing precipitation P, near
surface temperature T2, and the atmospheric water vapor content W .

Variables Hor. resolution Period Output times Version number

GPCC P 0.5◦ × 0.5◦ 1901–2009 monthly 4.0
GPCP P 2.5◦ × 2.5◦ 1979–2009 monthly 2.1
CRU P, T2 0.5◦ × 0.5◦ 1901–2009 monthly 3.0
CPC P 0.5◦ × 0.5◦ 1979–present daily 1.0
DEL P, T2 0.5◦ × 0.5◦ 1900–2008 monthly 2.01

HOAPS P, E, W 0.5◦ × 0.5◦ 1987–2005
daily, 5-daily,

3
monthly

Area-Averaging of Gridded Data

For the validation of the reanalyses’ rainfall estimates with the observation datasets,

all fields were remapped to the resolution of the GPCC dataset (i.e., 0.5◦×0.5◦) using a

first-order conservative interpolation [Jones, 1999]. From these fields, area-weighted

averages were computed over different regions using the continental mask shown

in Figure 2.1. As GPCC only contains gauge-based observations, the oceans or the

poles were not considered for comparison of the precipitation fields. Consequently,

the global and hemispheric averages do only represent the rainfall over land. For

investigating the water budget closure, a correct differentiation between the processes

over land and the oceans is crucial. We did not perform any additional interpolation

for this analysis, but used the fields in the models’ native resolutions. The area-

averaged values over the continents and oceans were calculated using the land-sea

masks from the three reanalyses. For the evaluation of the oceanic water cycle

components, we used a dynamic land-sea mask, as the satellite observations from

HOAPS are available over ice-free ocean only.

The Global Water Balance

The terrestrial large-scale water balance (mm month−1) can be written as

dS
d t
= P − E − R , (2.1)
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where dS/d t is the change in the terrestrial water storage, P is precipitation, E is

evapotranspiration, and R is total runoff—that is, the sum of surface runoff and

subsurface runoff [Peixoto and Oort, 1992, Willmott, 1985]. According to Yeh and

Famiglietti [2008], the change in the total terrestrial water storage depends on

its surface component, the soil moisture, and the groundwater components. The

total soil water depends largely on the characteristics of the land surface model in

the reanalyses. ERA-Interim and CFSR provide soil moisture values divided into

multiple levels. MERRA does not consider a multi-level soil model for computing

the interaction between the land surface and the atmosphere. dS/d t can thus be

computed as a residual term like in, for example, Roads et al. [1994]. When analyzing

water budgets in atmospheric reanalysis models, it is convenient to further consider

a term for the analysis increment—that is, the increment that is due to the forcing of

the models towards the observations. The terrestrial water balance equation is then

modified to
dS
d t
= P − E − R+ RES′s , (2.2)

where RES′s is accounting for surface residual water forcing. As further proposed

in Roads et al. [2002] and Szeto et al. [2008], the water storage tendency term is

combined with residual forcing—that is, RESs = RES′s−dS/d t. According to Kleidon

and Schymanski [2008] or Seneviratne et al. [2004], it can be assumed that for

climatic time scales the total soil water content remains constant and its tendency

can be neglected. This assumption results in the simplified terrestrial water balance

equation of

R≈ P − E , (2.3)

where overbars indicate averaging over a climatic time scale. The imbalance of this

equation provides information on the magnitude of the errors introduced by surface

water forcing RES′s.

Apart from the continental water budget, exchange of water between the continents

and oceans is balanced as well. Over multi-year averages, the global water budget

should be closed—that is, the convergence (P − E) of moisture over land should

equal the divergence (E − P) of moisture over the ocean [Hagemann et al., 2005];
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that is,

P land − E land = Eocean − Pocean . (2.4)

In general, this value must be positive over the continents due to a surplus of

precipitation, while there is more evaporation over the oceans.

These terrestrial budgets can be linked to the atmosphere by the atmospheric water

balance equation
dW
dt
+∇ ·Q= E − P , (2.5)

where E and P are actual gridpoint evapotranspiration and precipitation at the surface

[Roads et al., 1994]. W denotes the total column water content in the atmosphere

and ∇ ·Q is the net balance of moisture flux (i.e. moisture flux divergence), which is

defined as

∇ ·Q≡
1
g
∇ ·

∫ ps f c

p=0

νh(p)q(p) dp (2.6)

with air pressure p (Pa), the gravitational acceleration g (m s−2), the horizontal

wind vector νh (m s−1), and the specific humidity q (kg kg−1). When computed from

reanalyses, moisture flux divergences are based on type A and type B variables only,

while precipitation and evaporation are both type C variables. Again, it is convenient

to add a term accounting for the analysis increment to the atmospheric water balance

equation:
dW
dt
+∇ ·Q= E − P + RES′w . (2.7)

The atmospheric tendency term dW/d t can be combined with the residual forcing;

that is, RESw = RES′w − dW/d t [Roads et al., 2002, Szeto et al., 2008]. On annual

or longer time scales, the variations of the atmospheric water storage W are often

assumed to be negligible [Peixoto and Oort, 1992]. For monthly time scales, this as-

sumption does not hold, however. The vertically integrated moisture flux divergences

are directly linked to the vertical exchange terms of the terrestrial water balance:

∇ ·Q= E − P . (2.8)

As in case of the surface water balance, misclosure of the equation when using

long-term averages is an estimate of the magnitude of the analysis increment of
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the atmospheric water forcing RES′w. Equation (2.1) can be combined with (2.5) to

obtain another linked balance equation:

dS
d t
= −

dW
dt
−∇ ·Q− R . (2.9)

As the atmospheric and terrestrial tendency terms can be assumed to be negligible

over longer time scales, the atmospheric net input of moisture in a certain area

must be balanced by a terrestrial net outflow at the surface; that is, R ≈ −∇ · Q

[Roads et al., 1994]. The imbalance of this equation is a rough estimate of the total

atmospheric and surface water analysis increments.

Computation of Spatial Correlations

To analyze the agreement of spatial patterns between two datasets, spatial correlations

are computed for further analysis. This yields information about the extent to which

certain events (e.g., large-scale rainfall) agree in terms of location, dimension, and

magnitude when using various datasets. We compute the spatial correlations between

two datasets x and y according to

corrχ =
1
T

T
∑

t=1

1
nχ − 1

nχ
∑

i=1

�

x i,t,χ − x t,χ

� �

yi,t,χ − y t,χ

�

σx ,t,χσy,t,χ
, (2.10)

where n is the number of gridpoints of a given area χ, x i,t,χ and yi,t,χ are the actual

gridpoint values at the time t, the overbar denotes the spatial mean value of the

area, and σx ,t,χ and σy,t,χ are the standard deviations of the two datasets x and y

of the area χ at the time t. T is the number of time steps contributing to a temporal

subset like, for example, all Januaries of the considered time series or all months of

a specific year.

Apart from time series of spatial correlations, we use the Taylor diagrams [Taylor,

2001] to analyze the level of agreement of rainfall patterns from different data

sources. In this case, the standard deviation (the radial distance of a data point

from the origin) is a measure of the intensity and variability of the patterns, while
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FIGURE 2.2: Relative difference between CFSR evaporation with and without consid-
ering changes in the near-surface temperature. The impact is generally higher over
the continents, while over the oceans, the amplitude of the intra-annual variations

is larger.

the correlations (the angle between the x-axis and a data point) reflect how well

the analyzed datasets reproduce the rainfall patterns from a reference dataset. The

root-mean-square difference (radial distance between the reference data point and

another data point) is a measure of the average pixel-wise differences between two

datasets and computed from the standard deviations and the correlations.

Computation of CFSR Evapotranspiration

In contrast to ERA-Interim and MERRA, CFSR does not provide fields of total evapo-

transpiration. Therefore, these fields are computed from latent heat flux, which is

given in energy flux form (i.e., in units of W m−2). The transformation into units of

mm (i.e., mass flux form) was performed via

E =
λE
Le

, (2.11)

where E is evapotranspiration (mm), λE is the latent heat flux (W m−2), and Le is

the latent heat of evaporation (J kg−1), which can be approximated through

Le ≈ 2.501 · 106 − 2370 · Tc (2.12)

with Tc being the near-surface temperature in degrees Celsius [e.g., Jacobson, 2007].

The latent heat flux fields from CFSR include both evaporative flux from liquid

and snow sublimation from snow surface. Equation (2.11) must consequently be
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corrected for sublimation:

E =
λE −λS

Le
+
λS
Ls

, (2.13)

where λS is sublimation and Ls is the latent heat of sublimation which is the sum of

the latent heats of evaporation and melting [e.g., Jacobson, 2007]:

Ls ≈ 2.501 · 106 + 3.35 · 105 − Tc · (340+ 10.46 · Tc) . (2.14)

According to CFSR, the influence of the temperature can be neglected (R. Yang 2011,

personal communication). Our computations support this assumption. On monthly

time scales, the temperature causes an increase of the continental evaporation of

about 2.1 % with a maximum during the summer months (Figure 2.2). Over the

oceans, the impact is smaller (about 1.7 %), but has a strong semi-annual signal

with its maxima in the summer and winter months. By considering the magnitudes

of other major water cycle components, the functional dependencies of Le and Lc

on temperatures are found to exert little impact on the calculations of evaporation

and evapotranspiration, respectively, from latent heat flux. Thus, the corrections for

temperature can be neglected on these spatial and temporal scales. For small-scale

studies and especially during summer months, however, the influence might be

significant and should be taken into account.

Results

Distribution of Gauges in the Observation Data Sets

To validate the global atmospheric reanalyses, rainfall observations, interpolated to a

regular grid as described in, for example, Chen et al. [2008] and Rudolf and Schneider

[2005], are used. As a matter of fact, the quality of these gridded precipitation fields

depends primarily on the number of active gauges and their spatial distribution. The

interpretation of interpolated gridded observations in regions with a few gauges only

or a disadvantageous spatial distribution of such observation stations remains open.
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FIGURE 2.3: Number of monitoring stations per 0.5◦ × 0.5◦ grid cell in (a),(c),(e)
January 1989 and (b),(d),(f) December 2006 for the (a),(b) GPCC-v4.0; (c),(d)
GPCC-v5.0; and (e),(f) CPC datasets. A good spatial coverage with observation
stations can be observed over North America (GPCC-v5.0, CPC) and Europe (GPCC-
v4.0, GPCC-v5.0), while the number of gauges over North America is significantly
reduced in GPCC-v4.0. Over most of the tropical regions like the Congo or Ama-
zon basin, high-latitude regions, and large parts of Asia, the three datasets use a
maximum of 1–2 gauges per grid cell, whereas some areas are completely ungauged.

Figure 2.3 shows the number of gauges per grid cell at the beginning and the

end of the considered time series for GPCC-v4.0, GPCC-v5.0, and CPC. In 1989

(Figures 2.3a,c,e), a dense network of observation stations existed over North America,

central Europe, coastal regions of Australia, and the eastern part of Brazil. The

GPCC products also exhibit a good spatial coverage of South Africa, while only few

gauges are located in the rain-laden regions of tropical Africa, South America, and

Southeast Asia and large parts of the subtropics, Eurasia, and high-latitude regions.

Depending on the geographic location of these ungauged regions, an interpolation

might introduce large uncertainties. This is particularly true if the complex cycle of

tropical precipitation or the high spatial variability of rainfall over mountain ranges

is considered. Figures 2.3b,d,f show the amount of gauges per grid cell in December

2006. Spatial coverage with observation stations has changed drastically, especially



The Hydrological Cycle in Three State-of-the-Art Reanalyses 27

0

5

10

15

20 a) North America

0

2

4

6

8 b) South America

0

3

6

9

12

N
u
m

b
er

 o
f 

st
at

io
n
s 

[i
n
 t

h
o
u
sa

n
d
s]

b) Europe

0

1

2

3

4 e) Africa

0

1

2

3

4

1990 1995 2000 2005

c) Asia

0

2

4

6

8

1990 1995 2000 2005

f) Australia

GPCC v4.0 GPCC v5.0 CPC

FIGURE 2.4: Mean annual number of gauges used in the precipitation observations
from GPCC-v4.0, GPCC-v5.0, and CPC. Version 4.0 shows a significant drop in the
number of gauges between 2000 and 2001 over North America and Australia, while
version 5.0 of the GPCC product is based on a nearly constant number of observation
stations during the complete time series. Over South America, Europe, and Africa,
the update from v4.0 to v5.0 results in little improvement only, as both versions
show a nearly constant decline over time. Over Asia, GPCC-v5.0 is using about
1,000 gauges more than version 4.0 until 2000. The CPC product is based on about
1,000 gauges over Europe and 500 gauges over whole Africa, while more than
14,000 gauges are used to generate the gridded precipitation observations over

North America between 1991 and 2003.

for the GPCC-v4.0 data in North America, South America, and Africa. Large parts of

the tropics and deserts remain completely ungauged over hundreds of kilometers in

both GPCC and CPC datasets. The update from version 4.0 to 5.0 of the GPCC product

significantly improved spatial coverage of North America and Australia, while there

is only little improvement over South America, central Africa or large parts of Eurasia.

As is obvious from Figure 2.4, the number of gauges decreased significantly for all

three observation datasets over most of the regions. At the end of the period studied,

only 1314 (CPC), 390 (GPCC-v4.0), and 555 (GPCC-v5.0) gauges remain, which are
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used to compute the precipitation fields over South America. Although the decrease

in active gauges is not that significant over the Asian continent, comparison of the

numbers of gauges over Europe and Asia again illustrates the very sparse distribution

of gauges in the latter regions. In contrast to this, the CPC dataset is based on about

10, 000 gauges over North America in the beginning and the end of the time period,

while in between, the number of gauges increases up to ∼ 17,000 in 2003. This

shows that there are certain regions where the gridded GPCC and CPC products

are based on a dense network of gauges and, hence, provide a scientifically sound

basis to validate modeled precipitation fields. On the other hand, the reliability of

the observation datasets remains questionable especially over the tropics, deserts,

mountain ranges, and large parts of the Asian continent due to the decreasing number

of active gauges and their sparse spatial distribution.

Precipitation

Long-term Mean Annual Precipitation

The long-term mean annual rainfalls (Figure 2.5) obtained from the different reanal-

yses are in general agreement with the observational references when looking at

the spatial precipitation patterns. The large-scale rain-laden regions of the tropics

in South and Central America, central Africa, and Southeast Asia show precipita-

tion rates of up to 11 mm day−1 in all products. These moist regions are clearly

separated from the large subtropic desert regions with very limited precipitation. In

addition, good agreement in the precipitation patterns can be found, for example, in

Australia and over the moist regions in the southeastern part of North America and

the drier Great Plains. Large mountain ranges, especially the Andes, the Alps, and

the Himalayas, can be identified because of their wet conditions compared to the

surrounding regions. Except for MERRA, all datasets show a maximum in annual

precipitation at the headwaters of the Amazon River, which extends along the course

of the river down to the Atlantic. In the MERRA dataset, this maximum is shifted

eastward. In the regions between southern Brazil and the southern foothills of the
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FIGURE 2.5: Long-term mean annual precipitation between 1989–2006 in [mm
day−1]. The three observation datasets GPCC (a), CRU (b), and CPC (c) are in
good agreement over most of the regions, even if CPC assumes less rainfall over
Central Africa. The precipitation estimates from the three reanalyses ERA-Interim
(d), MERRA (e), and CFSR (f) show similar large-scale patterns, while significant
differences exist in the spatial distribution and the amount of rainfall on smaller

scales.

Andes, GPCC, CRU, CPC, ERA-Interim, and CFSR show a mean precipitation rate

of about 4–5 mm day−1, contrary to a distinguished dry region with less than 2 mm

day−1 predicted by MERRA.

In general, the highest differences in spatial variability and the amount of rainfall can

be found over tropical South America, central Africa, Southeast Asia, and the large

mountain ranges of the Andes and the Himalayas. These differences cause large-scale

deviation patterns, which can reach magnitudes of up to ±4 mm day−1 (Figure 2.6).

Even when focusing on the ensemble of the observation datasets GPCC, GPCP, CRU,

DEL, and CPC, differences of up to 3 mm day−1 result in central Africa (Figure 2.7a),

which are likely introduced by uncertainties in the observations due to the sparse

distribution of gauges in these regions. In the three reanalyses, the differences

in spatial variability and the amount of precipitation are even larger compared to
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FIGURE 2.6: Absolute differences of the mean annual precipitation from 1989–2006
between GPCC and CRU (a), CPC (b), ERA-Interim (c), MERRA (d), and CFSR (e) in
[mm day−1]. CRU shows a good agreement with GPCC. CPC is drier over the Congo
Basin, the Himalayas, and the northern part of the Andes. The largest differences
between GPCC and the three reanalyses can be observed over the tropics and the
mountain ranges. CFSR also has a wet bias over mid-to-high northern latitudes,
while MERRA shows a dry pattern which extends over large parts of South America.

the observations. The mid- to high-latitude rainfall estimates by CFSR appear to

be significantly biased, as there are deviations of up to 2 mm day−1 (Figure 2.6e).

Higgins et al. [2010] investigated the reliability of CFSR precipitation over North

America and concluded that parts of this bias can be explained by an overactive

diurnal cycle in the atmospheric component of CFSR. The observation datasets are

based on a dense network of gauges and show only small deviations in these regions.

It can thus be assumed that there are some inaccuracies in the CFSR estimates.

A significant discrepancy exists between the precipitation patterns from GPCC, ERA-

Interim, and MERRA in South America and central Africa (Figures 2.6c,d). These

differences were also noted in Trenberth et al. [2011]. ERA-Interim overestimates

rainfall over the Andes and central Africa up to 2.5 mm day−1, while MERRA shows

a large-scale underestimation in central South America and central Africa and an

overestimation over coastal regions. It is well known that tropical precipitation
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in the MERRA reanalysis over South America has its shortcomings. Therefore, a

corrected dataset for land hydrology will be released in the near future [Reichle et al.,

2011]. CFSR indicates conditions that are too moist in the center and underestimates

rainfall east of the Congo basin along the course of the Nile (Figure 2.6e). Poccard

et al. [2000] and Sylla et al. [2010] discuss that rainfall simulations in these regions

is a very complex task and might lead to large discrepancies. As the largest part

of precipitable water in central Africa arises from evapotranspirating water in the

tropical rain forests [Van der Ent et al., 2010], these deviations might be due to

shortcomings in the models’ land–atmosphere interactions in this complex environ-

ment. On the other hand, the number of active gauges (Figure 2.3d) shows that their

spatial density decreased significantly during the period considered. This means that

uncertainty is up to ±3 mm day−1 in these regions because of the variability of the

ensemble of observations (Figure 2.7a). Only the ERA-Interim precipitation exceeds

the uncertainty given by the observations over a large area. The other two reanalyses

are within the bounds given by the observations and are therefore assumed to be

more realistic.

Precipitation over the Andes is generally overestimated in the reanalyses, while all

datasets show less rainfall over the Himalayas than to GPCC. This might be due to

the impact of orography on convective events caused by the differences in resolution

and the description of the underlying terrain model. On the other hand, the high

spatial variability of precipitation in mountain ranges aggravates reliable areawide

observations. Because of the sparse distribution of gauges and the errors caused by

the undercatch of solid precipitation, the quality of interpolated rainfall values from

GPCC, CPC, and CRU remains questionable in these regions.

Time Evolution of Global, Hemispheric, and Tropic Precipitation

The global and Northern Hemispheric correlations and differences (Figures 2.8a,b and

2.9a,b) of the four observation datasets and the ERA-Interim and MERRA reanalyses

are relatively constant over time. Although the number of gauges used for generating

the observation datasets and the amount of observations assimilated in the reanalyses
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FIGURE 2.7: (a),(c) Variability of rainfall P [mm day−1] and (b),(d) range of tem-
perature T2 [◦C] of (a),(b) the ensemble of gridded observations and (c),(d) the
ensemble of reanalyses. The ensemble of rainfall observations is generated from
GPCC, GPCP, DEL, CRU, and CPC, while the temperature range is based on DEL and
CRU. The reanalysis ensemble consists of ERA-Interim, MERRA, and CFSR for both
precipitation and temperature. The reanalyses generally produce a larger variability
especially over the tropics and the whole of South America. Over the Congo basin,
however, the precipitation variability of the observation ensemble reaches values
of up to 3 mm day−1. The temperature range from the three reanalyses shows the
largest values over South America, the Congo Basin, the Sahara, and Greenland,

where differences of more than 5 ◦C can be observed.

changed significantly between 1989 and 2006, there is only a minor impact on the

agreement with GPCC on these scales. Over the Southern Hemisphere and the tropics,

the spatial correlations (Figures 2.8c,d) exhibit a wider range between the datasets.

It is difficult to determine, however, whether this range is due to the reduction of

gauges or changes in the assimilated observations.

The CFSR series show a general wet bias over the Northern Hemisphere and a

drop in the global continental rainfall toward GPCC from 1998 (Figures 2.9a,b).

Interestingly, the differences between CFSR and GPCC increase again after 2000 over

both the tropical regions between 15 ◦N and 15 ◦S and the Southern Hemisphere

(Figures 2.9c,d), while the bias over the Northern Hemisphere is slightly reduced.

The decline between 1998 and 2000 is also evident from the ERA-Interim rainfall

over the tropics and the Southern Hemisphere but not in MERRA. During these

years, all three reanalyses and the CRU observations show a sudden increase in the
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FIGURE 2.8: Area-averaged spatial correlations in mean annual precipitation of
GPCP, CRU, CPC, ERA-Interim, MERRA, and CFSR in relation to GPCC. Values close
to 1 indicate that the precipitation patterns from the respective dataset are in good
agreement with the spatial distribution of rainfall from GPCC. In most of the regions,
all datasets reproduce the spatial rainfall patterns from GPCC with a correlation
coefficient > 0.7 between 1989 and 2006. The largest deviations can be observed
over South America, where especially MERRA shows correlation coefficients < 0.6
(until 1998) and ∼ 0.6 (from 1998). Compared to the reanalyses, the agreement
between GPCC and the observation datasets is generally better. Over most of the
regions, ERA-Interim shows the highest correlation coefficients in relation to GPCC.

near-surface temperature (not shown), which might be related to the gaps in the

precipitation estimates.

The CPC observations show a dry bias of about −0.3 mm day−1 over the Northern and

−0.4 mm day−1 over the Southern Hemisphere in relation to GPCC (Figures 2.9b,d).

In general, precipitation over the Southern Hemisphere and the tropics has a higher
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FIGURE 2.9: Area-averaged differences in the mean annual precipitation of GPCP,
CRU, CPC, ERA-Interim, MERRA, and CFSR in relation to GPCC in [mm day−1].
On a global scale, MERRA agrees best with GPCC, but shows significant deviations
especially over the southern hemisphere (likely due to the large differences over
South America). Good agreement between GPCC and MERRA can also be observed
over North America, while over Europe, ERA-Interim performs best. Over Australia,
MERRA and CFSR are of comparable agreement with the observations, but the
differences between GPCC and ERA-Interim increase towards the end of the time
series. In general, the observations from CPC show large deviations from GPCC over
South America and Africa due to CPC’s drier conditions in these regions. GPCP has
a slight wet bias especially over the northern hemispheric regions (North America,
Europe, Asia), which might be due to corrections for the gauge under-catch error.

variability in spatial correlations and deviations relating to GPCC. In contrast to the

reanalyses, the observation datasets are in good agreement, even if the deviations

from GPCC are larger because of the higher precipitation rates in these regions.

Spatial variability of rainfall observations over the Southern Hemisphere correlates
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with a correlation coefficient of at least 0.8 and, hence, is a reliable basis for validating

the reanalyses on large spatial scales. It can also be noticed that the reanalyses’

spatial correlations over the Southern Hemisphere are dominated by the variations

between 15 ◦N and 15 ◦S. Especially after 1995, the MERRA dataset depicts a quasi-

periodic signal in the spatial correlations over the Southern Hemisphere and the

tropics (Figures 2.8c,d).

The global intra-annual differences between the CFSR rainfall estimates and the GPCC

observations have an annual cycle with maximal deviations in the period from March

to June (Figure 2.10a). ERA-Interim tends to slightly overestimate the GPCC rainfall

over the Northern Hemisphere with largest deviations of about 0.3 mm/day occurring

from March to May. The tropical and Southern Hemispheric ERA-Interim precipitation

rates are higher throughout the year with a distinct peak during the period from

September to December where deviations from GPCC of up to 0.75 mm/day can be

observed. Thus, on the global scale, ERA-Interim assumes slightly higher precipitation

rates than GPCC, with the largest differences occurring in the periods from March

to May and from September to December—that is, in the Northern and Southern

Hemispheric spring months (Figures 2.10a–d). MERRA does not exhibit a clear

annual cycle over the Northern or Southern Hemisphere; deviations in the tropics

are maximal during the period from November to April. The intra-annual spatial

correlations between MERRA and GPCC show a clear annual cycle especially over

the Southern Hemisphere, which is mainly dominated by variations between 15 ◦N

and 15 ◦S (Figures 2.11c,d). CFSR and ERA-Interim show a similar annual cycle with

a generally higher correlation except for the period from September to November

over the Southern Hemisphere, where ERA-Interim agrees better with GPCC than

CFSR. Over the Northern Hemisphere, the reanalyses are in good agreement with an

average correlation coefficient of about 0.8 (Figure 2.11b).

The Taylor diagrams in Figure 2.12 show that on a global scale, all three reanalyses

and the observations reproduce the spatial rainfall patterns from GPCC with a corre-

lation coefficient of > 0.7. The statistics over the Northern or Southern Hemisphere

and the tropics indicate that the level of agreement between GPCC and the other

datasets decreases when the area of interest is reduced. It is also evident that CFSR
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FIGURE 2.10: Long-term (17 years) averaged differences of monthly precipitation
of GPCP, CRU, CPC, ERA-Interim, MERRA, and CFSR with respect to GPCC in [mm
day−1]. Over most of the regions, the differences between CFSR and GPCC show
an intra-annual cycle which is obvious in South America and to a lesser extent
over North America, Europe, and Asia. Both ERA-Interim and MERRA show a
good agreement with GPCC over North America, Europe, and Asia, while over
South America, ERA-Interim and MERRA assume too moist and too dry conditions,
respectively, during an intra-annual cycle. A significant dry bias between GPCC
and ERA-Interim can be observed over Australia during the period from January to
March, whereas the other datasets are in good agreement with GPCC during the

same period.

predicts a too-high spatial variability compared to GPCC during the summer months

of the Northern and Southern Hemisphere, which is indicated by higher RMSD values.

MERRA agrees best with GPCC during the boreal summer. Over the Southern Hemi-

sphere and the tropics, MERRA shows the lowest correlation coefficients (< 0.6 for

some years) of the three reanalyses. The performance of the models in reproducing



The Hydrological Cycle in Three State-of-the-Art Reanalyses 37

0.4

0.6

0.8

1.0
co

rr
el

at
io

n

a) Global (land)

0.4

0.6

0.8

1.0
co

rr
el

at
io

n

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

Jan Apr Jul Oct

b) Northern Hemisphere

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

Jan Apr Jul Oct Jan Apr Jul Oct

c) 15N − 15S

Jan Apr Jul Oct Jan Apr Jul Oct

d) Southern Hemisphere

Jan Apr Jul Oct

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

e) North America

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

f) Europe g) Asia

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

Jan Apr Jul Oct

h) South America

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

Jan Apr Jul Oct Jan Apr Jul Oct

i) Africa

Jan Apr Jul Oct Jan Apr Jul Oct

j) Australia

Jan Apr Jul Oct

GPCP CRU CPC

INTERIM MERRA CFSR

FIGURE 2.11: Area-averaged spatial correlations of the long-term (17 years) mean
monthly rainfall of GPCP, CRU, CPC, ERA-Interim, MERRA, and CFSR with GPCC.
Values close to 1 indicate that the respective dataset is in good agreement with the
spatial distribution of rainfall from the GPCC product. Globally, the three reanalyses
and observations reproduce the variations in the intra-annual rainfall patterns with
a correlation coefficient > 0.7 and > 0.8, respectively. A significant intra-annual
cycle can be observed over North America and Europe, which has its lowest values
during the period from July to August (N. America). Over South America, MERRA
shows correlation coefficients < 0.5 during from September to February. A similar
intra-annual cycle, but less pronounced, can be observed for ERA-Interim and CFSR
with its minimum between October and November. Over Australia, a significant
drop in the spatial correlations can be observed in April and the period from October
to November. As this drop is evident in both the reanalyses and the observations,
there might be some shortcomings in the GPCC precipitation patterns during these

months.
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FIGURE 2.12: Taylor plots of spatial statistics of the mean monthly precipitation in
January and July for GPCP, CRU, CPC, ERA-Interim, MERRA, and CFSR with respect
to GPCC; each data point in a plot displays the correlation as the angle between the
x-axis and the data point, the standard deviation (normalized) as the y-coordinate,
and the root-mean-square difference (normalized) as the radial distance of one

month of a specific year with respect to GPCC.

the GPCC rainfall patterns changes significantly depending on the region and time

(month) but even from year to year. This is also true for the observation datasets

although the other gridded rainfall observations on these scales agree better with

GPCC than the reanalyses.

Time Evolution of Continental-Scale Precipitation

Over South America, the correlations of ERA-Interim and CFSR are in good agreement

with an average correlation coefficient of about 0.7, while MERRA predicts completely

different rainfall patterns, resulting in a low spatial correlation coefficient of ∼ 0.5
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(Figure 2.8h). As regards the intra-annual spatial variability (Figure 2.11h), the

lowest correlations of MERRA are found between October and January. On the other

hand, the differences in total precipitation between MERRA and CFSR (Figure 2.10h)

show a reduced annual cycle compared to the correlations. This indicates that intra-

annual variations in the amount of precipitation are in good agreement with the

observations, while there are major differences in spatial variability. The Taylor

diagrams (Figure 2.12) confirm the problems of the MERRA dataset in this respect,

which cannot be explained by outliers exclusively. MERRA’s annual mean correlations

and deviations (Figures 2.8h and 2.9h) converge toward GPCC and the other datasets

over South America, leading to better precipitation estimates at the end of the time

series. The time when the MERRA precipitation estimates improve coincides with the

assimilation of observations from the Advanced Microwave Sounding Unit (AMSU)

on the NOAA-15 satellite. This assimilation is performed only over the oceans, but

Bosilovich et al. [2011] note that such satellite epoch changes might indirectly affect

the MERRA water balances over land through altered moisture.

Over North America, Europe, and Asia, significant wet biases in the mean annual and

intra-annual CFSR precipitation are found (Figures 2.9e,f,g and 2.10e,f,g). While

spatial correlations decrease during the period from May to August over North

America, they are in good agreement with the other reanalyses (Figures 2.8e,f,g and

2.11e,f,g). Over Europe, the ERA-Interim reanalysis matches well with the GPCC

observations with an average spatial correlation coefficient > 0.8 and a deviation

of less than 0.1 mm day−1 on interannual and intra-annual time scales. The Taylor

diagrams representing July over North America and Europe reveal that some data

points predict a correlation coefficient < 0.7, which is likely due to an increase of

convective precipitation. This is confirmed by the reanalyses’ intra-annual spatial

correlations, with the lowest correlation coefficients occurring in May (Europe;

Figure 2.11f) and from July to August (North America; Figure 2.11e).

Over Asia, South America, and Africa, the differences between CFSR and GPCC

decrease significantly, which might be explained by the assimilation of AMSU data

(Figures 2.9g,h,i). After 1998, the wet bias of CFSR over Asia is constantly reduced



40 The Hydrological Cycle in Three State-of-the-Art Reanalyses

a) INTERIM

b) MERRA

c) CFSR
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FIGURE 2.13: Differences in the mean annual temperatures at 2 m from ERA-Interim
(a), MERRA (b), and CFSR (c) and CRU in [◦C]. The largest differences between
MERRA and CRU can be observed over South America, where MERRA shows a warm
bias > 4 ◦C. The deviation pattern agrees well with the differences in the long-term
mean precipitation estimates, where MERRA revealed a dry bias in these regions.
This is also true for ERA-Interim, which assumes too cold and too wet conditions
over the Congo basin. All three reanalyses show a warm bias over Siberia, while

large parts of Greenland and the mountain ranges are generally too cold.

to 0.6 mm day−1 while bias reduction over the other continents is only temporary, as

the differences between CFSR and GPCC increase toward the end of the time period.

Over North America, the MERRA precipitation estimates show the smallest deviations

from the GPCC observations on both interannual and intra-annual time scales even

though the slightly biased ERA-Interim estimates tend to display higher spatial

correlations (Figures 2.8e and 2.11e). Over Europe, the precipitation estimates from

ERA-Interim are superior to the other two reanalyses (Figures 2.8f, 2.9f, 2.10f, and

2.11f), while ERA-Interim has a wet bias over Africa because of the overestimation

of precipitation in the Congo basin (Figure 2.6c). A general dry bias of the CPC

observations can be noticed over all regions except for North America and Australia.
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It is mentioned in the dataset description that especially over large parts of Africa

and South America the observations should be treated carefully, as there is a very

sparse distribution of gauges, even if the spatial correlations are in good agreement

with the other datasets.

Over Australia, it can be seen that the three reanalyses and the observations from

CRU show similar spatial correlations, which differ from GPCC especially in April

and November (Figure 2.11j). These drops are also evident for GPCP and CPC,

but to a smaller extent. As CRU and CPC are based solely on gauge observations,

the Australian rainfall patterns from GPCC have to differ from the other datasets.

However, this difference had not yet been detected.

2 m Temperature

The mean annual differences of the reference temperatures given by the CRU dataset

and the three reanalyses are shown in Figure 2.13. The patterns of larger temper-

ature differences are closely related to the differences in the precipitation fields

(Figure 2.6). The MERRA temperature estimates (Figure 2.13b) seem to have a warm

bias especially in South America, where the difference between MERRA and CRU

reaches values of up to 6 ◦C. This warm bias may cause an increased saturation deficit

of the air, which might explain the underestimation of South American precipitation

in the MERRA dataset. A similar effect can be noticed over central Africa, where

MERRA predicts too-warm conditions and too-little rainfall. The ERA-Interim field

(Figure 2.13a) shows a cold bias in central Africa and South America and, thus, a

decreased saturation deficit, which results in larger rainfall compared to the other

datasets. The relation between the temperature and precipitation biases might also be

explained by the reduced clouds and precipitation in these regions, leading to excess

solar radiation reaching the surface, which results in an increased temperature.

In general, it can be concluded that the temperature range (Figure 2.7d) of the three

reanalyses is similar to that of the precipitation fields (Figure 2.7c). The widest range

of temperature observations (Figure 2.7b) can be detected over the large mountain
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ranges. This might be due to an elevation correction performed in the DEL dataset,

but not in CRU. Over the largest parts of the continents, a general uncertainty of

about 1 ◦C can be expected. When considering this value as an uncertainty bound,

the large-scale deviations of MERRA and ERA-Interim over South America or the

Congo basin and the general cold bias in the CFSR dataset over the whole Sahara

indicate significant inaccuracies in the reanalyses. On the other hand, only slight

deviations are encountered over North America, Europe, and Australia. Overall,

ERA-Interim shows the best agreement with CRU.

Closure of the Water Budgets

Surface Water Budget

Table 2.3 summarizes the computed long-term mean values of the different quantities

contributing to the global and continental-scale water budgets. The estimates from

Trenberth et al. [2007] and Oki and Shinjiro [2006] are presented here as well

for reference. In the long-term mean, ERA-Interim and MERRA show a reasonable

closure of the global surface water balance, as P − E over land equals the divergence

of moisture E − P over the oceans. ERA-Interim generally predicts more oceanic

precipitation and evaporation. Both datasets achieve a closure of the combined

continental–oceanic water budget (2.4) with a remaining residual of about 1 % (ERA-

Interim) and 5 % (MERRA) of the continental P − E moisture budget. Similar values

for ERA-Interim and MERRA were also reported by Trenberth et al. [2011]. Jung et al.

[2010] estimated a mean total land surface evapotranspiration of 65± 3× 1015 kg

year−1 between 1982 and 2008, which agrees with the estimates from Oki and

Shinjiro [2006]. It should be noted that small deviations of the estimates may be

due to differences in the used land–sea mask or, when compared to the estimates

from, for example, Bosilovich et al. [2011], a different time period.

On the other hand, CFSR leaves an imbalance of about 80 % of the continental

surface water budget due to an overestimation and underestimation of continental

and oceanic P − E values, respectively. It can be assumed that the too-small oceanic
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FIGURE 2.14: Vertically integrated moisture fluxes and moisture flux convergences
in [mm day−1] from ERA-Interim (a), MERRA (b), and CFSR (c). Positive values
depict areas with a surplus of precipitation (i.e., P > E) while evaporation is larger
than precipitation over regions with negative values. The direction and the amount
of moisture transported are represented by the vector field. Large differences of
the reanalyses can be observed along the ITCZ over the oceans, where CFSR shows
larger moisture flux convergences than ERA-Interim and MERRA. There is also a
positive pattern east of Brazil, which is absent in the other reanalyses. This results

in a generally increased depletion of water in the CFSR over the oceans.

P − E value of CFSR mainly arises from an overestimation of rainfall, as both ERA-

Interim and MERRA assume an evaporation surplus of about 8 % with respect to

the water that precipitates over the oceans, while CFSR predicts only 2 %. This is

confirmed by the evaluation with the HOAPS dataset (Table 2.4), as CFSR predicts
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TABLE 2.3: Mean global water cycle components over land and ocean between 1989
and 2006 in [1015 kg year−1]; the values in the right most columns are the long-term
estimates from Trenberth et al. [2007] (fifth column) and Oki and Shinjiro [2006]

(sixth column) and are printed here as a reference.

ERA-Interim MERRA CFSR TB Oki

Pland 119.7 115.4 127.7 113 111.0
Eland 82.1 86.7 70.4 73 65.5
Pocean 418.0 381.3 459.3 373 391.0
Eocean 455.3 411.5 470.0 413 436.5
R 46.6 31.3 38.3 40 45.5

(P − E)land 37.6 28.7 57.3 40 45.5
(P − E)ocean −37.4 −30.2 −10.7 −40 −45.5

(P − E)ocean, before 98 −29.1 −48.9 −26.2 – –
(P − E)ocean, after 98 −47.7 −6.8 8.6 – –

∇ ·Qland 32.3 38.2 34.6 40 45.5
∇ ·Qocean −32.6 −38.2 −34.6 −40 −45.5

RESs,land
9.0 2.6 19.0 – –

RESw,land
5.3 −9.5 22.7 – –

significantly more rainfall than the other datasets. This might be due to the high

moisture convergence in the oceanic domain of the intertropical convergence zone

(ITCZ) (Figure 2.14c). There are also patterns of large positive P−E values south east

and west of South America, which are absent in ERA-Interim and MERRA, assuming

a significantly larger depletion of water over the oceans.

According to Figure 2.15a, there is a shift in the global P − E moisture budgets

of CFSR and MERRA in 1998. Both depict a significant increase of oceanic P − E

(Figure 2.15c), with CFSR reaching values of about 20 × 1015 kg year−1 in 2001.

In both cases, this is caused by an increase in oceanic rainfall, while ERA-Interim

predicts a decrease (not shown). The increase in MERRA and CFSR is likely due

to the assimilation of sounding radiances from AMSU-A on the NOAA-15 satellite

from 1998 [Bosilovich et al., 2011, Nicolas and Bromwich, 2011]. Robertson et al.

[2011] detected that the assimilation of AMSU-A data has a significant impact on

the MERRA water vapor increments, leading to an increased amount of moisture

in the model. This agrees with the time evolution of the total atmospheric water

vapor content (Figures 2.17a,c), which shows a sudden increase of both MERRA
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and CFSR in 1998. Robertson et al. [2011] further concluded that the additional

moisture causes an increase of precipitation especially over the tropic oceans. If so,

there should also be an increase in oceanic evaporation for compensating the shift

in oceanic rainfall, which cannot be detected in MERRA and CFSR. The significant

changes of many CFSR variables in 1998 are discussed by Wang et al. [2010] and

Xue et al. [2010].

The continental P − E estimates (Figure 2.15b) are in much better agreement than

the oceanic moisture budgets. In 1998, however, changes are significant, as MERRA

predicts an increase of 6 × 1015 kg year−1. The CFSR budgets decrease by about

12 × 1015 kg year−1 between 1998 and 2000. The gap in the continental P − E

budgets is less distinct and becomes smaller toward the end of the time series. The

differences and spatial correlations of precipitation estimates from MERRA and GPCC

show a sudden change in 1998 over South America only (Figures 2.8h, 2.9h). CFSR

precipitation deviations from GPCC, however, exhibit significant gaps over Asia, South

America, and Africa (Figure 2.9g,h,i). The reason has not yet been revealed, but if

the assimilation of AMSU data causes these changes in the precipitation estimates,

the impact of assimilation would differ significantly for both MERRA and CFSR.

As a result of the oceanic P − E increase, the annual budgets between the oceans

and the continents are highly distorted in MERRA and CFSR. CFSR shows a positive

oceanic P − E average of 8.6 × 1015 kg year−1 between 1999 and 2006, which

obviously is not reasonable. The MERRA P − E oceanic moisture budgets exhibit a

change in sign after 2005. According to Rienecker et al. [2011], ERA-Interim does

not use these observations and, thus, shows no shift in 1998. ERA-Interim’s oceanic

P − E moisture budgets reveal a permanent downward trend until 1998, after which

the budgets fluctuate around −45× 1015 kg year−1, which agrees with the reference

values in Table 2.3.

Another significant shift in both MERRA and CFSR is assumed to occur in 2001 when

data from the NOAA-16 satellite are introduced. Indeed, there is a distinct increase

in the oceanic P − E estimates of MERRA between 2000 and 2001. In the CFSR
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FIGURE 2.15: (a) Global, (b) continental, and (c) oceanic annual water balance in
1015 kg year−1. P − E budgets are plotted as black lines, while the atmospheric bud-
gets are represented by the dotted gray lines. On annual time scales, the difference
between P − E and the moisture flux divergences is an estimate of the atmospheric
water forcing increment in the reanalysis models. The closure of the combined
atmospheric-terrestrial water budget would require both P − E and −∇ ·Q to be
equal. MERRA and CFSR show an unrealistic increase of oceanic P − E from 1998,
which is likely due to changes in the assimilated observations. Over the continents,
the P − E budgets from ERA-Interim and MERRA are in better agreement with the
moisture fluxes, leading to a nearly closed continental atmospheric-terrestrial water
budget. CFSR overestimates continental P − E as well, which causes an imbalanced

residual of about 30× 1015 kg year−1.

dataset, there also is an upward shift of oceanic P − E estimates between 1999 and

2001, but the effect seems to weaken at the end of the time series.

When analyzing the continental surface water balance (2.3), MERRA shows the best

performance in closing the long-term water balance. The surplus of evaporation
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FIGURE 2.16: (a) Global, (b) continental, and (c) oceanic intra-annual water balance
in 1014 kg/month. P − E budgets are plotted as black lines, while the atmospheric
budgets are represented by the dotted gray lines. For the monthly budgets, changes in
the atmospheric water vapor content dW/d t were considered as well. ERA-Interim
and MERRA show a good closure of the global atmospheric-terrestrial intra-annual
budgets. Over the continents, there is a clear cycle with its minimum (maximum) in
June (January) in both P − E and the atmospheric moisture budgets, which might
be explained by the decrease (increase) of evaporation (precipitation) during the
boreal winter (summer) over the large continental areas of northern hemisphere.
The CFSR P − E estimates show a bias both over the oceans and the continents,
causing a significant imbalance of the global intra-annual atmospheric-terrestrial

moisture budget.

over the continents is balanced by reduced runoff compared to the other reanalyses

and the reference estimates. This leads to a significantly smaller surface water

forcing residual in the terrestrial water storage of 2.6× 1015 kg year−1. As the time

evolution of both the annual P− E moisture budgets and the total annual runoff (not

shown) are not constant over time, however, RESs changes as well. For water budget

studies on shorter time scales, this changing imbalance should not be neglected. As

reported by Roads et al. [2002], the storage change dS/d t may be significant during

shorter periods and, hence, a large part of RESs might be due to natural processes
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rather than artificial forcing increments. CFSR and ERA-Interim have larger residuals

of 19.0× 1015 kg year−1 and 9× 1015 kg year−1, respectively, between runoff and

continental P − E even if the runoff estimates seem to be more realistic compared to

MERRA.

The global intra-annual water budgets (Figure 2.16a) show a clear annual cycle

with the minimum P − E in June due to the increased evaporation and reduced

precipitation during the Northern Hemispheric summer months. Compared to the

annual P − E moisture budgets, the intra-annual variations of MERRA and ERA-

Interim are in much better agreement. Even if CFSR reproduces a similar annual

cycle, there is a significant deviation of about 30× 1014 kg month−1 from the other

reanalyses, which causes a remaining imbalance during an intra-annual cycle of the

global P − E moisture budgets.

Atmospheric and Combined Atmospheric-Terrestrial Water Balance

The global atmospheric water budgets∇·Q (Figure 2.15a) are nearly constant during

the analyzed period. Consequently, the atmospheric moisture exchange between

the oceans and the continents is a fully closed cycle in the three reanalyses. As the

time series of moisture flux divergences obtained by the three reanalyses are in good

agreement, it is concluded that using the atmospheric budgets for quantifying the

exchange of moisture between the oceans and land masses is more reliable than the

modeled P − E moisture budgets. The closure of the global combined atmospheric-

terrestrial water balance (2.8) reveals some shortcomings: ERA-Interim predicts too

high (too low) P − E estimates until 1996 (from 1996). CFSR has a significant moist

bias (i.e., too high global P − E values) over the whole time series with a sudden

increase likely due to the assimilation of AMSU data in 1998, while MERRA shows

the same gap with too dry (too wet) conditions until 1999 (from 1999). Over the

continents (Figure 2.15b), both the atmospheric and terrestrial budgets are in good

agreement, leading to the closure of the combined atmospheric-terrestrial water

balance. Hence, the largest part of the global imbalance comes from the large gaps

between the P − E moisture budgets and the moisture flux divergences over the
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FIGURE 2.17: (a) Global, (b) continental, and (c) oceanic precipitable water esti-
mates from the three reanalyses in [mm]. Globally, ERA-Interim shows higher values
until 1995. Between 1992 and early 1998, the three reanalyses are in very good
agreement, which is likely due to the assimilation of similar observations during that
period. After 1998, the MERRA and CFSR estimates are higher when compared to
ERA-Interim. This also holds for the time evolution of the atmospheric water vapor
over the oceans. Again, it is presumed that the increase in 1998 is due to changes
in the assimilated observations in both MERRA and CFSR, but not in ERA-Interim.
When compared to other components of the large-scale water cycle, the water vapor
estimates are in much better agreement, which is likely due to the forcing of the

estimates towards observations in all three reanalyses.

oceans (Figure 2.15c). As the changes in the tendency terms of atmospheric and

terrestrial water storage can be neglected on annual time scales, the differences

between the moisture flux divergences and the P − E budgets are an estimate of the

atmospheric water forcing due to the assimilation of observations. Hence, the impact

on MERRA and ERA-Interim is less pronounced over the continents than over the

oceans.

As regards long-term monthly moisture budgets, the global, continental, and oceanic
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ERA-Interim and MERRA P − E values and atmospheric moisture fluxes are in very

good agreement (Figure 2.16). We assume that even if the annual variations of the

water cycle show significant shortcomings, the modeled processes are balanced well

on a monthly time scale. The CFSR budgets show a significant overestimation of P−E

over both the continents and the oceans, resulting in a significant imbalance which

has its maximum between September and October, where the global water budget

leaves a monthly imbalance of up to 48× 1014 kg month−1 (i.e., the intra-annual

water cycle is not closed in CFSR). It should be noted, however, that CFSR does not

provide fields of evapotranspiration. The imbalance might be affected largely by the

approximation of E from fields of latent heat flux and sublimation (2.13). As the

long-term average of continental evapotranspiration agrees with the model estimates

from Trenberth et al. [2007], however, it is likely that the too high P − E values arise

from the CFSR precipitation.

Atmospheric Water Vapor

Figure 2.17 shows the monthly mean of total precipitable water over the complete

time series. Globally, ERA-Interim predicts more atmospheric vapor before 1998

and less vapor after 1998 compared to MERRA and CFSR (Figure 2.17a). The main

differences between the datasets result from deviations over the oceans (Figure 2.17c)

that can be divided clearly into three periods. Before 1992, the ERA-Interim water

vapor exceeds the estimates from CFSR and MERRA. Between 1992 and 1998, the

three reanalyses are in good agreement, as the models use similar observational data

in this period. After 1998, CFSR and MERRA show an increase of the precipitable

water over the oceans, which has already been discussed in section Surface Water

Budget. Compared to the differences in the reanalyses’ water budgets, the time series

of precipitable water are in good agreement. This is emphasized by Figure 2.18

where also satellite observations from the HOAPS dataset representing the total

atmospheric water vapor over the ice-free ocean are shown. Especially during the

period between 1992 and 1998, the reanalyses successfully reproduce the annual

cycle of water vapor over the oceans. After 1998, MERRA and CFSR overestimate the
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FIGURE 2.18: Precipitable water in [mm] from the reanalyses and the HOAPS dataset
over the ice-free ocean. Between 1992 and 1998, the three reanalyses are in good
agreement with the HOAPS observations. It is obvious that the increase in 1998
of both MERRA and CFSR causes an overestimation of precipitable water when
compared to HOAPS. ERA-Interim shows an overestimation before 1992, but reveals

a good agreement with HOAPS for the rest of the time period.

amount of precipitable water, while ERA-Interim still shows a good agreement with

HOAPS. On the other hand, ERA-Interim clearly overestimates atmospheric water

vapor before 1992, while MERRA and CFSR agree well with HOAPS. This changing

level of agreement is likely due to the assimilation of different data sources, as all

three reanalyses use similar observations between 1992 and 1998 only.

Changes in the atmospheric water vapor content dW/d t were considered when

computing the monthly water budgets. There is a strong annual cycle especially over

the continents, leading to maximal values of dW/d t in spring and autumn. This

agrees with, for example, Rasmusson [1968] and is also considered in Seneviratne

et al. [2004]. However, changes in the vertically integrated water vapor usually

are smaller by several orders of magnitude compared to other quantities of the

hydrological cycle and do not vary on annual time scales, as the intra-annual cycle

of dW/d t is closed with sufficient accuracy in all three reanalyses (not shown). It

is therefore proposed to neglect dW/d t for large-scale and long-term water budget

studies.

Evaluation of Hydrological Variables over the Oceans

Mean estimates of modeled precipitation, evaporation, and P − E over the ice-free

oceans are presented and compared with satellite observations from HOAPS in

Table 2.4. As another reference, the GPCP dataset predicts a mean precipitation rate
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TABLE 2.4: Mean oceanic precipitation, evaporation, and P − E between 1989 and
2006 from ERA-Interim, MERRA, CFSR, and satellite observations from the HOAPS
dataset in [mm day−1]. The numbers in the brackets denote the standard deviations.

P E P − E

HOAPS 2.86 (±0.16) 3.54 (±0.18) −0.68 (±0.23)
ERA-Interim 3.29 (±0.10) 3.71 (±0.09) −0.43 (±0.13)
MERRA 2.99 (±0.20) 3.37 (±0.08) −0.39 (±0.20)
CFSR 3.56 (±0.16) 3.81 (±0.11) 0.08 (±0.15)

of about 3.0 mm day−1. CFSR shows an overestimation of oceanic rainfall of 0.6 mm

day−1. As evaporation from CFSR is only about 0.3 mm day−1 higher compared to

HOAPS, the mean P − E moisture budget is positive, showing an overestimation of

0.7 mm day−1. All three reanalyses overestimate the P − E moisture budget, but

in ERA-Interim, this is due to an overestimation of precipitation and evaporation,

while MERRA underestimates evaporation. Hence, it is impossible to make a general

statement about the origins of the too large oceanic P − E moisture budgets in the

analyzed reanalyses.

Summary and Conclusions

The present study demonstrated major differences of differences between the three

reanalyses ERA-Interim from ECMWF, MERRA from NASA, and CFSR from NCEP.

Precipitation is one of the most important quantities of the water cycle. Its estimates

are highly uncertain in terms of spatial variability and total amount. The largest

discrepancies occur in the summer months of the respective hemisphere, because

convective effects still are a large source of uncertainty. However, a validation of,

for example, tropical or mountainous rainfall also remains difficult because of the

large differences of the observation datasets in these areas. This can be attributed to

the irregular distribution of gauges especially in such complex and highly variable

regions. Hence, there are large parts of South America and Africa that are completely

ungauged. For regions with a dense network of gauges like North America, Australia,

or Europe, it may be concluded that ERA-Interim still provides the most reliable
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rainfall estimates. The largest problem in these areas is the decrease of active

gauges during the period considered. The quality of an interpolated product over a

continuously changing network of observations remains questionable. On the other

hand, validation of the coarsely resolved GPCC and reanalysis precipitation estimates

with in situ rainfall observations is not yet meaningful due to the precipitation’s high

spatial variability and dependence on surrounding terrain.

In data-sparse regions, the general tendency of the datasets considered can be

regarded examined only. It may be concluded that major shortcomings exist in the

spatial patterns of South American rainfall in MERRA and in the total amount of

mid- to high-latitude precipitation in CFSR where a significant bias was detected.

In the case of the MERRA reanalysis, these shortcomings are well known. Thus,

NASA is currently performing a land-only rerun of the MERRA reanalysis in which

observational data from GPCP and other independent global data products are used

to correct and evaluate MERRA’s land surface hydrology [Rienecker et al., 2011]. The

corrected precipitation estimates are already available and will replace the original

MERRA products in the near future [Reichle et al., 2011].

The differences in the amount and spatial patterns of continental rainfall between

GPCC and the other datasets remain more or less constant during the whole period

(except for South American precipitation in the MERRA dataset). This is important,

as the assimilation of observations, which became available during the period con-

sidered, does not seem to significantly affect the precipitation estimates over the

landmasses. The situation is clearly different for oceanic precipitation that exhibits a

significant shift in late 1998 when sounding radiances from AMSU were assimilated

into both MERRA and CFSR. Atmospheric reanalysis models are still sensitive to the

introduction of observational data. Similar findings were also presented in Bengtsson

[2004] for the ERA-40 reanalysis.

The uncertainties in the precipitation estimates of the three reanalyses are highly

correlated with the variability in the temperature fields. An obvious connection was

found between the large-scale underestimation of South American precipitation from

MERRA and a general warm bias in these regions. To make statements about the
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validity of an atmospheric reanalysis, it is not sufficient to consider one quantity like,

for example, precipitation only, but also other variables must be taken into account.

This is crucial to the closure of the water budgets of these datasets. When introducing

new observations, CFSR and MERRA became significantly imbalanced after 1998.

Oceanic precipitation increased because of the assimilation of sounding radiances

from AMSU. In both CFSR and MERRA, the increase in total water is not balanced

by an increase in oceanic evaporation or a decrease of continental P − E estimates,

leaving a large gap in the global water balance. The atmospheric budgets do not

show such a sudden shift, but tend to increase during the time series considered.

Furthermore, the differences of the P − E estimates are much larger than those of

their atmospheric counterpart. It may therefore be concluded that they are still more

reliable than the terrestrial P − E values.

Because of the limitations presented, the performance of all three reanalyses in

reproducing the hydrological cycle still causes doubts in the use of such models for

climate trend analyses and long-term water budget studies.
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Abstract

The performance of hydrological and hydrometeorological water-balance-based meth-

ods to estimate monthly runoff is analyzed. Such an analysis also allows for the

examination of the closure of water budgets at different spatial (continental and

catchment) and temporal (monthly, seasonal, and annual) scales. For this analysis,

different combinations of gridded observations [Global Precipitation Climatology

Centre (GPCC), Global Precipitation Climatology Project (GPCP), Climate Prediction

Center (CPC), Climatic Research Unit (CRU), and University of Delaware (DEL)],

1©American Meteorological Society. Used with permission.
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atmospheric reanalysis models [Interim ECMWF Re-Analysis (ERA-Interim), Climate

Forecast System Reanalysis (CFSR), and Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA)], partially model-based datasets [Global Land

Surface Evaporation: The Amsterdam Methodology (GLEAM), Moderate Resolution

Imaging Spectroradiometer (MODIS) Global Evapotranspiration Project (MOD16),

and FLUXNET Multi-Tree Ensemble (FLUXNET MTE)], and Gravity Recovery and

Climate Experiment (GRACE) satellite-derived water storage changes are employed.

The derived ensemble of hydrological and hydrometeorological budget–based runoff

estimates, together with results from different land surface hydrological models

[Global Land Data Assimilation System (GLDAS) and the land-only version of MERRA

(MERRA Land)] and a simple predictor based on the precipitation–runoff ratio, is

compared with observed monthly in situ runoff for 96 catchments of different sizes

and climatic conditions worldwide. Despite significant shortcomings of the budget-

based methods over many catchments, the evaluation allows for the demarcation of

areas with consistently reasonable runoff estimates. Good agreement was particularly

observed when runoff followed a dominant annual cycle like the Amazonas. This

holds true also for catchments with an area far below the spatial resolution of GRACE,

like the Rhine. Over catchments with low or nearly constant runoff, the budget-based

approaches do not provide realistic runoff estimates because of significant biases in

the input datasets. In general, no specific data combination could be identified that

consistently performed over all catchments. Thus, the performance over a specific

single catchment cannot be extrapolated to other regions. Only in few cases do

specific dataset combinations provide reasonable water budget closure; in most cases,

significant imbalances remain for all the applied datasets.

Introduction

With water, the most essential natural resource for sustaining life, coming under threat

[Vörösmarty et al., 2010], it becomes imperative to understand the hydrological cycle

and monitor its constituents. This urgent need, however, has not been able to stem

the steady decline in the number of precipitation and runoff gauges (Figure 3.1),
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FIGURE 3.1: The maps show the decline in the number of runoff (left) and rain
(right) gauges. The catchments whose runoff measurements are publicly available
(blue), that do not discharge into the oceans or other open water bodies (white)
and those that are not gauged or whose runoff measurements are not publicly
available (gray) are shown on the left column. In the right column the individual

dots represent one or more rain gauges in a 0.5◦ × 0.5◦ gridcell.

which still provide the only direct observations of terrestrial water cycle components.

This is a setback both for our understanding of the evolution of the hydrological cycle

and for the calibration and validation of hydrological and atmospheric models and

ex situ measurements of those components. The situation is further aggravated by

the lack of reliable data for evapotranspiration and water storage changes, which,

together with precipitation and runoff, form the major components of large-scale

hydrological cycle.

Over the years, in the absence of measurements of the hydrological cycle components,

it has been normal practice to resort to sophisticated hydrological and atmospheric

reanalysis models to study the global water balance [e.g., Trenberth et al., 2007].

However, the hydrological or land surface models suffer from the steady changes

in the spatial distribution and number of precipitation or runoff gauges. For such

models, observations are needed both as an input and also as a validation measure.

Therefore, there is a desperate need for new and alternative methods.

Spaceborne measurements seem to provide the necessary respite by a plethora

of satellites providing nearly all the components of the global hydrological cycle:

precipitation from the Tropical Rainfall Measuring Mission [TRMM; Kummerow et al.,

2000], water storage changes from the Gravity Recovery and Climate Experiment
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[GRACE; Schmidt et al., 2008], runoff from satellite altimetry and synthetic aperture

radar [Alsdorf et al., 2007], soil moisture from the Soil Moisture and Ocean Salinity

(SMOS) satellite [Kerr et al., 2010] or (beginning in late 2014) the Soil Moisture

Active Passive (SMAP) satellite [Entekhabi et al., 2010], and a host of variables

concerning the hydrological cycle from Aqua [Parkinson, 2003]. The space-borne

observations bring with them the advantages of global coverage and homogeneous

accuracy, but with limited spatial and temporal resolutions. Hrachowitz et al. [2013]

acknowledge these advancements and provide examples of spaceborne measurements

becoming indispensable to hydrological research, especially in data-poor regions like

West Africa, Asia, and the vast open oceans.

In the context of runoff, Alsdorf et al. [2007] provide a broad overview of the types of

spaceborne runoff measurements, their relative merits and challenges. Recently, but

not for the first time, Tourian et al. [2013] demonstrated the potential and accuracy

of runoff derived from satellite altimetry. However, an application of this method to

catchments still depends on the existence of contemporaneous or previous in situ

runoff measurements. Therefore, our study focuses on independent methods using

mass estimates of the water storage in river systems from GRACE, while observed

runoff is used as a validation measure only.

The use of GRACE water storage changes entails the use of the water balance equa-

tions, wherein runoff is computed from a combination of precipitation and evapotran-

spiration in addition to water storage changes. Such water budget based methods

have already been applied by Sheffield et al. [2009] who used GRACE and other

remotely sensed data for computing streamflow from the Mississippi basin. Syed

et al. [2005] used an atmospheric water balance for estimating discharge over the

Amazonas and Mississippi basins and, in the following years, total freshwater dis-

charge from the entire Pan-Arctic [Syed et al., 2007] or continents and large river

basins [Syed et al., 2009]. Other methods of estimating runoff from GRACE are also

being proposed [e.g., Riegger and Tourian, 2014] but they are still in a very nascent

state of development. For a long time, evapotranspiration has been elusive and has

been the thorn in the flesh in global hydrological studies [e.g., Schlosser and Houser,

2007, Trenberth et al., 2007]. Lately, attempts have been made to provide global



Large-scale Runoff from Landmasses 61

evapotranspiration estimates apart from what has been available from various hydro-

logical and atmospheric reanalysis models [Jung et al., 2009, Miralles et al., 2011b,

Mu et al., 2007, Salvucci and Gentine, 2013]. Precipitation and runoff datasets are

the most mature of all the hydrological datasets, but there are significant differences

between the different precipitation datasets [Lorenz and Kunstmann, 2012]. With an

accuracy of 10–20 %, observed runoff is the most accurately measured component of

the hydrological cycle [Fekete et al., 2012], but suffers from variations in the time

period of observation, substantial delays in data access and large declines in the

monitoring capacity [Fekete and Vörösmarty, 2002, Fekete et al., 2002, Shiklomanov

et al., 2002, Vörösmarty et al., 2001].

To analyze the performance of runoff estimations independent of gauge-based obser-

vations, we thus set out to derive large-scale runoff from catchments using water-

balance-based methods. Therefore, we use the most recent versions of widely used

data sources of precipitation, evapotranspiration, water storage changes, and mois-

ture flux divergences. By combining all these datasets, we end up with a total of

90 possible runoff estimates from a terrestrial water balance and 15 from an at-

mospheric–terrestrial water balance for each catchment. These estimates are then

validated against observed runoff data from the Global Runoff Data Centre [GRDC;

GRDC, 2013] over 96 river basins. The performance of these estimates is also com-

pared with the performances of sophisticated hydrological (land surface) models and

an empirical method involving the precipitation-runoff (P − R) ratio. This allows us

to:

• evaluate the potential of runoff estimation from water-balance-based methods,

land surface models and an empirical predictor,

• analyze the quality of the different contributing datasets, and

• evaluate the current status of the closure of catchment scale water budgets

Until now, only a few studies existed where runoff from such a large number of river

basins was evaluated. Some examples of these are Zaitchik et al. [2010], which

focuses on the validation of Global Land Data Assimilation System (GLDAS) over
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66 larger river basins, or Zhou et al. [2012], where runoff estimates from different

land surface models are compared against mean annual runoff observations over 150

catchments. A validation of runoff from global climate models using the Total Runoff

Integrating Pathways (TRIP) river flow model is presented in Falloon et al. [2011].

In most cases, such studies focus on hydrological models, while we estimate runoff

from simple budget equations where the most recent gridded observation datasets,

land surface, and atmospheric reanalysis models serve as inputs.

Our study is outlined as follows: in section Methods, we elaborate on the water-

balance-based methods and the empirical method for estimating runoff from precipi-

tation; in section Data, the datasets that we have used in the different approaches

are detailed; in section section Results and Discussion, we investigate the utility of the

runoff estimates from water-balance-based methods as an alternative to observed

runoff and also exploit those estimates to study the global water balance closure;

and finally, we draw our conclusions in section Summary and Conclusions.

Methods

The primary concern in this study is to estimate runoff globally from the landmasses,

and we have chosen to use the water balance equations as the means to our end.

Water balance equations define the hydrological cycle in quantitative terms by taking

into account the amount of water entering and leaving a river basin within, for

example, 1 month. This budgeting can be approached in several different ways, and

here we have chosen both large-scale terrestrial and atmospheric-terrestrial water

balance equations. Our choice was driven mainly by the availability of water storage

change data from the GRACE satellite mission. All our calculations are performed

on a monthly basis in order to be as consistent as possible with the monthly runoff

observations as provided from the GRDC.



Large-scale Runoff from Landmasses 63

Hydrological Budget Approach

At continental scales, the water entering a river basin is described by precipitation

P, the water leaving it is described by evapotranspiration ETa and runoff R, and

whatever remains is the water storage change dS/dt. Mathematically, this can be

written as

P − ETa − R =
dS
dt

, (3.1)

which is the large-scale terrestrial water balance equation, and it immediately allows

us to compute the river runoff as

R = P − ETa −
dS
dt
≡ Rhyd . (3.2)

Since this method uses only hydrological variables to arrive at runoff estimates, it will

henceforth be called the hydrological approach. This approach does not require runoff

routing as it is taken care of by the water storage changes, and it comes with the

added benefit that no matter which component we estimate, the closure of the water

balance can be analyzed. The major pitfall of such an approach is that the accuracy

of the runoff estimates will be only as good as the least accurate dataset. Because

of the law of error propagation, errors in the individual water cycle components

might thus add up and result in very uncertain estimates of runoff. Further, since at

any point there is a need for three different datasets to study one of the variables of

interest, consistency in terms of spatial and temporal resolution are of paramount

importance. On the other hand, biases in the individual input datasets might get

canceled out as runoff is computed as a residual.

Hydrometeorological Budget Approach

The number of inputs in (3.1) can be reduced to two by linking the terrestrial water

balance with the atmospheric-terrestrial water balance equation [Roads et al., 1994]

dW
dt
+∇ ·Q = ETa − P , (3.3)
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where W denotes the total column water content in the atmosphere and ∇ ·Q is the

net balance of moisture flux (i.e., moisture flux divergence). The moisture flux is

defined as

Q =
1
g

psfc
∫

p = 0

νh(p)q(p)dp (3.4)

with air pressure p (Pa), the gravitational acceleration g (m s−2), the horizontal wind

vector νh, and the specific humidity q (kg kg−1) [e.g., Fersch et al., 2012].

According to Peixoto and Oort [1992], changes in the atmospheric water content

dW/dt can be neglected on monthly or longer time scales, which gives us the result

∇ ·Q≈ ETa − P . (3.5)

By combining (3.1) and (3.5), runoff can be derived from the atmospheric-terrestrial

water balance

Ratm = −∇ ·Q−
dS
dt

. (3.6)

We will call this method the hydrometeorological approach as it takes both hydrological

and atmospheric datasets as inputs. This method also inherits the advantages and

disadvantage of the hydrological approach.

Runoff-Precipitation Ratio

Since there is a strong relationship between runoff and precipitation, runoff can

be estimated directly from precipitation by scaling it with an empirically derived

scaling factor. This factor is the ratio between runoff and precipitation, which is

computed for each calendar month (January—December) individually. For each

catchment, the runoff value of the jth calendar month in the ith year Ri, j is divided

by the corresponding precipitation value Pi, j

κi, j =
Ri, j

Pi, j
. (3.7)
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Then, an average κ̄ j of the ratios κi, j for each calendar month j is computed over

the available N number of years:

κ̄ j =
1
N

N
∑

i = 1

κi, j . (3.8)

The runoff is then computed for each month by scaling precipitation Pi, j with κ̄i, j

Ri, j = κ̄ j Pi, j . (3.9)

This empirical model depends on previous runoff data, and the past and current

precipitation data, which makes it more of a predictor model rather than an estimator.

The computation of κ̄ j for individual calendar months takes care of the mean annual

cycle, and by scaling them with the concurrent precipitation data, the associated

climatic variations are also imbued into the runoff estimates.

Due in part to the simplicity and empirical nature of the model, its success is entailed

to the dynamic behavior of the river system whose runoff is estimated. Runoff of a

river system more prone to vagaries in the mean annual hydrological cycle, or in

which there is a lot of anthropogenic intervention, might not be estimated via this

model. Furthermore, evapotranspiration and water storage do not appear explicitly

in these formulas, but they certainly affect the relationship between precipitation and

runoff (i.e., their impacts are "hidden" within the ratios). It is thus essential that both

evapotranspiration and water storage changes follow a stable annual cycle, which

does not change significantly from year to year. That being said, estimating runoff

from catchments with, for example, a trend in one of these two variables might lead

to large uncertainties.

To evaluate the performance of this empirical model as a predictor (i.e., for un-

gauged regions or runoff observations with large data-gaps), the values of κ̄ j are

computed from runoff and precipitation data only until the end of 2002. From 2003,

runoff is estimated by multiplying current precipitation data with the mean monthly

scaling factor κ̄ j of the corresponding month j. For analyzing the reliability of this
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approach, different precipitation datasets (see section Data) have been used for both

the estimation of κ̄ j and the prediction of runoff.

Water Budget Imbalance

The GRACE-based methods that we use here are based on the water balance equations,

which allow us to compute the imbalance in the water budget:

δhyd = R− Rhyd = R− P + ETa +
dS
dt

, (3.10)

δatm = R− Ratm = R+∇ ·Q+
dS
dt

, (3.11)

where δhyd and δatm are the water budget imbalances of the hydrological and atmo-

spheric water balance equations, respectively.

Data

The water balance equations (3.2) and (3.6) and the empirical model (3.9) use all

the components of the hydrological cycle. We have ensured that all the datasets

that we have used for our analysis here are observation-based. In cases where direct

observations are not possible, for example, moisture flux divergence, only partially

modeled datasets are used. In addition to this, we have also taken care to use only

datasets that are publicly available. An overview of the different data sources of

precipitation, evapotranspiration, water storage changes, moisture flux divergences,

and runoff is given in Table 3.1.

For the comparison of the runoff estimates with the observations, we have remapped

all the input fields to the same spatial resolution (0.5◦ × 0.5◦) using a first-order

conservative interpolation [Jones, 1999]. From these fields, area-weighted averages

were computed over the study regions shown in Figure 3.2. To be temporally consis-

tent with water storage changes from GRACE, Landerer et al. [2010] proposed to
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FIGURE 3.2: Location of the basins given in Table 3.2 where the dot in each basin is
located at the respective river gauge. As the catchments are ordered with respect
to their mean annual discharge, the blueish (reddish) basins further indicate high

(low) discharge.

smooth the time series of the other water cycle variables according to

F̃i =
1
4

Fi−1 +
1
2

Fi +
1
4

Fi+1 , (3.12)

where the F variables are time series of precipitation, evapotranspiration, moisture

flux divergences, and observed and modeled runoff. The indices i, i − 1, and i + 1

refer to the previous, current, and following month, respectively. We have applied

this filter to all our estimates.

Runoff

In order to attain maximum data coverage, both in space and time, data are col-

lected from different sources: the GRDC; the Arctic Rapid Integrated Monitoring

System (ArcticRIMS) project; Water Survey Canada; the U.S. Geological Survey

(USGS); the U.S. Army Corps of Engineers (USACE); the Environmental Research

Observatory (ORE) Geodynamical, Hydrological, and Biogeochemical Control of Ero-

sion/Alteration and Material Transport in the Amazonas Basin (HYBAM) project; the

Department of Water, Land and Biodiversity Conservation, Government of Australia;

and the Department of Water Affairs and Forestry, Republic of South Africa.
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TABLE 3.1: Summary of the observation and model based datasets containing pre-
cipitation (P), actual evapotranspiration (ETa), vertically integrated moisture flux
divergences (∇ ·Q), water storage changes (dM/dt), and runoff (Robs and Rmod).

Variable Dataset Version Resolution Time period
Spatial Temporal

P GPCC 6.0 0.5◦ × 0.5◦ 1 mo 1901–2010
GPCP 2.2 2.5◦ × 2.5◦ 1 mo 1979–present
CPC 1.0 0.25◦ × 0.25◦ 1 d 1979–present
CRU 3.1 0.5◦ × 0.5◦ 1 mo 1901–2009
DEL 2.01 0.5◦ × 0.5◦ 1 mo 1900–2008

ETa ERA-Interim – 0.75◦ × 0.75◦ 1 mo, 1 d, 6 h 1979–present
GLDAS Noah 2.7 0.25◦ × 0.25◦ 1 mo, 3 h 1979–present
GLEAM v1B 0.25◦ × 0.25◦ 1 d 1984–2007
MODIS – 0.5◦ × 0.5◦ 1 d –
MERRA – 1

2
◦ × 2

3
◦

1 mo, 1 d, 6 h, 3 h, 1h 1979–present
MERRA Land 1.0 1

2
◦ × 2

3
◦

1 mo, 1 d, 1 h 1980–present
∇ ·Q ERA-Interim – 0.75◦ × 0.75◦ 1 mo, 1 d, 6 h 1979–present

MERRA – 1
2
◦ × 2

3
◦

1 mo, 1 d, 6 h, 3 h, 1 h 1979–present
CFSR – 0.5◦ × 0.5◦ 1 mo, 1 d, 6 h 1979–2011

dM/dt GRACE GFZ R5 – 1 mo 2005–present
GRACE CSR R5 – 1 mo 2005–present

Robs GRDC – –
Rmod GLDAS VIC 1.0◦ × 1.0◦ 1 mo, 3 h 1979–present

GLDAS CLM 2.0 1.0◦ × 1.0◦ 1 mo, 3 h 1979–present
GLDAS Noah 2.7 0.25◦ × 0.25◦ 1 mo, 3 h 1979–present
GLDAS Noah 3.3 1.0◦ × 1.0◦ 1 mo, 3 h 1979–present
GLDAS Mosaic 1.0◦ × 1.0◦ 1 mo, 3 h 1979–present
MERRA Land 1.0 1

2
◦ × 2

3
◦

1 mo, 1 d, 1h 1980–present

The GRACE-based approaches (i.e., Rhyd and Ratm) are essentially global methods

capable of providing runoff estimates of all catchments without the necessity of

any runoff observations. To validate these estimates, we need contemporaneous

(2003-–10) observed runoff data for all the catchments. Because of data gaps both in

space and time, we choose catchments that have a minimum of five years of observed

runoff data within the period 2003—2010 so that we can perform a meaningful

statistical assessment. Applying this restriction, we are left with 96 catchments out

of a total of 403 catchments to perform our investigation. An overview over the

different study regions, the respective river gauges, the area of the basins, and the

mean annual discharge is given in Table 3.2 and Figure 3.2. The number of available

runoff observations is shown in Figure 3.3, where the white and gray boxes indicate

available and missing data, respectively.

Spatially, the collection of catchments covers a wide range of climatic and geographic
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conditions. This includes some tropical catchments with the highest discharge

worldwide (e.g., Amazonas and Congo) and also the vast high-latitude basins (e.g.,

Lena, Ob, and Yana) with typically low discharge values during the winter months

due to frozen conditions and peak values between June and August during and after

the melting season. Also, the areal extent of the selected catchments varies from

4.7×106 to 2.1×104 km2, where we have deliberately included the small catchments

(< 200,000km2) as well. This allows the quantification of the area dependence of

GRACE-based estimates. To better characterize the study regions, Figures 3.4 and

3.5 show the annual cycle of precipitation, evapotranspiration, runoff, water-storage

changes, and moisture flux convergences for all the basins.

Precipitation

Precipitation is traditionally measured using various types of rain gauges, such as the

nonrecording cylindrical container, the recording weighing gauge, floating gauges,

and tipping-bucket-type gauges. In the recent past, precipitation was also measured

with weather radar and weather satellites. Generally, because of the adequate

amount of sensors, global gridded precipitation data are available from different

data providers. In this study, we used precipitation data from the following:

• Global Precipitation Climatology Center [GPCC; Schneider et al., 2008]

• Global Precipitation Climatology Project [GPCP; Adler et al., 2003]

• Climate Prediction Center (CPC) "Unified" precipitation [Chen et al., 2008]

• Climatic Research Unit [CRU; Harris et al., 2014], and

• University of Delaware [DEL; Matsuura and Willmott, 2012]

From these datasets, GPCC, CPC, CRU, and DEL are derived from gauge observations

only. The largest number of stations are included in the GPCC product, while CPC

archives a higher station density, for example, over North America. However, because

of the very nature of such data products, the precipitation estimates can be highly
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uncertain, especially in regions with only a few or no stations. Figure 3.1 clearly

shows that large parts over, for example, South America, Africa, or Siberia are

completely unobserved. Moreover, the number and distribution of rain gauges varies

significantly over time, which introduces a further source of uncertainty. On the

other hand, observations are provided in a relatively high spatial resolution and can

be assumed to be of high quality over data-rich regions such as Europe or large parts

of North America. For the spatially lower resolved GPCP product, data from different

rainfall sensors have been merged in order to provide a more consistent data source

for global (land and ocean) precipitation. Currently, the GPCP includes microwave,

infrared, and gauge-based observations of precipitation [e.g., Huffman et al., 2009].

Evapotranspiration

A wide variety of model approaches for estimating evapotranspiration exist, which

range from simple empirical ones to complex ones including radiative energy bal-

ance. Many researches have focused on remote sensing approaches, in which the

observation of surface temperature and vegetation indices are used for estimation of

evapotranspiration. In this study, we have used data from the following:

• Global Land-surface Evaporation: the Amsterdam Methodology [GLEAM; Mi-

ralles et al., 2011b]

• GLDAS, version 2 [GLDAS2; Rodell et al., 2004b]

• Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis [ERA-Interim; Berrisford et al., 2009, Dee et al., 2011]

• the land-only version of the Modern-Era Retrospective Analysis for Research

and Applications [MERRA Land; Reichle et al., 2011]

• FLUXNET Multi-Tree Ensemble [FLUXNET MTE; Jung et al., 2009, 2010], and

• Moderate Resolution Imaging Spectroradiometer (MODIS) Global Evapotran-

spiration Project [MOD16; Mu et al., 2007, 2011]
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GLEAM, FLUXNET MTE, and MOD16 are evapotranspiration-only products, that is,

they should, in principle, provide the most reliable estimates of global evapotranspi-

ration. GLEAM is based on multi-satellite observations and combines a wide range of

remotely sensed observations within a Priestley–Taylor-based framework [Miralles

et al., 2011b]. In contrast to this multi-satellite approach, MOD16 is based on the

Penman–Monteith method and is derived by combining remote sensing data from

MODIS and global meteorological data [Mu et al., 2007]. The dataset is available in a

very high spatial resolution of 1 km. For this study, we use the coarser 0.5◦×0.5◦ ver-

sion, which is also provided by the data center. The FLUXNET MTE dataset provides

global evapotranspiration by empirical upscaling of eddy-covariance measurements

from the FLUXNET network [Jung et al., 2009].

We also use the evapotranspiration from GLDAS2 (i.e., the Noah3.3 realization) and

MERRA Land. A description of these datasets is given in section Land Surface Models.

Finally, ERA-Interim is a reanalysis model where a global atmospheric model is

assimilated with numerous observations in order to provide reliable estimates of a

wide variety of hydrometeorological and hydrological variables (see section Moisture

Flux Divergence). A comparison of some of these datasets is presented in, for example,

Mueller et al. [2011].

To get an impression of the level of agreement between the different precipitation and

evapotranspiration datasets, the top row in Figure 3.6 shows scatterplots between

the mean annual and seasonal precipitation from GPCC and the other datasets. For

the bottom row, evapotranspiration from MOD16 served as reference.

Water Storage Changes

Water storage changes are computed from GRACE observations of the temporal

gravity field changes. Eight years of GRACE (release 5) data have been used in this

study, and they come from two data processing centers: GeoForschungsZentrum

Potsdam [GFZ; Dahle et al., 2013] and Center for Space Research, The University

of Texas at Austin [CSR; Bettadpur, 2012]. The data are provided as spherical
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FIGURE 3.3: Overview of the amount of runoff observations for every catchment.
Each box corresponds to a single month of a specific catchment. White boxes indicate
that observations are available for that month while gray boxes depict missing data.

harmonic coefficients of the monthly gravity field snapshots. Wahr et al. [1998]

provide the mathematics to invert the monthly snapshots to surface mass anomalies

∆M . According to them, those surface mass anomalies represent anomalies in

water storage over the continental landmasses. For this reason, we will denote the

water storage changes estimated from GRACE as dM/dt. The GRACE data as such

are plagued by a lot of errors, which necessitates further processing prior to their

usage (see section Treating the Errors in GRACE Mass Anomalies in this chapter’s

appendix for details). The postprocessed ∆M are taken on a 0.5◦ × 0.5◦ grid and
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then aggregated over catchments to derive catchment-specific time series. The time

series are then numerically differentiated using three-point central differences to

arrive at the required flux quantity, surface mass changes dM/dt.

In this study, we use three different GRACE-based datasets in order to gain information

on differences between products from different data providers or filtering methods.

Therefore, the GFZ data have been filtered with both a regularization filter (GFZreg;

see section High-Frequency Noise in this chapter’s appendix for details) as well as the

widely used decorrelation (or destriping) filter in combination with a Gaussian filter

(GFZdstr). The data from the CSR have been filtered the regularization filter only

(CSRreg).

Moisture Flux Divergence

Vertically integrated moisture flux divergences can be obtained from global atmo-

spheric reanalysis models. These models are combinations of a numerical model

and an analysis scheme where the numerical model predicts the state of the earth’s

atmosphere, oceans, land surface, and upper soil layers. The analysis scheme, on the

other hand, assimilates a large number of observations into the numerical model.

Because of the very nature of assimilation, the combination of an analysis scheme

forces the estimates to stay both in reasonable physical and numerical bounds, which,

on the flip side, disturbs the model’s interior mass budgets [Trenberth and Fasullo,

2013, Trenberth et al., 2011].

The present-day reanalyses models assimilate nearly 7×106–9×106 observations every

6–12 h, which goes to show their data-intensive nature. These reanalyses usually

cover a period of multiple decades and provide estimates of the most important

hydrological, hydrometeorological, and atmospheric quantities globally. Kalnay et al.

[1996] and Kistler et al., 2001 categorize the gridded variables from reanalyses into

three distinct classes according to the influence of the assimilated observations on

them. The type A variables are mainly influenced by observations (e.g., upper-air

temperatures or horizontal winds). Type B variables are influenced by both the
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observations as well as the model (e.g., surface and 2-m temperatures), while type C

variables are solely derived from the model (e.g., precipitation and runoff).

The vertically integrated moisture flux divergences are derived from horizontal wind

fields—a type A variable—and specific humidity—a type B variable [see Eq. (3.4)].

Therefore, the moisture flux divergence can be assumed to be more reliable and stable

than, for example, modeled evapotranspiration. Here, data from three widely used

state-of-the-art reanalysis models have been used: ERA-Interim; MERRA from the

Goddard Space Flight Center (GSFC), National Aeronautics and Space Administration

[NASA; Rienecker et al., 2011]; and Climate Forecast System Reanalysis [CFSR; Saha

et al., 2010] from the National Centers for Environmental Prediction (NCEP), National

Oceanic and Atmospheric Administration (NOAA).

Land Surface Models

In this study, we also used monthly runoff and evapotranspiration from five different

land surface models driven by the GLDAS [Rodell et al., 2004b] and the MERRA Land

[Reichle et al., 2011]. In contrast to traditional hydrological or land surface models,

these estimates are strongly constrained by observations (similar to atmospheric

reanalyses) in order to provide more reliable estimates of hydrological variables.

MERRA Land is an offline (without atmosphere) rerun of a revised version of MERRA’s

land component, which is forced by the atmospheric reanalysis near-surface fields

(air temperature, wind, and humidity), surface pressure, radiation, and observed pre-

cipitation based on the CPC precipitation product (see section Precipitation). MERRA

Land thus provides a supplemental and improved set of land surface hydrological

fields [Reichle et al., 2011].

GLDAS can be seen as a data assimilation framework, where different land surface

models are combined with satellite- and ground-based observations in order to

improve and constrain the simulated hydrological processes. In particular, the models

currently driven by the GLDAS are the Noah Land Surface Model [Noah LSM; Chen

et al., 1996, Ek, 2003, Koren et al., 1999], the Common Land Model [CLM; Bonan,



Large-scale Runoff from Landmasses 75

1998, Dai et al., 2003, Dickinson et al., 2009], Mosaic [Koster and Suarez, 1996],

and the Variable Infiltration Capacity (VIC) Model [Liang et al., 1994]. These four

realizations are usually referred to as GLDAS1 and share the same forcing datasets:

• meteorological data from the Global Data Assimilation System [GDAS; Derber

et al., 1991]

• downscaled precipitation from the CPC’s Merged Analysis of Precipitation

[CMAP; Xie and Arkin, 1997], and

• satellite-derived downward radiation from the Air Force Weather Agency Agri-

cultural Meteorology Modeling System [AFWA AGRMET; Kopp and Kiess,

1996].

An overview of the different models and model forcings for GLDAS1 is given in

Rodell et al. [2004b]. The first GLDAS2 dataset was recently released and provides

hydrological variables for the period 1948-–2010. This version is currently based on

the Noah3.3 LSM and uses forcing data from the Princeton meteorological forcing

data [Sheffield et al., 2006] only. In this study, we use the total runoff estimates from

the four GLDAS1 and the single GLDAS2 realizations.

It should be noted that these models do not consider a routing scheme for estimating

the runoff (R. H. Reichle 2013, personal communication; M. Rodell 2012, personal

communication). Therefore, integrating fields of surface and subsurface runoff over a

large area on monthly or shorter time scales might lead to inaccuracies in, for example,

peak runoff as varying flow directions and velocities (due to the topography of the

basin) are not considered. As a consequence, the impact of such routing schemes

reduces when considering longer time scales (seasonal and annual). Therefore,

for this study, we have used the modeled monthly runoff as provided by the data

centers without applying any routing scheme in order to analyze the quality of these

estimates on monthly and longer time scales.
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TABLE 3.2: River basins which were used in this study including the respective river
gauge, its location, the area of the basin, and the mean annual discharge as provided

from GRDC.

River Station Lat. Lon. Area [km2] Discharge [m3/s]

1 Amazonas Obidos -1.95 -55.51 4672876 176498

2 Congo Kinshasa -4.3 15.3 3615546 40108

3 Mississippi Vicksburg 32.32 -90.91 2938538 20793

4 Yenisei Igarka 67.48 86.5 2454961 20030

5 Lena Kyusyr 70.7 127.65 2417932 19261

6 Ob Salekhard 66.57 66.53 2926321 12483

7 Tocantins Tucurui -3.76 -49.65 752993 10291

8 Rio Tapajos Fortaleza -6.05 -57.64 366843 9773

9 Mackenzie Arctic Red River 67.46 -133.75 1666073 9707

10 St. Lawrence Lasalle 45.42 -73.62 943769 8106

11 Rio Xingu Altamira -3.22 -52.21 445289 7982

12 Volga Volgograd Power Plant 48.81 44.59 1345070 7778

13 Danube Ceatal Izmail 45.22 28.72 771277 7091

14 Yukon Pilot Station, Ak 61.93 -162.88 819635 6403

15 Columbia Beaver Army Terminal 46.18 -123.18 662542 6102

16 Pechora Oksino 67.6 52.2 304670 5139

17 Nelson Long Spruce Gen. Stat. 56.4 -94.37 1126480 3822

18 Kolyma Kolymskaya 68.73 158.72 421802 3546

19 Severnaya Dvina (N) Ust-Pinega 64.15 41.92 330709 3453

20 Fraser Hope 49.38 -121.45 228874 2533

21 Neva Novosaratovka 59.84 30.53 225651 2473

22 Rhine Rees 51.75 6.4 169706 2096

23 Churchill, Fleuve (Lab.) Above upper Muskrat Falls 53.25 -60.79 86658 1736

24 Stinkine Near Wrangell 56.71 -132.13 52894 1562

25 Yana Ubileynaya 70.75 136.08 220949 1300

26 Susquehanna Conowingo 39.66 -76.18 69694 1288

27 Olenek 7.5 km d/s of mouth of Pur 72.12 123.22 199723 1255

28 Rio Jari Sao Francisco -0.57 -52.57 46355 1208

29 Albany Near Hat Island 51.33 -83.84 97926 1154

30 Kuskokwim Crooked Creek 61.87 -158.1 82074 1145

31 Rio Araguari Porto Platon 0.71 -51.44 21630 1050

32 Thelon below outlet of Schultz Lake 64.78 -97.05 171346 912

33 Skeena Usk 54.63 -128.43 31555 886

34 Tombigbee Coffeeville 31.76 -88.13 51622 854

35 Paraiba do Sul Campos - Ponte Municipal -21.75 -41.3 60146 728

36 Hayes (trib. Hud. Bay) Below Goods River 56.43 -92.79 97802 707

37 Mezen Malonisogorskaya 65.03 45.62 54125 693

38 Don Razdorskaya 47.54 40.65 378180 669

39 Moose (trib. Hud. Bay) Above Moose River 50.74 -81.46 91157 661

40 Peel (trib. Mackenzie) Above Fort McPherson 67.25 -134.88 63040 661

41 Glama Langnes 59.61 11.12 38534 658

42 Elbe Neu Darchau 53.23 10.89 134037 645

Continued on next page
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Table 3.2 – Continued from previous page

River Station Lat. Lon. Area [km2] Discharge [m3/s]

43 Apalachicola Near Sumatra 29.95 -85.02 57546 633

44 Rio Capim Badajos -2.51 -47.77 37004 615

45 Vuoksi Tainionkoski 61.22 28.78 66393 612

46 Rio Parnaiba Luzilandia -3.45 -42.37 297049 606

47 Conneticut Thompsonville 41.99 -72.61 24596 590

48 Anabar Saskylakh 71.98 114.06 79786 578

49 Kemijoki Isohaara 65.78 24.55 53763 543

50 Winisk Below Ashweig River Trib. 54.52 -87.23 84526 535

51 Goeta Aelv Vargoens KRV 58.36 12.38 48265 530

52 Daugava Daugavpils 55.88 26.53 61576 501

53 Lule Bodens KRV 65.81 21.67 22885 497

54 Churchill Above Red Head Rapids 58.12 -94.63 299391 489

55 Rio Gurupi Alto Bonito -1.8 -46.32 33933 473

56 Angermanaelven Solleftea KRV 63.17 17.27 33376 467

57 Nemunas - Neman Smalininkai 55.08 22.58 89806 458

58 Klamath Near Klamath 41.51 -124.0 36896 451

59 Kazan Above Kazan Falls 63.65 -95.85 40945 450

60 St. Johns Jacksonville 30.32 -81.67 27007 427

61 Seal Below Great Island 58.89 -96.28 49662 397

62 Potomac Near Washington, D.C. 38.95 -77.13 31151 380

63 Daly Mount Nancar -13.83 130.74 44883 357

64 Altamaha Doctortown 31.66 -81.83 33706 346

65 Weser Intschede 52.96 9.13 36293 311

66 Kymi Anjala 60.7 26.82 33195 281

67 Rio Jequitinhonha Itapebi -15.95 -39.52 65067 274

68 Bolshoy Anyuy Konstantinovo 68.15 161.17 50025 272

69 Savannah Near Clyo 32.53 -81.27 23055 268

70 Oulujoki Meriskoski 65.02 25.52 26517 259

71 Mitchell Koolatah -15.95 142.38 44381 247

72 Brazos Richmond 29.58 -95.76 106914 243

73 Rio Pindare Pindare-Mirim -3.66 -45.46 33895 237

74 Pee Dee PeeDee 34.2 -79.55 22686 236

75 Suwannee Near Bell 29.79 -82.92 21279 233

76 Trinity (Texas) Romayor 30.43 -94.85 44365 225

77 Thlewiaza Above outlet Sealhole Lake 60.79 -98.78 53705 219

78 Rio Itapecuru Cantanhede -3.63 -44.38 58451 213

79 Sabine Near Ruliff 30.3 -93.74 23626 195

80 Victoria Coolibah Homestead -15.56 130.96 44380 191

81 Fitzroy (west Australia) The Gap -23.09 150.11 126986 190

82 Roper Red Rock -14.7 134.42 50687 188

83 Fitzroy (east Australia) Fitzroy Crossing -18.21 125.58 44147 144

84 Orange Vioolsdrif -28.76 17.72 828475 104

85 Rio Mearim Bacabal -4.22 -44.77 27688 102

86 San Joaquin Near Vernalis 37.68 -121.27 29459 97

87 Murray Overland Corner -34.17 140.28 1022767 88

Continued on next page
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Table 3.2 – Continued from previous page

River Station Lat. Lon. Area [km2] Discharge [m3/s]

88 Tugela Mandini -29.14 31.39 29848 76

89 Rio Jaguaribe Peixe Gordo -5.23 -38.2 55288 56

90 Gilbert Rockfields -18.2 142.88 32248 53

91 Rio Prado Mascote -15.56 -39.31 38733 52

92 De Grey Coolenar Pool -20.31 119.25 51695 33

93 Colorado (Pacific) At Yuma 32.73 -114.63 636508 29

94 Rio Itapicuru Usina Altamira -11.74 -37.8 36421 22

95 Nueces Calallen 27.88 -97.63 43371 16

96 Groot-Vis Matolemas Location Out. -33.24 27.0 28741 11

Results and Discussion

Performance Metrics

We compare the time series of runoff estimates from GRACE-based approaches with

the observed runoff. To get a holistic understanding, we also compare them with the

estimates from hydrological models and the runoff–precipitation ratio method. Such

an analysis should provide us a balanced view on the utility of the GRACE-based

estimates in terms of already available global-scale alternatives. In the current setup,

we use the following three metrics to carry out our evaluation: correlation coefficient,

percentage bias [PBIAS; Gupta et al., 1999] and Nash-Sutcliffe efficiency (NSE)

coefficient [Nash and Sutcliffe, 1970].

The correlation coefficient quantifies the level of common information content be-

tween observed and estimated runoff, although, as is well known, it is insensitive to

the amplitude and the mean value. For the correlation analysis, we only show corre-

lations above 0.25, which is approximately the 5 % significance level with respect to

60 samples (i.e., 5 years of data). The PBIAS,

PBIAS =

T
∑

t = 1

�

Rt,obs − Rt,est

�

T
∑

t = 1
Rt,obs

= 1 −
Rest

Robs

, (3.13)
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on the other hand, gives precisely this information about the relative difference

between the long-term mean of the observations Robs and estimates Rest. Finally,

correlation and PBIAS are summarized by the NSE coefficient:

NSE = 1−

T
∑

t = 1

�

Rt,obs − Rt,est

�2

T
∑

t = 1

�

Rt,obs − Robs

�2
. (3.14)

The NSE is a conservative quantity, and it is highly sensitive to the overall agreement

between the observations and estimates: phase, amplitude, and mean. It ranges

between −∞ and 1, where a value of 1 indicates that the estimated and observed

runoff agree in terms of all the three variables mentioned above. Further, the NSE

can be treated as relative imbalance at monthly scales for the Rhyd and Ratm methods

as it involves the scaled mean of the monthly squared error.

Notes on the Interpretation of the Results

The sheer number of combinations, due to the choice of multiple datasets for each of

the budget components, forms an ensemble that helps to provide a broad overview

of the approach in hand, but also makes the assessment a little cumbersome. The

contributing datasets are shown in Figure 3.7 together with a color code. The

performance of the different approaches and data combinations at the monthly time

scale is summarized in Figures 3.8, 3.11, and 3.12. The upper part of these figures

collects the values of the performance metrics into a matrix, where each cell denotes

the individual performance values for each catchment and each estimate separately.

In other words, each row of the matrix provides an overview of the performance

of different combinations for a particular catchment, and each column provides an

overview for a particular combination. The lower part summarizes each column of

the matrix by sorting the performance metric values within prescribed intervals. The

color scales in these matrices have been chosen in such a manner that darker colors

indicate better performance and lighter colors indicate poorer performance. The
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FIGURE 3.4: Mean annual cycle of the different budget quantities. The precipitation
bands are derived from the maximum and minimum estimates of GPCC, GPCP, CRU,
DEL, and CPC while the evapotranspiration bands are given by GLDAS, ERA-Interim,
GLEAM, MERRA Land, MODIS, and FLUXNET MTE. Water storage changes, moisture
flux convergences (i.e., negative divergences), and runoff are taken from the CSRreg,

ERA-Interim, and GRDC dataset, respectively.

datasets of a single combination can be identified with the aid of the color code and

the legend (Figure 3.7).
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FIGURE 3.5: As in Figure 3.4, but for catchments 50–96.

Runoff from Terrestrial Water Budget: Rhyd

The runoff estimates from the terrestrial water budget equation is the largest group

of the four different runoff estimates compared here. This is obvious because the

runoff estimates from the terrestrial water balance equation require three inputs:

precipitation, evapotranspiration, and water storage change. The performance metric

PBIAS (Figure 3.8) shows a random behavior with no data combination providing an

outright good performance consistently over all the catchments. However, for some

catchments (Amazonas, Rio Tapajos, and Rio Jari) Rhyd provides consistently good
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PBIAS values (≤ 25 %). Also, for most of the catchments (≈ 60) there is at least one

data combination that provides a PBIAS value of nearly zero (see Figure 3.9). In

other words, there is at least one data combination that provides a reliable mean

runoff value for most of the catchments. In all this, the MERRA Land dataset performs

consistently poorly except when it is combined with GPCP (see stacked bars in Fig-

ure 3.8). The possible reason could be that GPCP is the wettest of all the precipitation

datasets and MERRA Land is the wettest of all the evapotranspiration datasets (see

Figure 3.6), and therefore their biases get canceled out. But when combined with

the other datasets, the bias in MERRA Land becomes visible. Similarly, GPCP does

not perform very well when combined with MOD16 and FLUXNET MTE, while other

precipitation datasets perform very well with them. The other interesting feature

of the PBIAS matrix is the consistently poor performance in the Arctic catchments

(Yenisei, Lena, Ob, Yukon, Thelon, Anabar, Kazan, Mackenzie, Kolyma, Churchill,

Yana, Luleaelven, Olenek, Kuskokwim, and Peel), where there is a substantial un-

derestimation of the runoff values (also see Figure 3.10). However, we also observe

that in these catchments the data combinations that involve GPCP are relatively well

behaved. This better performance might be due to the gauge undercatch correction

performed in the GPCP dataset, which provides higher values for the precipitation

values in the Arctic catchments.

In contrast to PBIAS, the correlation matrix (Figure 3.11), though random to an

extent, shows a homogeneous picture. In nearly 50 % of the catchments, the corre-

lation values are consistently more than 0.5 irrespective of the data combination,

which demonstrates that most of the data combinations capture the dynamics of

the catchment runoff to a large extent. Further, the Arctic and tropical catchments

provide strong correlations with many data combinations, having a correlation up-

ward of 0.75. Some catchments, however, show strong dependency on the data

combination (e.g., Mackenzie and Bolshoy Anyuy provide very good correlation

when using data combinations involving GLDASNoah3.3). Similarly, the tropical catch-

ments are strongly influenced by the choice of precipitation dataset, where the best

performance is given by the use of GPCC and GPCP. As in the case of PBIAS, the

MERRA Land dataset produces the lowest correlation values. Lowest correlations
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FIGURE 3.6: Scatter plots between the different datasets of precipitation and evap-
otranspiration over the study regions with respect to GPCC (precipitation) and
FLUXNET MTE (evapotranspiration). The first three columns show three different
time scales: Long-term annual mean, winter-mean, and summer-mean. The tropical
catchments are removed from these scatter plots. The winter-mean was derived
from the average of DJF for the northern hemisphere catchments and JJA for south-
ern hemisphere catchments. Similarly, depending on the hemispherical location
of the catchments, their respective summer months were used for computing the
summer-mean. The fourth column shows the long term mean for the 25 tropical

catchments.

are also found in catchments (e.g., St. Lawrence, Neva, Don, Vuoksi, San Joaquin,

Orange, Murray, and Colorado) where the runoff does not have a clear seasonal cycle

and is constant throughout the year. These catchments are affected by the biases

and errors in the datasets, which produce short-term artifacts, thus reducing the

correlation with observed runoff data (see supplemental material). An interesting

aspect of Figure 3.11 is the influence of the choice of GRACE dataset in the Arctic

catchments (e.g., Yenisei, Ob, Pechora, Yana, Anabar, Stinkine, and Peel). The reason

for the influence of the water storage dataset is that there is a clear time shift between

precipitation and evapotranspiration in the Arctic catchments (see supplementary

material), and therefore, the water storage changes have an important role to play

in the runoff estimation. Nevertheless, it should also be noted that there is no single

GRACE dataset that consistently performs well in all of the Arctic catchments. This
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FIGURE 3.7: Legend for the color codes in Figures 3.8, 3.11, and 3.12.

is also corroborated by the histograms in Figure 3.13.

NSE, as mentioned before, summarizes the PBIAS and correlation metrics, where

a data combination should have less bias, and also must capture the dynamics of

the catchment runoff. It is clearly evident that no data combination fulfills the

twin requirements over all the catchments (see Figure 3.12). The Amazonas is the

only catchment that provides a value of more than 0.75 and also only for select

combinations. For example, the combinations involving CPC do not even produce a

positive NSE value. Some reasonable (positive) values are provided by Rio Tapajos,

Rio Xingu, Pechora, Severnaya Dvina, Stinkine, Tombigbee, Mezen, and Anabar over

a variety of data combinations. Interestingly, many of these catchments are quite

small (see Table 3.1) and are considered indiscernible by the GRACE mission. In

spite of this optimism, Figure 3.12 clearly demonstrates that the current status of

global hydrological datasets does not allow a reasonable estimation of runoff globally.

The main weakness of these datasets is the biases in the individual datasets, which

limit the ability of the terrestrial water budget equation to estimate runoff.

To study any missing patterns in the matrix plots, we also study the impact of a

particular dataset in all the data combinations in which it was involved. This was

carried out via histogram analysis as shown in Figure 3.13. The histogram clearly

shows that for all the datasets involved in the Rhyd approach, nearly 40 % of the

dataset provides a correlation of more than 0.5, but only 30 % of the datasets have a

relative bias of less than 25 %. This again confirms that the major problem of the

Rhyd method lies in the biases in the individual datasets. Further, these histograms

also indicate that CPC precipitation and MERRA Land evapotranspiration do not

provide good estimates as they consistently perform poorly in all three metrics. The
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FIGURE 3.8: PBIAS for the 96 study regions between observed and estimated runoff.
A guide line on how to read the figure is given in section Notes on the Interpretation

of the Results while the color codes can be identified with Figure 3.7.
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FIGURE 3.9: Box-plot showing the relative water cycle imbalance with respect to
the observed mean annual runoff. The lower and upper bounds of the gray boxes
depict the 25th and 75th percentile of the 90 ensemble members of Rhyd while the
line within the boxes shows the median imbalance. The blue (red) dots are the
minimum imbalances from Rhyd (Ratm). The background colors indicate arctic (blue)
and tropical (green) catchments. The arctic catchments have been chosen according
to the entries in the ArcticRIMS database. For the tropical regimes, we have selected

the basins within −23.5◦ and +23.5◦ latitude.

GRACE datasets differ predominantly in the way they help capture the dynamics, but

not otherwise. The biggest differences between the datasets of one variable is seen

in evapotranspiration, where GLDASNoah3.3, MOD16, and FLUXNET MTE perform

consistently good in all three metrics.

Runoff from Atmospheric Water Budget: Ratm

The Ratm approach uses only two data sources, and therefore, we can expect a better

performance when compared with Rhyd as there is one less source of potential errors.

However, the PBIAS values from Ratm (Figure 3.8) show a similar random behavior

like the estimates from Rhyd. Also, the number of catchments with PBIAS values

≤ 10 % is similar compared to Rhyd (see stacked bars in Figure 3.8). On the other
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FIGURE 3.10: As in Figure 3.9, but for the absolute water cycle imbalance with
respect to the observed mean annual runoff.

hand, there are slightly more catchments with bias values between 10 and 25 %,

which is mainly due to a better performance over Arctic catchments (e.g., Yenisei,

Lena, Ob, Kuskokwim, and Thelon). Here, while Rhyd tends to underestimate runoff

(cf. blue and orange dots in Figure 3.10), Ratm shows a better water budget closure

with remaining relative imbalances of less than 25 %. As many precipitation datasets

suffer from an underestimation of precipitation in high-latitude regions [e.g., due to

gauge undercatch errors; Lorenz and Kunstmann, 2012], moisture flux divergences

might be more reliable than those derived from precipitation and evapotranspiration

over these regions. Of the three moisture flux divergence datasets, ERA-Interim

and MERRA show a similar overall performance while CFSR reaches PBIAS values

(≤ 25 %) over less than 30 catchments, indicating large biases in the reanalysis

model.

In terms of correlation (Figure 3.11), Ratm shows slightly worse results than the

best combinations from Rhyd. However, there are still about 45 catchments where

moisture fluxes from ERA-Interim and MERRA reach correlations ≥ 0.5, indicating
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FIGURE 3.11: Correlation for the 96 study regions between observed and estimated
runoff.
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FIGURE 3.12: Nash-Sutcliffe Efficiency coefficient for the 96 study regions between
observed and estimated runoff.
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reasonable dynamics in the runoff estimates from these combinations (see stacked

bars in Figure 3.11). Even if the better results over Arctic basins are not visible

in the correlation matrix, there are still some catchments where Ratm shows higher

correlations than Rhyd (e.g., Volga, Columbia, and Conneticut).

Finally, the matrix showing the NSE values (Figure 3.12) reveals that the combinations

using moisture fluxes from ERA-Interim and MERRA perform slightly better than the

Rhyd-estimates. Positive NSE values can be observed over at lest 15 catchments, while

there are only 8 catchments with values ≥ 0.5 (see stacked bars in Figure 3.12). The

matrix shows that Ratm provides better results mainly over Arctic catchments (e.g.,

Yenisei and Yana). Here, all combinations (except for these using CFSR moisture

fluxes) reach values greater than 0.5, which indicates good agreement with the runoff

observations.

The histograms (bottom row in Figure 3.13) confirm the similar performance of

moisture fluxes from ERA-Interim and MERRA and the significant biases in the CFSR

dataset. Over roughly 50 % of all the Ratm combinations and catchments involving

moisture fluxes from ERA-Interim, correlations ≥ 0.5 with respect to observed runoff

can be observed. In terms of PBIAS, MERRA has slightly more data points with biases

≤ 50 %. Finally, the NSE shows that there is no superior data source of moisture flux

divergences as both ERA-Interim and MERRA reach values between 0 and 0.5 (0.5

and 0.75) over about 10 % (8 %) of the data points.

Runoff from Land Surface Models: Rmod

In terms of PBIAS (Figure 3.8), the Rmod estimates from GLDASCLM and GLDASNoah3.3

show lower biases than the other land surface models. However, compared with Rhyd

and Ratm, the models seem to suffer from some large biases over many catchments.

For large basins like Amazonas this can be partly explained with the lack of a routing

scheme which denies the correct estimation of peak-runoff and thus creates large

differences with respect to the observations. However, even over these large basins,

there are single models which show PBIAS values ≤ 10% (e.g., GLDASNoah3.3 over
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single dataset (e.g., 96 catchments times 18 combinations using GPCC precipitation

= 1728 data points)
.

Amazonas and Volga or GLDASCLM over Congo). This indicates that the lack of

a routing scheme cannot fully explain the large deviations from the observations.

Interestingly, even if GLDASCLM, GLDASMosaic, GLDASNoah2.7, and GLDASVIC are driven

by the same forcing data, the PBIAS shows some significant scattering as there is
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not a single catchment where all these models perform consistently good. Overall,

GLDASMosaic and GLDASVIC show the largest biases with values smaller than 50 %

over less than 40 catchments (see stacked bars in Figure 3.8).

In contrast to the PBIAS analysis, the correlations between Rmod and the observations

draw a much more homogeneous picture (Figure 3.11). There are many catchments

with correlation values greater than 0.5 from all models. This holds true for large

catchments (e.g., Mississippi, Volga, and Danube) but also for very small basins

with low discharge (e.g., Rio Mearim, Gilbert, or Rio Prado). Thus, there is no

dependency on a catchment’s area or mean discharge, if land surface models are able

to provide reasonable runoff dynamics. This performance is even more impressive

when compared with the results from Rhyd and Ratm as most land surface models

show correlations of at least 0.5 (0.75) over 60 (30) and more catchments. Moreover,

Rmod perform quite well over regions where Rhyd and Ratm do not capture the runoff

dynamics. These are either catchments where runoff has a much smaller amplitude

compared to the other water cycle variables (e.g., Mississippi, Volga, Rhine, Don,

and Neman) and/or no clear distinct annual cycle in precipitation (e.g., Rhine, Don,

Daugava, Neman, Potomac, Altamaha, Weser, or Savannah). In these cases, the

biases of the data sources of precipitation and evapotranspiration create short-term

variations that result in low correlation values.

The NSE matrix (Figure 3.12) shows a similar performance of Rmod and Rhyd. However,

the two methods often succeed in totally different catchments. Especially over

smaller catchments with low discharge, Rmod seems to provide reasonable runoff

estimates (e.g., Potomac, the western Fitzroy, Victoria, or Tugela). Here, we see a

very good agreement in the time series between the observed and estimated runoff.

Furthermore, there are several catchments where most of the Rmod estimates provide

NSE values greater than 0 (e.g., Tombigbee, Klamath, or Victoria) which should give

evidence in the reliability of the modeled runoff in these regions.
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winter averages (second and third row), and mean annual runoff over the tropical
catchments (fourth row). Each dot represents a single catchment. The x-values
are given by the GRDC-observations while the y-values are derived from the four
approaches best possible combinations for each catchment individually in terms
of the PBIAS. The summer means are computed from the JJA-averages over the

northern and the DJF-averages over the southern hemispheric catchments.

Runoff from Precipitation-Runoff Ratio: Rpr

The rudimentary approach based on precipitation-runoff ratio is by far the most

bias-free approach with more than 45 (75) catchments that provide a PBIAS value

of less than 10 % (25 %; see stacked bars in Figure 3.8). Surprisingly, these values

hold well irrespective of the precipitation dataset being used. Nevertheless, this
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method also fails in some catchments (St. Lawrence, Nelson, Churchill, Vuoksi, Rio

Jequitinhonha, Suwanee, Orange, Murray, De Gray, and Rio Prado), wherein there

is not a clear relationship between precipitation and runoff. The correlation values

(Figure 3.11) also demonstrate that the Rpr method captures the dynamics accurately,

leading to a very good performance. Here again the choice of the precipitation

dataset does not matter at all for performance of the method as nearly 60 catchments

provide a correlation of more than 0.75. The catchments that returned poor PBIAS

values also perform poorly in terms of correlation. The NSE values (Figure 3.12)

paint the same picture as PBIAS and correlation values. However, the CPC dataset

performs relatively worse than the other precipitation datasets. In spite of this, the

Rpr method performs the best of all the methods analyzed here.

This method is successful in catchments where there is a strong annual cycle (cyclo-

stationarity) in both the precipitation and runoff datasets, which directly translates

into a strong relationship in the P − R ratio. This method fails when the runoff has a

nonstationary behavior (e.g., see the time series of Nelson, St. Lawrence, or Vuoksi

in the supplemental material), thus resulting in a lack of relationship in said ratio.

Another interesting attribute of this method is that the ratio absorbs the biases in

the precipitation datasets: the higher the biases, the smaller the ratio and vice versa.

Although the P − R ratio deals only with the stable relationship between runoff and

precipitation, it implicitly demands the stability of the other two components of

the water cycle: evapotranspiration and water storage change. For example, it is

precisely because of the instability in water storage change that the method fails in

catchments like St. Lawrence and Nelson, where the precipitation and evapotranspi-

ration have a very strong annual cycle. Therefore, it can be said that the influence of

evapotranspiration and water storage change is implicit in the P − R ratio.

A theoretical advantage of Rhyd and Ratm over models (without routing) and Rpr is

that anthropogenic influences should not play a role when considering the level

of agreement with respect to GRDC. As the predictions of Rpr are based on the

mean monthly runoff-precipitation-ratio, anthropogenic effects have to be treated

separately, or, more precisely, those effects cannot be taken into account when no
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runoff observations are available. However, we could not detect a better performance

of the budget approaches compared to Rpr and Rmod over such catchments.

Water Budget Closure

As Rhyd and Ratm are based on the terrestrial and atmospheric-terrestrial water balance,

they enable us to study the water budget (mis)closure at different time scales. The

PBIAS value, which contains the mean of the differences between the observations

and the estimates, provides the relative long-term imbalance of the water budget

from these two methods. This can be expressed as follows:

PBIAShyd =

T
∑

t = 1

�

Rt,obs − Rt,hyd

�

T
∑

t = 1
Rt,obs

=

T
∑

t = 1
δt,hyd

T
∑

t = 1
Rt,obs

=
δhyd

Robs

, (3.15)

similarly,

PBIASatm =
δatm

Robs

. (3.16)

At the annual scale, for almost all of the catchments, there is at least one data

combination from either method that enables us to close the water budget (cf.

Figure 3.10 and annual mean and tropics of Rhyd and Ratm in Figure 3.14), but as

mentioned in section Runoff from Terrestrial Water Budget: Rhyd, the data combination

differs from catchment to catchment. It is also clear that the Rhyd method, despite

dealing with biases from three water balance equation variables, is able to close

water budget better than the Ratm method (except for the Arctic catchments). This is

conspicuous, especially in the tropics. The PBIAS values also show huge imbalances

for the low discharge catchments (bottom part of Figure 3.8), but care must taken to
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FIGURE 3.15: Contribution of water storage changes from the three GRACE datasets
to the long-term water budget over the 96 study regions. The circles show the
absolute contribution in units of [mm/year] while the stars depict the relative

contribution with respect to the mean annual runoff.

interpret these values. In these catchments, the imbalances are effectively divided

by values close to zero, and therefore, those PBIAS values end up being orders of

magnitude higher than for the catchments with significant runoff (catchments on

the right-hand side in the bottom rows of Figures 3.9 and 3.10). To this end we also

look at the absolute water budget imbalance.

Each of the data sources of precipitation, evapotranspiration, water storage changes,

and moisture flux divergences might be biased over certain regions and must thus

be considered as a potential source of errors. In some cases, such biases can get

canceled out when computing Rhyd or Ratm, leading to random errors which scatter

around zero. This is the case for catchments like Rio Tapajos, St. Lawrence, Rio Jari,

Tombigbee, or even small basins like San Joaquin (Figure 3.10). In these cases, the

scattering gives information on the uncertainty level of the water cycle variables.

Over most catchments, however, either a positive or negative bias for most combi-

nations can be observed. This indicates general shortcomings in the current quality
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of the different water cycle variables. Most obviously, this can be observed for the

Arctic (tropical) catchments, where the majority of Rhyd combinations consistently

tend to underestimate (overestimate) runoff (Figure 3.10).

The main reason for these heavily biased runoff estimates can be assumed to originate

from uncertainties in the precipitation and evapotranspiration datasets. According

to Figure 3.15, there is no clear contribution of water storage changes from GRACE

to the catchments showing large remaining imbalances. For example, for Tocantins,

where Rhyd is significantly overestimated, the GRACE datasets show an increase

of water storage of less than 10 mm/year. The same holds true for several Arctic

catchments (e.g., Yenisei or Lena). In general, the total annual water storage as

depicted by GRACE is less than ±50 mm/year for all catchments, but for most of

the catchments, the total annual water storage values are within ±25 mm/year.

Therefore, for majority of the analyzed catchments, as GRACE does not contribute a

lot to the imbalances, the biases in the precipitation and evapotranspiration datasets

contribute heavily to the over- and underestimation.

At the monthly time scales, use can be made of the NSE to study the water budget

closure because it contains the mean squared error (mse) of estimates with respect

to the observations in the numerator and the variance of the observations in the

denominator. Thus, it is the normalized mean squared error of the estimates:

NSE = 1−

T
∑

t = 1

�

Rt,obs − Rt,est

�2

T
∑

t = 1

�

Rt,obs − Robs

�2
, (3.14)

MSE =
1
T

T
∑

t = 1

�

Rt,obs − Rt,est

�2
, (3.17)

σ2
obs =

1
T

T
∑

t = 1

�

Rt,obs − Robs

�2
, (3.18)

∴ NSE = 1−
MSE
σ2

obs

, (3.19)

where σ2
obs is the variance of the observed runoff. Like PBIAS, when the catchment

runoff is close to zero, the NSE values become bloated. Nevertheless, the closure
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at monthly time scales is far from being acceptable. Only around 15 catchments

provide a positive value (Figure 3.12), which clearly indicates that the datasets are

not mature enough to close the water balance at monthly time scales.

Summary and Conclusions

In this contribution, we have estimated runoff from water balance equations mainly

using GRACE water storage changes. A wide variety of hydrological and hydromete-

orological datasets have been used to arrive at the runoff estimates. The estimates

were then compared to observed runoff. This was only possible in about 96 catch-

ments because of the limited time span of the GRACE dataset and the limited data

availability and large data gaps in the GRDC database. To quantify the estimates

holistically, we included runoff estimates from sophisticated hydrological land sur-

face models and an empirical model involving the ratio between precipitation and

runoff in the analysis. The evaluation of the estimates was carried out using three

performance metrics, namely, PBIAS, correlation coefficient, and NSE.

Based on the assessment, the following conclusions are drawn.

1. Overall, the estimates from the precipitation–runoff ratio, though being a

simple method, provide by far the best results when compared to the budget-

based methods and the land surface models. This also implies that for most

catchments, the impact of evapotranspiration and water storage changes on

runoff underlies a stable annual cycle, which remains constant from year to year.

However, the method can only succeed when the monthly relationship between

runoff and precipitation remains constant over the years. For catchments

with more or less random time series of precipitation or runoff, no stable

precipitation–runoff ratio can be derived. For such catchments, the member of

Rpr showed consistently bad results.

2. In the water-balance-based estimates, there is no combination of datasets

that is consistently standing out as the best, and there is also no combination
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that behaved consistently over different catchments. In particular, the PBIAS

analysis shows highly variable results from the Rhyd and Ratm estimates. The

results further indicate that Rhyd tends to underestimate (overestimate) runoff

over Arctic (tropical) catchments. For Arctic catchments, however, Ratm shows

better PBIAS values. As a consequence, the quality of different data sources of

precipitation, evapotranspiration, water storage changes, and moisture fluxes

differ significantly from catchment to catchment. The analysis further shows

that the PBIAS is very sensitive to the choice of a member of the Rhyd-ensemble.

3. This indicates that one cannot extrapolate the performance of a combination

or method to other basins without thorough validation. To a certain extent,

this holds also true for the estimates from the precipitation-runoff ratio. Per-

formance of combinations thus requires scrutiny over individual catchments.

This also has strong implications for the regionalization of these estimates to

adjacent catchments.

4. The estimates from Rhyd and Ratm perform well in catchments where the runoff

exhibits a strong annual cycle combined with a large volume of runoff. Over

such catchments, most combinations reach correlations of at least 0.75. Basins

where the magnitudes of the variations in the time series of runoff are far below

the other water cycle variables suffer from biases in the different data sources

of precipitation, evapotranspiration, water storage changes, and moisture flux

divergences. These biases create short-time variations, which deny a reasonable

estimation of runoff.

5. Further, the water-balance-based methods are reliant on GRACE datasets,

which are reported to be of inferior spatial resolution compared to the other

datasets used here. In spite of this shortcoming, the Rhyd estimates still provide

good performance in small catchments, but only those with a strong annual

cycle. Moreover, the different GRACE datasets show significantly different

results in catchments with a time shift between peak runoff, precipitation, and

evapotranspiration. In these cases, GRACE has to take care of the water storage

and thus has a major influence on the performance of the Rhyd estimates.
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6. For most catchments, there is still a significant relative water budget imbalance

with respect to the mean runoff. The majority of combinations from Rhyd

suffers from a remaining imbalance of more than 25 % over many basins.

However, over most catchments, there is at least a single combination which

leads to a relative imbalance close to 0 % indicating a reasonable water budget

closure. Moreover, over several catchments, the absolute imbalance scatters

around zero. Here, the water budget residual can be assumed to be randomly

distributed between the different combinations of Rhyd. This emphasizes the use

of ensemble-based methods for analyzing the water cycle over such catchments.

7. The models performed comparatively poorly when compared with the other

approaches. A reason for this might be due to the lack of a routing scheme.

However, even on annual time scales, significant biases could be observed when

compared with the observations. It could be also detected that over several

catchments, modeled runoff might show a significant time lag. However, this is

again not consistent throughout all the study regions, which makes it inevitable

to evaluate such data sources both in the individual catchments and also

globally.

In general, none of the analyzed methods is able to provide reasonable runoff

estimates globally. There are, however, several regions where the independent

estimates from Rhyd, Ratm, and Rmod are able to successfully reproduce observed runoff.

But as the data combinations and models that perform well differ from catchment to

catchment, we cannot rely on a single dataset for analyzing the basin-scale water

cycle. Therefore, there is still an urgent need for in situ observations of the major

water cycle variables, which are mandatory for further necessary improvements of

global hydrological datasets.
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Appendix

Treating the Errors in GRACE Mass Anomalies

The major sources of errors in the GRACE data are aliasing of residual tidal signal

[Seo et al., 2008], poor estimates of C20 coefficient [Chen et al., 2005], and high-

frequency noise in the spherical harmonic coefficients due to orbit geometry [Kusche

et al., 2009]. These errors are treated at the spherical harmonic coefficient level.

Tidal Residuals

The tidal residuals alias frequencies that depend on the orbit geometry of GRACE,

sampling rate of GRACE and the natural frequency of the corresponding tides, which

enables them to be modeled and removed from the signal to a large extent. This
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is accomplished by performing a least squares spectrum analysis on the residuals

of GRACE temporal geoid anomalies, which are obtained after removing the mean

annual behavior The mean annual behavior is computed by taking the average of the

twelve calendar months as is done for the precipitation-runoff ratio (3.8) [see Tourian

et al., 2011, for the efficacy of this method]. The spectral analysis is performed only

for select tidal frequencies: M1, S1, S2, P1, Q1, O1 and N2. The estimates of the aliased

frequencies are subsequently subtracted from the residuals of the spherical harmonic

coefficients, which are then added back to the mean annual behavior to obtain the

corrected monthly anomalies.

Erroneous C20 Coefficients

The erroneous C20 coefficients are replaced with those estimated from Satellite Laser

Ranging (SLR) in the case of the CSR monthly solutions as suggested by Cheng and

Ries [2013]. However, the C20 coefficients in the GFZ monthly solutions are used

as it is as they are well-behaved. This is due to the use of EIGEN-6C gravity field

model as a background model in the processing scheme [Dahle et al., 2013], which

includes data from GRACE, GOCE, and LAGEOS (SLR) satellites and also data from

airborne and terrestrial gravimetry.

High-Frequency Noise

The high-frequency noise in the spherical harmonic coefficients manifest themselves

as stripe-like patterns in the spatial domain. This is dealt with by filtering, and

here, we apply two methods of filtering: decorrelation filter in combination with

a Gaussian filter with a filter radius of 350 km [Swenson and Wahr, 2006], and

regularization filter as proposed by Kusche [2007], but with certain modifications.

The modifications are that while Kusche [2007] computes the signal covariance from

a combination of different models, we compute the signal covariance from the GRACE

data itself as described by Sasgen et al. [2006]; and Kusche [2007] uses stationary

signal and noise covariances, whereas we use cyclo-stationary signal covariances and
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non-stationary noise covariances. For the GFZ dataset, standard deviations of the

spherical harmonic coefficients are provided, which were used for the simulation of

noise covariances. The standard deviations for the CSR dataset are not provided,

and therefore, we have used standard deviations from release 4 dataset for the noise

covariance simulation.





Chapter 4

Article III: Estimating Runoff Using Hydro-

Geodetic Approaches

Sneeuw, N., C. Lorenz, B. Devaraju, M. J. Tourian, J. Riegger, H. Kunstmann, and

A. Bárdossy, 2014: Estimating Runoff Using Hydro-Geodetic Approaches, Surveys in

Geophysics, 35, 1333–1359, doi: 10.1007/s10712-014-9300-41

Abstract

Given the continuous decline in global runoff data availability over the past decades,

alternative approaches for runoff determination are gaining importance. When

aiming for global scale runoff at a sufficient temporal resolution and with homoge-

neous accuracy, the choice to use spaceborne sensors is only a logical step. In this

respect, we take water storage changes from the Gravity Recovery and Climate Exper-

iment (GRACE) and water level measurements from satellite altimetry, and present a

comprehensive assessment of five different approaches for river runoff estimation:

hydrological balance equation, hydrometeorological balance equation, satellite al-

timetry with quantile function based stage-discharge relationships, a rudimentary

instantaneous runoff-precipitation relationship, and a runoff-storage relationship

that takes time-lag into account. As a common property these approaches do not

1©With kind permission from Springer Science and Business Media.
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rely on hydrological modeling; they are either purely data driven or make additional

use of atmospheric reanalyses. Further, these methods, except runoff-precipitation

ratio, use geodetic observables as one of their inputs, and therefore, they are termed

hydro-geodetic approaches. The runoff prediction skill of these approaches are vali-

dated against in situ runoff and compared to hydrological model predictions. Our

results show that catchment-specific methods (altimetry and runoff-storage relation-

ship) clearly outperform the global methods (hydrological and hydrometeorological

approaches) in the six study regions we considered. The global methods have the

potential to provide runoff over all landmasses, which implies gauged and ungauged

basins alike, but are still limited due to inconsistencies in the global hydrological and

hydrometeorological datasets that they use.

Introduction

Against the backdrop of global change, both in terms of climate and demography,

there is an increasing need for monitoring global water cycle. Recognizing this need

a number of initiatives have been taken in the recent decades to monitor the global

water cycle and other climatic phenomena, for example, Global Energy and Water

Cycle Experiment [GEWEX; Chahine, 1992a], Climate Variability and Predictability

[CLIVAR; CLIVAR Scientific Steering Group and World Climate Research Programme,

1995], Global Climate Observing System [GCOS; Fellous, 2014], FLUXNET [Baldocchi

et al., 2001] and the International Soil Moisture Network [ISMN; Dorigo et al., 2011].

These initiatives are being ably supported by the satellite-based Earth observation

programmes of National Aeronautic and Space Agency [NASA; Asrar et al., 2001],

European Space Agency [ESA; Southwood, 1999] and other space agencies [Gleick

et al., 2013]. All in all, this has resulted in great advancements in measurement

technology both in situ and ex situ, and datasets of different quantities involved in

the global hydrological cycle [Gleick et al., 2013].

Runoff is one of the most accurate (10–20 % of the observation) of the global hydro-

logical cycle quantities [Fekete et al., 2012]. The publicly available global runoff
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1980

2009

FIGURE 4.1: The maps show the catchments whose runoff measurements are publicly
available (blue), that do not discharge into the oceans or other open water bodies
(white) and those that are not gauged or whose runoff measurements are not publicly

available (gray).

database (e.g., Global Runoff Data Center, GRDC) is very limited in its spatial and

temporal coverage of catchments worldwide. Moreover, the acquisition of discharge

data and their delivery to the database are on the decline since the late 1970s [cf.

Tourian et al., 2013, Figure 1 or Lawford et al., 2013, Figure 3], be it for economical,

political or other reasons. The number of available stations went down from about

8,000 (pre-1970) to roughly 2,000 (around the year 2010). The total monitored

annual streamflow has dropped accordingly by about 75%. Figure 4.1 visualizes a

clear decline between 1980 and 2009 in the number of catchments whose measured

runoff is both available and accessible. Prediction of runoff by modeling has so far

been successful mostly in the gauged basins rather than in the ungauged basins

[Hrachowitz et al., 2013], thus unable to alleviate the problem. To this end, Sheffield

et al. [2009] and Sahoo et al. [2011] demonstrate the potential of satellite-based

data for studying the water cycle at basin scales.

Given the insufficient monitoring from in situ gauge networks, and without any

outlook of improvement, spaceborne approaches are currently being investigated.

Satellite-based earth observation with its global coverage and homogeneous accuracy

has been demonstrated to be a potential alternative to in situ measurements, but

it does not yet provide the desired accuracy and require in situ data for calibration

and validation [Trenberth, K. E. and Asrar, 2014]. Nevertheless, they are the only

source of information in data poor regions and the open oceans [Hrachowitz et al.,
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2013]. To this end, Sheffield et al. [2009] and Sahoo et al. [2011] demonstrate the

potential of satellite-based data for studying the water cycle at basin scales.

Alsdorf et al. [2007] reviewed the potential of several spaceborne observation tech-

niques in contributing to the tracking of surface freshwater from space. A diversity

of satellite sensors was classified in terms of their ability to monitor water surface

elevation (h), slope (∂ h/∂ x), its time variation (∂ h/∂ t), water surface area (A)

or mass of the total water storage (S). Although they acknowledge an enormous

improvement in the spaceborne monitoring of these hydraulic variables over the

recent past, they do point out obvious limitations, amongst others: dependence on

calibration by in situ measurements, poor resolution (spatial and temporal) and

accuracy, and error sources proprietary to the technique involved.

The observables that have been identified above are all geometric except water

storage. Apart from water surface area, all the other geometric variables are provided

by spaceborne geodetic sensors (satellite altimetry and synthetic aperture radar),

and the physical variable of water storage is observed by the GRACE satellite mission,

which is again a spaceborne geodetic sensor. Several studies make use of geodetic

spaceborne sensors for calibrating and validating hydrological models. Wilson et al.

[2007] used data from satellite altimetry for validating floodplain predictions from a

hydrodynamic model over the central Amazon floodplain. Getirana [2010] was the

first to apply spatial altimetry data for automatic calibration of a hydrological model

over the Branco River basin, which is located in the Northern Amazon basin. In Paiva

et al. [2013], results from the MGB-IPG hydrodynamic model were compared against

water levels derived from ENVISAT altimetry data and terrestrial water storage

anomalies from GRACE.

The water storage changes estimated from GRACE are dominated by noise requiring

filtering [e.g., Kusche, 2007]. An assessment on the performance of different filter

tools for GRACE has been presented in Werth et al. [2009]. The authors compared a

multi-model mean of the three global hydrological models WGHM, GLDAS, and LaD

with GRACE-based water mass variations over 22 of the world’s largest river basins.

Ferguson et al. [2010] discussed the estimation of evapotranspiration from remote
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sensing data using the Penman-Monteith model and validated their results with total

water storage variations derived from different GRACE products.

In this contribution we compare the skill of four different satellite-based remote

sensing methods in determining runoff from gauged and ungauged basins alike.

Three different methods make use of GRACE data: one based on the hydrological

water balance, and one based on the atmospheric water balance. A third GRACE-

related method makes use of relationship between runoff and storage. The fourth

hydro-geodetic method makes use of satellite radar altimetry. These methods have

in common that they use geodetic space sensors, which is the reason for coining

them hydro-geodetic approaches. For further comparison we incorporate another

elementary approach, namely a basic relationship between precipitation and runoff,

and the output from a hydrological model. The skill score is evaluated over gauged

catchments with available runoff data. Since all the other quantities are in terms

of change in water column (mm/month), we have considered the river discharge

of gauging stations at the outlet of catchments and divided them with the area of

their catchments. This means that we virtually spread the discharged water over

the surface area of the catchment. This quantity is often called runoff or specific

discharge, and this will be the definition that will be used in the rest of the document.

The use of satellite radar altimetry for monitoring rivers was first demonstrated by

Koblinsky et al. [1993], after which many studies brought forth improvements [e.g.,

Berry, 2005, Birkett, 1998, Birkinshaw et al., 2010, Bjerklie et al., 2003, Frappart et al.,

2006, Papa et al., 2010, Tourian et al., 2013], which makes it a mature technique.

Satellite altimetry provides river water level, which needs to be converted to runoff,

which we will term as altimetric river runoff. The altimetric river runoff is of great

benefit for hydrological community as the reported accuracies of obtained altimetric

runoff over different rivers vary between 5 and 15 % [Birkinshaw et al., 2010, Tourian

et al., 2013, Zakharova et al., 2006]. However, its temporal and spatial resolution

limit the use of satellite altimetry for river runoff estimation. Satellite altimetry

provides snapshot measurements every 10 or 35 days (depending on the mission),

which does not correspond to the daily or monthly sampling used for river gauges.

Its spatial resolution would also limit the runoff estimation as its footprint size is ca.
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8.5 km [Fu and Cazenave, 2001], which covers river surface water together with the

neighboring topography and indeed the vegetation canopy. Moreover, availability of

altimetric water level measurements over rivers also limit the use of altimetry for

runoff estimation as it is dictated by satellite’s orbital configuration. The inter-track

distance of ENVISAT at the equator is approximately 80 km, which is better than

the spacing of 311 km of TOPEX/Poseidon and Jason 1 & 2. These limitations are

expected to be overcome with the launch of the Surface Water and Ocean Topography

(SWOT) satellite altimetry mission in 2020 [Durand et al., 2010].

The water-budget based methods to estimate runoff received an impetus with the

availability of total water storage changes from the GRACE satellite mission. Syed

et al. [2005] showcased the potential of such methods by estimating discharge from

the Amazon and Mississippi basins. They also assumed that differences between

estimated and observed runoff might be due to unrecorded groundwater and surface

water inflows. Thereafter Syed et al. [2007] estimated the freshwater discharge from

the Pan-Arctic region into the Arctic sea. Syed et al. [2009] culminated these studies

by estimating the discharge from the continents to the oceans. Concurrently, Sheffield

et al. [2009] estimated streamflow over the Mississippi basin, but concluded that the

errors from the budget-based methods are rather prohibitive, and hence not viable.

Lorenz et al. [2014] also come to the same conclusion after estimating runoff via the

budget-based methods for over 96 gauged catchments. Riegger and Tourian [2014]

demonstrate another method to utilize the water storage changes to estimate runoff

that the hydraulic relationship between runoff and water storage. However, the

limiting factor of GRACE is its accuracy, which hovers between 10 and 30 mm/month

[Fersch et al., 2012, Long et al., 2014, Riegger et al., 2012]. Although Longuevergne

et al. [2010] put a limit on the spatial resolution of GRACE at ≈ 200 000 km2, Lorenz

et al. [2014] showed that GRACE can be useful for basins with an area far below

200000 km2, but only when their water storage changes show a strong seasonality.

Depending on the choice of hydrological, hydrometeorological and geodetic data

products that serve as input to each of the methods, in principle, a host of permu-

tations need to be assessed. This has been performed by Lorenz et al. [2014], but

in contrast, a preselection of data products and a choice of six relevant catchments
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allows us, here, to focus on the methods instead. In line with this aim all methods are

explained in section Hydro-Geodetic Approaches. The preselected products (data and

models) that serve as input to the methods are discussed in section Data and models.

The results of validating all six approaches against observed runoff are provided in

section Results and Discussion and summarized in section Summary and Conclusions.

Hydro-Geodetic Approaches

The primary characteristic of the hydro-geodetic approaches is that they exploit

the geodetic observables that are directly or indirectly affected by the hydrological

phenomena. In this study, we will be concerned with two such geodetic observables:

temporal changes in the gravity field that are caused by water storage changes over

the continents as observed by GRACE, and water-level changes in rivers as observed

by the ENVISAT satellite mission.

Runoff from Altimetry

The river runoff at the selected gauges is typically determined from an empirical

functional relation between water level estimated by satellite altimetry H at a vir-

tual station close to a runoff gauging station and measured runoff R at the gauge

[Birkinshaw et al., 2010, Coe and Birkett, 2004, Getirana and Peters-Lidard, 2013,

Kouraev et al., 2004, Leon et al., 2006, Papa et al., 2010, Zakharova et al., 2006].

This relation, referred to as a rating curve R = T(H), is specific to each gauging

station. This method conventionally needs simultaneous measurements of water

level from altimetry and in situ runoff measurements. In order to avoid the limitation

of having synchronous datasets, a statistical approach based on quantile function

mapping was developed [Tourian et al., 2013]. The statistical approach provides the

opportunity of extracting runoff values from altimetry data over rivers for which the

runoff measurements at the selected gauges were made before the age of satellites.
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The quantile function specifies, for a given probability 0 < p < 1, the maximum

value that R or H can attain with that probability. As water level and measured

runoff should follow a monotonic relationship, it can be inferred that T(·) is a

non-decreasing function. Hence, according to the Q-transformation rule [Gilchrist,

2000] T(QH) must be a quantile function, because a non-decreasing function of a

non-decreasing function must itself be a non-decreasing function. Therefore, the

functional relationship T (·) can be defined through quantile function of water level

measurements (QH) and quantile function of old runoff QR

QR = T (QH) . (4.1)

Since the time coordinate is not involved here explicitly, we eliminate the requirement

of synchronous datasets.

Figure 4.2 shows the empirical quantile functions for water level and monthly dis-

charge for the Mekong river and the resulting statistical discharge-water level rela-

tionship, that leads to a statistical rating curve for the virtual station on the Mekong

River by fitting a quadratic curve. In fact, the rating curve is constructed here by

eliminating the probability-coordinates, whereas conventionally the time-coordinate

is eliminated. We are thus able to salvage pre-satellite altimetry runoff data and turn

them into utilizable data for the satellite altimetry time frame.

Despite a good performance overall, the main limitation of our statistical approach is

that it leads to erroneous discharge when discharge behavior of river is not stationary

over time. Moreover, altimetry-based methods have inherent challenges: at times

the virtual stations are located far away from the river outlet making the rating curve

less effective; altimetry can only provide snapshots of the water level, which is not

representative of daily or monthly runoff; the temporal resolution is dictated by the

repeat-period of the altimetry satellites, which is usually not daily or monthly (35

days for the case of ENVISAT); and many of the current algorithms for retrieving

runoff from water levels depend on in situ datasets [Tourian et al., 2013].
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FIGURE 4.2: From Tourian et al. [2013]: Estimated water level from satellite altimetry
and available discharge for the Mekong River (top) are transferred to the quantile
functions (middle). From the corresponding probabilities the scatter plot of discharge
versus water level is constructed . A smoothened rating curve is then obtained by
fitting a quadratic line to the scatter (bottom). Note the dissimilar time axes of the

two datasets (top).
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GRACE-Based Approaches

The twin satellite system of GRACE provides weekly/monthly snapshots of the static

geoid as spherical harmonic coefficients. After removing a long-term mean of the

static field from the monthly snapshots, monthly anomalies of the geoid become

visible. These monthly anomalies represent the sum total of all the geoid changes

induced by a variety of geophysical phenomena, one of which is the continental water

storage anomalies. In order to retrieve the continental water storage anomalies from

the monthly geoid anomalies, contributions of the well-known phenomena like tides

(ocean, solid earth and atmospheric), atmospheric and oceanic mass changes are

removed. The remnant signal contains contributions from continental water storage,

glacier, Arctic and Antarctic ice mass changes, and solid earth phenomena like glacial

isostatic adjustment [Wahr et al., 1998]. For hydrology, continental water storage

anomalies are the quantities of interest, and Wahr et al. [1998] derived a relationship

between geoid anomalies and the water storage anomalies, which is given as

∆M(θ ,λ)[t] =
aeρave

3ρw

L
∑

l=0

2l + 1
1+ kl

×

l
∑

m=−l

Plm(cosθ )∆Klm[t] eimλ , (4.2)

where ∆M(θ ,λ)[t] is the water storage anomaly at co-latitude θ , longitude λ and

time-point t expressed in terms of equivalent water height (m), ρave is the average

density of Earth (5515 kg/m3), ρw is the average density of water (1000 kg/m3),

ae is the semi-major axis of the Earth (6378.1363 km), kl is the load Love number

for spherical harmonic degree l, Plm(cosθ) is the normalized associated Legendre

polynomial of degree l and order m, and∆Klm[t] are the complex spherical harmonic

coefficients of temporal anomalies of the geoid after removing a long-term mean.

In the above equations we have used square brackets for the temporal-coordinate

to indicate the discrete nature of the observations. The water storage anomalies

must be numerically differentiated to get the flux quantities as all the hydrological
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quantities are flux quantities. Therefore,

dM(·)[t]
dt

≈
1

2∆t
(∆M(·)[t +∆t]−∆M(·)[t −∆t]) , (4.3)

where dM(·)[t]/dt is the water storage change quantity. Now that we have arrived

at the quantity that can be used with the hydrological quantities, we will discuss the

methods that employ GRACE data to estimate runoff.

Hydrological Approach

Water balance equations define the hydrological cycle in quantitative terms. In

general, in any river basin the amount of water entering and leaving would lead to a

change in the storage. This can be translated mathematically as

P − ETa − R =
dM
dt

, (4.4)

where P is precipitation, ETa represents the actual evapotranspiration, R denotes the

river runoff and dM/dt is the rate of water storage changes over a catchment. From

this equation, one can compute the river runoff as

Rhyd = P − ETa −
dM
dt

. (4.5)

The benefit of such an approach, hereafter hydrological approach, is that the ad-

ditional runoff routing component is not required. This is actually the case as the

changes in the storage provided by GRACE represent the routing. Nevertheless, the

method suffers from the accumulation of errors and biases from the three datasets,

and also the resolution and accuracy will be limited to the weakest of the three

datasets. Therefore, the quality of runoff estimates depends on the quality of the

data sources of precipitation, evapotranspiration, and water storage changes.
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Hydrometeorological Approach

According to Roads et al. [1994], the terrestrial water budget [Eq. (4.4)] can be

linked to the atmosphere by the atmospheric water balance equation

dW
dt
+∇ ·Q = ETa − P , (4.6)

where W denotes the total column water content in the atmosphere. ∇ ·Q is the net

balance of moisture flux (i.e., moisture flux divergence), which is defined as

∇ ·Q≡
1
g
∇ ·

psfc
∫

0

νh(p)q(p) dp (4.7)

with air pressure p (Pa), the gravitational acceleration g (m s−2), the horizontal

wind vector ~νh, and the specific humidity q (kg kg−1). According to Peixoto and

Oort [1992], changes in the atmospheric water content dW/dt can be neglected on

monthly or longer time scales—that is,

∇ ·Q = ETa − P . (4.8)

By combining Eqs. (4.4) and (4.8), runoff can be derived from the atmospheric-

terrestrial water balance

Ratm = −∇ ·Q−
dM
dt

. (4.9)

A potential advantage of this approach compared to the hydrological approach is that

only two datasets are required for estimating runoff. Nevertheless, the performance

of the hydrometeorological approach again depends on the quality of the data sources

of moisture flux divergences and water storage changes.
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Runoff-Storage Relationship

The direct comparison of measured runoff and storage mass determined by GRACE

shows a distinct, yet seasonally characteristic, behavior for different climatic (tropical,

boreal) and physiographic (surface, vegetation, soil etc.) conditions [Figure 4.3 (top

left) for Amazon and Figure 4.3 (bottom left) for Ob]. Detailed investigations on the

runoff-storage relationship [Riegger and Tourian, 2014] show that for Amazon the

runoff–storage relationship can be characterized as a linear time invariant system

with a phase shift, that corresponds to the time lag between runoff and storage. Thus

a linear relationship is revealed between runoff and the hydraulically coupled liquid

storage, once the time lag between runoff and the coupled liquid storage is taken

into account and adapted [Figure 4.3 (top right) for Amazon]. Similar results were

found for the relationship of mass storage from GRACE with surface water extent

[Papa et al., 2008] and with rainfall [Frappart et al., 2013].

The time lag between runoff and water storage is caused by the finite transition time

between input and hydraulic coupling to the discharge network. The data-based

adaption solves the problem of runoff routing. Deviations from the linear behavior

as in Figure 4.3 (bottom right) for Ob are interpreted as being caused by storage

components which are not hydraulically coupled to the drainage system like floods,

snow, etc. For a quantification of the hydraulically coupled liquid storage, which

actually contributes to runoff we use satellite imagery data. For boreal catchments,

MODIS snow coverage allows us to separate the coupled liquid storage from the

decoupled solid storage, and allows us to assign the corresponding solid and liquid

masses. We apply two conceptual approaches to utilize the snow coverage ratios for

the quantification of solid and liquid storage:

1. The solid approach assumes a horizontal separation into a totally frozen part

underneath the snow covered area of the catchment and liquid part in the rest.

Such an approach is totally based on input from GRACE and MODIS snow

coverage data.
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2. The snow approach assumes a vertical separation into a liquid and a snow

storage. For this case, the aggregation and release of snow or liquid recharge

has to be calculated by a model based on recharge (P − ETa) for mass input

and MODIS snow coverage for separation.

This mass separation together with the appropriate adjustment of the time lag leads

to obtaining a high correlation coefficient between runoff and coupled liquid mass

(Figure 4.3).

For unmanaged catchments, the linearity assumption of the runoff and liquid storage

(RS-relationship) can in principle be used for the calculation of runoff from storage,

and vice versa. For a full description of the linear relationship of runoff and storage,

the absolute value of water storage is needed in order to achieve a runoff being

proportional to storage. Thus, an unknown constant storage Mc has to be added to

the monthly storage anomalies ∆M[t] to obtain the total storage mass:

M[t] = ∆M[t] +Mc . (4.10)

The storage offset Mc corresponds to the long-term mean storage, which is determined

by the steady-state condition in a catchment that long-term runoff must balance

long-term recharge. As it cannot be directly observed, it has to be estimated in order

to achieve proportionality. The scaling factor between runoff and adapted coupled

mass corresponds to 1
τ where τ is the hydraulic time constant. The time lag can be

optimized by a combination of n discrete months (n≥ 0) and a continuous time shift

ω ∈ [0, 1] within one month backwards in time applied on coupled liquid mass, from

which runoff can be determined as

Rrs[t] =
1
τ

�

ωM[t − n− 1] + (1−ω)M[t − n]
�

. (4.11)

Prerequisite is that the parameters—hydraulic time constant, time lag and mass

offset—are determined by an adaption of coupled liquid mass from GRACE mass

deviation and MODIS snow coverage to runoff from another time period. The

adapted parameters are expected to depend only on hydraulic condition of the
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FIGURE 4.3: Monthly runoff observations versus GRACE mass deviation (left column)
and adapted mass (right column), respectively, for the Amazon (top row) and Ob
(bottom row) basin. The figures show both a comparison for individual years and

for the mean monthly behavior.

drainage network and not on climatic conditions of the catchment and thus should

remain constant as long as the drainage network is not changed. This means that

they can be used for the determination of an unknown recharge from given GRACE

mass deviation and remote sensing data. The detailed description of methodology

and results can be found in Riegger and Tourian [2014].

Precipitation-Runoff Ratio

In addition to the hydro-geodetic approaches, we also use an empirical and rudimen-

tary approach for estimating runoff of catchments, which depends on precipitation

data and at least three years observed runoff data. We include this method in our

comparison in order to verify if the hydro-geodetic approaches are able to provide as

good estimates as the precipitation–runoff ratio approach, if not better.
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It is well known that there is a strong relationship between precipitation and runoff

[Zhou et al., 2012]. In this method, runoff is computed directly from precipitation.

To that end, a ratio between runoff and precipitation is computed for each month

individually. Therefore for each catchment the monthly runoff value at the jth month

(Jan.–Dec.) of the ith year, Ri j is divided by corresponding precipitation value Pi j:

κi j =
Ri j

Pi j
. (4.12)

Then for each month j, the ratio is computed by computing the monthly mean:

κ̄ j =
1
N

N
∑

i = 1

κi j , (4.13)

where N is the number of years. The runoff is then computed for each month by:

Rpr = Pi j κ̄ j . (4.14)

In this study, for computing the κ̄ j values, precipitation and runoff data until the end

of 2004 are used. The computed ratio is then multiplied with precipitation data of

corresponding month after 2004.

The hydrological approach, hydro-meteorological approach, the runoff-storage rela-

tionship method and the precipitation-runoff ratio method all use global hydrological

and hydro-meteorological datasets, but of these methods only the runoff-storage

method is fine-tuned to the runoff of the particular catchment while the other methods

are not. A similar argument can be placed for the precipitation-runoff ratio method,

but the model is way too simplistic, and there is no fine-tuning of the ratio toward

the catchment behavior. In the altimetry approach, the water level measurements,

but are in situ measurements, but satellite-based, they are also catchment-specific

methods. In view of this, the methods presented above can be coarsely classified as

catchment-specific and global methods.
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TABLE 4.1: Summary of the observation and model based datasets containing pre-
cipitation (P), actual evapotranspiration (ETa), vertically integrated moisture flux
divergences (∇ ·Q), water storage changes (Ṁ), and runoff (Robs and Rmod). The
references for the used datasets are as follows: GPCP: Adler et al. [2003], GLEAM:
Miralles et al. [2011b], ERA-Interim: Simmons et al. [2006], GRACE-CSR: Bettadpur

[2007], GLDAS: Rodell et al. [2004b]

Variable Dataset Version Resolution Time period
Spatial Temporal

P GPCC 2.2 2.5◦ × 2.5◦ 1 mo 1979–present
ETa GLEAM – 0.25◦ × 0.25◦ 1 d 1984–2011
∇ ·Q ERA-Interim – 0.75◦ × 0.75◦ 1 mo, 1 d, 6 h 1979–present
dM/dt GRACE-CSR R5 – 1 mo 2005–2010
Robs GRDC – –
Rmod GLDAS Noah2 2.7 0.25◦ × 0.25◦ 1 mo, 3 h 1979–present

Data and Models

Gathering from (4.1), (4.4), (4.9) and (4.11), it is clear that we need datasets

for precipitation, evapotranspiration, water levels from altimetry, observed runoff,

vertically integrated moisture flux divergences and water storage changes from

GRACE. Apart from geodetic datasets, the rest of the datasets are used as is without

any modifications, while there is some processing involved prior to the usage of

the geodetic datasets. The processing of geodetic datasets will be detailed in the

subsequent sections, and the details of other datasets are summarized in Table 4.1,

where the choice of the datasets was dictated by a global study done elsewhere

[Lorenz et al., 2014]. The major conclusion of this study was that the runoff estimates

from the different data combinations within the class of GRACE-based methods (i.e.,

Rhyd and Ratm) did not provide a combination that performed consistently over all

the catchments. This led us to choose a combination that was overall the best among

the combinations that were assessed (see Table 4.1).

Water Level from Satellite Altimetry

In this study, altimetry data from the Environmental Satellite (ENVISAT) is used from

2002 to 2010. We use ENVISAT data as its good performance over inland water
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FIGURE 4.4: Location of the 6 study areas (green) with the location of the respective
river gauges (black dot). The blue areas are 51 additional catchments, where at
least three years of runoff observations between 2005 and 2010 are available. All

these catchments were used in the correlation analysis shown in Figure 4.7.

bodies was acknowledged by previous studies [e.g., Da Silva et al., 2010, Frappart

et al., 2006]. ENVISAT was launched in March 2002 as a successor to ERS-1 and

ERS-2 by the European Space Agency (ESA). Where the ENVISAT groundtrack crosses

the river the virtual station is defined. The water level time series for the virtual

stations close to runoff gauging stations of ENVISAT-RA2 are obtained by employing

an algorithm, which conforms to a large extent to the standard processing of altimetry

data in hydrological applications [Da Silva et al., 2010]. For this study, we have

selected virtual stations in six major catchments (Figure 4.4).

Within a certain radius around the virtual station (depends on the water body), a

time series is generated from successive altimeter measurements at each satellite

pass. As the along-track distance of 18 Hz measurements is ca. 370 m, the radius of

virtual station should be defined carefully to assign water-reflected measurements,

only. The water level time series H are then computed by subtracting the estimated

range from retracking algorithm ρ and corresponding corrections c from the altitude

of satellite h (H = h−ρ − c).

Our algorithm for obtaining the water level time series H mainly relies on the Ice-1

retracker, which according to Frappart et al. [2006] and Da Silva et al. [2010],

provides the best estimate of inland water level variations. However, the water level

measurements are optimized by employing information from the other retrackers as

well (Figure 4.5). In fact, measurements from different retrackers can be combined

as they are originally from the same waveforms. The algorithm for the combination
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FIGURE 4.5: Water level time series from different retracking methods, combination
approach and the in situ measurements for Amazon River at Obidos.

TABLE 4.2: Correlation and σ of residual of obtained water level time series from
different retracking methods and the combination approach with in situ measure-
ments together with percentage of contribution of different retrackers for creating

H for Amazon.

Ocean Ice-1 Ice-2 SeaIce H

Correlation 0.97 0.96 0.92 0.89 0.98
σ of residual

0.54 0.58 0.89 1.29 0.44
[m]

Contribution
27% 69% 0% 4% –

to H

of retrackers implements the following criterion: over each pass/time pick up the

water level from the retracker with the lower variation in terms of standard deviation

within the virtual station and assign it to the water level time series. In case of the

minimum standard deviation larger than one, the algorithm chooses the median of

Ice-1 retrackers. Table 4.2 lists the computed correlation and standard deviation

(σ) of water level residual time series from different retrackers and combination

approach and contribution of each retracker to H for the Amazon’s virtual station at

Obidos.

GRACE Data

We have used 6 years (2005–2010) of GRACE release 5 datasets from the Geo-

ForschungsZentrum [GFZ; Dahle et al., 2013] and Center for Space Research (CSR),

The University of Texas at Austin [Bettadpur, 2012] processing centres. These are

monthly snapshots of the static geoid given in terms of spherical harmonic coefficients,

which after removing a long-term mean describe the monthly anomalies in the geoid.
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These changes are ridden with noise from different sources: aliasing of residual tidal

signal [Seo et al., 2008], poor estimates of C20 coefficient, and high-frequency noise

in the spherical harmonic coefficients due to orbit geometry.

Aliasing of Residual Tidal Signal The residual tidal signal aliases into frequencies

that depend on the orbit geometry of GRACE, sampling rate of GRACE and the natural

frequency of the corresponding tides; they can be modeled and removed from the

signal to a large extent. To this extent, we compute and remove the mean annual

behavior of each of the spherical harmonic coefficients, after which we are left with

residuals replete of any seasonal behavior. Then, a least squares spectrum analysis

is carried out to estimate the coefficients of the aliased frequencies, which are then

subsequently subtracted from the residuals of the spherical harmonic coefficients.

The corrected spherical harmonic residuals are then added back to the mean annual

behavior to obtain the corrected monthly anomalies.

Erroneous C20 Coefficient Due to the orbit configuration of GRACE satellites, they

are insensitive to the C20 coefficient of the gravity field. Thus, the erroneous C20

coefficients are replaced with those estimated from Satellite Laser Ranging (SLR)

in the case of the CSR monthly solutions [Cheng and Ries, 2013], while the C20

coefficients in the GFZ monthly solutions are used as-is as they are well-behaved. This,

we believe, is due to the use of the EIGEN-6C gravity field model as a background

model in the processing scheme [Dahle et al., 2013]. The EIGEN-6C gravity field

model includes data from GRACE, GOCE and LAGEOS (SLR) satellites and also data

from airborne and terrestrial gravimetry [ICGEM, 2013].

High-Frequency Noise It is well-known that the high-frequency noise in GRACE,

which manifests itself as stripe-like patterns in the spatial domain, has to be dealt with

by filtering. We apply regularization filter as proposed by Kusche [2007] but with

certain modifications. The regularization filter requires signal and noise covariance

matrices, and the modifications we make pertain to these covariance matrices. Kusche

[2007] computes the signal covariance from a combination of different models, while
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FIGURE 4.6: Estimates of a and b in (4.15), which define the cyclo-stationary signal
covariance models. Here, we see a clear annual cycle with a characteristic double

peak as we estimate these coefficients from quadratic quantities.

we compute the signal covariance from the GRACE data itself as described by Lorenz

[2009]. The signal covariance so calculated is a power-law

σ2
lm =

10a l b

2l + 1
, (4.15)

where σ2
lm is the signal variance of a single spherical harmonic coefficient of degree

l and order m, and a and b are the parameters that define the signal covariance

model. We compute cyclo-stationary signal covariance models, which is achieved by

calculating degree variances of the seasonal cycle of spherical harmonic coefficients.

In other words, we compute a and b for every single calendar month in a year. The

signal covariances so computed have a dominant annual behavior (Figure 4.6), which

is reflective of the dominant annual cycle present in the temporal geoid anomalies of

GRACE. As to the noise covariance, Kusche [2007] uses the same simulated noise

covariance for all the monthly solutions, whereas we simulate and use the noise

covariances for every month.

After post-processing the spherical harmonic coefficients, they are transformed into

spatial grids of 0.5◦ × 0.5◦. In order to arrive at the flux quantity, we compute the

three-point central differences of the time series of mass variations. Further, we are

only interested in catchment-wise values and not pixel-wise values, and therefore, we

compute area-weighted averages for each of the catchments. This is mathematically
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expressed as

∆M(χ)[t] =
N
∑

i=1

∆M(θi,λi)[t]
Ai

Aχ
(4.16)

∆M(χ)[t] refers to the area aggregated mass changes of individual catchments χ

with area Aχ and i denote the individual pixels in the half-a-degree spatial grid with

N being the total number of pixels in a given catchment. In the above equations we

have used square brackets for the temporal-coordinate to indicate the discrete nature

of the observations.

Precipitation

Precipitation, along with runoff, is one of the directly observable quantities amongst

those involved in the hydrological cycle, and it serves as an input to hydrological and

hydrometeorological models [e.g., Rodell et al., 2004b, Simmons et al., 2006]. Lorenz

and Kunstmann [2012] show that the spatial distribution and change in the number of

rain gauges over time is a major source of uncertainty in the precipitation observations.

Moreover, large parts of, for example, Africa or Asia are completely unobserved, which

leads to highly uncertain precipitation estimates over these regions. In this study, we

use precipitation data from the Global Precipitation Climatology Project [GPCP; Adler

et al., 2003]. The monthly product, which is provided in a rather coarse resolution

of 2.5◦ × 2.5◦, is a combination of remotely sensed precipitation over the oceans

and gauge based estimates from the Global Precipitation Climatology Center [GPCC;

Schneider et al., 2014] over land. Here, we use data from the most recent version

2.2 of the GPCP.

Evapotranspiration

Evapotranspiration has been one of the quantities that was difficult to observe, and

more often sophisticated models were used in their place [e.g., Schlosser and Houser,
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2007, Trenberth et al., 2007]. Recently, inroads have been made in both satellite-

based [e.g., Long et al., 2014, Miralles et al., 2011b, Mu et al., 2007, Rodell et al.,

2004b, Vinukollu et al., 2011] as well as terrestrial observations [Jung et al., 2010,

Salvucci and Gentine, 2013]. Jung et al. [2010] were able to find meaningful trends

in the rates of evapotranspiration from the terrestrial observations and reported an

uncertainty of 3,000 km3 for the mean global surface evapotranspiration. For the

satellite-based estimates, Vinukollu et al. [2011] find that the estimates are in good

agreement with the terrestrial observations at the annual scales, and also capture

seasonal variations including the extreme events-suppression of evapotranspiration

during droughts. Long et al. [2014] report an uncertainty of 10–30 mm/month

depending on the satellite data after comparisons with FLUXNET data in southwest

of United States of America. In this study, we use data from the Global Land-surface

Evaporation: the Amsterdam Methodology [GLEAM; Miralles et al., 2011a], where

evapotranspiration is estimated through a combination of a wide range of remotely

sensed observations within a Priestley and Taylor-based framework.

Hydrological Models

As we know that hydrological models are also used in many studies, especially in the

ungauged basins, their inclusion in the analysis, in spite of the presence of observed

datasets, will only complement our analysis here. In this respect, we have included

runoff estimates from the Global Land Data Assimilation System [GLDAS; Rodell

et al., 2004b]. In particular, we used the estimates from the Noah LSM [Chen et al.,

1996, Ek, 2003, Koren et al., 1999] which is driven by the GLDAS. This includes the

following forcing data:

• Meteorological data from the Global Data Assimilation System [GDAS; Derber

et al., 1991]

• Downscaled precipitation from the Climate Prediction Center’s Merged Analysis

of Precipitation [CMAP; Xie and Arkin, 1997]
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• Satellite-derived downward radiation from the Air Force Weather Agency Agri-

cultural Meteorology modeling system [AFWA AGRMET; Kopp and Kiess, 1996].

Zaitchik et al. [2010] compared runoff estimates from the different GLDAS members

with observed runoff over several river basins. They concluded that there is no best

realization which performs consistently good on a global scale. Similar results were

presented in Lorenz et al. [2014]. Due to this reason, we selected only a single

member from the GLDAS as a representative for land surface models. This should

give an impression on the performance which can be expected from such models.

It should be noted that a major drawback of many global hydrological models is the

lack of a routing scheme. Thus, the runoff output of a grid cell near the outlet can

not be interpreted as the catchment’s runoff—that is, there might be significant time

shifts between modeled and true peak runoff. By temporal averaging, the impact of

a routing scheme might become negligible, depending on the hydrological behavior

of a catchment.

Results and Discussion

For evaluating the performance of the different approaches, we use the following

metrics: the correlation coefficient between observed and estimated runoff, the

Nash Sutcliffe coefficient [Nash and Sutcliffe, 1970] and percentage bias PBIAS [e.g.,

Gupta et al., 1999]. Analyzing the correlation coefficient helps in quantifying the

common information content between observed and estimated runoff, although it is

insensitive to amplitude and mean value. Therefore, the percentage bias

PBIAS = 100

T
∑

t = 1

�

Rt,obs − Rt,est

�

T
∑

t = 1
Rt,obs

(4.17)

is calculated, which gives relative information about the mean difference between

the observations and estimates. In addition, we also compute the Nash Sutcliffe
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FIGURE 4.7: Correlation map between the runoff observations from GRDC and the
four global approaches evaluated over 57 catchments.

Efficiency coefficient

NSE = 1−

T
∑

t = 1

�

Rt,obs − Rt,est

�2

T
∑

t = 1

�

Rt,obs − Robs

�2
(4.18)

with Robs being the long-term mean observed runoff. The NSE summarizes the overall

agreement between the observations and estimates. It ranges between −∞ and

1, where the coefficient tends to one if the estimated and observed runoff agree in

phase, amplitude, and mean.

For an overview of other commonly used performance measures see, for example, Mo-

riasi et al. [2007]. Table 4.3 summarizes the performance of the different approaches

together with the mean annual runoff.
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TABLE 4.3: Performance measures between the ensemble approaches, the catchment
specific runoff estimates, and observations from GRDC for 5 selected catchments
Amazon, Mississippi, Ob, Yenisei, and Danube where runoff estimates from altimetry
or the RS-relationship are available. We have excluded the Niger basin as there is

only one year of observations during the period 2005 to 2010 available.

AM MI OB YE DA

Robs 101.1 17.5 11.5 21.6 25.9

Rhyd 101.7 16.0 17.9 11.1 34.1
Ratm 85.3 7.4 10.5 17.6 15.6
Rmod 63.7 6.8 4.9 7.8 14.0
Rpr 96.7 16.4 12.1 21.9 24.8
Ralt 102.6 10.8 22.9

M
ea

n

Rrs 104.6 10.4 20.1

Rhyd 0.89 0.34 0.16 0.56 0.45
Ratm 0.87 0.72 0.60 0.86 0.73
Rmod 0.39 0.86 -0.12 0.51 0.84
Rpr 0.93 0.78 0.96 0.98 0.74
Ralt 0.98 0.94 0.94

C
or

r

Rrs 0.97 0.97 0.88

Rhyd -0.6 2.9 -57.0 48.6 -28.6
Ratm 15.6 54.9 4.8 18.6 39.2
Rmod 37.0 61.2 56.5 63.9 44.9
Rpr 4.3 5.0 -6.1 -1.2 4.1
Ralt 1.9 -0.7 8.7PB

IA
S
[%
]

Rrs -3.5 12.5 9.5

Rhyd 0.79 -0.66 -2.48 -0.36 -1.60
Ratm 0.41 -1.56 0.06 0.60 -1.95
Rmod -2.20 -0.86 -1.85 -0.81 -0.96
Rpr 0.82 0.57 0.88 0.90 0.53
Ralt 0.95 0.89 0.75

N
SE

Rrs 0.91 0.74 0.33

The starting point of our discussion is the inconsistency of the GRACE-based ap-

proaches, which is expressed in terms of the correlation with observed runoff. While

some catchments are highly correlated, there are catchments with low or even nega-

tive correlation, independent of their size (Figure 4.7). For example, Rmod performs

well over the Mississippi basin, while Rhyd shows rather low correlation. Over boreal

catchments, Rpr and Ratm seem to outperform the other two global approaches. Such
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FIGURE 4.8: Seasonal cycle of precipitation (blue), evapotranspiration (green),
runoff (black), and water storage changes (purple) for the 18 largest analyzed river
basins. The bands are defined by the maximum and minimum value of an ensemble
of P (GPCC, GPCP, DEL, CRU, and CPC) and ETa (GLEAM, ERA-Interim, GLDAS,
MERRA, MERRA Land) datasets. The blue and green lines are derived from GPCC

and GLEAM, respectively.

inconsistencies underline the limitations of the global approaches and the need for

catchment-specific methods like altimetry and the RS-relationship.

Here, we assess the estimated runoff from the hydro-geodetic approaches in six

selected catchments, which vary in their climatic and hydrological behavior: Amazon,

Mississippi, Ob, Yenisei, Niger, Danube. The hydrological behavior is characterized

by the seasonal cycle of precipitation, evapotranspiration, moisture flux divergence,

runoff, and water storage changes (Figure 4.8). The Amazon catchment with high

precipitation rates of up to 250mm/month during the rainy season show almost

constant evapotranspiration throughout the year with higher amount of runoff in

southern hemisphere winter. The warm summer in the Arctic tundra catchment

of Ob (especially in its southern part) leads to high evapotranspiration and runoff

between May to September. Over the Yenisei basin, the climate considerably changes

along the river. However, high runoff driven by high precipitation and melting occurs

during the summer. Unlike Yenisei, the peak runoff values for Niger, Danube, and

Mississippi do not significantly contribute in their storage behavior.
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FIGURE 4.9: Scatterplots of annual mean runoff in [mm/month] derived from
the global approaches Rhyd, Ratm, Rmod, and Rpr, as well as the catchment specific
approaches Ralt and Rrs with respect to GRDC. The observations refer to the x-axis,
while the y-values are given by the runoff estimates. We have excluded the Niger
basin as there is only one year of observations during the period 2005 to 2010

available.

Overall, our assessment shows that the catchment-specific estimates Ralt and Rrs

together with Rpr perform consistently well in terms of the long-term mean runoff

(mean and PBIAS in Table 4.3), although their annual means might scatter from the

observations (see Figure 4.9). On the other hand, Ratm and Rmod seem to underesti-

mate consistently (e.g., positive PBIAS of Ratm and Rmod). For Rhyd, we can observe

both over- and underestimation of the mean runoff, depending on the catchment. It

should be mentioned that long-term and annual mean storage changes tend to be

negligible (Figure 4.8), except in catchments with a significant storage gain or loss

like, for example, Ganges [Rodell et al., 2009]. Thus, deviations from observed runoff

are mainly caused by biases in the precipitation, evapotranspiration, or moisture flux

divergence datasets.

In order to avoid these biases within the runoff estimates, we subsequently removed
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the long-term average from each time series, hereafter referred as runoff anomalies

(Figure 4.10, right column). We also computed the seasonal cycle of each runoff

estimate (Figure 4.10, left column).

Amazon Basin All approaches (except for Rmod) estimate the seasonal cycle of the

runoff anomalies over Amazon very well in terms of amplitude and phase. This is not

surprising as the monthly time series are in very good agreement with the observed

runoff as well, resulting in correlation coefficients larger than 0.8 for all approaches

(Table 4.3). The exception to this agreement is Rmod, where the low correlation

of 0.4 is due to a time-shift of about two months. However, Syed et al. [2005]

also estimated runoff from a terrestrial-atmospheric water budget for the Amazon

basin. While their results refer to a different study period, they could also observe a

significant underestimation of Ratm (62.2 mm/month) compared to the observations

(82.2 mm/month), which agrees with our computations (Robs = 82.2 mm/month vs.

Ratm = 62.2 mm/month).

The catchment-specific time series Ralt and Rrs are much smoother than those from

the other approaches. The short-term fluctuations are mainly due to the imbalances

in the global hydrological and hydrometeorological datasets that are used in these

methods. Interestingly, a considerable discrepancy between Robs and Rrs in 2009

can be noticed, which can not be associated to errors in the GRACE data due to the

excellent signal-to-noise ratio over Amazon. This discrepancy, which might be due to

inaccurate runoff measurements during a severe flood event, is also confirmed by

Chen et al. [2010].

Mississippi and Danube Basins Compared with the Amazon basin, the amplitudes

of the seasonal variations over the mid-latitude basins Mississippi and Danube are

not pronounced. These subtle seasonal variations are mainly due to the comparable

and large amplitudes of precipitation and evapotranspiration, which effectively get

differenced in the balance equations (Figure 4.8). In the presence of a small but

significant storage, this results in a rather constant runoff throughout the year. The

differencing leads furthermore (a) to noisy behavior in the monthly time series
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from the global approaches, resulting in negative NSE of Rhyd and Ratm, and (b)

sometimes negative runoff estimates. Similar to the Amazon basin, Syed et al.

[2005] also estimated too low runoff from a hydrometeorological approach over the

Mississippi basin. As even Rpr does not correlate substantially, only the catchment-

specific methods Ralt of Rrs seem to provide reliable runoff estimates at mid-latitude

catchments.

Ob and Yenisei Basins The Siberian catchments Ob and Yenisei show a pronounced

seasonal cycle. However, in the case of Ob basin the behavior of Rhyd and Ratm is noisy,

which is, again, due to the low amplitude of runoff. In contrast, the Rpr estimates,

which also use the global precipitation datasets, show very good agreement with

the observations over both the Ob and Yenisei basin. This is also indicated by the

performance metrics (Table 4.3), where Rpr can even compete with the catchment-

specific methods, which again provide the most reliable runoff estimates. In contrast

to the Ob basin, the Ratm estimates over the Yenisei basin agree very well with the

observations that could be explained with a very distinct peak of the runoff-anomalies

of more than 50 mm/month during June. However, Ratm significantly overestimates

the peaks in 2005 and 2008. As the other two GRACE-based estimates from Rrs and

Rhyd do not show such inconsistencies, these peaks are likely due to too large moisture

flux convergences from ERA-Interim. Similar to the Amazon basin, GLDAS-Noah2

again shows a time-shift of about two months and a consistent underestimation of

runoff in both catchments.

Niger Basin As the observations cover only the first year of the study period, the

Niger basin can be considered as quasi-ungauged. Rpr and Ralt (even with some data

gaps) provide a smooth annual cycle, which matches the observations of 2005. Rhyd

catches the seasonal variations as well, but estimates too early and too high peak

runoff. This might be explained by an erroneous evapotranspiration, because (a)

the precipitation-based Rpr estimates agree very well with catchment-specific Ralt

estimates, and (b) an unlikely time-shift in GRACE. Ratm also shows a very noisy
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FIGURE 4.10: Runoff anomalies depicted as time series of monthly values (right
column) and the seasonal cycle (left column) derived from GRDC (Robs), hydrological
(Rhyd) and atmospheric (Ratm) water budgets, GLDAS-Noah2 (Rmod), precipitation-
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behavior and does not, therefore, provide reasonable runoff estimates over the Niger

basin.

Summary and Conclusions

In this contribution, we assessed the skill of four different hydro-geodetic approaches

for estimating runoff. In addition, a primitive method that exploits the relationship

between precipitation and runoff was also assessed. The skill was evaluated against

observed runoff data from GRDC. In order to show the skill of these methods in

comparison with recent hydrological models, they were also evaluated against the

publicly available GLDAS-Noah2 model. The assessment was based on certain per-

formance metrics, namely correlation, Nash Sutcliffe Efficiency (NSE) coefficient,

and relative bias (PBIAS).

Our results show that catchment-specific methods (altimetry and runoff-storage

relationship), despite their limitations, clearly outperform the global methods (hy-

drological and hydrometeorological approaches). The relatively simple method of

the precipitation-runoff ratio showed comparable performance with the catchment-

specific methods over the six study regions. Although the global methods have the

potential to provide runoff over all landmasses that implies gauged and ungauged

basins alike, they are ridden with accumulated errors and biases from the GRACE

data and the global hydrological and hydrometeorological datasets that they use.

It was also clear from the assessment that the hydro-geodetic approaches and the

precipitation-runoff ratio approach outperform the modeled runoff, where the pri-

mary problem seems to be a phase shift. The phase shift as suspected seems to be an

artifact of the lack of a routing scheme, which is a prerequisite for modeled runoff,

especially at shorter time scales. Apparently, as the GRACE-based approaches take

water storage changes as an input, they do not require a routing scheme and, hence,

do not suffer from such a phase shift.

A major drawback of the global GRACE-based approaches is that the performance

changes significantly from basin to basin. Our results show that, especially those
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catchments where runoff is low and the seasonal variations are not pronounced (here:

Niger, Mississippi, Danube), inconsistencies in the hydrological and hydrometeoro-

logical datasets might lead to large biases and unrealistic short-term fluctuations in

the runoff estimates. With improvements in the quality of global hydrological and

hydrometeorological datasets, global methods will provide better runoff estimates.

Hence, reliable estimates for ungauged basins can also be expected. It should be

further noted that the performance of the GRACE-based methods, despite their short-

comings, is still comparable to other runoff-specific approaches [e.g., Vergnes and

Decharme, 2012, Zaitchik et al., 2010] or purely model-based results [e.g., Lohmann

et al., 2004].

While the catchment-specific methods outperform the global approaches, it must be

noted that they rely heavily on at least an asynchronous runoff time series. These

methods might also be inadequate in catchments with significant anthropogenic

influences and those with non-stationary behavior. This really calls for catchment-

specific methods that are independent of runoff observations. Nevertheless, the

altimetry and runoff–storage relationship methods hold promise for filling data gaps

in observed runoff time series and also extending now defunct gauged stations.
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Chapter 5

Article IV: Basin-Scale Runoff Prediction: An

Ensemble Kalman Filter Framework based on

Global Hydrometeorological Datasets

Lorenz, C., M. J. Tourian, B. Devaraju, N. Sneeuw, and H. Kunstmann, 2015:

Basin-Scale Runoff Prediction: An Ensemble Kalman Filter Framework based on

Global Hydrometeorological Datasets, Water Resources Research, 51, 8450–8475,

doi: 10.1002/2014WR0167941

Abstract

In order to cope with the steady decline of the number of in situ gauges worldwide,

there is a growing need for alternative methods to estimate runoff. We present an

Ensemble Kalman Filter based approach that allows us to conclude on runoff for

poorly or irregularly gauged basins. The approach focuses on the application of

publicly available global hydrometeorological datasets for precipitation (GPCC, GPCP,

CRU, DEL), evapotranspiration (MODIS, FLUXNET, GLEAM, ERA-Interim, GLDAS),

and water storage changes (GRACE, WGHM, GLDAS, MERRA Land). Furthermore,

runoff data from the GRDC and satellite altimetry derived estimates are used. We

1©2015 American Geophysical Union. Used with permission.
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follow a least squares prediction that exploits the joint temporal and spatial auto-

and cross-covariance structures of precipitation, evapotranspiration, water storage

changes, and runoff. We further consider time-dependent uncertainty estimates

derived from all datasets. Our in-depth analysis comprises 29 large river basins of

different climate regions, with which runoff is predicted for a subset of 16 basins. Six

configurations are analyzed: the Ensemble Kalman Filter (Smoother) and the hard

(soft) Constrained Ensemble Kalman Filter (Smoother). Comparing the predictions

to observed monthly runoff shows correlations larger than 0.5, percentage biases

lower than ±20 %, and NSE values larger than 0.5. A modified NSE metric, stressing

the difference to the mean annual cycle, shows an improvement of runoff predictions

for 14 of the 16 basins. The proposed method is able to provide runoff estimates for

nearly 100 poorly gauged basins covering an area of more than 11,500,000 km2 with

a freshwater discharge, in volume, of more than 125,000 m3/s.

Introduction

The percentage of geographically and temporally accessible runoff is of crucial impor-

tance for sufficient freshwater supply. Early estimates on the human appropriation

of accessible runoff have been presented in Postel et al. [1996], and they raised

awareness on the problem of declining water availability per capita, primarily due to

a growing world population. The increase in the population of 45 % stands opposed

to an increase of accessible runoff of only 10 % within 30 years. Falkenmark and

Rockström [2004] estimated an increase of water requirements by about 1,300 m2

per capita per year for each additional person. Vörösmarty et al. [2010] stress that

80 % of the world’s population is exposed to high levels of threat to water security

and that 65 % of the total continental discharge is classified as moderately to highly

threatened. Accordingly, recent hydrological and hydrometeorological research must

aim at an improved observation, modeling, and understanding of the terrestrial water

cycle, in particular runoff.
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The importance of long-term monitoring of hydrological variables was recognized

by the World Meteorological Organization (WMO) already in 1980, which led to

the initiation of the Global Runoff Data Centre (GRDC). The GRDC collects and

harmonizes global runoff observations from national hydrological services and makes

them available to the public. However, over many catchments around the world,

runoff is not gauged [Blöschl et al., 2013].

In Dai and Trenberth [2002], it is reported that the annual runoff rate over the

unmonitored areas is comparable to that over the monitored areas. Furthermore,

studies by Sivapalan et al. [2003], Shiklomanov et al. [2002], Milzow et al. [2011],

and Fekete et al. [2012] stress that the number of active river gauges is steadily

decreasing. Figure 5.1a exemplary shows river basins without any measurements and

basins with more than five years of missing data during the period 2000 and 2010.

Since a similar decline can be observed for rainfall gauges [Lorenz and Kunstmann,

2012], the hydrological community has to face a significantly shrinking database for

the most important water cycle variables.

The serious problem of runoff data availability and its importance for hydrological

cycle studies led the International Association of Hydrological Sciences (IAHS) to

launch the study framework Prediction in Ungauged Basins (PUB). The goal of 10

years of PUB was to predict the hydrological cycle in ungauged basins by improving

the understanding of climatic and landscape controls on hydrological processes

[Blöschl et al., 2013]. It has been realized that on top of data quantity, data quality

also tremendously affects the performance of modeling [McMillan et al., 2010].

With respect to river runoff, one of the motives of PUB was to seek for spaceborne

alternatives, as traditional runoff data acquisition at in situ gauges is typically costly

and time consuming. These alternatives indeed have the potential to be highly

valuable for hydrology [Alsdorf et al., 2007]. In terms of runoff, it has been already

demonstrated by Koblinsky et al. [1993] that satellite-based altimetry can be used to

describe river level variations. Therefore, many studies made use of satellite data

in order to analyze the water cycle over ungauged basins [e.g., Khan et al., 2011].

However, Alsdorf et al. [2007] already indicated high uncertainties in satellite derived
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FIGURE 5.1: (a) Distribution of ungauged and poorly gauged catchments. The dark
red areas indicate catchments without any measurements between 2002 and 2012
while light red basins contain more than five years of missing values during that
period. The white catchments can be considered to be dischargeless (e.g., deserts).
(b) Location of the 29 basins given in Table 5.2 where the dot in each basin is located
at the respective river gauge. The 16 dark blue shaded basins are used for validating

the runoff predictions in section Results and Discussion.

hydrological data due to poor spatial and temporal resolutions and the inabilities

to penetrate clouds or smoke. In terms of precipitation, for example, Aghakouchak

et al. [2012] analyzed different systematic and random errors in satellite-derived

precipitation datasets over the United States. It was further stressed by Fekete et al.

[2012] that there is still no substitute for in situ discharge monitoring. Thus, the

combination and harmonization of spaceborne and terrestrial data is a big challenge

of the current hydrological research.

Another major task of the hydrological community is the closure of the terrestrial

water budget. Even if the basic equation of the terrestrial water cycle

P − ET − R− Ṁ = 0 (5.1)
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with precipitation P, evapotranspiration ET , runoff R, and water storage changes Ṁ

appears simple, it is known from many studies that a real closure on larger spatial

scales can not be achieved with current data sources.

For a long time, a major issue of analyzing the hydrological cycle was missing ob-

servation based data of the terrestrial water storage. In essence, direct observation

of the water storage components (e.g., snow, ice, surface water, soil, (un)saturated

underground storages) was not possible on large spatial scales [Rodell and Famigli-

etti, 1999]. Measurements of water storage changes by measurements of changes

in groundwater levels and in soil water saturation are not reliable due to the insuf-

ficiently known storage coefficients and also the inadequate density of monitoring

points on large spatial scales [Riegger et al., 2012].

Only after the launch of the twin satellites of the Gravity Recovery and Climate

Experiment GRACE, closing the water budget on shorter time scales became possi-

ble [Tapley, 2004]. Sheffield et al. [2009] combined satellite-based precipitation,

model-based evapotranspiration and GRACE data to close the water budget over the

Mississippi River basin over the time period of 2003—2005. Rodell et al. [2004a]

closed the water budget using GRACE at basin-scales to estimate evapotranspiration

as the residual of water budget. In Syed et al. [2009, 2005, 2007], GRACE data has

been used for deriving freshwater discharge using a coupled land-atmosphere water

balance.

In a similar study, Sneeuw et al. [2014] compared the performance of estimated

runoff derived from water balance closure with those from models and in situ data.

In a more extensive analysis, Lorenz et al. [2014] analyzed combinations of different

gridded observations, atmospheric reanalysis models, land surface hydrological mod-

els, partially-model-based datasets and GRACE to derive and evaluate an ensemble

of hydrological and hydrometeorological budget-based runoff estimates. However,

most of these studies did not close the water budget explicitly, but estimated a single

water cycle variable from the remaining ones. Thus, all the errors and uncertainties

in the input data sources inevitably propagate to the estimated variable.
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Other approaches, which make use of data assimilation techniques, are presented in,

for example, Pan and Wood [2006]. The authors developed a Constrained Ensemble

Kalman Filter (CEnKF), which enforced water budget closure, thereby, providing a

constrained best estimate of the basin-scale water budget. Similarly, Pan et al. [2012]

combined estimates of the terrestrial water budget from different data sources and to

enforce the water balance constraint using the constrained Kalman filter technique.

In general, the term data assimilation is used for combining observation data with

hydrological, hydrometeorological, or land surface models. The application usually

ranges from extensive global reanalysis models, which simulate the whole atmo-

sphere and the land surface [e.g., Dee et al., 2011], to models which focus on the

land surface only [e.g., Reichle et al., 2002, Rodell et al., 2004a]. However, it is well

known that our current model systems suffer from biases or errors in the simulated

water cycle variables, which finally lead to imbalances in the water budgets [e.g.,

Lorenz and Kunstmann, 2012]. We therefore propose a data assimilation framework,

where the mathematical description is kept as simple as possible. In fact, the ap-

proach is based on the terrestrial water budget equation (5.1) only, which can be

considered as the most simple hydrological model. On the other hand, we want to

exploit all the advantages and strengths from widely used global available datasets

for the major water cycle variables, and thus, use real data instead of complex

model equations within an Ensemble Kalman Filtering framework. The algorithm

is, therefore, proposed as an alternative post-processing tool, which can be used for

combining, correcting, and predicting basin-scale time series of the four major water

cycle variables. In this study, however, we focus on the estimation of runoff as an

performance evaluation step of the proposed approaches.

The datasets that are used are presented in section Data, while we describe the

methods in section Methods. In section Results and Discussion, different configurations

of the assimilation framework are analyzed in order to obtain the best possible

estimates. These estimates are then compared against monthly observations over

16 large catchments during the period 2005 until 2010. The performance of the

estimates is analyzed using the common performance metrics correlation, PBIAS, and

NSE. However, as runoff over many catchments follows a dominant annual cycle, we
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further analyze a NSE-type metric, which relates the estimates to the mean annual

cycle from historic data. In section Comparison to similar Studies, the performance of

the presented approach is compared with similar studies. Finally, section Conclusion

contains a conclusion of the major findings and an outlook.

Data

A detailed description of the applied datasets is given in Lorenz et al. [2014] and

Sneeuw et al. [2014]. Here, only a brief overview of the different datasets of the

four water cycle variables is provided. The most important information is further

summarized in Table 5.1.

Runoff

In order to attain maximum data coverage, both in space and time, data are collected

from different sources, namely the Global Runoff Data Center (GRDC), the ArcticRIMS

project, Water Survey Canada, the United States Geological Survey, United States

Army Corps of Engineers (USACE), the ORE HYBAM project, the Department of Water,

Land and Biodiversity Conservation, Government of Australia, and the Department

of Water Affairs and Forestry, Republic of South Africa.

The runoff database is further enhanced by using estimates from satellite altimetry

over the Amazon, Ob, Don, and Danube basins. The methods for deriving runoff

from altimetry data are described in Tourian et al. [2013]. They proposed a statistical

approach based on quantile functions to infer a functional relation between altimetric

water level and historic river gauge data. Using such a statistical function, the water

level measurements from satellite altimetry is then mapped to an estimation of runoff

at river gauges.
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TABLE 5.1: Summary of the observation and model based datasets containing pre-
cipitation (P), actual evapotranspiration (ET), water storage changes (Ṁ), runoff

from river gauges (Robs), and satellite altimetry (Ralt).

Variable Dataset Version Resolution Time period
Spatial Temporal

P GPCC 6.0 0.5◦ × 0.5◦ 1 month 1901–2010
GPCP 2.2 2.5◦ × 2.5◦ 1 month 1979–present
CRU 3.22 0.5◦ × 0.5◦ 1 month 1901–2013
DEL 3.02 0.5◦ × 0.5◦ 1 month 1900–2010

ET ERA-Interim – 0.75◦ × 0.75◦ 1 month, 1 day, 6 h 1979–present
GLDAS Noah3.3 1.0◦ × 1.0◦ 1 month, 3 h 1948–present
GLEAM v1B 0.25◦ × 0.25◦ 1 day 1984–2007
MOD16 A2 0.5◦ × 0.5◦ 1 year,1 month, 8 days 2000–2013
FLUXNET MTE 0.5◦ × 0.5◦ 1 month 1980–present

Ṁ GRACE-GFZ R5 – 1 month 2002–present
GRACE-CSR R5 – 1 month 2002 – present
MERRA Land 1.0 1

2
◦ × 2

3
◦

1 month, 1 day, 1 h 1980–present
GLDAS Noah3.3 1.0◦ × 1.0◦ 1 month, 3 h 1948–present
WGHM nouse 0.5◦ × 0.5◦ 1 month 1960–2009

Robs GRDC – –
Ralt Tourian et al. [2013] – –

Precipitation

Four different observation based precipitation datasets, namely the data from the

Global Precipitation Climatology Center [GPCC; Schneider et al., 2008], the Global

Precipitation Climatology Project [GPCP; Adler et al., 2003], the Climatic Research

Unit [CRU; Harris et al., 2014] and the University of Delaware [DEL; Matsuura and

Willmott, 2012] are used. From these datasets, GPCC, CRU, and DEL are based on

gauge observations only. The low spatial resolution GPCP product is a combination

of different rainfall sensors. Currently, the GPCP includes microwave, infrared, and

gauge based observations of precipitation [e.g., Huffman et al., 2009]. The largest

number of stations are included in the GPCC product, while CRU and DEL are based

on a much smaller number of rainfall gauges. Despite the pure number of stations,

also the spatial coverage is significantly different between these three datasets. An

analysis of the different precipitation products is presented in, for example, Lorenz

and Kunstmann [2012].
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Evapotranspiration

In contrast to the precipitation data (which are all based on similar observations),

evapotranspiration data are derived from quite different modeling and data merging

approaches. A comprehensive overview over different global evapotranspiration

datasets can be found in Mueller et al. [2011] or Mueller et al. [2013]. Here, we use

three evapotranspiration-only products, namely the Global Land-surface Evaporation:

the Amsterdam Methodology [GLEAM; Miralles et al., 2011b], the Fluxnet Multi-Tree

Ensemble [FLUXNET MTE; Jung et al., 2009, 2010], and data from the Moderate-

resolution Imaging Spectroradiometer [MOD16; Mu et al., 2007, 2011].

Besides these products, we also use modeled evapotranspiration from version 2 of

the Global Land Data Assimilation System [GLDAS; Rodell et al., 2004b] (i.e., the

Noah3.3 realization) and the ERA-Interim Reanalysis from the European Centre for

Medium-Range Weather Forecasts [Berrisford et al., 2009, Dee et al., 2011, Simmons

et al., 2006].

GLEAM is based on multi-satellite observations and combines a wide range of remotely

sensed observations within a Priestley and Taylor-based framework [Miralles et al.,

2011b]. In contrast to this multi-satellite-approach, MOD16 is based on remote

sensing data from the MODIS satellites and global meteorological data. The datasets

are combined using the Penman-Monteith method [Mu et al., 2007]. Finally, the MTE

dataset provides global evapotranspiration by empirical upscaling of eddy-covariance

measurements from the FLUXNET network [Jung et al., 2009].

Water Storage Changes

GRACE Data

In this study, GRACE observations of the temporal gravity field changes are applied for

deriving basin-scale water storage changes. In particular, 10 years (2003 to 2012) of

GRACE release 5 data from the two data processing centers GeoForschungsZentrum
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(GFZ) Potsdam [Dahle et al., 2013] and the Center for Space Research (CSR), The

University of Texas at Austin [Bettadpur, 2012] is used. The spherical harmonic

coefficients are filtered with a regularization type filter, as described in Sneeuw et al.

[2014]. Then, the spectral data are transformed to a 0.5◦ × 0.5◦ grid using the

equations from Wahr et al. [1998] and then aggregated over catchments to derive

catchment-specific time series. As these time series represent water storage anomalies,

the data has to be numerically differentiated in order to arrive at the required flux

quantity, water storage changes. This is done by applying the method of three-point

central differences. Further details on the pre-processing of GRACE data can be

found in Sneeuw et al. [2014] and Lorenz et al. [2014].

Land Surface Models

As GRACE data is only available from 2002 on, we also need some legacy data

for deriving correlations between water storage changes from different catchments

(see section Derivation of the Prediction Equation). Therefore, we use data from

GLDAS. Additionally, we also use data from the land-only replay of the Modern-Era

Retrospective analysis for Research and Applications [MERRA Land; Reichle et al.,

2011] and the WaterGAP Global Hydrology Model [WGHM; Döll et al., 2003, 2014].

In contrast to the two land surface models MERRA Land and GLDAS, which do

not contain a routing scheme (R. Reichle (2013) and M. Rodell (2012), personal

communication), WGHM is tuned against observed discharge at 724 gauging stations

[Döll et al., 2003]. It is assumed that this improves the reliability of the water

availability estimates from the model. Data from WGHM has been used for various

water budget studies [e.g., Döll et al., 2014, Forootan et al., 2012, Kusche et al.,

2009, Ramillien et al., 2006, Schmidt et al., 2006].
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TABLE 5.2: River basins which were used in this study including the respective river
gauge, its location, the area of the basin, and the mean annual discharge between
the period 1980 to 2010 as provided from GRDC. The location of the basins is shown
in Figure 5.1b. From the 29 catchments, the first 16 are used for validating the

runoff predictions.

River Station Lat. Lon. Area [km2] Discharge [m3/s]

1 Amazon Obidos -1.95 -55.51 4672876 171915
2 Congo Kinshasa -4.3 15.3 3615546 38652
3 Mississippi Vicksburg 32.32 -90.91 2938538 18661
4 Ob Salekhard 66.57 66.53 2926321 12939
5 Yenisei Igarka 67.48 86.5 2454961 19388
6 Lena Kyusyr 70.7 127.65 2417932 17761
7 Mackenzie Arctic Red River 67.46 -133.75 1666073 9194
8 Volga Volgograd Power Plant 48.81 44.59 1345070 8143
9 St. Lawrence Lasalle 45.42 -73.62 943769 8575
10 Orange Vioolsdrif -28.76 17.72 828475 169
11 Don Razdorskaya 47.54 40.65 378180 685
12 Pechora Oksino 67.6 52.2 304670 4857
13 Fraser Hope 49.38 -121.45 228874 2657
14 Neva Novosaratovka 59.84 30.53 225651 2490
15 Olenek 7.5 km d/s of mouth of Pur 72.12 123.22 199723 1257
16 Fitzroy (west Australia) The Gap -23.09 150.11 126986 138

17 Niger Lokoja 7.8 6.76 2100508 5070
18 Danube Ceatal Izmail 45.22 28.72 771277 6490
19 Tocantins Tucurui -3.76 -49.65 752993 10966
20 Rio Xingu Altamira -3.22 -52.21 445289 8062
21 Kolyma Kolymskaya 68.73 158.72 421802 3262
22 Severnaya Dvina (northern) Ust-Pinega 64.15 41.92 330709 3392
23 Churchill Above Red Head Rapids 58.12 -94.63 299391 337
24 Rio Parnaiba Luzilandia -3.45 -42.37 297049 692
25 Yana Ubileynaya 70.75 136.08 220949 1127
26 Thelon below outlet of Schultz Lake 64.78 -97.05 171346 924
27 Rhine Rees 51.75 6.4 169706 2392
28 Elbe Neu Darchau 53.23 10.89 134037 701
29 Rio Santiago El Capomal 21.83 -1.05 126986 161

Data Consistency

For the comparison of the runoff estimates with observations, we have re-mapped all

the input fields to the same grid resolution (0.5◦ × 0.5◦) using a first-order conser-

vative interpolation [Jones, 1999]. From these fields, area-weighted averages were

computed over the study regions shown in Figure 5.1.

The water storage changes Ṁ , computed from GRACE via the central difference

scheme, are an approximation of the true derivatives. In the spectral domain they

differ by a sinc function. In fact, the numerical derivatives from the central difference

scheme are not compatible yet to the hydrological signals (P, ET and R in Eq. 5.1).

The hydrological water storage changes should be filtered using a filter that resembles

the sinc function in the frequency domain. Swenson and Wahr [2006] proposed to
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smooth the time series of the other water cycle variables according to

eFt =
1
4

Ft−1 +
1
2

Ft +
1
4

Ft+1 , (5.2)

where F are time series of precipitation, evapotranspiration, and observed runoff.

The indices t−1, t, and t+1 refer to the previous, current, and following month. We

apply this filter to all the time series of precipitation, runoff and evapotranspiration.

Methods

Overview

For estimating basin-scale water cycle variables, different formulations of an Ensem-

ble Kalman Filter [EnKF; Evensen, 1994, 2003, Houtekamer and Mitchell, 1998]

framework are applied, which successively predict and correct the state vector con-

taining precipitation, evapotranspiration, runoff, and water storage changes

Xt =
h

PT
t ETT

t RT
t ṀT

t

iT
(5.3)

with t being the time-index, Pt , ETt , Rt , and Ṁt four sub-vectors with dimensions

[N × 1] and N the number of catchments. A summary of the different input parameter

and formulas for the Ensemble Kalman Filter (EnKF), the hard (CEnKFh) and soft

(CEnKFs) constrained Ensemble Kalman Filter, the Ensemble Kalman Smoother

(EnKS), and the hard (CEnKSh) and soft (CEnKSs) constrained Ensemble Kalman

Smoother are presented in Tables 5.3 and 5.4, respectively.

It can be construed that all the filter equations are linear. With the assumption

that the errors of the variables are normally distributed, a single-state Kalman filter

(SSKF) is sufficient to achieve the results. Instead we present an ensemble Kalman

filter (EnKF) approach, which will allow for its extension to assimilate grid-point

values on the global scale. Predicting and estimating grid-point values leads to huge
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(spatial) covariance matrices, which might cause computational issues, for example,

during inversion. Therefore, we propose and proceed with the EnKF framework.

Derivation of the Prediction Equation

On monthly time scales, it can be assumed that the basin-scale water cycle variables

follow a (more or less) distinct annual cycle. Therefore, the anomalies at time-step t

are expressed as

rt = Xt − eXt , (5.4)

where Xt is the state vector from (5.3). eXt represents the long-term mean annual

cycle for each of the four water cycle variables for every basin through

eXm =
1

T/12

T/12
∑

i

Xi,m , (5.5)

where the indices i and m refer to different years and months, respectively. It is

further assumed that the prediction from time-step t − 1 to t is expressed through a

stochastic process of first order

rt = Art−1 + et , (5.6)

where A is a (yet unknown) prediction function and et some zero-mean white

prediction noise with covariance matrix D {e} = E
�

eeT
	

= QP and with the auto-

and cross-covariance matrices

Σ= D {rt} and Σ∆ = D {rt , rt−1} . (5.7)

The prediction matrix A is given through the so-called least squares prediction or

multiple ordinary least squares regression, which is described in, for example, Moritz

[1980] or Kurtenbach et al. [2012].
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As the true process dynamics A are not known, we are looking for an approximation

bA. This approximation should minimize the prediction error

e= rt −brt . (5.8)

where brt is an estimate of the true state. According to (5.8), we therefore compute

the outer product of the error vectors

eeT = (rt −brt) (rt −brt)
T

= (rt −Art−1) (rt −Art−1)
T

= rtr
T
t − rtr

T
t−1AT −Art−1rT

t +Art−1rT
t−1AT . (5.9)

The corresponding error covariance matrix is given through

D {e}= E
�

eeT
	

= Σ−Σ∆AT −AΣT
∆
+AΣAT . (5.10)

An estimate for A is found by minimizing the trace of the error covariance matrix, i.e.

bA= arg minTr [D {e}] , (5.11)

which is the case for

bA= Σ∆Σ
−1 . (5.12)

With this estimator, the final prediction equation from time-step t − 1 to t reads as

brt = bArt−1 . (5.13)

For a more detailed derivation, see, for example, Kurtenbach et al. [2012]. As it is

assumed that this prediction matrix remains constant over time, the time-index has

been omitted. Inserting (5.12) into (5.10) yields

D {e}= Σ−Σ∆Σ−1Σ∆ = QP , (5.14)

which is the error covariance matrix of the predictor bA or, in the common Kalman
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notation, the covariance matrix of the prediction noise. As the true auto- and cross-

covariance between anomalies of precipitation, evapotranspiration, runoff, and water

storage changes are also unknown, they are approximated by the empirical sample

covariance matrices

bΣ=
1

T − 1

T
∑

t=1

rtr
T
t , and (5.15)

bΣ∆ =
1

T − 2

T
∑

t=2

rtr
T
t−1 . (5.16)

The two matrices are shown in Figures 5.3a,b.

Putting (5.4) into (5.6) and replacing the true dynamics with the approximated

prediction matrix bA, the process model reads as [Tourian, 2013]

�

Xt − eXt

�

= bA
�

Xt−1 − X̃t−1

�

+ et

= bAxt−1 − bAeXt−1 + et

⇒ Xt = bAXt−1 − bAeXt−1 + eXt + et , (5.17)

which can be re-written as

Xt = bAXt−1 +BUt−1 + et (5.18)

with

B=
h

−bA I
i

and Ut =





eXt−1

eXt



 (5.19)

and I being the identity matrix. Thus, the prediction is based on the covariances

between the state variables (through the least squares prediction matrix) and the

mean annual cycle through the control input Bt−1Ut−1.

The control input is computed from the collection of datasets, which were described

in section Data. For each water cycle variable, the annual cycle is given through the

mean of all respective data sources. As we are mainly interested in the performance
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of the methodology as a predictor, only past data from 1980 to 2002 is used for

computing the mean annual cycle.

Derivation of the Observation Equation

The first observation group relates the state vector to observed precipitation, evapo-

transpiration, runoff, and water storage changes. Thus, the framework allows the

assimilation of an arbitrary number of observation data of water cycle variables.

These variables can be further used as constraints, if they are assumed to be highly

precise.

For assimilating runoff observations from satellite altimetry Rt,alt, another observation

group is added to the observation vector. The runoff estimates in the state vector are

directly related to the altimetry observations, which then gives the full observation

equation through





















Pt,obs

ETt,obs
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








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



︸ ︷︷ ︸
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
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
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
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



︸ ︷︷ ︸

Xt

+νt (5.20)

or, as in the common Kalman literature,

Yt = HtXt + νt , (5.21)

where I and 0 are [N × N] identity and zero matrices, respectively, and νt is the zero-

mean white observation noise with covariance matrix D {ν} = QO. The computation

of this covariance matrix is discussed in section A Multi-Data Approach for Estimating

Basin-Scale Errors. If the observed time series contain missing values, the observation

relation matrix has to be adjusted accordingly. Therefore, the time-index t is used
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here to indicate a dynamic observation relation matrix, which changes depending on

the number of available observations.

Similar to the control input in section Derivation of the Prediction Equation, the obser-

vations are computed from the collection of input data sources shown in Table 5.1. It

is common practice in hydrology to use an ensemble mean instead of single models

or datasets [e.g., Kirtman et al., 2013]. Nevertheless, high-quality observations over,

for example, a single catchment (if available) could be used here as well. This will

be further analyzed in future studies.

Closure of Catchment-Scale Water Budgets

Water budget closure between the four water cycle variables can be achieved by

adding state constraints to the assimilation scheme. These constraints adjust the

estimates of precipitation, evapotranspiration, runoff, and water-storage changes in

a way that the catchment-scale water budgets are closed. There are several methods

for adding such constraints to the assimilation scheme [e.g., Simon, 2010, Simon

and Chia, 2002]. Here, we discuss and apply two straightforward approaches for

adding water budget constraints.

Both methods are based on the augmentation of the observation vector by adding

some pseudo observations of the water balance closure. The terrestrial water balance

equation (5.1) can be written as a state constraint through

h

I −I −I −I
i















Pt

ETt

Rt

Ṁt















= 0 , (5.22)

where 0 is a [N × 1] vector which contains only zeros and I are [N × N] identity

matrices.
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When we write these constraints in shorter matrix notation

GXt = 0 (5.23)

with G =
h

I −I −I −I
i

, we can augment the observation equation (5.20) through





Yt

0



=





Ht

G



Xt +





νt

ωt



 , (5.24)

where ωt is some zero-mean white noise with covariance QWB for the pseudo obser-

vations of the water budget closure.

If the water budget should be perfectly closed, the method is usually referred to as

perfect observations or hard constraints. This can be easily achieved by assuming the

pseudo observations to be noise free—that is, QWB = 0. However, this assumption

can lead to numerical issues, as the augmented observation error covariance matrix is

singular. Furthermore, by considering the large differences between the data sources

of precipitation, evapotranspiration, and water storage changes, such a constraint

might be too strict.

Therefore, one could allow some small imbalances. Such constraints are thus called

imperfect observations or soft constraints. In this case, we add some small non-zero

observation errors—that is, ωt ∼ N (0,QWB). In order to be consistent with the

basin-specific characteristics, this error is chosen to be 10 % of the mean annual cycle

of runoff [Fekete et al., 2012].

A Multi-Data Approach for Estimating Basin-Scale Errors

As there are plenty of data sources, it is difficult to identify the "best" datasets

for each of the water cycle variables. It was shown in Lorenz et al. [2014] that

there is no such dataset that performs best globally. Moreover, a proper description

of the observation errors is essential in order to successfully apply any Kalman

Filtering approach. Therefore, an ensemble-based approach has been chosen, where



Basin-Scale Runoff Prediction 157

numerous realizations of observations are estimated, based on the range of the input

data sources.

First, the range of the collection of input datasets for the water cycle variable F (which

is either precipitation, evapotranspiration, or water storage changes) is computed

for every catchment n and every time-step t. This range is assumed to be a proxy for

the uncertainty of each of the four water cycle variables. Therefore, all precipitation

anomalies from K different datasets are stored in a vector:

fn,t =
h

fn,t,1 fn,t,2 · · · fn,t,K

iT
, (5.25)

where the fn,t,k are the anomalies with respect to the mean annual cycle eFt . From

this vector, the range is given through

∆ fn,t =
1
2

�

max
�

fn,t

�

−min
�

fn,t

��

. (5.26)

The sample covariance and correlation matrices are then estimated through

Σ∆ f =
1

T − 1

T
∑

t=1

�

∆ft −∆f
��

∆ft −∆f
�T

(5.27)

ρ∆ f =
�

Σ
(diag)
∆ f

�− 1
2
Σ∆ f

�

Σ
(diag)
∆ f

�− 1
2

, (5.28)

where Σ∆ f (diag) is the diagonal variance matrix of Σ∆ f . These correlation matrices

thus describe the relationship between the uncertainties of the water cycle anomalies

from different catchments. In order to use as much data as possible, the matrices are

computed from past data only (i.e., until 2002). Then, the correlation matrices are

re-scaled with the ensemble standard deviation from actual data (i.e., from 2003).

Although multiple datasets for each of the hydrological variables are used, there

is not enough data for estimating reliable ensemble standard deviations for every

time-step. Therefore, a cyclostationary approach has been chosen:

σF,n,m =

√

√

√

√

1
K(T/12)− 1

K
∑

k=1

T/12
∑

i=1

�

Fn,k,i,m − eFn,k,m

�2
, (5.29)
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where the index i represents a single year and m a single calendar month (e.g.,

January, February, etc.). K is the number of datasets for a single variable and eFn,k,m

the long-term mean annual cycle of the kth dataset over catchment n for month m.

The standard deviations for the other calendar months are computed likewise. The

error covariance matrix is then given by

ΣF,m =
�

I σF,m

�

ρ∆ f

�

I σF,m

�

, (5.30)

where I is the N × N unit matrix and

σF,m =
h

σF,1,m σF,2,m · · · σF,N ,m

i

. (5.31)

The matrices for each water cycle variable are then combined in the full observation

error covariance matrix

QO,t =





















ΣP,t 0 0 0 0

0 ΣET,t 0 0 0

0 0 ΣRobs,t 0 0

0 0 0 ΣṀ,t 0

0 0 0 0 ΣRalt,t





















, (5.32)

where ΣRobs
and ΣRalt

are the covariance matrices for the runoff observations from

GRDC and satellite altimetry, respectively. The mean monthly index m has been

replaced with the time-index t in order to account for the monthly errors in the

runoff observations from GRDC and satellite altimetry. According to, for example,

Fekete et al. [2012], traditional discharge measurements usually have an accuracy

of 5–10 %. We thus compute the errors of the runoff observations from GRDC to

be 5 % of the reported values. The errors from satellite altimetry are obtained by

propagating the errors of the altimetric water level measurements through the rating

curve model, as described in Tourian et al. [2013].

Obviously, correlations between the uncertainties of different water cycle variables

are neglected. As the data comes from totally different sensors, we think that this is a

reasonable assumption. However, it should be further investigated how, for example,
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a fully populated observation error covariance matrix affects the performance of the

assimilation framework.

Figure 5.2 shows histograms of random perturbations derived from the covariance

matrix in (5.32). These random values are used for computing an ensemble of

perturbed observations within the EnKF. Here, we only show some exemplary real-

izations for the three catchments Amazon, Danube, and Yana for January and July.

It is obvious that the chosen methodology is able to produce different perturbations

for different catchments, variables, and months. For example, the precipitation

perturbations in January over the Amazon basin show a wide spread as only about

73 % are within the range between -50 and 50 mm/month. On the contrary, in July,

almost 100 % are within the same interval. Over the Yana basin, almost 100 % of

the precipitation perturbations are between -10 and 10 mm/month. The method

is thus able to provide perturbations which depend on the climatic conditions, but

also on the spread of the different datasets over the basins. However, it should be

mentioned that a limited number of rainfall gauges in a basin can lead to very similar

precipitation estimates from different products. This suggests a good agreement

between these data sources, even if the true precipitation can be totally different.

Computation of the Least Squares Prediction Matrix

According to equations (5.12), (5.14), (5.12), and (5.15) the least squares prediction

matrix bA and its error covariance matrix QP are computed from the auto- and cross-

covariance matrices between anomalies of precipitation, evapotranspiration, runoff,

and water storage changes. In order to capture reliable covariance structures, a

collection of different data sources (which are listed in Table 5.1) has been used

instead of singe datasets. As it is avoided to use the same data twice, the covariance

matrices are derived from a different period (1980–2002) than the estimated period

(2003–2010). The two matrices Σ and Σ∆ are shown in Figures 5.3a and b.

It is emphasized that these matrices are derived from the anomalies, which consist

of random errors, climatic variability and extreme events. They thus represent
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FIGURE 5.2: Histograms of 10000 random realizations drawn from a multivariate
normal distribution with zero mean and the observation error covariance matrix
from (5.32). The histograms show the distributions of the random perturbations for
the three catchments Amazon (left column), Danube (middle column), and Yana
(right column) for precipitation (top row), evapotranspiration (center row), and
water storage changes (bottom row). The left bars (bright colors) correspond to the
perturbations of January while the right bars (dark colors) show the perturbations
in July. The figure only shows the absolute value of the perturbations as they are
symmetric around zero. The numbers in the top right corner of every histogram are
the ensemble mean values of precipitation, evapotranspiration, and water storage

changes for January and July, respectively, in mm/month.

covariances mainly due to features which deviate significantly from the annual

cycle. Both the auto- and cross-covariance matrix show high positive inter-catchment

covariances throughout most basins especially for precipitation, evapotranspiration,

and water storage changes. These characteristics have been already addressed in

Riegger et al. [2012], where it is concluded that inter-catchment correlations can be

expected, for example, for neighboring catchments due to local climatic conditions.

The off-diagonal elements in Σ and Σ∆ for runoff are comparatively small. This

indicates that there are no such strong inter-catchment correlations (or covariances)
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for runoff. Thus, at the anomaly level, climatic and physical variations in time series

of runoff are rather local phenomena.

The inter-variable covariances are generally lower. Some strong relationship be-

tween precipitation, water storage changes, and, to a certain extent, runoff can be

detected. This is indicated by relatively high covariances on the main-diagonals

of the corresponding matrix blocks. At the anomaly level, this is intuitive as, for

example, an exceptionally strong precipitation event might lead to high runoff and

an increased water storage. The second case can be clearly identified by the high

covariances on the main diagonals of the upper right and lower left sub-matrices,

respectively. In terms of precipitation and runoff, such a strong relationship can only

be observed over some catchments. As an example, the gauges of the four basins

Amazon, Tocantins, Rio Xingu, and Rio Parnaiba are all located at the North-Eastern

part of South America. Over these catchments, there are high inter-catchment and

inter-variable covariances between precipitation, runoff, and water storage changes.

On the contrary, evapotranspiration generally does not show such high covariances

with any of the other water cycle variables. This indicates that there is no strong

coupling between the residuals of evapotranspiration and other water cycle variables.

The reason for this is the stable periodic characteristic of the evapotranspiration time

series. Compared to the other water cycle variables, the total signal power (i.e., the

root mean square RMS) of the evapotranspiration anomalies are very low and the

dynamics possess a random behavior (not shown here).

When comparing the auto- and cross-covariance-matrices in Figures 5.3a and b,

they both show similar structures, even if the covariances in Σ∆ are generally lower.

The top right sub-matrix in Figure 5.3b shows, as hydrologically expected, a strong

cross-covariance between precipitation and water storage changes with a time-lag of

one month. On the other hand, the bottom left sub-matrix does not show such high

covariances. Thus, after a strong precipitation event, the impact on the water storage

can be seen even one month later. There is no such strong coupling between, for

example, anomalies of precipitation and runoff, even if that could have been expected.

This suggests that, based on the empirical covariances, significant deviations from
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FIGURE 5.3: Temporal (a) auto-covariance and (b) cross-covariance matrix [Σ
and Σ∆, see equations (5.15) and (5.16)] between anomalies of precipitation,
evapotranspiration, runoff, and water storage changes. The anomalies are computed
with respect to the ensemble mean annual cycle from all available data sources. The
matrices thus represent the overall mean covariance structure of the water cycle
variables. Both matrices consist of 16 sub-matrices, of which each has the dimension
[29× 29]. These sub-matrices therefore represent the auto- and (temporal) cross-
covariance between the different study regions and water cycle variables. (c) Least

squares prediction matrix bA and (d) the corresponding error matrix QP.
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the mean annual cycle of precipitation do not necessarily lead to exceptional runoff

months.

The least squares prediction matrix and its corresponding error covariance matrix

can be derived from the auto- and cross-covariance matrices according to equations

(5.12) and (5.14). The two matrices bA and QP are shown in Figures 5.3c and d.

Instead of just using fully populated covariance matrices, we can distinguish between

three cases:

1. Covariances between catchments and variables (case 1)

2. Covariances between catchments (case 2)

3. Covariances between variables (case 3)

In the first case, it is assumed that there are covariances between both the catchments

and the water cycle variables. In case two and three, either the covariances between

the water cycle variables (case 2) or the catchments (case 3) are neglected. In

Figures 5.3c and d, only the matrices for case 1 are shown. The other two cases

are derived from these matrices by removing all sub-matrices except for those on

the main diagonal (case 2) or all elements except for those on the main diagonals

of each sub-matrix (case 3). It will be discussed in section Structure of the Least

Squares Prediction Matrix if these three cases lead to different predictions. Besides

that, initial tests confirmed that using equation (5.13) with different configurations

of the least squares prediction matrices can explain about 70 % of the runoff anomaly

variance (not shown). However, this must not hold true for the other water cycle

variables, which might be less predictable through such a covariance-based least

squares approach.

Performance Metrics

For validating the estimated time series of precipitation, evapotranspiration, runoff,

and water storage changes, numerous performance metrics can be evaluated. In
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TABLE 5.3: Overview of the different parameters and variables for the assimilation
framework.

Parameter Equation Dimension

State vector Xt =
�

PT
t ETT

t RT
t ṀT

t

�T
4N × 1

Annual cycle eXm =
1

T/12

T/12
∑

i,m

Xi,m 4N × 1

Residuals rt = Xt − eXt 4N × 1

Auto-covariance Σ = 1
T−1

T
∑

t=1
rtr

T
t 4N × 4N

Cross-covariance Σ∆ = 1
T−2

T
∑

t=2
rtr

T
t−1 4N × 4N

Prediction matrix bA = Σ∆Σ
−1 4N × 4N

Prediction noise QP = Σ−Σ∆Σ−1ΣT
∆ 4N × 4N

Control input B =
�

−bA I
�

4N × 8N

Ut =
�

eXt−1 eXt
�T

8N × 1

Observation vector Yt =
�

PT
t,obs ETT

t,obs RT
t,obs ṀT

t,obs RT
t,alt

�T
5N × 1

Observation covariance QO,t =



















ΣP,t 0 0 0 0

0 ΣET,t 0 0 0

0 0 ΣRobs ,t 0 0

0 0 0 ΣṀ,t 0

0 0 0 0 ΣRalt ,t



















5N × 5N

Observation relation matrix Ht =

















I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 I 0

















5N × 4N

Constraints GXt = 0

G =
�

I −I −I −I
�

N × 4N

Augmented obs. rel. matrix Ht,aug =
�

HT
t GT�T 6N × 4N

Augmented observation vector Yt,aug =
�

YT
t 0T�T 6N × 1

Augmented observation covariance QO,t,aug =
�

QO,t 0
0 QWB,t

�

6N × 6N

hydrology, it is common to use correlation, the percentage bias [PBIAS; Gupta et al.,

1999]), and the Nash-Sutcliffe Efficiency [NSE; Nash and Sutcliffe, 1970]). From

these, correlation describes the level of common information content between two

time series. As it is insensitive to the amplitude and the mean value, the PBIAS

between an observed (Yt) and predicted (X t) time series,

PBIAS=

T
∑

t=1
(X t − Yt)

T
∑

t=1
Yt

= 1 −
X

Y
, (5.33)
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TABLE 5.4: Overview of the assimilation algorithm. For the constrained predictions,
the observation vector (Yt), the observation relation matrix (Ht), and the observation
covariance matrix (QO,t) are replaced with the augmented parameters (Yt,aug, Ht,aug,

QO,t,aug). A particular ensemble member is identified by the index d.

Parameter Equation

Initial state X+0,d = X0 + ed with ed ∼N (0,QP)

Prediction step X−t,d = bAX+t−1,d +BUt−1 + ed with ed ∼N (0,QP)

Prediction covariance bΣ
−
X ,t =

1
D− 1

D
∑

d=1

�

X−t,d −X
−
t

��

X−t,d −X
−
t

�T

Observation Innovations Vt,d = Yt −HtX
−
t,d + νt,d with νt,n ∼N

�

0,QO,t
�

Kalman Gain Kt = bΣ
−
X ,tH

T
t

�

Ht bΣ
−
X ,tH

T
t +QO,t

�−1

Correction step X+t,d = X−t,d +KtVt,d

Corr. covariance bΣ
+
X ,t =

1
D− 1

D
∑

d=1

�

X+t,d −X
+
t

��

X+t,d −X
+
t

�T

Kalman Gain (smoother) Kt = bΣ
+
X ,t
bA
�

bΣ
−
X ,t+1

�−1

Smoothing step Xt,d = X+t,d +Kt

�

Xt+1,d −X−t+1,d

�

Smoothed covariance bΣX ,t = bΣ
+
X ,t +Kt

�

bΣX ,t+1 − bΣ
−
X ,t+1

�

KT
t

gives precise information about the relative difference between the long-term means.

Finally, both metrics are summarized in the NSEmean-coefficient

NSEmean = 1−

T
∑

t=1
(X t − Yt)

2

T
∑

t=1

�

Yt − Y
�2

, (5.34)

which is highly sensitive to the agreement in phase, amplitude, and mean between

two datasets. The NSEmean further represents the normalized mean squared error

between, for example, an observed and predicted time series [Lorenz et al., 2014].

In this study, an alternative formulation of the NSE-coefficient, which takes the

long-term annual cycle of a variable into account, is proposed:

NSEcycle = 1−

T
∑

t=1
(X t − Yt)

2

T
∑

t=1

�

Yt − eY
�2

, (5.35)
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where eY is not the long-term mean, but the long-term mean annual cycle. Similar

to the common Nash-Sutcliffe Efficiency, (5.35) gives information if the estimated

time series X t is a better predictor than the long-term annual cycle from historic

data eY (NSEcycle > 0). If NSEcycle < 0, the estimated time series can not improve the

long-term mean annual cycle with respect to the observations. This indicates that

the estimated residuals (with respect to the mean annual cycle) then do not capture

the short- and long-term climatic variability in the observations.

Results and Discussion

In this section, the performance of the approach presented here will be discussed.

First, different set-ups of the assimilation framework are analyzed in order to find

an appropriate configuration. Therefore, several tests are run with both the uncon-

strained and hard Constrained Ensemble Kalman Filter (hereafter EnKF and CEnKFh).

For these tests, the framework estimates runoff over 16 of the 29 catchments, where

continuous runoff observations during the period 2005 to 2010 are available (see

Figure 5.1 and Table 5.2). The runoff observations from the GRDC for these 16

catchments are removed from 2005—that is, they are not assimilated. Thus, all

following performance metrics are derived from the comparison between observed

runoff and the estimates from the proposed data assimilation framework during the

period 2005 to 2010.

Sensitivity Analysis

Ensemble Size

In an Ensemble Kalman Filtering framework, the true covariance matrices are approx-

imated by empirical sample covariance matrices. Therefore, it has to be investigated

if and how different ensemble sizes have an impact on the estimates. Studies like,

for example, Mitchell et al. [2002] provide a comprehensive analysis of this issue.
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Here, estimated and observed runoff are compared with respect to the ensemble

size. Figure 5.4a thus shows the NSEmean between observed and estimated runoff

for the first five catchments out of the 16 study regions, namely the Amazon, Congo,

Mississippi, Ob, and Yenisei basins.

From these catchments, there are catchments with (Amazon and Ob) and without

(Congo, Mississippi, and Yenisei) runoff observations from altimetry. Furthermore,

these catchments cover the main climatic regimes—that is, the tropics (Amazon and

Congo), mid- (Mississippi) and high-latitudes (Ob and Yenisei). This allows a basic

analysis with respect to different runoff characteristics.

The figure clearly shows that NSEmean remains rather constant throughout all ensem-

ble sizes, especially over the Amazon, Ob, and Yenisei basins. The largest variations

can be observed for the Mississippi basin when ensemble sizes smaller than 5000 are

used. However, these variations are negligible compared to the magnitude of the

performance metric. The impact of the ensemble size on the unconstrained (dark

colors) and constrained (bright colors) are very similar. From this analysis we have

chosen an ensemble size of 10000 as Figure 5.4a clearly shows that using larger

ensembles does not lead to improved results.

Perturbation Analysis

As any Ensemble Kalman Filtering approach involves random drawings of pertur-

bations, the estimates from repeated runs of the EnKF can show a certain spread.

In order to analyze this uncertainty within the proposed framework, the EnKF and

CEnKFh are run with a fixed ensemble size of 10000 for 500 times. Figure 5.4b shows

the distribution of the Nash-Sutcliffe efficiency between observed and estimated

runoff for the 16 study regions.

Foremost, the NSE values show a very small spread, even if there are large differences

between the catchments. For most catchments, the interquartile range (IQR) of the

NSE is below 0.04. Larger values can be observed for the Orange or Don basins,

where the IQR can reach values up to 0.06. Runoff over these catchments usually
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does not follow a typical annual cycle and has a lower overall magnitude. Therefore,

even small changes in the predicted time series can result in significantly different

performance metrics. But compared to the inter-catchment variability of NSE values,

this spread appears negligible.

Comparing the performance metrics from the unconstrained (EnKF) and the con-

strained (CEnKFh) estimates clearly shows that there is no significant difference

in terms of spread. Thus, even if the water budgets are forced to be closed, the

estimated runoff time series from multiple runs of the CEnKFh show a (negligible)

variability.

Structure of the Least Squares Prediction Matrix

It is investigated how the different covariance structures in the least squares prediction

matrix influence the results. This analysis thus helps to identify if the estimates benefit

from fully populated covariance matrices (covariances between both catchments and

water cycle variables, case 1) or if covariances between catchments only (case 2) or

water cycle variables only (case 3) provide better results.

Figure 5.4c shows the NSE between observed runoff and the estimates from the EnKF

and CEnKFh over 16 catchments for different configurations of the prediction matrix.

Most catchments show positive values for all three cases, while the highest values

are clearly achieved by case 3. In addition, using an unconstrained (darker dots) or

constrained (brighter dots) does not lead to significantly different metrics. The worst

performance can be observed for the Orange, Don, and Fitzroy basins, where case 1

and 2 lead to negative NSE values. The reasons for this are again the low overall

magnitudes and irregular dynamics of the runoff time series over these catchments.

The best performance can be achieved when correlations only between the water

cycle variables are assumed (case 3). This can be understood from case 2, where the

runoff estimates for a specific catchment depend only on runoff from other basins.

From a climatic point of view, this would make sense as for example, the tropical
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FIGURE 5.4: Sensitivity analysis showing the NSE values between observed and
predicted runoff. (a) NSE derived from multiple runs of the filter using different
ensemble sizes (the darker and brighter colors are derived from the EnKF and
CEnKFh, respectively). (b) Box-and-whisker plots from 500 runs of the EnKF (blue)
and the CEnKFh (red) with the same settings and an ensemble size of 10000. The
boxes represent the 25 % and 75 % percentile of the distribution of performance
metrics. The top and bottom whiskers cover approximately 99.3 % of the data, if
a normal distribution is assumed. (c) NSE from the EnKF (dark colors) and the
CEnKFh (bright colors) using a fully populated prediction matrix (case 1, blue), and
prediction matrices which neglect correlations between water cycle variables (case

2, green) or catchments (case 3, red).
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catchments often show similar runoff characteristics. However, this relationship is

obviously not strong enough for providing reasonable estimates.

On the other hand, it is noted that the use of fully populated prediction matrix (case

1) does not lead to better results. For instance, the NSE values for case 1 do not

always lie between those from case 2 and 3. The reason for this behavior is not yet

fully understood, and therefore, needs further investigation. Henceforth, we will use

covariance structures as in case 3 for the proposed methods.

Prediction Performance

After the identification of a suitable set-up, this section discusses the overall pre-

diction performance of the proposed method. The filter is run with an ensemble

size of 10000 and case 3 of the prediction matrix in six different configurations (see

section Overview). The performance metrics of these different configurations with

respect to observed monthly runoff are summarized in Figure 5.7. The corresponding

time series for the 16 study regions are shown in Figures 5.5 and 5.6.

In terms of correlation, an overall good agreement between the dynamics of estimated

and observed runoff can be identified. Over most catchments (except for Orange

and Fitzroy), the different configurations led to correlations larger than 0.6. The

catchments with high amplitudes and a dominant annual cycle in the runoff time

series (Amazon, Congo, Mississippi, Ob, Yenisei, Lena, Mackenzie, Volga, Pechora,

Fraser, Neva, and Olenek) show correlations of at least 0.8. This good agreement

can be explained by the repeating annual cycle of runoff, which is reproduced well

by all six set-ups (see Figures 5.5 and 5.6). The main reason for this is the strong

control input, which forces the runoff estimates to follow the mean annual cycle.

However, several catchments show significant climatic variations, which are revealed

by the anomaly time series in the right columns of Figures 5.5 and 5.6. E.g. over

the Amazon basin, even if there is a dominant annual cycle, the anomalies still

show some significant dynamics, which are reproduced quite well by the estimates.

Also over Congo, Mississippi, Ob, Volga, Fraser, Neva, and Olenek, the estimated
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FIGURE 5.5: Time series of observed (black) and predicted runoff from different
configurations of the Kalman Filter and Smoother for the study regions 1–8. The
left column shows the full runoff time series while for the right column, the mean

annual cycle from historic runoff data has been removed.

runoff anomalies show significant long-term variations, which agree well with the

observations.

For Lena, Pechora, and Olenek, the runoff observations show a significant second

peak during the late summer months, that can not be captured by the estimates.
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Over the Mackenzie basin, the estimates can only capture the annual cycle but none

of the exceptional events. Additionally, the sudden drop in the constrained anomalies

during 2008, for example, can not be found in the observations.

It must be noted that the anomalies for many of the catchments with a dominant

annual cycle are rather small, which complicates the estimation of exceptional events.

This also explains why the correlations over these basins, despite the disagreement

of the anomalies, are still very high.

Over catchments with lower overall magnitudes and irregular time series dynamics

(St. Lawrence, Orange, Don, Fitzroy), several configurations achieve correlations of

0.5 and more. Thus, the runoff estimates are in principle able to capture a large part

of the climatic variability in the observations. But when looking at the time series

for these four basins (Figures 5.5 and 5.6), the estimates do not agree well with the

observations. Over Don, both the estimates and the observations show a peak in

runoff during the summer months during the years 2005 and 2006. In 2007 and

2009, there are no such peaks in the observations, but still in the estimated runoff.

Nevertheless, on the anomaly level (right columns in Figures 5.5 and 5.6), observed

runoff shows a slight decreasing trend during the period 2005 until 2010 which is

also roughly reproduced by the estimates. That being said, if runoff over such basins

is estimated from a water balance approach, it is mandatory that all input variables

are highly consistent in both their magnitudes and dynamics. Otherwise, due to the

biases in the estimates of the other water cycle variables, some artificial short-term

variations are introduced, which finally result in both low correlation values and

high relative biases.

Overall, the estimates are not able to reproduce extreme events in the runoff time

series (e.g., Mississippi in 2008). This can be explained by several reasons. First of

all, runoff is predicted using a least squares prediction, which exploits covariance

information. In fact, this information reflects only the averaged statistical relationship

between the variables and basins. The statistical relationships of extreme events are

thus not well represented. Moreover, the filtering of the input data, as described

in section Data Consistency, significantly dampens the peaks in the time series. An
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extreme event could disappear simply due to the smoother input time series. On

the other hand, the predictions show a significant increase during heavy flooding

events over the Fitzroy river in January 2008, February/March 2010 and December

2010/January 2011 (source: bom.gov.au). These were induced by heavy rain

events, which can be also detected in the input precipitation datasets (not shown).

The presented approach can therefore capture such extreme events, if these also

occur in, for example, the precipitation time series. This, however, must not always

be the case: persistent rainfall during the end of the previous and the beginning of

the next month can lead to a flooding event, even if (due to the monthly resolution)

there are no exceptional features in the precipitation time series.

When analyzing the performance of the different configurations, there is hardly

any difference between the unconstrained, constrained, filtered, and smoothed

estimates. The largest spread in terms of correlation can be observed over the Don

basin (CEnKFh and CEnKFs: 0.72, CEnKSh and CEnKSs: 0.60), where the correlations

of the filtered are significantly higher than the smoothed predictions. This holds also

for the unconstrained and constrained estimates. Other significant differences can

only be observed over the Fitzroy basin (EnKF: 0.54, CEnKSh and CEnKSs: 0.48). For

most catchments, however, the different configurations have only little impact on

the dynamics of the estimated time series.

Despite a slight underestimation of runoff over most catchments, the PBIAS values

in Figure 5.7 show a different picture as there are significant differences between

the metrics from the six set-ups. Even if there are many catchments where most con-

figurations provide PBIAS values < ±10% (Amazon, Congo, Mississippi, Ob, Volga,

St. Lawrence, Don, Pechora, Fraser, and Neva), it is obvious that the constrained

estimates show generally larger biases. This can be particularly observed over the

high-latitude catchments Yenisei, Lena, Mackenzie, Don, Pechora, Fraser, Olenek,

and Fitzroy, where the PBIAS values of the unconstrained and constrained estimates

differ by more than 10 %. An explanation for this can be a high uncertainty of the

runoff estimates. When using such constraints within an assimilation framework,

each variable in the state vector receives a correction, so that the water budgets are

closed. This correction is based on the relative uncertainty of the respective variable.

bom.gov.au
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Thus, uncertain variables receive stronger corrections. The runoff estimates over the

catchments showing large differences between the unconstrained and constrained

predictions can therefore be assumed to be more uncertain than, for example, the

predictions over the Amazon, Ob, or Volga basins. As a consequence, forcing the wa-

ter budgets to be perfectly closed seems to be too strict. This assumption is supported

by the better performance of the soft constrained estimates over most basins.

Over some of the catchments, however, the anomalies of the unconstrained estimates

are small or almost zero throughout the whole period (Yenisei and Mackenzie)—

that is, they are based mainly on the control input. When compared with observed

runoff, the peaks in the unconstrained estimates are sometimes over- and sometimes

underestimated. Thus, the errors cancel out, which leads to an overall small PBIAS-

value.

In contrast to most other catchments, the estimates over the Congo, Mackenzie, and

Fraser basins show some distinct biases. For Mackenzie and Fraser, the constrained

estimates significantly underestimate runoff over nearly the whole study period. The

estimates from the CEnKSh and CEnKSs predict the lowest runoff over both basins.

In these cases, constraining and smoothing results in a significant bias with respect

to the observations. The same holds true for the Congo basin, where especially the

estimates from CEnKSh and CEnKSs overestimate runoff.

In the hydrological community, NSEmean values > 0.5 usually indicate an acceptable

performance of runoff estimates [e.g., Moriasi et al., 2007, Santhi et al., 2001]. This

is the case for 13 of the 16 estimated catchments. Several catchments even show

NSEmean values > 0.8 (Amazon, Congo, Ob, Yenisei, Lena, Mackenzie, Pechora, and

Fraser). These are mainly basins with large amplitudes and a rather stable annual

cycle in the runoff time series. For such catchments, it is thus suggested to analyze the

NSEcycle metric (bottom row of Figure 5.7). This metric obviously shows significantly

smaller values than the NSEmean. Still, there are positive values over 14 of the 16

study regions. This inherently means that the estimates over these 14 catchments

agree clearly better with the runoff observations than the values of the mean annual

cycle.
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FIGURE 5.7: Performance metrics between observed and predicted runoff over all
16 study regions. The statistics are based on the period between 2005 and 2010.

The colors indicate different configurations of the assimilation framework.
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It must be mentioned that over catchments with a less dominant annual cycle (St.

Lawrence, Orange, Don, or Fitzroy) the annual cycle from historic data is obviously

a bad predictor. Thus, positive NSEcycle values can be expected even if the estimates

show only good agreement during a limited period or for distinct peaks. In such cases,

using the NSEmean gives more information about the performance of an estimated

time series.

Significant improvements in terms of positive NSEcycle values can be found over

Amazon, Congo, Mississippi, Lena (EnKF and EnKS), Volga, St. Lawrence, Don, Neva,

and Fitzroy. Even more than the classical NSEmean metric, the NSEcycle is very sensitive

with respect to the agreement of extreme events and long-term climatic variations.

From the anomaly time series in Figures 5.5 and 5.6 it is obvious that the predictions

successfully reproduce the long-term variations in the residual runoff observations

over Amazon, Congo, Mississippi, Lena (EnKF and EnKS), Don, and Neva.

It becomes evident that even with high NSEmean values over Ob, Yenisei, Lena, Macken-

zie, Pechora, and Fraser, several configurations provide worse estimates than the

mean annual cycle from historic data. Thus, the variability on top of the annual

cycle, which is induced by the assimilation, does not improve the estimates. Ob

seems to be a special case, as the anomalies of the estimates and the observations

show similar long-term variations. In the end, the large differences, especially during

2005 and 2006, between the estimates and observations seem to result in a negative

NSEcycle-value.

In the case of Yenisei, Lena, Pechora, Fraser, and Olenek, constraining the estimates

dampens the maximum of runoff during the summer months. This can be identified by

the negative peaks in the anomaly time series in Figures 5.5 and 5.6, where the hard

constrained estimates from CEnKFh and CEnKFs assume the lowest runoff. Over the

Olenek basin, using soft constraints actually leads to a better agreement, even if the

secondary peaks during the late summer months are still missing. This is not the case

for the Yenisei, Lena, Pechora, and Fraser basins, where the unconstrained estimates

provide better results. Especially for the Lena basin, the long-term variability in the

anomaly estimates from the EnKF and EnKS agrees well with the observations, even
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if the peaks in the anomalies are higher. A closer look reveals similar features over

the Yenisei, Pechora, and Fraser basin. Over all these basins, the soft constrained

estimates are able to capture some of the negative peaks in the residual time series,

but also show several unrealistic variations. Thus, using such constraints can lead to

a better representation of short-term features, but the unconstrained estimates are

able to capture the climatic long-term variations.

Interestingly, over all high-latitude catchments with a distinct snow accumulation

phase (i.e., where runoff is close to zero), most configurations are able to reproduce

the low runoff during the winter months. It can be assumed that these phases do not

change drastically from year to year as the observations show only little deviations

from the long-term annual cycle. Thus, during these phases, the estimates are mainly

based on the control input (i.e., the mean annual cycle), which explains the good

agreement with the observations.

Comparison to Similar Studies

In Troy et al. [2011], the water budgets of several basins over Northern Eurasia

have been estimated using multiple data sources. They further estimate basin-scale

runoff from a weighted water-balance approach, which is roughly comparable to

our method. During their validation period between 1984 and 1999, they achieve

NSEmean values of 0.94 over the Lena and Yenisei and 0.89 over the Ob basin with

respect to observed monthly runoff. Even if our performance metrics are based on a

different period, we achieve similar values (Lena: 0.95 from EnKF and EnKS, Yenisei:

0.92 from EnKF and EnKS, and Ob: 0.90 from CEnKFh).

Recently, Gudmundsson and Seneviratne [2014] published an approach for estimating

gridded runoff over Europe. They also present a catchment-scale validation for several

European river basins, including the Rhine and Elbe basin. These two basins are not

included in our performance analysis due to missing data during the selected study

period. However, when estimating runoff using our ensemble based approaches, we

obtain NSEmean values of 0.66 (Rhine, EnKF) and 0.62 (Elbe, CEnKFh and CEnKFs),
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which is in good agreement with the findings from Gudmundsson and Seneviratne

[2014].

In Kang et al. [2014], the Variable Infiltration Capacity (VIC) model [Liang et al.,

1994] model has been applied to the Fraser river basin. During their validation

period from 1969 to 2006, the model estimated monthly runoff with respect to the

observations from the gauging station at Hope with a NSEmean of 0.85. In our study,

the runoff estimates for the Fraser basin during the period 2005 to 2010 show a

comparable performance (NSEmean = 0.90 from EnKF, CEnKFs, and EnKS).

Riegger and Tourian [2014] proposed a methodology, that is based on the characteri-

zation of the relationship between runoff and water storage changes. They simulated

monthly runoff over five catchments, namely the Mackenzie (NSEmean = 0.93), Ob

(0.95), Lena (0.87), Yukon (0.81), and Yenisei (0.63) basins. Our approach is able to

estimate runoff with a similar performance (Mackenzie: 0.90 from EnKF and EnKS,

Ob: 0.90 from CEnKFh, Lena: 0.95 from EnKF and EnKS, and Yenisei: 0.92 from

EnKF and EnKS).

Conclusion

In this study, a data-assimilation framework is proposed, which can be employed for

predicting and correcting catchment-scale time series of runoff. One of the major

design parameters of the framework is the use of as much real data as possible instead

of using complex model equations. Thus, the approach is based on the terrestrial

water budget equation only, which is included in an Ensemble Kalman Filtering

framework. The prediction scheme predicts precipitation, evapotranspiration, runoff,

and water storage changes using the so called least squares prediction method. By

this, we can exploit temporal and spatial covariance structures between different

catchments and water cycle variables. For the observation equations of the dynamic

process model, the most recent versions of widely used data sources for precipitation,

evapotranspiration, runoff, and water storage changes are applied. We further use
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FIGURE 5.8: River basins for which runoff can be predicted using the Ensemble
Kalman Filter approach based on global hydrometeorological datasets. For the
green areas, more than 5 years of data after 2002 are available. The blue areas are
(currently) poorly gauged basins with less than 5 years of data after 2002, but more
than 5 years of continuous runoff measurements during the period 1980 to 2002.
These catchments cover an area of more than 11,500,000 km2 and provide a mean

annual discharge volume of more than 125,000 m3/s of freshwater resources.

estimated runoff from satellite altimetry in order to both fill the gaps in the time

series of gauge-based runoff observations but also to improve the predictions.

The filter is first run with different ensemble sizes and three different structures of

the prediction matrix for finding a suitable set-up of the framework. The predictions

from the filter are then compared with observed runoff from GRDC on a monthly

basis. So far, the best results can be achieved by assuming correlations between

water cycle variables only (case 3).

In order to enforce water budget closure between the estimated parameters, we

further add appropriate water budget constraints to the framework. Therefore, it is

distinguished between hard constraints, which assume perfect closure of the water

budgets, and soft constraints, which allow a small well defined imbalance. In the end,

the framework is run in six different configurations: the Ensemble Kalman Filter, the

hard and soft Constrained Ensemble Kalman Filter, the Ensemble Kalman Smoother,

and the hard and soft Constrained Ensemble Kalman Smoother.

In order to assess the performance of our data-assimilation approach, runoff is pre-

dicted over 16 large river basins and validated against in situ data. The performance

analysis shows that the proposed method is able to estimate runoff with correlations
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larger than 0.8 for 12 of the 16 study regions. In terms of the PBIAS, values are less

than ±20 % for most of the catchments (except for Orange and Fitzroy). Finally, the

NSEmean values are larger than 0.5 for 13 of the 16 catchments. As the runoff time

series of several catchments are dominated by a strong annual cycle, we further ana-

lyze the NSEcycle, which relates the performance of the predictions to the long-term

mean annual cycle. For 14 of the 16 study basins, at least several configurations

achieve NSEcycle values larger than 0. The time series clearly show that the reason for

this good performance is a promising agreement between the observed and predicted

long-term variations in the runoff time series.

The validation further shows that the different aforementioned configurations lead

to similar time series and performance metrics for most of the studied catchments.

The different configurations thus have only a minor impact on the dynamics of the

predicted time series. As a general pattern, the constrained configurations seem to

suffer from larger biases. This holds especially true for the Yenisei, Lena, Mackenzie,

Pechora, Fraser, and Olenek basins. This results in rather negative NSEcycle values.

The soft constrained provide slightly better results, which highlights the uncertainty

in the data sources of water cycle variables. Forcing an absolute closure of water

cycle from uncertain data might thus lead to numerical artifacts.

As a conclusion, the method is able to provide runoff estimates over the catchments

shown in Figure 5.8, where only few or even no runoff observations are available

after the year 2002. These catchments cover an area of more than 11,500,000 km2

and provide a discharge volume of more than 125,000 m3/s of freshwater resources.

The performance analysis emphasizes the promising performance of the proposed

method for predicting runoff. There is still room for improvement. Over Ob, Yenisei,

Lena, Mackenzie, Pechora, and Fraser, several configurations provide worse predic-

tions than the mean annual cycle from historic data, despite the high NSEmean values.

The reason for this has to be analyzed in more detail, as the bad performance of

the constrained predictions indicates large inconsistencies in the data sources of the

water cycle variables.
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Furthermore, the predictions are not able to reliably reproduce extreme events in the

runoff time series as it is not appropriate to predict, for example, flooding events from

monthly data. Also because the least squares prediction further exploits covariances,

which describe the overall mean relationships between water cycle variables and

catchments, Future studies must address an appropriate statistical characterization

of exceptional events in the time series of the water cycle variables.

Overall, the presented configurations of the data assimilation framework allow,

despite their limitations and shortcomings, to both fill data gaps and extend the

streamflow time series for basins with discontinued observations. Thereby, the

framework is an alternate option for predicting runoff of ungauged and poorly

gauged basins.
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Chapter 6

Summary and Synthesis

In this work, various global hydrological and hydrometeorological datasets are used

in order to comprehensively analyze the large-scale water budget. This is done over

different spatial and temporal scales. First, it is analyzed how well three widely

used atmospheric reanalyses agree with gridded observations of precipitation and

temperature and if these comprehensive models are able to close the global long-

term water budgets [chapter 2, Lorenz and Kunstmann, 2012]. It is further analyzed

how well different observation based datasets agree in terms of precipitation and

temperature. This, in the end, allows to quantify the uncertainty with which we have

to cope when using such data. In the second article [chapter 3, Lorenz et al., 2014],

the focus is on the closure of the basin-scale water budgets. It is thus the logical

consequence from the global long-term analyses in the first publication. Within

this assessment, the closure of the basin-scale water budgets is directly quantified

by analyzing the difference between observed runoff and runoff estimates from a

terrestrial and atmospheric-terrestrial water balance. The choice of study regions

in this article is driven by the availability of runoff observations, which already

shows the importance of runoff data for water budget studies. Thus, the third article

[chapter 4, Sneeuw et al., 2014] analyzes different hydro-geodetic methods, which

which runoff can be estimated. The performance of these methods is then evaluated

by comparing the estimates to observed runoff. It is distinguished between global

methods, which do not need runoff data, and the catchment-specific methods, which

require (at least historic) runoff observations. In the fourth article [chapter 5, Lorenz

et al., 2015], it is investigated, if and how the global budget-based methods can be

improved in order to achieve a reasonable water budget closure on the catchment

183
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scale and, as a consequence, provide realistic runoff estimates. The four articles

therefore present a broad overview of the strengths and weaknesses of our current

state-of-the-art hydrological and hydrometeorological data sources for the four major

water cycle variables. The major findings of each of the articles are summarized in

the following.

Chapter II In the article The Hydrological Cycle in Three State-Of-The-Art Reanalyses:

Intercomparison and Performance Analysis, three widely used atmospheric reanalysis

models, namely ERA-Interim, MERRA, and CFSR, are evaluated and compared

against gridded observations of precipitation and temperature from GPCC or CRU.

It is demonstrated that even on annual and longer time scales, there are significant

differences between the spatial precipitation and temperature patterns of the models.

In terms of precipitation, the largest differences are detected over the tropics, high-

latitude regions, and mountain ranges. Overall, the range of modeled precipitation

reaches values of more than 5 mm day−1, which, in the end, adds up to an annual

uncertainty of more than 1,500 mm year−1. The analyzed observation datasets,

however, also show differences of more than 3 mm day−1 over, for example, the

Congo basin. One reason for this is the very limited number of rain gauges which

are located in these areas. It is demonstrated that the number of active gauges over

different continents are significantly decreasing. Over Africa, for example, the GPCC

dataset used more than 3,000 gauges before the year 1990. In 2005, the number

dropped to only about 1,000 gauges for the whole continent. An inspection of the

spatial distribution of rain gauges reveals that there are huge areas without a single

observation station. This, obviously, makes it rather difficult to reasonably validate

modeled precipitation over such areas. But even over well observed areas like, for

example, Europe or North America, significant differences between the models and

the observations can be detected. The largest discrepancies occur during the summer

months of the respective hemisphere as convective effects remain a significant source

of uncertainty. On the other hand, the differences between the gridded precipitation

observations and the reanalyses remain rather constant during the whole study

period from 1989 to 2006. This is an important finding as changes in the observation
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system, which is assimilated into the reanalysis models, do not have a significant

impact on the precipitation estimates. However, the situation changes for oceanic

precipitation, where both MERRA and CFSR show a significant shift during 1998,

when sounding radiances from AMSU were assimilated into both reanalyses.

The article further discusses the water budget closure of the three reanalysis models.

Therefore, area-averaged values are calculated from reanalysis-based maps of precip-

itation, evapotranspiration, runoff, moisture flux divergence, and total atmospheric

water vapor. These values are then used for evaluating different long-term water

budget equations. The analysis shows that especially MERRA and CFSR suffer from

significant imbalances in their oceanic-continental water budgets, which are mainly

due to unbalanced estimates of oceanic precipitation and evapotranspiration. This is

partly caused by changes in the observation system, which is assimilated into the

reanalysis models. Even if these effects can not clearly identified over the continents,

it can be assumed that such changes might also impact the modeled climate variables

over land.

The results indicate that at least these comprehensive atmospheric reanalysis models

still suffer from significant biases in their estimates and thus from imbalances in the

representation of the water cycle. These biases and the impact of changes in the

observation system on the modeled climate variables further deny the use of such

models for water budget or climate change studies.

Chapter III The water budget closure on basin scales is discussed in the second

article Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of

the Hydrological and Atmospheric Water Balances. The fundamental approach is the

estimation of runoff from the terrestrial and atmospheric-terrestrial water budget

equations, respectively. The remaining water cycle variables are given by state-of-the-

art and widely used hydrological and hydrometeorological datasets. This allows to es-

timate runoff from different combinations of gridded observations (GPCC, GPCP, CPC,

CRU, DEL), atmospheric reanalysis models (ERA-Interim, MERRA, CFSR), partially-

model-based datasets (GLEAM, MOD16, FLUXNET MTE) and GRACE-satellite derived
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water storage changes. This, in total, gives 90 runoff estimates from the terrestrial

and 9 from the atmospheric-terrestrial water budget for each of the 96 study regions.

The comparison of the budget-based methods, as a matter of fact, directly quantifies

the imbalance over different catchments. In general, basin-scale long-term water

budget closure, which is represented by a small PBIAS value, can be achieved only

over a small number of study regions and from a small number of data combinations.

It is concluded that the runoff estimates from the terrestrial water budget tend to

underestimate (overestimate) runoff over Arctic (tropical) catchments. As the PBIAS

shows highly variable results for different catchments and different data combinations,

it can be further concluded that each dataset suffers from it’s biases and uncertainties.

But even if the majority of runoff estimates show large imbalances of more than

25 % of the mean annual runoff, there are certain combinations, which lead to

satisfactory water budget closure over most catchments. However, the preferable

datasets change from catchment to catchment, which clearly denies the extrapolation

of the performance of a method (i.e., data combination) to other catchments.

The level, to which the water budgets can be closed, seems to depend significantly

on the dynamics of the water cycle variables. Good results can be achieved for

catchments where runoff exhibits a strong annual cycle with a large volume of

runoff. In these cases, the biases of the individual data sources for precipitation,

evapotranspiration, and water storage changes carry less weight. This holds even

true for catchments which are far below the resolution of GRACE. On the other hand,

closure over catchments with very low magnitudes in the runoff time series is not

yet possible with our current data sources.

Interestingly, the estimates from the precipitation-runoff ration shows by far the best

agreement with the runoff observations. This indicates that, despite their magnitude,

evapotranspiration and water storage changes follow a stable annual cycle, which

remains constant from year to year. But the method can only succeed over catchments

where the ratio between precipitation and runoff remains constant over a longer

period, which also prohibits the application of the approach to catchments with

strong anthropogenic impacts.
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As a summary, the paper shows that our current data sources for the major water cycle

variables are not mature enough for analyzing the water cycle on the global scale.

The differences in their spatial and temporal resolution, but also their respective

uncertainties, clearly deny a general global application. Therefore, it is of major

importance to overcome the mismatches between datasets from different observation

systems or models.

Chapter IV As the choice of the study regions in the second article is mainly dictated

by the availability of runoff observations, it is obvious that there is still an urgent

need for in situ runoff observations if we want to study the catchment-scale water

cycle. However, it is well known that the number of streamflow gauges is decreasing

and that the annual runoff rate over the unmonitored areas is comparable to that over

the monitored areas [Dai and Trenberth, 2002]. The third article thus provides an

overview over several alternative methods which can be applied for estimating runoff.

The budget-based approaches, the precipitation-runoff ratio, and several land surface

models, which were already discussed in the second article, are compared against

runoff estimates from satellite-altimetry and an empirical relationship between runoff

and water storage changes. The estimates are then evaluated with runoff observations

from GRDC over the six catchments Amazon, Danube, Mississippi, Niger, Ob, and

Yenisei.

The analysis clearly shows the high performance of the catchment specific approaches

from satellite altimetry and the runoff-storage relationship. It can be assumed that

especially satellite altimetry will be a highly promising runoff estimation alternative

with the advent of a new generation of altimetry satellites. On the other hand, the

water budget equations can be evaluated globally which, in principle, allows the

estimation of runoff for all catchments. But, as already discussed in the second

article, the biases of the individual data sources for the water cycle variables lead

to imbalances in the water budgets, which explains the weak performance of these

estimates especially for catchments with low magnitudes in their runoff time series.
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Nevertheless, it is shown that the approaches under discussion are indeed promising

alternatives to, for example, classical hydrological modeling approaches for estimat-

ing runoff. Even if each method still has its shortcomings, it can be assumed that

such runoff estimates will improve with new and better data sources for the different

water cycle variables and new satellite altimetry missions.

Chapter V As already mentioned, the mismatch between the current data sources

for precipitation, evapotranspiration, and water storage changes deny the empirical

evaluation of the terrestrial water budget equation for estimating runoff. It is there-

fore investigated, if a data assimilation approach is able to improve the estimates

of the different water cycle variables in order to close the water budgets on the

catchment scale and and if this will therefore lead to reasonable runoff predictions.

The approach is based on an Ensemble Kalman filter framework, which can be applied

for estimating and predicting runoff over poorly or irregularly gauged basins. The

prediction step within the Kalman filter makes use of the so-called least squares

prediction, where the joint temporal and spatial auto- and cross-covariance structures

of precipitation, evapotranspiration, runoff, and water storage changes are taken

into account. The required covariance matrices are derived from a wide collection of

state-of-the-art global hydrological and hydrometeorological datasets, which have

been already applied and analyzed in the previous articles. A preliminary analysis

of the least squares predictor, which is similar to an autoregressive model with a

time-lag of one month or the multiple ordinary least squares regression, reveals that

the approach is able to reproduce about 70 % of the variance of the runoff anomalies.

This already indicates that the short- and long-term correlations between runoff and

the other water cycle variables contain enough information for predicting basin-scale

runoff at the anomaly-level (i.e., the deviations from the mean annual cycle).

The different hydrological and hydrometeorological datasets are further used dur-

ing the correction step, where the predicted state is combined with the ensemble

mean of each of the four water cycle variables under consideration of time- and

space-dependent uncertainty estimates. In total, the article discusses six different con-

figurations of the proposed data assimilation framework: the Ensemble Kalman Filter
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(Smoother) and the hard (soft) constrained Ensemble Kalman Filter (Smoother). It

is discussed if hard constraints, which enforce perfect water budget closure, or soft

constraints, which allow some well-defined imbalances, change the runoff estimates

and if the application of a smoothing step is able to improve the results. The frame-

work is run for 29 large river basins of different climate regions, with which runoff is

predicted for a subset of 16 basis.

For the in-depth analysis of the framework, the runoff predictions from the six

configurations are compared against runoff observations from the GRDC during

the period 2005–2010. First of all, there are no significant differences between

the runoff dynamics from the analyzed approaches. But a closer look reveals some

deviations mainly in the peaks and troughs of the estimated runoff time series. The

different performance metrics indeed show that especially the constrained estimates

suffer from slight biases. As the soft-constrained yield better results than the hard-

constrained predictions, it can be assumed that the uncertainties and mismatches

(e.g., due to different spatial or temporal resolutions) between the datasets for the

water cycle variables do not allow a reasonable water budget closure. In other words,

forcing the water budgets to be closed leads to unrealistic corrections of the different

water cycle variables.

Nevertheless, the approach is able to successfully reproduce the runoff observations

over most of the study regions. The correlation between the estimates and the GRDC

observations is larger than 0.8 for 12 of the 16 catchments, independent of the

configuration. An analysis of the Nash Sutcliffe Efficiency, which is a rather sensitive

performance metric, reveals positive values for all study regions. Moreover, the

NSEmean is larger than 0.5 for 13 catchments, even if the smoothed and constrained

estimates are slightly worse. As runoff follows a dominant annual cycle over most

catchments, a further metric, which takes the long-term-mean annual cycle into

account, is evaluated as well. The NSEcycle also shows positive values for 14 of the

16 study regions. This clearly indicates that, despite the reasonable estimation of the

annual cycle, the approach is further able to reproduce irregular long- and short-term

variations in the runoff time series. In other words, as these results are based on

the prediction from other water cycle variables only, there are enough information
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and similarities in the basin-scale time series of precipitation, evapotranspiration,

and water storage changes for deriving realistic runoff predictions. It will be part of

future work to exploit these relationships in order to provide runoff estimates for

currently poorly or ungauged catchments, which cover an area of 11,500,000 km2

and provide a discharge volume of more than 125,000 m3/s of freshwater resources. It

will be also investigated if such an approach is also able to provide runoff predictions

from, for example, climate models, which will then allow a consistent global-scale

analysis of trends in the catchment-scale runoff time series.

.



Chapter 7

Conclusion and Outlook

On the global scale, the study clearly shows that there are significant differences

between the three widely used atmospheric reanalysis models and multiple gridded

observation datasets. It is further stressed that there are large imbalances in their

oceanic and continental moisture budgets. One reason for such inconsistencies are

the variations in the observations, which are assimilated into the models. The time

series of oceanic P − E from the MERRA and CFSR reanalyses show a significant

increase during 1998, which coincides with the assimilation of satellite-based radiance

sounding data from that year. Besides such highly unrealistic gaps in the time series,

it can be assumed that changes in the number and type of assimilated observations

can also cause smaller imbalances, which, in principle, hinder the use of such models

for climate trend studies. The same holds true for the gridded observations from, for

example, GPCC or CRU, as these are also based on a constantly changing number of in

situ rain gauges. These changes occur both in the number and spatial distribution of

gauges, while large areas over less developed regions remain completely unobserved.

The analysis of the long-term mean patterns of precipitation and the water budget

closure on the catchment-scale clearly shows that there are significant differences

between all analyzed datasets, which cause an imbalance of the water budgets of

more than 25 % of the mean annual runoff over most study regions. Similar results

are reported from Sahoo et al. [2011]. They analyzed the water budget closure from

combined satellite and in situ discharge products over 10 study regions. It is stressed

that water budget closure is not achievable with errors of the order of 5–25 % of

mean annual precipitation.

191
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It is further shown that there is no single dataset which performs consistently well

on the global scale. This point has to be stressed even further. Even if the analyzed

data sources provide global estimates of each of the four water cycle variables, we

can not assume a consistent quality at every single location. This, however, is due

to numerous reasons. The state-of-the-art hydrological and hydrometeorological

data originates from completely different sensors, modeling approaches, and other

sources, which differ in terms of spatial and temporal resolution, but also in their

respective uncertainties and error levels. All these differences in the data quality and

quantity obviously lead to biases in the analysis of the global water budget.

On the other hand, the study shows that there is huge potential in our current data

sources for the major water cycle variables. Over several regions, the time series for

precipitation, evapotranspiration, runoff, and water storage changes from publicly

available global datasets already allow a reasonable empirical analysis of the water

cycle and the respective interactions of the four major variables. Using data correction

algorithms like the Ensemble Kalman Filter, which is proposed in this work, can

also lead to improved and consistent estimates of the water cycle variables on the

global scale. It will be therefore analyzed, if the presented algorithm can be further

improved. It is also shown that runoff estimates from satellite altimetry provide a

reasonable alternative to, for example, classical hydrological modeling approaches.

Promising results are further presented in, for example, Rodell et al. [2015], where

optimization algorithms are applied in order improve the water budget closure on

different spatial and temporal scales. It is reported that the global surface water

budget closure error from observational estimates is 3.9 % of precipitation with an

uncertainty of 6.1 %.

Besides such mathematical correction approaches, there are multiple new satellite

missions, which will allow a significantly improved space-borne observation of dif-

ferent water cycle variables: Since its launch on January 31st, 2015, NASA’s Soil

Moisture Active Passive [SMAP; Entekhabi et al., 2010] mission provides global

high-resolution soil moisture estimates. A new era in the satellite-based observa-

tion of precipitation was started with the launch of the core observatory for NASA’s

Global Precipitation Measurement [GPM; Hou et al., 2014] mission on February
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27th, 2014. The mission uses an international network of satellites, from which

precipitation observations are collected and combined. It is indented to provide

global high-resolution precipitation maps every three hours. The successful concept

of the GRACE mission will be continued by the GRACE Follow-On (GRACE-FO)

mission, whose launch is scheduled for August 2017. In the context of runoff, it is

assumed that especially the dedicated Surface Water and Ocean Topography [SWOT;

Fu et al., 2009] mission or multi-satellite altimeter approaches will significantly

increase number of catchments, where runoff can be estimated, and the quality of

these estimates.

However, for most regions, we currently have to face large uncertainties and biases

between the different datasets on the one, and a significantly decreasing number of

in situ observations, on the other hand. In the context of the projected changes in the

global water cycle, it is thus of major importance to call attention to the strengths

and, maybe even more important, weaknesses of our current datasets. Furthermore,

if the decrease in the number of in situ stations for the most important water cycle

variables will continue, it will become more and more difficult to describe, analyze

and understand the large-scale water cycle and the interactions between it’s variables.

On the other hand, the new approaches and developments in the global monitoring

of the major water cycle variables are without any doubt a step towards the global

water balance closure across different spatial and temporal scales. They further

have to be accepted and considered as a promising alternative to, for example,

classical hydrological and hydrometeorological modeling approaches. In fact, such

observation-based empirical approaches for analyzing the water budgets require far

less computational effort and might be more straightforward and easier to apply

while less parameterized compared to highly complex models. That being said, it

has to be stressed that the hydrological community has to focus on both branches for

further understanding the dynamics and interactions of the climate system. Thus, one

of the major efforts of the modern hydrological community has to be the combination

and joint analysis of all the different data-sources from numerous satellites, new

and innovative terrestrial observation systems, and modeling approaches. It is

therefore highly notable that international initiatives like, for example, GEWEX
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provide a platform which brings together scientists from different hydrological and

hydrometeorological branches with a common goal. Only such joint initiatives and

collaborations allow to further improve our current knowledge of the global water

cycle and to finally conclude on the future development of our climate system.
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Contribution of the Author to the Different Pa-

pers

Chapter 2: The Hydrological Cycle in Three State-of-the-Art Reanalyses: Inter-

comparison and Performance Analysis The study was conceived and designed

by Christof Lorenz and Harald Kunstmann. All computations, the final analysis and

interpretation of the results, and the preparation of the figures were performed by

Christof Lorenz. The paper was mainly written by Christof Lorenz with contributions

from Harald Kunstmann.

Chapter 3: Large-Scale Runoff from Landmasses: A Global Assessment of the

Closure of the Hydrological and Atmospheric Water Balances The paper was

mainly written by Christof Lorenz and Balaji Devaraju with contributions and correc-

tions from Harald Kunstmann and Nico Sneeuw. Christof Lorenz further collected

all the data, performed the water budget calculations from the hydrological and

hydrometeorological datasets, and designed the evaluation strategy for the large

amount of runoff estimates from different approaches. The section about the runoff-

precipitation ratio, together with the corresponding runoff estimates, was provided

from Mohammad J. Tourian and Johannes Riegger. The water storage changes from

GRACE were computed by Balaji Devaraju. The comparison and evaluation of the

runoff estimates from the different approaches was performed by Christof Lorenz,

while Balaji Devaraju contributed to the analysis and interpretation of the results.

The figures in the paper were generated by Christof Lorenz and Balaji Devaraju.
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Chapter 4: Estimating Runoff Using Hydro-Geodetic Approaches The paper

was mainly written by Nico Sneeuw, Christof Lorenz, and Balaji Devaraju with

contributions from Mohammad J. Tourian and Harald Kunstmann. The collection

of data, the computation of the budget-based runoff estimates, the comparison of

the different approaches, and the interpretation of the results was mainly performed

by Christof Lorenz with contributions from Balaji Devaraju. The section about

altimetry-based runoff estimation and the runoff-precipitation ratio was provided by

Mohammad J. Tourian. The figures were generated by Christof Lorenz, Mohammad

J. Tourian, and Balaji Devaraju.

Chapter 5: Basin-Scale Runoff Prediction: An Ensemble Kalman Filter Frame-

work based on Global Hydrometeorological Datasets The study and the corre-

sponding data assimilation approach under discussion was developed and designed

by Christof Lorenz and Mohammad J. Tourian. Christof Lorenz developed the mathe-

matical framework, while Mohammad J. Tourian contributed to the process model

and provided runoff estimates from satellite altimetry. The collection of data, all

computations, and the final assimilation and prediction of runoff was performed by

Christof Lorenz. The water storage changes from GRACE were provided by Balaji

Devaraju. Christof Lorenz further generated all the figures and performed the final

analysis and interpretation of the results. The text was mainly written by Christof

Lorenz with contributions from Mohammad J. Tourian, Balaji Devaraju, and Harald

Kunstmann.
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