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We compare the numerical methods that are most widely applied in the computation of
the standard business cycle model with flexible labor. The numerical techniques imply
economically insignificant differences with regard to business cycle summary statistics.
Furthermore, these results are robust with regard to the choice of the functional form of the
utility function and the model’s parameterization. In addition, the extended path approach,
albeit time-consuming, and the Galerkin projection are found to be the most accurate
methods, given that we have not used function approximations beyond the second degree.
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1. INTRODUCTION

The dominant paradigm of modern business cycle theory is the stochastic growth
model with flexible labor. The stochastic growth model, however, is difficult to
compute, as multiplicative elements such as the production function interact with
additive elements such as depreciation or investment. As a consequence, only
special cases (with log utility and full depreciation) can be solved analytically. For
this reason, the comparison of different computational techniques that approximate
the solution numerically is important. Previous work by Taylor and Uhlig (1990)
has focused on the study of the stochastic growth model with inelastic labor supply,
whereas Christiano and Fisher (2000) compare different numerical techniques for
the solution of the stochastic growth model with binding constraints on nonnegative
investment.
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642 BURKHARD HEER AND ALFRED MAUßNER

In the present paper, we evaluate the numerical techniques that are most widely
applied in recent research on nonlinear rational expectations general equilibrium
models. We analyze the properties of standard methods with regard to their ac-
curacy and appropriateness for business cycle research. As is vital for the study
of business cycles, we introduce flexible labor supply in the stochastic growth
model. Furthermore, we study the sensitivity of the usual set of second moments
of the variables that are important for the business cycle researcher, that is, output,
employment, investment, consumption, and wages, with regard to the computa-
tional method, varying both the functional form of the utility function and the
parameterization of the model. In particular, we apply parameter values in the
range that are typically observed across countries.

We compare six different computation methods for two different parameter
sets. The first set of parameters is chosen with regard to U.S. postwar data. The
second set of parameters characterizes the German economy prior to unification.
The solution methods are (1) log-linearization (LL), (2) second-order approxi-
mation (SO), (3) parameterized expectations (PE), (4) Galerkin projection (GA),
(5) extended deterministic path (EP), and (6) value function iteration (VI). For
the researcher who is only interested in the business cycle statistics, the log-
linearization method is found to be the most convenient and appropriate for the
standard business cycle model. Even if the researcher is interested in a more
accurate solution, the log-linear solution might provide a good initial value for the
parameters of more complex methods. To get comparable results, we do not use
function approximation methods that involve higher-order terms than quadratic
ones.1 In terms of accuracy, however, we find that method (5) provides the best
results and requires no more computation time than value function iteration.

The paper is organized as follows. In Section 2, the model is presented. In
Section 3, we briefly review the methods most relevant for the computation of
modern business cycle models, and Section 4 presents summary statistics for the
various methods. Section 5 concludes.

2. THE STANDARD BUSINESS CYCLE MODEL

We consider a decentralized economy with households and firms. It is well known
that the sequence of competitive equilibrium prices and quantities in this economy
can be obtained from the solution of a stochastic planning problem. The fictitious
planer maximizes

E0

∞∑
t=0

βtu(Ct , Nt ), (1)

subject to the resource constraint

Kt+1 ≤ Zt(AtNt )
αK1−α

t + (1 − δ)Kt − Ct (2)

with respect to consumption C0 and labor supply N0 in period t = 0. The initial
capital stock K0 is given and the current level of total factor productivity Z0 is
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COMPUTATION OF BUSINESS CYCLE MODELS 643

known. The evolution of this variable is governed by the AR(1)-process

ln Zt = ρ ln Zt−1 + εt , (3)

where ε is a serially uncorrelated, normally distributed random variable with mean
0 and variance σ 2. Labor-augmenting technical progress At evolves according to
the deterministic law

At+1 = aAt , a ≥ 1. (4)

Capital depreciates at the rate δ ∈ [0, 1], and utility obtained from consumption
and leisure in period t , u(Ct ,Nt ), is discounted by β ∈ (0, 1). We consider four
specifications of u that are commonly applied in business cycle models:

u(Ct ,Nt ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
1−η

[
C

1−η
t (1 − Nt)

θ(1−η) − 1
]

I

1
1−η

[(
Ct − θ

1+ν
AtN

1+ν
t

)1−η − 1
]

II

lN Ct − θnt III
lN Ct + θ(1−Nt )

1−γ

1−γ
IV.

(5)

The functions I, III, and IV meet the requirements of King et al. (1988),
p. 292, which allow for a balanced growth path in the presence of exogenous
labor augmenting technical progress.2 If one uses specification II, a balanced
growth path exists only if one is willing to assume that the disutility of work is
proportional to At .3 We use the common parameter θ to ensure that the fraction
of working hours per worker out of total hours available equals the respective
empirical magnitude.

3. COMPUTATION OF SOLUTIONS

The solution of the model satisfies the following set of conditions, where lower
case variables are scaled by At , that is, xt ≡ Xt/At , except for the shadow price
of wealth, �t , where λt := �tA

η
t :

∂u(ct , Nt )

∂ct

= λt , (6a)

∂u(ct , Nt )

∂Nt

= αλtZtN
α−1
t k1−α

t , (6b)

akt+1 = ZtN
α
t k1−α

t + (1 − δ)kt − ct , (6c)

λt = βa−ηEtλt+1(1 − δ + (1 − α)Zt+1N
α
t+1k

−α
t+1). (6d)

Due to the recursive structure of the model, the solution can be represented by
policy functions x = gx(kt , Zt ), x ∈ {ct , Nt , kt+1}, that relate consumption ct ,
hours Nt , and the next period capital stock kt+1 to the current state (kt , Zt ) of the
system.
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644 BURKHARD HEER AND ALFRED MAUßNER

We solve this model with six different methods: (1) log-linearization and (2)
second-order approximation, both belonging to the class of perturbation methods
that use local information to compute the parameters of gx , (3) parameterized
expectations and (4) Galerkin projection, which are well-known examples of
projection or weighted residuals methods, (5) deterministic extended path, and (6)
value function iteration.4

The log-linear solution method and second-order approximation of the policy
function use local information to determine the parameters of the policy functions.
Both methods are special cases of perturbation methods [see Judd (1998), Chapter
13 and 14] that rest on the implicit function theorem and on Taylor’s theorem. Let

x̃ = gx(k̃t , z̃t , σ ), x̃ ∈ {k̃t+1, c̃t , Ñt , λ̃t },
denote the policy function for the natural logarithm of the stock of next-period
capital, consumption, working hours, and marginal utility, respectively. The system
of first-order conditions (6) can be written as

0 = uc[gc(k̃t , Z̃t , σ ), gN(k̃t , Z̃t , σ )] − gλ(k̃t , Z̃t , σ ), (7a)

0 = uN [gc(k̃t , Z̃t , σ ), gN(k̃t , Z̃t , σ )]

−αegλ(k̃t ,Z̃t ,σ )+Z̃t+(α−1)gN (k̃t ,Z̃t ,σ )+(1−α)k̃t , (7b)

0 = aegk(k̃t ,Z̃t ,σ ) − eZ̃t+αgN (k̃t ,Z̃t ,σ )+(1−α)k̃t − (1 − δ)ek̃t + egc(k̃t ,Z̃t ,σ ), (7c)

0 = egλ(k̃t ,Z̃t ,σ )

−βa−ηEte
gλ(gk(k̃t ,Z̃t ,σ ),ρZ̃t+σνt+1,σ )[1 − δ + (1 − α)ewt+1 ], (7d)

wt+1 := ρZ̃t + σνt+1 + αgN [gk(k̃t , Z̃t , σ ), ρZ̃t + σνt+1, σ ]

−αgk(k̃t , Z̃t , σ ), (7e)

νt ∼ N(0, 1). (7f)

At σ = 0, the solution of this system of equations provides the stationary values of
the log of capital, consumption, and working hours, k̃∗, c̃∗, and Ñ∗, respectively.
The coefficients of the log-linear approximation of the policy functions,

x̃ = x̃∗ + gx
k (k̃t − k̃∗) + gx

Z(Z̃t − Z̃∗) + gx
σ σ,

can be found by differentiating (7a) through (7d) with respect to k̃t , Z̃t , and σ

at the point σ = 0. This delivers a system of equations in the twelve unknown
coefficients of the four policy functions. As Schmitt-Grohé and Uribe (2004) have
shown, gx

k and gx
Z are independent of σ and gx

σ = 0. Also, it is easy to show that
the same coefficients are obtained by first log-linearizing the system (6) at the
stationary equilibrium and then solving the resulting stochastic linear system of
difference equations. Procedures to solve this system are proposed, among others,
by Blanchard and Kahn (1980), Uhlig (1999), and King and Watson (2002). We
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COMPUTATION OF BUSINESS CYCLE MODELS 645

employ the solution proposed by King and Watson (2002), which rests on the
numerically very accurate and stable Schur factorization.

Differentiating the system (7a) twice at σ = 0 delivers systems of linear equa-
tions that can be solved for the coefficients of the quadratic part in the second-order
approximation of gx :

x̃ = x̃∗ + gx
k (k̃t − k̃∗) + gx

Z(Z̃t − Z̃∗) + gx
σσ

+ 1

2

[
k̃t − k̃∗ Z̃t − Z̃∗ σ

]
⎡
⎢⎣

gx
kk gx

kZ gx
kσ

gx
Zk gx

ZZ gx
Zσ

gx
σk gx

σZ gx
σσ

⎤
⎥⎦

⎡
⎢⎣

k̃t − k̃∗

Z̃t − Z̃∗

σ

⎤
⎥⎦ . (8)

Schmitt-Grohé and Uribe (2004) show that even the coefficients gx
kk , gx

ZZ , and
gx

kZ = gx
Zk are independent of σ . Furthermore, they prove that gx

kσ = gx
σk = 0 and

gx
Zσ = gx

σZ = 0. In general, it is very cumbersome and prone to failure to derive
the second-order partial derivatives analytically. Fortunately, there exists software
such as the MATLAB toolbox Symbolic Math or Mathematica that is able to
execute symbolic differentiation. For our simple model it is not that difficult to
employ paper and pencil to find the formulas from which our Fortran program
computes the gx

ij .
The parameterized expectations approach approximates the rhs of (6d) by a

polynomial in (ln Z, ln k).5 We use a simple, complete, exponential polynomial
of second degree,6

ψ(γ, ln Z, ln k) := exp(γ1 + γ2 ln Z + γ3 ln k + γ4(ln z)2

+ γ5(ln k)2 + γ6 ln z ln k). (9)

The vector of parameters γ is determined as solution to a nonlinear set of equations.
This system depends itself on a long series of points {Zt }Tt=0, {kt }Tt=0, {λt }Tt=0,
{Nt }Tt=0, and {ct }Tt=0 obtained from iterations over

λt = ψ(γ, ln Zt, ln kt ), (10a)

∂u(ct , Nt )

∂ct

= λt , (10b)

∂u(ct , Nt )

∂Nt

= λtαZtN
α−1
t k1−α

t , (10c)

akt+1 = ZtN
α
t k1−α

t + (1 − δ)kt − ct , (10d)

where Zt is obtained from (3) using a random number generator that provides
pseudo-normally distributed innovations εt . Given λt , equations (10b) and (10c)
can be reduced to an equation that determines Nt , given (Zt , kt ). Given Nt , it
is easy to solve for ct . For initial values of the parameters and the simulated
time series, we can compute the least squares of the residuals R(ln Zt, ln kt ) =
c
−η

t+1 − ψ(γ, ln Zt, ln kt ). The parameter vector γ = (γ1, . . . , γ6) is the solution
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646 BURKHARD HEER AND ALFRED MAUßNER

of the following system of nonlinear equations:

0 = −2

T

T −1∑
t=0

R(ln Zt, ln kt )
∂ψ(γ)

∂γi

, i = 1, 2 . . . , 6. (11)

The crucial step in applying this algorithm is to find acceptable starting values for
the nonlinear equations solver. One way to tackle this problem is to obtain linear
approximations of the policy functions for consumption and labor supply, to use
these to compute time series for λt , kt , and Zt , and to regress λt on ψ(ln kt , ln Zt)

by way of nonlinear least squares.7 If this works, the parameterized expectations
algorithm is a fast way to find the final solution. However, in most cases it does not
work. For the German parameter set, we were not able to find admissible starting
values for all four specifications of the utility function. For the U.S. parameter
set, utility function II posed the same problem. In these cases, we used a genetic
search algorithm.8 To reduce computation time, this algorithm operated over short
time series of 5,000 points. When a solution was found, we used it as a starting
value for a system of nonlinear equations based on the final number of periods
T = 100, 000. This large number of points guarantees a good sample of the
underlying stationary distribution implicitly defined by the system of stochastic
difference equations (6), so that the final solution is very accurate.

As in the parameterized expectations approach, the Galerkin projection method
rests on the approximation of the rhs of (6d). Different from the previous method,
however, we use a product base Chebyshev exponential polynomial in (ln Z, ln k)

as the approximating function,

ψ(ln kt , ln Zt) := exp

⎧⎨
⎩

p1∑
i=0

p2∑
j=0

γijTi [X(ln Zt)] Tj [X(ln kt )]

⎫⎬
⎭ , (12)

where Ti(·) is the ith degree Chebyshev polynomial and X(x) denotes the linear
transformation of [x, x], x ∈ {ln Z, ln k}, to [−1, 1], the domain of Chebyshev
polynomials. Given ψ(·) and (ln k, ln Z), we are able to compute for each innova-
tion ε the rhs of (6d): First, we solve (10) for k′ := kt+1. Letting z′ := ρ ln Zt + ε

and N ′ := Nt+1, we use (ln k′, z′) and solve (10) again to get

g(ε, ln Z, ln k) := ψ(ln k′, z′)[1 − δ + (1 − α)ez′
(N ′)α(k′)−α].

The residual function R(γ, ln k, ln Z) that is obtained from (6d) by using ψ(·)
instead of the true but unknown solution is now given by

R(γ, ln k, ln Z)

:= ψ(ln k, ln Z) − βa−1
∫ ln Z

ln Z

g(ε, ln k, ln Z)(2πσ 2)−1/2e−ε2/2σ 2
dε.
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COMPUTATION OF BUSINESS CYCLE MODELS 647

The Galerkin projection method chooses γ to solve9

∫ ln k

ln k

∫ ln Z

ln Z

R(γ, ln k, ln Z)Ti[X(ln Z)]Tj [X(ln k)]d ln k d ln Z = 0,

i = 1, 2, . . . , p1, j = 1, 2, . . . , p2. (13)

We use Gauss–Chebyshev quadrature with 50 nodes in each dimension to compute
this double integral. The critical step is the choice of the interval [ln k, ln k] for the
capital stock so that the algorithm always stays within this interval. We solve this
problem in the following way, which, to the best of our knowledge, has not been
emphasized in the previous literature on projection methods: We simply use a larger
interval that embeds the latter but integrate over the smaller only. More exactly, the
conditional expectation is approximated over the interval [ln kmin, ln kmax], whereas
the Galerkin integral in (13) is computed over [ln k, ln k] ⊂ [ln kmin, ln kmax].
Although our program does not find a solution for ln k = kmin and ln k = ln kmax,
it converges for ln k = 1.3 · kmin and ln k = ln kmax/1.3. The basic reason for
this behavior of the algorithm is that for initial values of γ in the parameterized
function, ln kt+1 might happen to fall outside the interval [ln kmin, ln kmax] if we
chose [ln k, ln k] too wide. In this case, however, we get highly inaccurate solutions
for the policy functions. Note, that the accuracy of the solution depends on p1 and
p2 for given integration bounds in (13) and not on the size of [ln kmin, ln kmax]. To
get comparable results we set p1 = p2 = 3 so that at most quadratic terms in ln k

and ln Z appear in the policy functions.
As in the case of the parameterized expectations method, we use the linear

approximations of the solution for λt to initialize the nonlinear equations solver.
This worked in all but two cases. For utility functions I and III of the German
parameter set, the linear policy function did not provide a feasible initial parameter
vector. Fortunately, in both cases the solution from utility function IV provided
admissible starting values.

The extended deterministic path method assumes that after a shock in period t no
further shock occurs and computes the dynamics for the next T periods. Therefore,
it has to solve a set of 2T − 1 equations in the unknowns Nt+s , kt+s+1, s =
0, 1, . . . , T − 1 obtained from (6a) to (6d), assuming that kt+T is equal to the
respective stationary solution of the deterministic counterpart of the model. From
this solution only Nt and kt+1 are retained. Then another shock is drawn and the
respective systems of equations is solved for Nt+1 and kt+2 and so forth. The
accuracy of the solution depends upon T . We found that T = 150 gives a very
accurate solution, yet at the cost of a long computation time.

The value function iteration method iterates on

vs+1(kt , Zt ) := max
kt+1,Nt

u[ZtN
α
t k1−α

t + (1 − δ)kt − akt+1, Nt ]

+βa1−ηEtv
s(kt+1, Zt+1), (14)
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648 BURKHARD HEER AND ALFRED MAUßNER

where vs(·) denotes the value function at iteration s. We use a discrete version
of our model to perform these iterations: We approximate the continuous AR(1)-
process (3) by a finite Markov chain Z = {z1, z2, . . . , zm} of m elements and
transition matrix P = (pij ), where pij denotes the probability to move from
state zi to state zj (see Tauchen [1986]). The difference between ln zm and ln z1

is μ times the size of the unconditional standard deviation of (3). We choose μ

so that even in simulations with a large number of realizations the productivity
shock remains in [ln z1, ln zm]. The capital stock can take values from a grid
K = {k1, k2, . . . , kn} of n elements. The upper (lower) bound kn (k1) equals the
value that the deterministic counterpart of the model would approach if Zt would
equal zm (z1) for all t = 0, 1, . . .. Given the grid G = K ×Z , the value function
is an n × m-matrix V = (vij ), where vij is the maximum expected lifetime utility
obtained from a sequence of optimal choices starting at (ki, zj ) ∈ G at time t = 0.
We determine the elements of this matrix by iterating over the discrete counterpart
of (14):

vs+1
ij := max

kh∈K ,N
u(zjN

αk1−α
i + (1 − δ)ki − akh,N) + βa1−η

m∑
l=1

pjlv
s
hl . (15)

As initial elements of V , we use the value obtained from the balanced growth path
of a model with productivity level zj ∈ Z for all t = 0, 1, . . ..

Given a triple (zj , ki, kh), we must solve the first-order condition for optimal
labor supply. The respective implicit equations in Nt have unique solutions. We
easily computed them with a modified Newton method that takes care of the
restriction N ∈ [0, 1].

The approximate solution of (15) is an n×m matrix H with the typical element
hij being a pointer to the index h of the capital stock kh ∈ K that is optimal
given the current capital stock ki ∈ K and the current productivity level zj ∈ Z .
Simulations of the model use bilinear interpolation over G and the associated
policy function H to preserve the continuous nature of the productivity shock
(3). A more detailed description of our optimization procedure, together with a
justification of our approach vis-à-vis others, is presented in the Appendix.10

Obviously, the accuracy of the solution as well as the computation time increase
with both n and m. With respect to the second moments of simulated time series,
we found that n =5,000 and m = 9 are a good compromise between speed and
accuracy. In terms of Euler equation residuals (see below), more accurate solutions
require n =20,000 and m = 19.

4. RESULTS

We evaluate the methods with regard to (1) computation time, (2) the usual set of
second moments computed from simulated, HP-filtered time series of employment,
output, investment, consumption, and the real wage, (3) the risk-free rate of return,
and (4) accuracy. We consider the risk-free rate of return in view of the results of
Christiano and Fisher (2000), who find that asset price statistics seem to be more
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COMPUTATION OF BUSINESS CYCLE MODELS 649

TABLE 1. Model calibration

German calibration U.S. calibration

Production Preferences Production Preferences

a = 1.005 β = 0.994 a = 1.0055 β = 0.99
α = 0.73 η = 1.00 α = 0.64 η = 1.00
δ = 0.011 ν = 5.00 δ = 0.025 ν = 3.33
ρ = 0.90 γ = 33.5 ρ = 0.95 γ = 7.00
σ = 0.0072 N = 0.13 σ = 0.00712 N = 0.33

sensitive to the accuracy of the solution. Accuracy is measured using the residual
of the Euler equation (6d).

As we are aiming to assess the suitability of the different methods for business
cycle models more generally, we analyze two different sets of calibration parame-
ters. The first set reflects parameters commonly applied in the business cycle study
of the postwar U.S. economy. The second set of parameters is calibrated with the
help of German postwar data prior to unification in 1989.11 Importantly, these
two economies are characterized by different institutional settings. In particular,
the German capital market is less competitive, as many banks are state-owned
or subsidized by the state. As a consequence, capital depreciates less rapidly in
Germany, as capital utilization is lower. Furthermore, capital’s share in output,
1 − α, is lower in Germany (0.27) than in the United States (0.36). One possible
reason may be the presence of unions. Second, labor markets are more rigid in
Germany and the social security system is more generous. As a consequence,
average labor supply is lower in Germany as well.

For the U.S. economy, we use the set of parameters displayed in Table 1. Except
for the rate of per capita output growth, they are in accordance with Hansen (1985).
The average quarterly growth rate of the U.S. economy exceeds that of the German
economy, a′ = 1.0050, and amounts to a = 1.0055 during 1960–2002 on average.
The estimates of the Frisch intertemporal labor supply elasticity ηn,w implied by
microeconometric studies and the implied values of γ and ν vary considerably.
MaCurdy (1981) and Altonji (1986) both use PSID data to estimate values of 0.23
and 0.28, respectively, whereas Killingsworth (1983) finds a U.S. labor supply
elasticity equal to ηn,w = 0.4.12 We will use the conservative estimate ηn,w = 0.3
and, accordingly, apply the values ν = 3.33 and γ = 7.0 in utilities III and IV,
respectively.13 For Germany, we use the same set of parameters as in Heer and
Maußner (2005).14 In addition, we use the value ηn,w = 0.2, following Heer and
Trede (2003) implying ν = 5.0 and γ = 33.5.

4.1. Computation Time

The computation time of the solution for the six methods is presented in
Table 2. The algorithms can be ordered with respect to running time as follows:
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TABLE 2. Computation time

Method Time

Log-linear approximation (LL) 0.42 s
Second order approximation (SO) 0.52 s
Parameterized expectations (PE)
—initial value from LL 1 m 21 s
—two steps with search (UII, US) 1 m 10 s
—two steps with search (UII,GE) 23 m 11 s
Galerkin projection (GA)
—initial value from LL 3 m 44 s
—initial value from utility IV (UI,GE) 2 m 4 s
Extended deterministic path (EP) 2 h 27 m
Value function iteration (VI)
—n =50,00, m = 9 21 m 51 s
—n =20,000, m = 9 2 h 47 m
—n =20,000, m = 19 4 h 41 m

Notes: If not mentioned otherwise, the results are based on the solution
for utility function I and the U.S. parameter set. The program run on a
3.2-Pentium IV personal computer. The program is written in Fortran 95
and compiled with the Compaq Digital Fortran developer environment.
Computation time comprises the time needed to compute the solution and
to compute the summary statistics from 500 simulations. The stochastic
search routine rests on a population of 50 candidate solution vectors and
iterates over 100 generations. h = hours, m = minutes, s = seconds.

(1) Log-linear approximation is by far the fastest method. (2) If one disregards
the time needed to derive the analytical expressions for the second derivatives
by way of paper and pencil, the second-order approximation is almost as fast as
log-linearization. The further ranks depend on our measurement of computation
time and our strategy to find acceptable starting values for the non-linear equations
solver. If the algorithm converges using the initial values obtained from the log-
linear solution, (3) the parameterized expectations approach (PE) is much faster
than (4) the Galerkin projection method (GA), and both need less time than (5) the
extended path (EP) method and (6) the value function iteration method (VI). In the
case of the GA it was not necessary to use stochastic search. The search for accept-
able starting values for the non-linear equations solver can considerably increase
the computation time of the PE solution, namely up to about 24 minutes.15 The
ranking between value function iteration and the extended path method depends
upon the desired accuracy. For the accuracy displayed in Table 3 (n = 20,000
and m = 19), EP clearly outperforms VI. Finally, we wish to mention that the
solution in the case of utility function II, where an analytical solution for N given
k and Z is available, requires substantially less time. For instance, the extended
path method finds the solution in about 41 minutes, and value function iteration
requires 2 hours and 26 minutes.
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TABLE 3. Euler equation residuals

Utility function EP GA LL PE SO VI

U.S. calibration
Utility I 0.00000 0.00000 0.00109 0.00038 0.00006 0.00038
Utility II 0.00000 0.00000 0.00024 0.00013 0.00005 0.00072
Utility III 0.00000 0.00002 0.00159 0.00041 0.00010 0.00023
Utility IV 0.00000 0.00000 0.00077 0.00033 0.00005 0.00061

German calibration
Utility I 0.00000 0.00002 0.00113 0.00020 0.00008 0.00026
Utility II 0.00000 0.00000 0.00036 0.00016 0.00005 0.00091
Utility III 0.00000 0.00003 0.00148 0.00018 0.00014 0.00019
Utility IV 0.00000 0.00000 0.00051 0.00024 0.00005 0.00072

Notes: EP: extended path, GA: Galerkin projection, LL: log-linear approximation, PE: parameterized expectations
SO: second-order approximation, VI: value function iteration. Each entry in this table is the maximum absolute value
of the Euler equation residuals computed over an equally spaced grid of 400 knots in the interval [0.8k∗, 1.2k∗] ×
[0.95, 1.05]. Following Christiano and Fisher (2000), we computed the Euler residual as c̃/c − 1, where c is optimal
consumption given the policy function and c̃ is the amount of consumption that is necessary to equate the lhs of
the Euler equation for capital to its rhs. The conditional expectation on the rhs of the Euler equation for capital is
computed using Gauss–Hermite quadrature with four points. We used n = 20, 000 and m = 19 to compute the VI
solution.

4.2. Summary Statistics

Our simulation results with regard to the usual business cycle statistics are dis-
played in Table 4 for the utility functions I–IV. The first column presents the
variable; the next three columns display the standard deviation of the variable, the
variable’s correlation with output, and its autocorrelation, respectively. Except for
only a few cases, e.g., the volatility of German investment computed for utility I,
the six different methods imply statistics that deviate by less than 0.01. Indeed,
in most cases, the minimum and the maximum values obtained from the various
methods coincide. Therefore, it is save to conclude that the solution method has
no influence on the business cycle statistics of the simulations.

4.3. The Risk-Free Rate of Return

Table 5 provides a measure of the risk-free rate of return, r
f
t := (λt/

(βa−ηEtλt+1)) − 1. Because the time series averages are very close to the sta-
tionary value (aη/β) − 1, we do not display the actual time series averages of r

f
t

but its percentage deviations from the stationary rate. The averages are computed
from time series of 100,000 points. All simulations use the same sequence of
random numbers. In all cases, the time series average is slightly smaller than the
stationary value. There are small differences between the different utility func-
tions and parameterizations, but no significant differences between the different
methods.
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TABLE 4. Summary business cycle statistics

sx sxy rx

Variable Min Mean Max Min Mean Max Min Mean Max

Utility function I

U.S. calibration
Output 1.26 1.26 1.26 1.00 1.00 1.00 0.66 0.66 0.66
Investment 3.66 3.67 3.67 0.99 0.99 0.99 0.65 0.65 0.65
Consumption 0.43 0.43 0.43 0.90 0.91 0.91 0.76 0.76 0.76
Hours 0.60 0.60 0.60 0.98 0.98 0.98 0.65 0.65 0.65
Real wage 0.69 0.69 0.69 0.98 0.98 0.98 0.69 0.69 0.69

German calibration
Output 1.92 1.92 1.92 1.00 1.00 1.00 0.63 0.63 0.64
Investment 8.73 8.74 8.75 1.00 1.00 1.00 0.63 0.63 0.63
Consumption 0.33 0.33 0.33 0.81 0.82 0.82 0.77 0.77 0.77
Hours 1.44 1.45 1.45 0.99 0.99 0.99 0.63 0.63 0.63
Real wage 0.51 0.51 0.52 0.94 0.95 0.95 0.69 0.69 0.69

Utility function II

U.S. calibration
Output 1.03 1.03 1.03 1.00 1.00 1.00 0.67 0.67 0.67
Investment 2.59 2.59 2.59 0.99 0.99 0.99 0.66 0.66 0.66
Consumption 0.47 0.47 0.48 0.97 0.97 0.97 0.71 0.71 0.71
Hours 0.24 0.24 0.24 1.00 1.00 1.00 0.67 0.67 0.67
Real wage 0.79 0.79 0.79 1.00 1.00 1.00 0.67 0.67 0.67

German calibration
Output 0.99 0.99 0.99 1.00 1.00 1.00 0.64 0.64 0.64
Investment 3.89 3.89 3.89 1.00 1.00 1.00 0.63 0.63 0.64
Consumption 0.30 0.30 0.31 0.96 0.96 0.96 0.68 0.68 0.68
Hours 0.17 0.17 0.17 1.00 1.00 1.00 0.64 0.64 0.64
Real wage 0.83 0.83 0.83 1.00 1.00 1.00 0.64 0.64 0.64

Utility function III

U.S. calibration
Output 1.66 1.66 1.66 1.00 1.00 1.00 0.66 0.66 0.66
Investment 4.94 4.95 4.96 0.99 0.99 0.99 0.65 0.65 0.65
Consumption 0.52 0.52 0.52 0.88 0.89 0.89 0.77 0.77 0.77
Hours 1.22 1.22 1.23 0.98 0.98 0.98 0.64 0.64 0.64
Real wage 0.52 0.52 0.52 0.88 0.89 0.89 0.77 0.77 0.77
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TABLE 4. Continued

sx sxy rx

Variable Min Mean Max Min Mean Max Min Mean Max

German calibration
Output 2.39 2.39 2.39 1.00 1.00 1.00 0.63 0.63 0.63
Investment 10.98 10.99 11.01 1.00 1.00 1.00 0.63 0.63 0.63
Consumption 0.39 0.39 0.39 0.80 0.80 0.80 0.78 0.78 0.78
Hours 2.09 2.09 2.10 0.99 0.99 0.99 0.63 0.63 0.63
Real wage 0.39 0.39 0.39 0.80 0.80 0.80 0.78 0.78 0.78

Utility function IV

U.S. calibration
Output 0.98 0.98 0.98 1.00 1.00 1.00 0.67 0.67 0.67
Investment 2.76 2.76 2.76 0.99 0.99 0.99 0.65 0.65 0.65
Consumption 0.35 0.35 0.35 0.92 0.92 0.92 0.75 0.75 0.75
Hours 0.15 0.15 0.15 0.98 0.98 0.98 0.65 0.65 0.65
Real wage 0.83 0.83 0.83 1.00 1.00 1.00 0.67 0.67 0.67

German calibration
Output 0.97 0.97 0.97 1.00 1.00 1.00 0.64 0.64 0.64
Investment 4.26 4.26 4.26 1.00 1.00 1.00 0.63 0.63 0.63
Consumption 0.20 0.20 0.20 0.86 0.87 0.87 0.74 0.75 0.75
Hours 0.13 0.13 0.13 0.99 0.99 0.99 0.63 0.63 0.63
Real wage 0.84 0.84 0.84 1.00 1.00 1.00 0.64 0.64 0.64
Notes: sx is the standard deviation of variable x listed in the first column. sxy is the correlation of x with output.
sx denotes the first-order autocorrelation of x. All moments are averages over 500 simulations. The length of the
respective time series was 60 periods in each simulation. All time series are HP-filtered with weight λ = 1600.
The same 500×60 random numbers were used in all simulations. The columns labeled “Min”, “Mean”, and “Max”
display the minimum, the mean, and the maximum from the six different methods, respectively.

4.4. Accuracy

The residual e of the Euler equation for capital is computed as e = (c̃/c) − 1,
where c is consumption. c̃ is the amount of consumption that is necessary to equate
the lhs of equation (6d) to our approximation of βa−ηEtuc(c

′, 1−n′)(1−δ+ (1−
α)Z′(N ′)α(k′)−α), where the prime denotes next-period values of consumption,
hours, and capital, respectively. We use four-point Gauss–Hermite quadrature to
compute the conditional expectation on the rhs of equation (6d) given the policy
function delivered by the respective solution method. We compute the residuals
for 400 equally spaced pairs of (k, z) ∈ [0.8k∗, 1.2k∗] × [0.95, 1.05]. We choose
this subset because it is the domain of simulated time series, even for very long
ones with 100,000 points.

Table 3 displays the maximum absolute value of the 400 residuals.16 Obviously,
the extended path method (EP) provides the most accurate results. The Galerkin
projection method (GA) is almost as precise as EP, followed by second-order
approximation (SO). The Euler equation residuals from SO are even 1.4 to 18 times
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TABLE 5. Risk-free rate of return

Utility function EP GA LL PE SO VI

U.S. calibration
Utility I −0.027 −0.027 −0.027 −0.027 −0.027 −0.027
Utility II −0.018 −0.018 −0.018 −0.017 −0.018 −0.018
Utility III −0.038 −0.038 −0.038 −0.038 −0.038 −0.038
Utility IV −0.019 −0.019 −0.019 −0.019 −0.019 −0.018

German calibration
Utility I −0.023 −0.023 −0.022 −0.023 −0.023 −0.024
Utility II −0.009 −0.009 −0.009 −0.009 −0.009 −0.004
Utility III −0.030 −0.030 −0.030 −0.030 −0.030 −0.032
Utility IV −0.010 −0.010 −0.010 −0.010 −0.010 −0.012

Notes: EP: extended path, GA: Galerkin projection, LL: log-linear approximation, PE: parameterized expectations
SO: second-order approximation, VI: value function iteration. The risk-free rate of return is the average r̄f of
r
f
t := λt /(βa−ηEtλt+1) − 1 from a time series with 100,000 points. The conditional expectation in the definition of

the risk-free rate is computed using Gauss–Hermite quadrature with four points. The risk-free rate of return in the
stationary equilibrium is given by rf = aη/β − 1 = 0.0156566 for the U.S. calibration and by rf = aη/β − 1 =
0.0110664 for the German calibration. The entries in the table are 100 × ((r̄f /rf ) − 1). The same sequence of
random numbers has been applied to all computations.

smaller than those obtained from the value function iteration (VI), even though we
used 20,000 × 19 in the latter case. Similarly, EP, Galerkin projection, and second-
order approximation clearly outperform log-linearization in terms of accuracy by
one or two digits at least. Notice that the method of parameterized expectations
is also less accurate than second-order approximation, and, in particular, Galerkin
projection. The better performance of the GA vis-à-vis the PE does not depend
upon our choice of the respective polynomials. We computed the PE solution
using the Chebyshev polynomial (12). The results, displayed in Table A.1 in the
Appendix, show that for the same degrees p1 and p2, the GA solution always
provides smaller Euler residuals than the PE solution.

Figures 1 and 2 provide a second view of the different degrees of accuracy.
They plot the policy function for consumption and working hours in the case of
utility function I and the US parameter set at Z ≡ 1. The capital stock, con-
sumption, and hours are measured relative to their respective stationary values.
The poor performance of the log-linear solution can be seen from the upper left
panel of Figure 1. Consumption is only close to the solution obtained from the
extended path method near the stationary stock of capital. The same is true for
working hours (see the upper left panel in Figure 2). For the remaining four
methods the respective policy function for consumption is visually indiscernible
from the EP solution. Figure 2 also shows that the PE policy function for hours
deviates from the EP solution for small and large values of the stock of capital
kt . Because the parameterized expectations approach relies on Monte Carlo inte-
gration, it delivers inaccurate results for extreme values of kt that are unlikely to
occur.
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FIGURE 1. Policy function for consumption.

FIGURE 2. Policy function for hours.
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TABLE 6. Summary statistics: Utility I, U.S. calibration, σ = 0.0712

sx sxy rx

Variable Min Mean Max Min Mean Max Min Mean Max

Output 12.63 13.45 13.71 1.00 1.00 1.00 0.66 0.66 0.66
Investment 36.66 39.35 40.17 0.99 0.99 0.99 0.64 0.65 0.65
Consumption 4.26 4.44 4.50 0.90 0.90 0.91 0.76 0.76 0.76
Hours 5.98 5.99 6.00 0.96 0.96 0.98 0.65 0.65 0.65
Real wage 6.86 7.24 7.36 0.98 0.98 0.98 0.69 0.69 0.69

Notes: See Table 4.

4.5. Sensitivity with Respect to σ

The log-linear approximations of the policy functions are independent of the
standard deviation of the productivity shock σ . The coefficient on σ 2 in the
second-order approximation (8) reflects only information about the stationary
solution. The remaining four methods incorporate the effect of σ on the policy
function via the larger range of realizations of the shock and the associated larger
intervals within which the model’s variables reside. To check the sensitivity of our
results with respect to the size of σ , we also consider the solutions of our model
for utility function I and the U.S. parameter set for σ = 0.0712, which amounts to
10 times the size of the standard deviation of the log of the U.S.–Solow residual
commonly applied (see Table 1). In order to get results that are comparable to
those in Table 4 we do not change the parameters of the methods that determine
their respective accuracy. For instance, we use the same degree of the polynomials
that approximate the rhs of the Euler equation for capital (6d) and the same number
of grid-points in the value function iteration.

Table 6 reveals that our previous conclusion with respect to the sensitivity of the
quantity allocations still holds: the business cycle summary statistics are hardly
affected by the choice of the method. In particular, the correlation of the variables
with output, sxy , and the autocorrelation of variables, rx , do not depend on the
method. Only the volatilities of output, consumption, investment, and real wages
are affected. However, the deviations are quantitatively small and only average
around 1% between the different methods. In fact, in our 500 simulations of the
economy for each method, we observe much larger deviations of the statistics on
average. Notice further that the relative ordering and magnitudes of the volatilities
are hardly affected. Thus, even with an unrealistically volatile productivity shock,
the researcher does not arrive at different conclusions about the nature of the
business cycle if he/she arbitrarily uses any of the six methods.

Table 7 shows that the ranking of the methods with respect to running time
also remains unchanged. Value function iteration is still the most time-consuming
method, due to the large number of grid-points. Because we were unable to find a
solution with the parameterized expectations method when we used the solution
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TABLE 7. Selected statistics σ = 0.0712, utility I, U.S. calibration

Euler equation Risk-free rate
Method Run time residual of return

LA 0.48 s 0.1841209 −2.310
SO 0.58 s 0.1787492 −3.175
PE 44 m 7.19 s 0.0053931 −2.753
GA 3 m 4.95 s 0.0055251 −2.691
EP 3 h 37m 44.81 0.0125591 −3.523
VI 5 h 33 m 19.09 s 0.0096766 −2.950

Notes: See Table 2 for the abbreviation of methods, Table 3 for the definition of the Euler equation
residual, and Table 5 for the definition and computation of the risk-free rate of return. See also Table
2 for the definition of run time. The Euler equation residuals are the maximum absolute value from a
grid of 2,500 equally spaced points over the square [0.6k∗, 2k∗]× [0.7, 1.5]. About 90% of the points
of a long time series with 100,000 elements belong to this interval.

from the log-linear method to initialize the parameter vector, we had to use our
genetic search algorithm instead. Therefore, the PE method is slow and the running
time amounts to 44 minutes. The Galerkin projection algorithm, on the other hand,
converges from the log-linear solution within about 3 minutes.

The high volatility of the productivity shock entails a large support of the
stationary distribution of (kt , Zt ). For this reason, we computed Euler equation
residuals on 2,500 grid-points over the square [0.6k∗, 2k∗] × [0.7, 1.5]. Because
we have not taken any measures to increase the accuracy of our methods it comes
as no surprise that all Euler equation residuals are about a factor of 10 higher than
those reported in Table 3. Still, EP and GA are the most accurate methods, where
GA now outperforms EP. Second-order approximation, being a local method, is
now dominated by the PE. This method also provides smaller errors than value
function iteration.

The deviation of the mean risk-free rate of return from its stationary solution
value is displayed in column four of Table 7. As in our benchmark calibration for
the U.S. economy, there are no remarkable differences over the various methods.

5. CONCLUSION

This paper has shown that several numerical methods can be applied to study
the standard business cycle model. Using either log-linearization, second-order
approximation, parameterized expectations, Galerkin projection, deterministic
extended path, or value function iteration basically results in the same values
for the second moments of the variables that the business cycle researcher is most
interested in, that is, output, employment, investment, consumption, and wages.
Log-linearization, of course, is very easy to implement and by far the fastest
method. Furthermore, the solution from this method can often be successfully
applied as an initial value for more sophisticated nonlinear methods such as pa-
rameterized expectations or Galerkin projection, where the computation of a good
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initial value with genetic search algorithm or homotopy methods may become
very time-consuming, as may be the case in more complex multidimensional
state-space applications. Our results, therefore, suggest that the researcher may
benefit from using log-linearization methods in the first place and, possibly, also
should use nonlinear methods such as extended path or projection methods to
improve the accuracy of the computation in more nonlinear problems that may
arise, for example, in the presence of binding constraints, e.g., a nonnegativity
constraint on investment or a constraint on the maximum number of working
hours, more curved utility functions, or models with sizable shocks.

Our work has also emphasized an important detail in the application of pro-
jection methods for the approximation of polynomial solution functions in more
complex dynamic models. In our example of the stochastic growth model with
flexible labor supply, standard projection methods failed to converge even for good
initial values that were computed with the help of the log-linear solution. We find
that the basic reason for this observation is the poor approximation of functions
with Chebyshev polynomials outside the approximation interval. As a solution to
this problem, we suggest the use of a wider interval for the approximation of the
function than for the integration over the residual function.

NOTES

1. In related, but independent research, Aruoba et al. (2006) also compare value function iteration
with higher-order projection methods and fifth-order perturbation methods.

2. Function I is the standard functional type. Function III models indivisible labor as in Hansen
(1985) and is able to explain the fact that total hours and the number of employed workers is much
more variable than individual working hours. Function IV, finally, is used by Castañeda et al. (2003)
in their work on heterogeneous-agent economies. For this type of utility function, working hours vary
less with individual productivity and are in better accordance with empirical observations.

3. This functional form is suggested by Greenwood et al. (1998) and has the attractive feature that
there is no wealth effect on the labor supply decision. Hence, richer households do not supply less
labor ceteris paribus.

4. Except for the second-order approximation, a detailed description of these methods is pro-
vided by Heer and Maußner (2005). The Fortran program that performs all the computations re-
ferred to in the text can be downloaded from Alfred Maußner’s homepage, http://www.wiwi.uni-
augsburg.de/vwl/maussner/. It allows the user to supply his or her own parameter set and has a lot of
options for the computation of solutions and test statistics.

5. The method of parameterized expectations can be interpreted as a special case of the more
general class of projections methods, as pointed out by Judd (1996). Furthermore, he emphasizes that
the approach was originally developed by Williams and Wright (1982) and Wright and Williams (1984,
1991).

6. See, for example, den Haan and Marcet (1994).
7. Because the error term in λt − ψ(ln kt , ln Zt ) is additive, it is inappropriate to regress ln λt on

ln kt and ln Zt by means of ordinary least squares.
8. In particular, we applied two different specifications of the genetic search algorithm. In our

first specification, we follow Duffy and McNelis (2001). Yet, differently from their paper, our fit-
ness criterion is the minimal absolute value of the rhs of (11). Second, we use a different selec-
tion scheme and employ a larger set of crossover operators than Duffy and McNelis (2001). In
particular, we use stochastic universal sampling, as in Mitchell (1996). The genetic search algo-
rithms are described in more detail in Heer and Maußner (2005). Neither of the two algorithms is
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found to dominate the other in terms of speed across all calibrations and parameterizations in our
model.

9. For a more detailed description of the projection methods, see Judd (1992, 1998) and McGrattan
(1999).

10. Our method exploits the monotonicity of the policy function and the concavity of the value
function. We find this algorithm to be much more accurate for given computation time than Howard’s
algorithm or a variant that uses interpolation between grid points. See Ljungqvist and Sargent (2000),
Chapters 2 and 3, on Howard’s improvement algorithm.

11. A detailed description of this calibration is provided in Chapter 1 of Heer and Maußner (2005).
12. Domeij and Floden (2006) argue that these estimates are biased downward due to the omission

of borrowing constraints.
13. Greenwood et al. (1988) even apply a value ηn,w = 1.7 corresponding to ν = 0.6 in their study,

while Castañeda et al. (2003) use γ := 5.5.
14. In particular, we did not find any compelling evidence that the intertemporal elasticity of

substitution is different between the United States and Germany.
15. Computation time can exceed 1 hour if the search process is applied to the final number of

periods T = 100,000. We, however, used a two-step procedure: find admissible starting values for
a small number of periods T =5,000 and use these to compute the solution for the final number of
periods T = 100,000.

16. See Figure A.1 in the Appendix for a plot of these residuals.
17. Note that N is a function of kh.
18. It seems that the literature has not paid ample attention to this point. See, for example, the

description of value function iteration on p. 41 of Ljungqvist and Sargent (2000).
19. k∗ is the stationary stock of capital obtained from the deterministic version of the model. We

compute the Euler equation residual using Gauss–Hermite quadrature with four nodes and interpolate
bilinearly between the points of G . Following Christiano and Fisher (2000), we compute the Euler
residual as c̃/c − 1, where c is optimal consumption given the policy function. c̃ is the amount of
consumption that is necessary to equate the lhs of the Euler equation for capital to its rhs.
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APPENDIX

A.1. VALUE FUNCTION ITERATION

Researchers who use value function iteration on a two-dimensional grid over the stock of
capital and the realizations of the productivity shock face a trade-off between accuracy
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of the solution and computation speed. One way to alleviate this trade-off is interpolation
between grid points (see, e.g., Sefton [2000]). This section motivates our procedure and
provides the reasons that we think that it is superior to interpolation.

Consider the two-dimensional grid G := K × Z , over the stock of capital k, K =
{k1, k2, . . . , kn}, and the productivity shock z, Z = {z1, z2, . . . , zm}. Let P = (pjl) denote
the transition matrix between states zj and zl that is associated with the Markov chain
approximation of the productivity shock on Z , as suggested by Tauchen (1986). The
(n × m)-matrix V s = (vs

ij ) stores the value function at iteration step s. Given the current
state (ki, zj ) ∈ G , this allows us to write17

vs+1
ij = max

kh∈K , N
φ(kh) := u(zjN

αk1−α
i + (1 − δ)ki − kh, N) + βa−η

m∑
l=1

pjlv
s
hl . (A.1)

To find the index of the maximal element kh, we do not need to evaluate the expression
on the rhs of this equation for all n elements of K .18 Because the policy function is
monotonically increasing in ki , we can start with the index of k found optimal for ki−1.
Furthermore, because φ(kh) is strictly concave, we are able to use a binary search algorithm
that locates the maximal element after at most log2n evaluations of φ(kh) [see Kremer,
(2001, p. 166) for a proof]. This is a considerable reduction of function evaluations. For
instance, for n =1,000 elements, we are done after 13 calls to the routine that returns φ(kh)

at the most.
If we do not want to use the Markov chain approximation of the productivity shock,

equation (A.1) becomes

vs+1
ij = max

kh∈K , N
u(zjN

αk1−α
i + (1 − δ)ki − kh, N)

+ βa−η

∫ ∞

−∞
v(kh, ρzj + ε)(2πσ 2)−1/2e−(1/2σ 2)ε2

dε. (A.2)

Gauss–Hermite quadrature is an efficient and accurate method for approximating the inte-
gral on the rhs of this equation. In our program we use four nodes. For this method to be
applicable, we must interpolate the value function between the points of Z . We employ
a cubic spline. For this reason, each time we call the routine that evaluates the right-hand
side of the max-operator we have to solve an m-dimensional linear tri-diagonal system
of equations [see, e.g., Press et al. (1992, pp. 107–110)]. Not only does the interpolation
step increase the computational time considerably, but also so does the Gauss–Hermite
integration decrease accuracy. Because the interval [z1, zm] must contain the nodes of the
Gauss–Hermite quadrature, we have to pick a rather large interval. With four nodes, its size
is roughly 21 times the unconditional standard deviation of the AR(1)-process (3). Even for
simulations with as many as 100,000 realizations, the productivity shock stays in a much
smaller interval of about nine times the size of the unconditional standard deviation of (3).
Because the bounds of the grid for k depend on z1 and zm, we must also increase the interval
[k1, kn] to ensure that the policy function does not hit the boundary of K . Given the same
number of grid points as used in our preferred method, the larger bounds introduce greater
imprecision and the interpolation slows down the program. For instance, with n = 10, 000,
m = 31, and zm − z1 = 9σ/

√
1 − �2), our method needs about 4 hours and 18 minutes to

compute the policy function on a 3.2 GH Pentium 4 desktop computer. The accuracy of the
solution as given by the maximum absolute value of the Euler equation residual computed
over 400 equally spaced points in [0.8k∗, 1.2k∗] × [0.95, 1.05] amounts to 0.0002418.19

When we use the interpolation method with Gauss–Hermite quadrature, we must decrease
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TABLE A.1. Selected statistics GA versus PE

U.S. calibration, p1 = 2, p2 = 3

Euler equation residual Risk free rate of return

Utility GA PE GA PE

Utility I 0.00004 0.00038 −0.028 −0.028
Utility II 0.00003 0.00013 −0.018 −0.018
Utility III 0.00008 0.00068 −0.039 −0.039
Utility IV 0.00004 0.00027 −0.020 −0.020

U.S. calibration, p1 = 3, p2 = 3
Utility I 0.00000 0.00022 −0.027 −0.028
Utility II 0.00000 0.00014 −0.018 −0.018
Utility III 0.00002 0.00024 −0.038 −0.039
Utility IV 0.00000 0.00022 −0.019 −0.020

Notes: See Table 2 for the abbreviation of methods, Table 3 for the definition of the Euler equation
residual, and Table 5 for the definition and computation of the risk-free rate of return.

the number of grid points from m = 31 to m = 15 so that the program requires about the
same time to compute the policy function (4 hours and 55 minutes). The respective Euler
equation residual is 0.0009473. Thus, our method is faster and much more accurate.

A.2. FURTHER RESULTS

Table A.1 presents Euler equation residuals and risk-free rates of return for the GA and PE
solution when we use Chebyshev polynomials of degree p1 and p2 in both methods.

Figure A.1 displays plots of the Euler equation residuals for utility function I and the
U.S. parameter set. Note that unlike the residuals obtained from an econometric regression,
Euler equation residuals must neither sum to zero nor be scattered arbitrarily around zero.
Euler equation residuals indicate the deviation of the approximate policy function from the
true one. In most cases this deviation is systematic, as can be seen most easily in the case
of the deterministic growth model with exogenous labor supply N = 1. In this model, the
Euler equation is given by[

C(K ′)
C(K)

]η

= β
[
1 − δ + α(K ′)α−1

]
, K ′ = Kα + (1 − δ)K − C(K),

where C(K) is the true policy function for consumption. The linear approximation of this
function Ĉ(K) is tangent to C(K) at the stationary solution K∗ but lies everywhere else
above C(K). Thus Ĉ(K) ≥ C(K) and, therefore, K̂ ′ = Kα + (1 − δ)K − Ĉ(K) < K ′.
Because the policy function is monotonically increasing in K , C ′(K ′) ≤ Ĉ(K̂ ′). Thus[

Ĉ(K̂ ′)

Ĉ(K)

]η

− β
[
1 − δ + α(K̂ ′)α−1

] ≤ 0

and the Euler equation residuals are nonpositive.
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FIGURE A.1. Euler equation residuals.
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