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This note extends the findings of Benhabib and Rusticchini [Journal of Economic
Dynamics and Control 18, 807–813 (1994)], who provide a class of dynamic stochastic
general equilibrium (DSGE) models whose solution is characterized by a constant savings
rate. We show that this class of models may be interpreted as a standard–representative
agent DSGE model with costly adjustment of capital.
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1. INTRODUCTION

Dynamic stochastic general equilibrium (DSGE) models have become the standard
tool for analyzing many questions in business cycle research, finance, growth, and
monetary economics. Except for a few cases, the solutions of these models must
be approximated by numerical methods. In these circumstances it is often very
helpful to start from a model that is known to have an analytical solution and
to approach the model of interest by way of homotopy methods [see Heer and
Maußner (2009, Chap. 5 and 6)]. From this perspective, extensions of the class of
models with analytic solutions are very valuable.

Benhabib and Rusticchini (1994), henceforth BR, extend the class of DSGE
models that are known to have a solution in terms of a constant savings rate.
They employ a model with two vintages of capital. In this note we first show that
their specification is easily extended to the case of an infinite number of vintages
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and second reinterpret this specification in terms of a model with frictions in the
adjustment of capital.

In the next section we present the model of BR as well as our extension and
reinterpretation of it. Section 3 concludes, and the Appendix covers a few technical
details.

2. THE MODEL

BR consider a representative agent with additively time-separable preferences
who discounts future utility at a rate δ ∈ (0, 1) and whose instantaneous utility
function u is given by

u(ct , 1 − Lt) = A
(
c1−ε
t − 1

)
1 − ε

+ w(1 − Lt), (1)

where c denotes consumption and L hours worked. A > 0 and ε ≥ 0 are given
parameters. w is a concave, increasing function. The agent employs labor and two
vintages of capital, k1 and k2, respectively, to produce output according to

yt = zt

[
a1k

1−ε
1t + a2k

1−ε
2t + (1 − a1 − a2)L

1−ε
t

] 1
1−ε . (2)

z is an i.i.d. productivity shock with support [z, z̄].1 The agent’s resource constraint
is

k1t+1 = yt − ct . (3)

In addition, capital depreciates at a rate µ ∈ [0, 1], so that

k2t+1 = µk1t . (4)

BR prove that ct = λyt is the agent’s policy function for consumption, where

(1 − λ) = [
a1δEt

(
z1−ε
t+1

) + a2δ
2µ1−εEt

(
z1−ε
t+2

)] 1
ε . (5)

The crucial assumption that allows this solution is that the agent’s preference
parameter ε (his or her coefficient of relative risk aversion) equals the reciprocal
of the elasticity of substitution of the production function.

As BR note, the extension to more than two vintages is straightforward. In the
case of an infinite number of vintages kj being related to each other via

kj+1t+1 = µkjt , (6)

the production function (2) may be written as

yt = zt

⎡
⎣ ∞∑

j=1

ajk
1−ε
j t +

⎛
⎝1 −

∞∑
j=1

aj

⎞
⎠ L1−ε

t

⎤
⎦

1/(1−ε)

,

∞∑
j=1

aj < 1. (7)
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The general solution for the savings rate 1 − λ at time t is then given (see the
Appendix) by

1 − λ =
⎡
⎣ ∞∑

j=1

aj δ
jµ(j−1)(1−ε)Et

(
z1−ε
t+j

)⎤⎦
1
ε

. (8)

An alternative interpretation of this framework is to use a traditional constant
elasticity of substitution production function with labor Lt and capital Kt as inputs,

yt = zt

[
αL1−ε

t + (1 − α)K1−ε
t

] 1
1−ε , (9)

and to assume adjustment costs of capital that give raise to the transition function

Kt = [
βK1−ε

t−1 + (1 − β)k1−ε
t−1

] 1
1−ε , (10)

where kt denotes investment from foregone consumption in period t . Inserting
(10) repeatedly into (9) yields

yt =
⎡
⎣αL1−ε

t + (1 − α)β

∞∑
j=1

(1 − β)j−1k1−ε
t−j

⎤
⎦

1
1−ε

. (11)

This production technique equals (7) if ajµ
(j−1)(1−ε) = (1−α)β(1−β)j−1. Thus,

the savings rate at time t = 0 is given by

1 − λ =
⎡
⎣ ∞∑

j=1

(1 − α)β(1 − β)j−1δj Et

(
z1−ε
t+j

)⎤⎦
1
ε

. (12)

3. CONCLUSION

DSGE models featuring an analytical solution are helpful for applied researchers
because they can use this solution as a starting point for the computation of the
solutions of more complicated models. In this note, we have shown that the class
of DSGE models provided by BR can be interpreted as a more traditional DSGE
model with adjustment costs of capital. This interpretation can also be seen as
a generalization of the well-known closed-form solution to the Ramsey problem
[see, e.g., McCallum (1989)] with log utility, Cobb–Douglas production, and a
capital accumulation equation given by Kt = K

β

t−1k
1−β

t−1 arising from (10) if ε

equals unity.

NOTES

1. BR, p. 809, assume that z follows a first-order autoregressive process. However, as they note on
p. 811, the savings rate λ will be constant only if z is i.i.d.
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2. Note that this definition implies the parameter restriction z̄1−ε
∑∞

j=1 aj < 1, because

k =
[

1 − ∑∞
j=1 aj

1 − z̄1−ε
∑∞

j=1 aj

] 1
1−ε

.

Because z implicitly defines the scale for output, this condition is not restrictive.
3. More explicitly, let k1

1 = h(k1, . . . , kn, z) denote the solution of the first-order condition (A.1).
Then, the Bellman equation can be written as

v(k1, . . . , kn, z) = A[y − h(k1, . . . , kn, z)
1−ε ]

1 − ε
+ δEV

(
k1

1 , µk1, k
1
3 , . . . , k1

n, z
1).

Differentiating with respect to k1 yields

V1(k1, . . . , kn, z) = Ac−εy1 + µδEV2
(
k1

1 , . . . , k1
n, z

1) + h1(·)
{[

δV1
(
k1

1 , . . . , k1
n, z

1)] − Ac−ε
}

= Ac−εy1 + µδEV2
(
k1

1 , . . . , k1
n, z

1),
because the term in braces vanishes due to the first-order condition (A.1). In the same way, one can
derive V2(k1, . . . , kn, z) = Ac−εy2 + µδEV3(k

1
1 , . . . , k1

n, z
1), etc.
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APPENDIX
First, we show that there is an upper bound on output such that consumption c and (via the
continuity of u(c, 1 − L)) expected lifetime utility are finite. Let2

k = z̄

⎡
⎣ ∞∑

j=1

aj k
1−ε + 1 −

∞∑
j=1

aj

⎤
⎦

1
1−ε

denote investment if zt = z̄, kjt = k, Lt = 1, ct = 0. If k1t+1 = k and ct+1 = 0, then

k1t+2 = yt+1 = zt

⎡
⎣a1k

1−ε + a2(µk)1−ε + · · · +
⎛
⎝1 −

∞∑
j=1

aj

⎞
⎠ L1−ε

t

⎤
⎦

1
1−ε

≤ k = z̄

⎡
⎣a1k

1−ε + a2k
1−ε + · · · +

⎛
⎝1 −

∞∑
j=1

aj

⎞
⎠

⎤
⎦

1
1−ε

.

Because k1t+2 cannot exceed k, yt+2 cannot exceed y = k, so k1t+s ≤ k for all s = 1, 2, . . . .
Thus, output, investment, and, hence, consumption are bounded.
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Second, we derive the optimality conditions for an arbitrarily given number of vintages
n = 1, 2, . . . . We focus on the condition with respect to investment k1t+1, because the
optimization with respect to labor input L implies a static first-order condition that can
be solved for L given the sequence of vintages without knowledge of consumption c. Let
v(k1, k2, . . . , kn, z) denote the value function, i.e., the maximum expected lifetime utility of
an optimal policy given the initial conditions (k1, k2, . . . , kn, z). This function is recursively
defined by the Bellman equation,

v(k1, k2, . . . , kn, z) = max
k1

1

A
[(

y − k1
1

)1−ε − 1
]

1 − ε
+ δEV

(
k1

1, k
1
2, . . . , k

1
n, z

1
)
,

where xi , i = 1, 2, . . . , denotes a variable, which is i periods ahead, and E is the conditional
expectations operator. The first-order condition for the maximization problem on the right-
hand side of the Bellman equation is

Ac−ε = δEV1

(
k1

1, . . . , k
1
n, z

1
)
, (A.1)

where Vi denotes the derivative of V with respect to its i argument. The envelope theorem
implies that V1 is recursively defined via3

Vi(k1, . . . , kn, z) = Ac−εyi + µδEVi+1

(
k1

1, . . . , k
1
n, z

1
)

(A.2a)

with initial condition
Vn(k1, . . . , kn, z) = Ac−εyn, (A.2b)

where yi denotes the derivative of the production function

y = z

⎡
⎣ n∑

j=1

aj k
1−ε
j +

⎛
⎝1 −

n∑
j=1

aj

⎞
⎠ L1−ε

⎤
⎦

1
1−ε

with respect to vintage i = 1, 2, . . . , n, which is equal to

yi(·) = z1−ε

(
ki

y

)−ε

. (A.3)

Using (A.2a) and (A.3), the first-order condition can be written as

Ac−ε = E

{
n∑

i=1

aiδ
iµi−1(ci)−ε(zi)1−ε

(
ki

i

yi

)−ε
}

. (A.4)

Assume k1
1 = (1 − λ)y so that c = λy and note that

ki
i = µi−1k1

1 = µi−1(1 − λ)y.

Thus, the first-order condition (A.4) reduces to

1 = (1 − λ)−εE

{
n∑

i=1

aiδ
iµ(i−1)(1−ε)(zi)1−ε

}
. (A.5)

Obviously, the savings rate λ defined in equation (8) is the limit of (A.5) for n → ∞ (and
zi replaced with zt+j .)
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